Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures
Abstract Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently l...
Saved in:
Published in | The International Journal of Biostatistics Vol. 6; no. 1; pp. 16 - 35 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
bepress
22.04.2010
De Gruyter Berkeley Electronic Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.
Recommended Citation
Austin, Peter C.
(2010)
"Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures,"
The International Journal of Biostatistics:
Vol. 6
:
Iss.
1, Article 16.
DOI: 10.2202/1557-4679.1195
Available at: http://www.bepress.com/ijb/vol6/iss1/16 |
---|---|
AbstractList | Abstract
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.
Recommended Citation
Austin, Peter C.
(2010)
"Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures,"
The International Journal of Biostatistics:
Vol. 6
:
Iss.
1, Article 16.
DOI: 10.2202/1557-4679.1195
Available at: http://www.bepress.com/ijb/vol6/iss1/16 Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters. Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters. |
Author | Austin, Peter C |
Author_xml | – sequence: 1 fullname: Austin, Peter C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20949128$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1vEzEUtFAR_YArR-QbpwTb--FdDkhVKBQpBURBHC2v_Zw4ctap7W3UP8Fvrpe0UUDqyU_vvZmxZ3yKjnrfA0KvKZkyRtg7WlV8Uta8nVLaVs_Qyb5xdFAfo9MYV4SUtKHtC3TMSFu2lDUn6M9FTHYtk-0X-GpwyTq4BYfnfmHzQOEfsAgQo_U9vvIaXMS_l9DjtAT8dVh3ELA3eOaGmCBEbGNGbt_jczzz640MNmZcXvhojYEAfcLXKWuNzNLha2_SVgbA34NXoIcs9BI9N9JFePVwnqFfny5-zi4n82-fv8zO55OurGmaFIzVLVdGUqkKTZjhutC6qpqS11xJ4BoKkw_eGFJwBU2rOHQSNM9dwkhxhj7seDdDtwat8tWCdGITshfhTnhpxb-T3i7Fwt8Klo0rGpYJ3j4QBH8zQExibaMC52QPfoiiaXhFqorQvPnmUGqv8ZhBXih3Cyr4GAMYoezokh-VrROUiDFqMaYpxjTFGHWGTf-DPTI_CWh2gK10OS2dkx3uciFWfgh9dvsJYH3whg4243fYS9lV95f7HoTjyx0 |
CitedBy_id | crossref_primary_10_1080_00220973_2024_2376627 crossref_primary_10_1111_josh_12527 crossref_primary_10_1186_s12875_014_0210_9 crossref_primary_10_1371_journal_pone_0084601 crossref_primary_10_1093_biostatistics_kxy012 crossref_primary_10_1016_j_annemergmed_2017_09_011 crossref_primary_10_1177_1740774516634316 crossref_primary_10_1007_s10750_021_04535_8 crossref_primary_10_3390_su12135300 crossref_primary_10_1093_esr_jcab055 crossref_primary_10_1017_psrm_2016_49 