Uterine decidual niche modulates the progressive dedifferentiation of spiral artery vascular smooth muscle cells during human pregnancy
Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA–VSMCs) have long bee...
Saved in:
Published in | Biology of reproduction Vol. 104; no. 3; pp. 624 - 637 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for the Study of Reproduction
01.03.2021
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3363 1529-7268 1529-7268 |
DOI | 10.1093/biolre/ioaa208 |
Cover
Loading…
Abstract | Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA–VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA–VSMCs at different stages of vascular remodeling in human early pregnancy, and we demonstrated the progressively morphological change of SPA–VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA–VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD56+ dNKs was displayed by immunofluorescence-DNA in-situ hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA–VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA–VSMCs during vascular remodeling. Summary sentence We illustrate a cascade regulation of the dedifferentiation and destination of SPA–VSMCs by uterine decidual niche during vascular remodeling. |
---|---|
AbstractList | Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal--fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA--VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA--VSMCs atdifferent stages of vascular remodeling inhuman early pregnancy, andwe demonstrated the progressively morphological change of SPA--VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA--VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD[56.sup.+] dNKs was displayed by immunofluorescence-DNA insitu hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA--VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA--VSMCs during vascular remodeling. Summary sentence We illustrate a cascade regulation of the dedifferentiation and destination of SPA--VSMCs by uterine decidual niche during vascular remodeling. Key words: uterine spiral artery, vascular smooth muscle cells, dedifferentiation, decidual stromal cells, decidual immune cells, extravillous trophoblast. Abstract Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA–VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA–VSMCs at different stages of vascular remodeling in human early pregnancy, and we demonstrated the progressively morphological change of SPA–VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA–VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD56+ dNKs was displayed by immunofluorescence-DNA in-situ hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA–VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA–VSMCs during vascular remodeling. We illustrate a cascade regulation of the dedifferentiation and destination of SPA–VSMCs by uterine decidual niche during vascular remodeling. Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal--fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA--VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA--VSMCs atdifferent stages of vascular remodeling inhuman early pregnancy, andwe demonstrated the progressively morphological change of SPA--VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA--VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD[56.sup.+] dNKs was displayed by immunofluorescence-DNA insitu hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA--VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA--VSMCs during vascular remodeling. We illustrate a cascade regulation of the dedifferentiation and destination of SPA--VSMCs by uterine decidual niche during vascular remodeling. Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal-fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA-VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA-VSMCs at different stages of vascular remodeling in human early pregnancy, and we demonstrated the progressively morphological change of SPA-VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA-VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD56+ dNKs was displayed by immunofluorescence-DNA in-situ hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA-VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA-VSMCs during vascular remodeling.Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal-fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA-VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA-VSMCs at different stages of vascular remodeling in human early pregnancy, and we demonstrated the progressively morphological change of SPA-VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA-VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD56+ dNKs was displayed by immunofluorescence-DNA in-situ hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA-VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA-VSMCs during vascular remodeling. Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA–VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA–VSMCs at different stages of vascular remodeling in human early pregnancy, and we demonstrated the progressively morphological change of SPA–VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA–VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD56+ dNKs was displayed by immunofluorescence-DNA in-situ hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA–VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA–VSMCs during vascular remodeling. Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the demands of the growing fetus. Along this process, the dynamic change and the fate of spiral artery vascular smooth muscle cells (SPA–VSMCs) have long been debatable. In the present study, we analyzed the cell features of SPA–VSMCs at different stages of vascular remodeling in human early pregnancy, and we demonstrated the progressively morphological change of SPA–VSMCs at un-remodeled (Un-Rem), remodeling, and fully remodeled (Fully-Rem) stages, indicating the extravillous trophoblast (EVT)-independent and EVT-dependent phases of SPA–VSMC dedifferentiation. In vitro experiments in VSMC cell line revealed the efficient roles of decidual stromal cells, decidual natural killer cells (dNK), decidual macrophages, and EVTs in inducing VSMCs dedifferentiation. Importantly, the potential transformation of VSMC toward CD56+ dNKs was displayed by immunofluorescence-DNA in-situ hybridization-proximity ligation and chromatin immunoprecipitation assays for H3K4dime modification in the myosin heavy chain 11 (MYH11) promoter region. The findings clearly illustrate a cascade regulation of the progressive dedifferentiation of SPA–VSMCs by multiple cell types in uterine decidual niche and provide new evidences to reveal the destination of SPA–VSMCs during vascular remodeling. Summary sentence We illustrate a cascade regulation of the dedifferentiation and destination of SPA–VSMCs by uterine decidual niche during vascular remodeling. |
Audience | Academic |
Author | Yu, Xin Li, Yu-Xia Liu, Juan Shao, Xuan Wang, Yan-Ling Zhang, Lanmei Ma, Yeling |
Author_xml | – sequence: 1 givenname: Yeling surname: Ma fullname: Ma, Yeling organization: University of Chinese Academy of Sciences, Beijing, China and – sequence: 2 givenname: Xin surname: Yu fullname: Yu, Xin organization: University of Chinese Academy of Sciences, Beijing, China and – sequence: 3 givenname: Lanmei surname: Zhang fullname: Zhang, Lanmei organization: Department of Gynecology and Obstetrics, The 306 Hospital of PLA, Beijing, China – sequence: 4 givenname: Juan surname: Liu fullname: Liu, Juan organization: University of Chinese Academy of Sciences, Beijing, China and – sequence: 5 givenname: Xuan surname: Shao fullname: Shao, Xuan organization: University of Chinese Academy of Sciences, Beijing, China and – sequence: 6 givenname: Yu-Xia surname: Li fullname: Li, Yu-Xia organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China – sequence: 7 givenname: Yan-Ling surname: Wang fullname: Wang, Yan-Ling organization: University of Chinese Academy of Sciences, Beijing, China and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33336235$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFK0dkiQuVSOuPxI6PVUUBqRIXerYcZ7zrKrEXO6m0v6B_Gy_ZUoFAtQ-WR8_7zoxmTtBRiAEQekvJOSWKX3Q-DgkufDSGkfYFWtGGqUoy0R6hFSFEVJwLfoxOcr4jhNac8VfomJcjGG9W6OF2guQD4B6s72cz4ODtBvAY-3kwE2Q8ld82xXWCnP39Huy9c5AgTN5MPgYcHc5bn4rWpOK2w_cm26JOOI8xThs8ztkOgC0MQ8b9XPKt8WYeTSjGsA4m2N1r9NKZIcObw3uKbq8_fb_6Ut18-_z16vKm6mpBp0oqEDVY2QGVrFFM1KZWinW2ZqJve-KahkphZOuc452lLWt4J1pqpFQWXMdP0YfFt7T0Y4Y86dHnfWEmQJyzZrWktZBNKwr6_i_0Ls4plOo0a2grhRRKPVFrM4D2wcUpGbs31ZeiVUqSmslCnf-DKreH0dsyUudL_A_Bu0PyuRuh19vkR5N2-nFyBagXwKaYcwKnrZ9-zaM4-0FTovcLopcF0YcFeSrkt-zR-b-Cs0UQ5-3z7MeFLfHS03P4T4Rr3yc |
CitedBy_id | crossref_primary_10_1093_biolre_ioaa220 crossref_primary_10_1186_s12964_025_02060_y crossref_primary_10_1016_j_jri_2022_103627 crossref_primary_10_1096_fj_202402754R crossref_primary_10_1111_aji_13477 crossref_primary_10_3389_fphys_2024_1490154 crossref_primary_10_1097_FM9_0000000000000134 crossref_primary_10_1360_SSV_2023_0171 crossref_primary_10_1016_j_placenta_2023_12_009 crossref_primary_10_1186_s12916_023_02807_9 crossref_primary_10_3389_fendo_2022_904744 crossref_primary_10_1080_14767058_2024_2385451 crossref_primary_10_1038_s41598_022_19239_9 crossref_primary_10_1016_j_ajpath_2023_08_008 crossref_primary_10_3389_fimmu_2022_951482 crossref_primary_10_1093_biolre_ioac095 crossref_primary_10_3389_fimmu_2021_728291 crossref_primary_10_3389_fimmu_2024_1415794 crossref_primary_10_1093_biolre_ioac094 crossref_primary_10_1016_j_placenta_2022_10_010 |
Cites_doi | 10.1172/JCI26505 10.1093/humrep/deu164 10.1016/j.biocel.2009.07.019 10.1210/en.2012-1141 10.1016/j.jri.2013.08.001 10.1038/nm1452 10.1007/978-1-60761-362-6_30 10.1161/ATVBAHA.112.300354 10.1161/01.RES.0000261352.81736.37 10.1016/j.rbmo.2013.05.014 10.1093/cvr/cvs115 10.1016/S0006-291X(02)00331-5 10.4049/jimmunol.175.1.61 10.1111/aji.13203 10.1007/BF02820507 10.1016/j.ajog.2017.11.577 10.1096/fj.12-203679 10.1016/j.placenta.2011.11.003 10.1016/j.placenta.2017.03.001 10.1007/978-1-4615-4711-2_20 10.1016/j.ajpath.2013.05.029 10.1095/biolreprod.116.138495 10.1038/nmeth.2332 10.1002/path.1801 10.1161/CIRCRESAHA.118.313527 10.1093/humupd/dms015 10.1111/aji.12450 10.1016/j.placenta.2005.04.005 10.2353/ajpath.2010.091105 10.1016/j.jri.2015.02.003 10.1016/j.biocel.2012.05.021 10.1189/jlb.0712327 10.1095/biolreprod.105.045518 10.3389/fphys.2016.00152 10.1016/j.cmet.2014.03.025 10.1016/j.placenta.2007.10.006 10.7554/eLife.31274 10.1210/jc.2004-0507 10.1016/j.gene.2014.08.047 10.1038/nri886 10.1055/s-0029-1242989 10.1016/j.placenta.2008.12.003 10.1038/cr.2010.111 10.1016/S0140-6736(07)60712-0 10.1038/nm.3866 10.1038/icb.2017.45 10.1172/JCI200422991 10.1152/ajpheart.00590.2011 10.2353/ajpath.2009.080995 10.4049/jimmunol.1601175 10.3389/fimmu.2019.00960 10.1016/S0303-7207(97)00122-6 10.1210/en.2017-03082 10.1111/aji.12473 10.1093/humrep/dez061 10.1038/s41586-018-0698-6 10.1096/fj.12-210310 10.1016/j.jri.2012.10.008 10.1097/00004347-199704000-00009 10.2353/ajpath.2006.060265 10.1016/j.jri.2017.10.045 10.1093/humrep/dez124 10.1161/CIRCRESAHA.108.183053 10.1016/j.placenta.2005.12.006 10.1084/jem.20150688 10.3892/ijo.2014.2745 10.1189/jlb.0305142 10.7554/eLife.01659 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com journals.permissions@oup.com The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020 The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. COPYRIGHT 2021 Oxford University Press The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com journals.permissions@oup.com – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: COPYRIGHT 2021 Oxford University Press – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1093/biolre/ioaa208 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1529-7268 |
EndPage | 637 |
ExternalDocumentID | A689970427 33336235 10_1093_biolre_ioaa208 10.1093/biolre/ioaa208 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -JH -~X 0R~ 23N 2WC 48X 5GY 5RE 5VS 5WD 6J9 7X7 88E 8FI 8FJ AABJS AABMN AACFU AAIMJ AAPBV AAPPN AAPQZ AAPSS AAPXW AAVAP ABFLS ABPTD ABSGY ABUWG ACGFO ACGFS ACNCT ACUFI ADBBV ADEIU ADGKP ADGZP ADHKW ADIPN ADNWM ADOYD ADRTK ADVEK AEDJY AELNO AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFFZL AFGWE AFKRA AFNWH AFOFC AFXEN AGINJ AHMBA AIKOY AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT ARIXL AYOIW AZQFJ BAWUL BAYMD BBNVY BCRHZ BENPR BEYMZ BHONS BHPHI BPHCQ BSWAC BVXVI BYORX C45 CASEJ CDBKE CINED CS3 DAKXR DIK DPPUQ DU5 E3Z EBS F5P F9R FHSFR FOEOM FYUFA GAUVT GJXCC H13 HCIFZ IAO IHR INH INIJC KOP KQ8 KSI KSN M1P M7P NLBLG NOMLY O9- OBOKY ODMLO OK1 OVD OWPYF P2P PAFKI PEELM PQ0 PQEST PQQKQ PQUKI PROAC PSQYO RBO RHF ROX ROZ RUSNO TEORI TLC TR2 TSR UKHRP W8F WH7 WOQ YAYTL YHG YKOAZ YXANX ZCN ~EF ~KM .GJ 186 1TH 3O- 3V. 53G AAJQQ AARHZ AASNB AAUAY AAUQX ABJNI ABMNT ABSAR ABXVV ACFRR ACUTJ ADHSS ADQBN AEPYG AFFIJ AFFNX AFULF AGMDO AI. AKPMI ALIPV ASAOO ATDFG ATGXG C1A CAG CCPQU COF DC7 EJD FA8 FLUFQ HMCUK H~9 JXSIZ KBUDW MBTAY MVM OHT OJZSN Q5J ROL TOX VH1 WHG ZGI ZXP AAYXX ABDFA ABEJV ABGNP ABVGC ABXZS AGORE AHGBF AJBYB AJNCP ALXQX CITATION ITC NU- PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 7XB 8FD 8FE 8FH 8FK AZQEC DWQXO FR3 GNUQQ K9. LK8 P64 PJZUB PKEHL PPXIY PQGLB PRINS RC3 7X8 |
ID | FETCH-LOGICAL-b461t-79e64ec7be17259264a4992bc426d8d0f55176a78fff3bc18253b681a779cefb3 |
IEDL.DBID | 7X7 |
ISSN | 0006-3363 1529-7268 |
IngestDate | Mon Jul 21 10:44:36 EDT 2025 Fri Jul 25 12:06:32 EDT 2025 Tue Jun 17 21:48:05 EDT 2025 Tue Jun 10 20:16:33 EDT 2025 Wed Feb 19 02:27:47 EST 2025 Tue Jul 01 00:56:13 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Wed Aug 28 03:18:37 EDT 2024 Wed Mar 08 13:19:32 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | uterine spiral artery dedifferentiation extravillous trophoblast decidual immune cells decidual stromal cells vascular smooth muscle cells |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2020. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b461t-79e64ec7be17259264a4992bc426d8d0f55176a78fff3bc18253b681a779cefb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 33336235 |
PQID | 2518767699 |
PQPubID | 2046364 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2471467586 proquest_journals_2518767699 gale_infotracmisc_A689970427 gale_infotracacademiconefile_A689970427 pubmed_primary_33336235 crossref_citationtrail_10_1093_biolre_ioaa208 crossref_primary_10_1093_biolre_ioaa208 oup_primary_10_1093_biolre_ioaa208 bioone_primary_10_1093_biolre_ioaa208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cary |
PublicationTitle | Biology of reproduction |
PublicationTitleAlternate | Biol Reprod |
PublicationYear | 2021 |
Publisher | Society for the Study of Reproduction Oxford University Press |
Publisher_xml | – name: Society for the Study of Reproduction – name: Oxford University Press |
References | Wallace (2021031607170650200_ref47) 2012; 18 Hanna (2021031607170650200_ref18) 2006; 12 Dong (2021031607170650200_ref42) 2010; 20 Khong (2021031607170650200_ref54) 1997; 16 Long (2021031607170650200_ref63) 2014; 19 Male (2021031607170650200_ref23) 2010; 612 Kingsley (2021031607170650200_ref43) 2002; 293 Maliqueo (2021031607170650200_ref67) 2016; 7 Bhurke (2021031607170650200_ref66) 2016; 75 Bonagura (2021031607170650200_ref70) 2012; 153 Kingdom (2021031607170650200_ref1) 1999; 474 Weedon-Fekjaer (2021031607170650200_ref37) 2012; 33 Red-Horse (2021031607170650200_ref29) 2004; 114 McDonald (2021031607170650200_ref31) 2006; 116 Askie (2021031607170650200_ref50) 2007; 369 Dickey (2021031607170650200_ref68) 1996; 2 Keogh (2021031607170650200_ref6) 2007; 100 Harris (2021031607170650200_ref30) 2009; 30 Choudhury (2021031607170650200_ref13) 2017; 198 Saji (2021031607170650200_ref45) 1997; 132 Wang (2021031607170650200_ref55) 2020; 2020 Moffett-King (2021031607170650200_ref24) 2002; 2 Harris (2021031607170650200_ref5) 2006; 169 Gomez (2021031607170650200_ref19) 2013; 10 Speer (2021031607170650200_ref64) 2009; 104 Jones (2021031607170650200_ref57) 2004; 89 Wu (2021031607170650200_ref48) 2005; 175 Pijnenborg (2021031607170650200_ref4) 2006; 27 Yuan (2021031607170650200_ref44) 2018; 123 Wallace (2021031607170650200_ref49) 2013; 33 Hannan (2021031607170650200_ref56) 2006; 74 Lockwood (2021031607170650200_ref46) 2013; 183 Lu (2021031607170650200_ref58) 2020; 83 Sojka (2021031607170650200_ref62) 2014; 3 Faas (2021031607170650200_ref14) 2017; 56 Tayade (2021031607170650200_ref60) 2005; 78 Vacca (2021031607170650200_ref25) 2013; 97 Smith (2021031607170650200_ref59) 2009; 16 Crocker (2021031607170650200_ref38) 2005; 206 Liu (2021031607170650200_ref26) 2017; 124 Lash (2021031607170650200_ref2) 2015; 108 Hazan (2021031607170650200_ref40) 2010; 177 Gomez (2021031607170650200_ref10) 2012; 95 Sayama (2021031607170650200_ref17) 2013; 100 Misra (2021031607170650200_ref11) 2016; 213 Wu (2021031607170650200_ref15) 2019; 34 Liao (2021031607170650200_ref51) 2010; 42 Manaster (2021031607170650200_ref28) 2008; 29 Smith (2021031607170650200_ref7) 2009; 174 Brar (2021031607170650200_ref36) 1997; 6 Zhu (2021031607170650200_ref12) 2014; 551 Robson (2021031607170650200_ref39) 2019; 34 Salamonsen (2021031607170650200_ref35) 2016; 75 Burton (2021031607170650200_ref3) 2018; 218 Bulmer (2021031607170650200_ref8) 2012; 26 Biswas Shivhare (2021031607170650200_ref20) 2014; 29 Ramathal (2021031607170650200_ref21) 2010; 28 Vento-Tormo (2021031607170650200_ref41) 2018; 563 Thiruchelvam (2021031607170650200_ref33) 2013; 93 Aberdeen (2021031607170650200_ref71) 2012; 302 Edgell (2021031607170650200_ref34) 2013; 27 Robson (2021031607170650200_ref9) 2012; 26 Brighton (2021031607170650200_ref32) 2017; 6 Sun (2021031607170650200_ref52) 2015; 46 Bao (2021031607170650200_ref53) 2019; 12 Shankman (2021031607170650200_ref65) 2015; 21 Sojka (2021031607170650200_ref27) 2019; 10 Hill (2021031607170650200_ref73) 2012; 44 Redhead (2021031607170650200_ref61) 2016; 94 Ma (2021031607170650200_ref16) 2017; 95 Ashary (2021031607170650200_ref22) 2018; 159 Albrecht (2021031607170650200_ref69) 2006; 27 Ma (2021031607170650200_ref72) 2010; 62 |
References_xml | – volume: 116 start-page: 36 year: 2006 ident: 2021031607170650200_ref31 article-title: Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo publication-title: J Clin Invest doi: 10.1172/JCI26505 – volume: 29 start-page: 1884 year: 2014 ident: 2021031607170650200_ref20 article-title: Altered vascular smooth muscle cell differentiation in the endometrial vasculature in menorrhagia publication-title: Hum Reprod doi: 10.1093/humrep/deu164 – volume: 42 start-page: 1363 year: 2010 ident: 2021031607170650200_ref51 article-title: miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2009.07.019 – volume: 153 start-page: 2897 year: 2012 ident: 2021031607170650200_ref70 article-title: Prematurely elevating estradiol in early baboon pregnancy suppresses uterine artery remodeling and expression of extravillous placental vascular endothelial growth factor and alpha1beta1 and alpha5beta1 integrins publication-title: Endocrinology doi: 10.1210/en.2012-1141 – volume: 100 start-page: 109 year: 2013 ident: 2021031607170650200_ref17 article-title: Human decidual macrophages suppress IFN-gamma production by T cells through costimulatory B7-H1:PD-1 signaling in early pregnancy publication-title: J Reprod Immunol doi: 10.1016/j.jri.2013.08.001 – volume: 12 start-page: 1065 year: 2006 ident: 2021031607170650200_ref18 article-title: Decidual NK cells regulate key developmental processes at the human fetal-maternal interface publication-title: Nat Med doi: 10.1038/nm1452 – volume: 612 start-page: 447 year: 2010 ident: 2021031607170650200_ref23 article-title: Natural killer cells in human pregnancy publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-362-6_30 – volume: 33 start-page: e93 year: 2013 ident: 2021031607170650200_ref49 article-title: Trophoblast-induced changes in C-x-C motif chemokine 10 expression contribute to vascular smooth muscle cell dedifferentiation during spiral artery remodeling publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.112.300354 – volume: 100 start-page: 834 year: 2007 ident: 2021031607170650200_ref6 article-title: Fetal-derived trophoblast use the apoptotic cytokine tumor necrosis factor-alpha-related apoptosis-inducing ligand to induce smooth muscle cell death publication-title: Circ Res doi: 10.1161/01.RES.0000261352.81736.37 – volume: 27 start-page: 486 year: 2013 ident: 2021031607170650200_ref34 article-title: Assessing receptivity in the endometrium: The need for a rapid, non-invasive test publication-title: Reprod Biomed Online doi: 10.1016/j.rbmo.2013.05.014 – volume: 95 start-page: 156 year: 2012 ident: 2021031607170650200_ref10 article-title: Smooth muscle cell phenotypic switching in atherosclerosis publication-title: Cardiovasc Res doi: 10.1093/cvr/cvs115 – volume: 293 start-page: 1000 year: 2002 ident: 2021031607170650200_ref43 article-title: ERK1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5 publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(02)00331-5 – volume: 175 start-page: 61 year: 2005 ident: 2021031607170650200_ref48 article-title: Human first-trimester trophoblast cells recruit CD56brightCD16− NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1 publication-title: J Immunol doi: 10.4049/jimmunol.175.1.61 – volume: 83 year: 2020 ident: 2021031607170650200_ref58 article-title: Trophoblast-derived CXCL12 promotes CD56(bright) CD82(−) CD29(+) NK cell enrichment in the decidua publication-title: Am J Reprod Immunol doi: 10.1111/aji.13203 – volume: 2 start-page: 113 year: 1996 ident: 2021031607170650200_ref68 article-title: Relationship of estradiol and progesterone levels to uterine blood flow during early pregnancy publication-title: Early Pregnancy – volume: 6 start-page: 301 year: 1997 ident: 2021031607170650200_ref36 article-title: Progesterone-dependent decidualization of the human endometrium is mediated by cAMP publication-title: Endocrine doi: 10.1007/BF02820507 – volume: 218 start-page: S745 year: 2018 ident: 2021031607170650200_ref3 article-title: Pathophysiology of placental-derived fetal growth restriction publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2017.11.577 – volume: 26 start-page: 2975 year: 2012 ident: 2021031607170650200_ref8 article-title: The role of vascular smooth muscle cell apoptosis and migration during uterine spiral artery remodeling in normal human pregnancy publication-title: FASEB J doi: 10.1096/fj.12-203679 – volume: 33 start-page: S87 year: 2012 ident: 2021031607170650200_ref37 article-title: Review: spatiotemporal dynamics of hCG/cAMP signaling and regulation of placental function publication-title: Placenta doi: 10.1016/j.placenta.2011.11.003 – volume: 56 start-page: 44 year: 2017 ident: 2021031607170650200_ref14 article-title: Uterine NK cells and macrophages in pregnancy publication-title: Placenta doi: 10.1016/j.placenta.2017.03.001 – volume: 474 start-page: 259 year: 1999 ident: 2021031607170650200_ref1 article-title: Oxygen and placental vascular development publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4615-4711-2_20 – volume: 183 start-page: 841 year: 2013 ident: 2021031607170650200_ref46 article-title: Decidual cell regulation of natural killer cell-recruiting chemokines: implications for the pathogenesis and prediction of preeclampsia publication-title: Am J Pathol doi: 10.1016/j.ajpath.2013.05.029 – volume: 2020 year: 2020 ident: 2021031607170650200_ref55 article-title: OSCC exosomes regulate miR-210-3p targeting EFNA3 to promote oral cancer angiogenesis through the PI3K/AKT pathway publication-title: Biomed Res Int – volume: 94 start-page: 101 year: 2016 ident: 2021031607170650200_ref61 article-title: The transcription factor NFIL3 is essential for normal placental and embryonic development but not for uterine natural killer (UNK) cell differentiation in mice publication-title: Biol Reprod doi: 10.1095/biolreprod.116.138495 – volume: 10 start-page: 171 year: 2013 ident: 2021031607170650200_ref19 article-title: Detection of histone modifications at specific gene loci in single cells in histological sections publication-title: Nat Methods doi: 10.1038/nmeth.2332 – volume: 206 start-page: 476 year: 2005 ident: 2021031607170650200_ref38 article-title: The effect of vascular origin, oxygen, and tumour necrosis factor alpha on trophoblast invasion of maternal arteries in vitro publication-title: J Pathol doi: 10.1002/path.1801 – volume: 123 start-page: 538 year: 2018 ident: 2021031607170650200_ref44 article-title: THO complex-dependent posttranscriptional control contributes to vascular smooth muscle cell fate decision publication-title: Circ Res doi: 10.1161/CIRCRESAHA.118.313527 – volume: 18 start-page: 458 year: 2012 ident: 2021031607170650200_ref47 article-title: Extravillous trophoblast and decidual natural killer cells: a remodelling partnership publication-title: Hum Reprod Update doi: 10.1093/humupd/dms015 – volume: 75 start-page: 218 year: 2016 ident: 2021031607170650200_ref35 article-title: The microenvironment of human implantation: determinant of reproductive success publication-title: Am J Reprod Immunol doi: 10.1111/aji.12450 – volume: 27 start-page: 483 year: 2006 ident: 2021031607170650200_ref69 article-title: Suppression of extravillous trophoblast invasion of uterine spiral arteries by estrogen during early baboon pregnancy publication-title: Placenta doi: 10.1016/j.placenta.2005.04.005 – volume: 177 start-page: 1017 year: 2010 ident: 2021031607170650200_ref40 article-title: Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro publication-title: Am J Pathol doi: 10.2353/ajpath.2010.091105 – volume: 108 start-page: 83 year: 2015 ident: 2021031607170650200_ref2 article-title: Decidual cytokines and pregnancy complications: Focus on spontaneous miscarriage publication-title: J Reprod Immunol doi: 10.1016/j.jri.2015.02.003 – volume: 44 start-page: 1505 year: 2012 ident: 2021031607170650200_ref73 article-title: Arteriolar vascular smooth muscle cells: mechanotransducers in a complex environment publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2012.05.021 – volume: 93 start-page: 217 year: 2013 ident: 2021031607170650200_ref33 article-title: The importance of the macrophage within the human endometrium publication-title: J Leukoc Biol doi: 10.1189/jlb.0712327 – volume: 74 start-page: 896 year: 2006 ident: 2021031607170650200_ref56 article-title: The chemokines, CX3CL1, CCL14, and CCL4, promote human trophoblast migration at the feto-maternal interface publication-title: Biol Reprod doi: 10.1095/biolreprod.105.045518 – volume: 7 start-page: 152 year: 2016 ident: 2021031607170650200_ref67 article-title: Sex steroids modulate uterine-placental vasculature: implications for obstetrics and neonatal outcomes publication-title: Front Physiol doi: 10.3389/fphys.2016.00152 – volume: 19 start-page: 810 year: 2014 ident: 2021031607170650200_ref63 article-title: A smooth muscle-like origin for beige adipocytes publication-title: Cell Metab doi: 10.1016/j.cmet.2014.03.025 – volume: 29 start-page: S60 year: 2008 ident: 2021031607170650200_ref28 article-title: The unique properties of human NK cells in the uterine mucosa publication-title: Placenta doi: 10.1016/j.placenta.2007.10.006 – volume: 6 year: 2017 ident: 2021031607170650200_ref32 article-title: Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium publication-title: Elife doi: 10.7554/eLife.31274 – volume: 89 start-page: 6155 year: 2004 ident: 2021031607170650200_ref57 article-title: Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2004-0507 – volume: 551 start-page: 1 year: 2014 ident: 2021031607170650200_ref12 article-title: Endometrial stromal cells and decidualized stromal cells: origins, transformation and functions publication-title: Gene doi: 10.1016/j.gene.2014.08.047 – volume: 2 start-page: 656 year: 2002 ident: 2021031607170650200_ref24 article-title: Natural killer cells and pregnancy publication-title: Nat Rev Immunol doi: 10.1038/nri886 – volume: 28 start-page: 17 year: 2010 ident: 2021031607170650200_ref21 article-title: Endometrial decidualization: of mice and men publication-title: Semin Reprod Med doi: 10.1055/s-0029-1242989 – volume: 30 start-page: 299 year: 2009 ident: 2021031607170650200_ref30 article-title: Adhesion molecules in human trophoblast—a review. II. Extravillous trophoblast publication-title: Placenta doi: 10.1016/j.placenta.2008.12.003 – volume: 20 start-page: 1252 year: 2010 ident: 2021031607170650200_ref42 article-title: Baicalin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation through suppressing PDGFRbeta-ERK signaling and increase in p27 accumulation and prevents injury-induced neointimal hyperplasia publication-title: Cell Res doi: 10.1038/cr.2010.111 – volume: 369 start-page: 1791 year: 2007 ident: 2021031607170650200_ref50 article-title: Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data publication-title: Lancet doi: 10.1016/S0140-6736(07)60712-0 – volume: 21 start-page: 628 year: 2015 ident: 2021031607170650200_ref65 article-title: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis publication-title: Nat Med doi: 10.1038/nm.3866 – volume: 95 start-page: 695 year: 2017 ident: 2021031607170650200_ref16 article-title: dNK cells facilitate the interaction between trophoblastic and endothelial cells via VEGF-C and HGF publication-title: Immunol Cell Biol doi: 10.1038/icb.2017.45 – volume: 114 start-page: 744 year: 2004 ident: 2021031607170650200_ref29 article-title: Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface publication-title: J Clin Invest doi: 10.1172/JCI200422991 – volume: 302 start-page: H1936 year: 2012 ident: 2021031607170650200_ref71 article-title: Suppression of trophoblast uterine spiral artery remodeling by estrogen during baboon pregnancy: impact on uterine and fetal blood flow dynamics publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00590.2011 – volume: 174 start-page: 1959 year: 2009 ident: 2021031607170650200_ref7 article-title: Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy publication-title: Am J Pathol doi: 10.2353/ajpath.2009.080995 – volume: 198 start-page: 4115 year: 2017 ident: 2021031607170650200_ref13 article-title: Extravillous trophoblast and endothelial cell crosstalk mediates leukocyte infiltration to the early remodeling decidual spiral arteriole wall publication-title: J Immunol doi: 10.4049/jimmunol.1601175 – volume: 10 start-page: 960 year: 2019 ident: 2021031607170650200_ref27 article-title: Uterine natural killer cells publication-title: Front Immunol doi: 10.3389/fimmu.2019.00960 – volume: 132 start-page: 73 year: 1997 ident: 2021031607170650200_ref45 article-title: Gene expression and specific binding of platelet-derived growth factor and its effect on DNA synthesis in human decidual cells publication-title: Mol Cell Endocrinol doi: 10.1016/S0303-7207(97)00122-6 – volume: 159 start-page: 1188 year: 2018 ident: 2021031607170650200_ref22 article-title: Embryo implantation: war in times of love publication-title: Endocrinology doi: 10.1210/en.2017-03082 – volume: 75 start-page: 237 year: 2016 ident: 2021031607170650200_ref66 article-title: Progesterone-regulated endometrial factors controlling implantation publication-title: Am J Reprod Immunol doi: 10.1111/aji.12473 – volume: 62 start-page: 421 year: 2010 ident: 2021031607170650200_ref72 article-title: Comparison of electrophysiological properties of vascular smooth muscle cells in different arterioles in guinea pig publication-title: Sheng Li Xue Bao – volume: 34 start-page: 1291 year: 2019 ident: 2021031607170650200_ref15 article-title: Kisspeptin regulation of human decidual stromal cells motility via FAK-Src intracellular tyrosine kinases publication-title: Hum Reprod doi: 10.1093/humrep/dez061 – volume: 563 start-page: 347 year: 2018 ident: 2021031607170650200_ref41 article-title: Single-cell reconstruction of the early maternal-fetal interface in humans publication-title: Nature doi: 10.1038/s41586-018-0698-6 – volume: 26 start-page: 4876 year: 2012 ident: 2021031607170650200_ref9 article-title: Uterine natural killer cells initiate spiral artery remodeling in human pregnancy publication-title: FASEB J doi: 10.1096/fj.12-210310 – volume: 97 start-page: 14 year: 2013 ident: 2021031607170650200_ref25 article-title: Natural killer cells in human pregnancy publication-title: J Reprod Immunol doi: 10.1016/j.jri.2012.10.008 – volume: 12 start-page: 1846 year: 2019 ident: 2021031607170650200_ref53 article-title: MiR-210 inhibits hypoxia-induced apoptosis of smooth muscle cells via targeting MEF2C publication-title: Int J Clin Exp Pathol – volume: 16 start-page: 138 year: 1997 ident: 2021031607170650200_ref54 article-title: Bcl-2 expression delays postpartum involution of pregnancy-induced vascular changes in the human placental bed publication-title: Int J Gynecol Pathol doi: 10.1097/00004347-199704000-00009 – volume: 16 start-page: 110A year: 2009 ident: 2021031607170650200_ref59 article-title: Potential involvement of chemokines in recruiting uNK cells and macrophages to remodeling spiral arteries publication-title: Reprod Sci – volume: 169 start-page: 1863 year: 2006 ident: 2021031607170650200_ref5 article-title: Invasive trophoblasts stimulate vascular smooth muscle cell apoptosis by a fas ligand-dependent mechanism publication-title: Am J Pathol doi: 10.2353/ajpath.2006.060265 – volume: 124 start-page: 44 year: 2017 ident: 2021031607170650200_ref26 article-title: The role of decidual immune cells on human pregnancy publication-title: J Reprod Immunol doi: 10.1016/j.jri.2017.10.045 – volume: 34 start-page: 1428 year: 2019 ident: 2021031607170650200_ref39 article-title: Uterine spiral artery muscle dedifferentiation publication-title: Hum Reprod doi: 10.1093/humrep/dez124 – volume: 104 start-page: 733 year: 2009 ident: 2021031607170650200_ref64 article-title: Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries publication-title: Circ Res doi: 10.1161/CIRCRESAHA.108.183053 – volume: 27 start-page: 939 year: 2006 ident: 2021031607170650200_ref4 article-title: The uterine spiral arteries in human pregnancy: facts and controversies publication-title: Placenta doi: 10.1016/j.placenta.2005.12.006 – volume: 213 start-page: 451 year: 2016 ident: 2021031607170650200_ref11 article-title: Integrin beta3 inhibition is a therapeutic strategy for supravalvular aortic stenosis publication-title: J Exp Med doi: 10.1084/jem.20150688 – volume: 46 start-page: 750 year: 2015 ident: 2021031607170650200_ref52 article-title: Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/Bcl-2 pathway in colon cancer cells publication-title: Int J Oncol doi: 10.3892/ijo.2014.2745 – volume: 78 start-page: 1347 year: 2005 ident: 2021031607170650200_ref60 article-title: Differential transcription of Eomes and T-bet during maturation of mouse uterine natural killer cells publication-title: J Leukoc Biol doi: 10.1189/jlb.0305142 – volume: 3 start-page: e01659 year: 2014 ident: 2021031607170650200_ref62 article-title: Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells publication-title: Elife doi: 10.7554/eLife.01659 |
SSID | ssj0014323 |
Score | 2.4510057 |
Snippet | Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the demands of... Abstract Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal–fetal interface and meet the... Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal-fetal interface and meet the demands of... Uterine spiral artery (SPA) remodeling is a crucial event during pregnancy to provide enough blood supply to maternal--fetal interface and meet the demands of... |
SourceID | proquest gale pubmed crossref oup bioone |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 624 |
SubjectTerms | Analysis Antibodies Apoptosis Biology Cell Differentiation Cell Proliferation decidual immune cells decidual stromal cells dedifferentiation extravillous trophoblast Female Fetuses Humans Killer cells Killer Cells, Natural - physiology Laboratories Macrophages - physiology Morphology Muscle proteins Muscle, Smooth, Vascular - cytology Myocytes, Smooth Muscle - physiology Myosin Pregnancy Pregnant women RESEARCH ARTICLE Smooth muscle Stem cells uterine spiral artery Uterus - blood supply Vascular Remodeling - physiology vascular smooth muscle cells Veins & arteries |
Title | Uterine decidual niche modulates the progressive dedifferentiation of spiral artery vascular smooth muscle cells during human pregnancy |
URI | http://www.bioone.org/doi/abs/10.1093/biolre/ioaa208 https://www.ncbi.nlm.nih.gov/pubmed/33336235 https://www.proquest.com/docview/2518767699 https://www.proquest.com/docview/2471467586 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fi9QwEB70TsEX0Tt_VNcjinpPYW3TJu2TrHLHIXiIuLBvJU3TQ7htz2tX2L_Af9uZJK0sotfHNqSlk2S-yXyZD-C1iY3VVZxxW2vL0yI1vEJHydFzYTyC66Ln5nw-l2fL9NMqW4UNtz7QKsc10S3UdWdoj3yOfhgnrpJF8f7qByfVKMquBgmN27BPpcuI0qVWU8CFUCAJSmqSCyHFVLRRzKnE0bWdf--0Tkha8g7e6Fq7453CGr1z8O0v_On80OkDuB8AJFt4iz-EW7Y9gMNFi8HzesveMkfpdHvlB3DXK01uD-HXcnDn_FhtjTt-xVrigLJ1V5N-l-0ZAkHmyFrEi_1JDUftlMFbj3UNc2n5S-Z4oFs2slhZv-7Q4Gy96fGTGOUCeubPPzKnAYgd2wuq7LF9BMvTk28fz3jQYOBVKuOBq8LK1BpVWUQ6WYHwSWOMlFQGPXud1-8aRFxKapU3TSMqg9FKJiqZx1qpwtimEo9hr8Uf-xSYEgXlURsElHlaJDpvMJihimZpbbI0NhG88UYor3yhjdInyEXpjVUGY0XARxuVJhQyJz2Ny3-2P57a39TzMZm8pLmNPRodjijgN1GVrHIhMTpVpE4SwWynJc5Js_P4FQ6aG982G8dUGRaOvvwzzCN4OT2m7okM19pug20QUKQU6MkInvixOL1K4IWINnv2_86fw72EyDmOTDeDveF6Y18guhqqIzeFjmD_w8n5l6-_AZDYJ6I |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9NADLZGBxovCDYYgQIHYuwpKsldLskDQgU2dWyrEFqlvWXJ5YKQ1mQsKSi_gH_Db8S-S4oqBHtaH5uTE8U--3Pusw3wUnlKp5kXuDpPtStiodwMA6WLkQvzEfSLlptzPJWTmfh4Gpyuwa--FoZolb1PNI46rxR9Ix9hHMaNG8o4fnvxzaWpUXS62o_QsGZxqNsfmLLVbw4-oH53fH9_7-T9xO2mCriZkF7jhrGWQqsw0xi7gxgBQYqo388Uxqo8yl8XiCFCmYZRURQ8U4i_A57JyEvDMFa6yDjKvQHrgmMqM4D1d3vTT5-X5xaC-93sNulyLvmyTSQfUVOlSz36WqWpT8Msb-IfValX4mEXFVZK7f5CvCby7d-FOx1kZWNrY_dgTZebsDUuMV2ft-wVMyRS83V-E27Z2ZbtFvycNaaykOVamYIvVhLrlM2rnCaG6Zoh9GSGHkZM3O-0sJ_W0lh7YVXBDBHgnBnmact63iyr5xWaGJsvanwkRqcPNbMVl8xMHUTB-gv1Emnvw-xa9PMABiW-2IfAQh7TyW2BEDYSsZ9GBaZP1ENN5CoQnnJgxyohubCtPRJ7JM8Tq6ykU5YDbq-jRHWt02mCx_k_1-8u118leZdUnpA3QYkq7Yoi8JmoL1cylpgPhzQPxYHhykr0Amrl8gs0mivvNuxtKulcVZ382VgOPF9eJvFEvyt1tcA1CGEEpZbSgW1ri8tbcfwhhg4e_V_4M9iYnBwfJUcH08PHcNsnapCh8g1h0Fwu9BPEdk32tNtQDM6uew__BjtJY-0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uterine+decidual+niche+modulates+the+progressive+dedifferentiation+of+spiral+artery+vascular+smooth+muscle+cells+during+human+pregnancy&rft.jtitle=Biology+of+reproduction&rft.au=Ma%2C+Yeling&rft.au=Yu%2C+Xin&rft.au=Zhang%2C+Lanmei&rft.au=Liu%2C+Juan&rft.date=2021-03-01&rft.issn=1529-7268&rft.eissn=1529-7268&rft.volume=104&rft.issue=3&rft.spage=624&rft_id=info:doi/10.1093%2Fbiolre%2Fioaa208&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3363&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3363&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3363&client=summon |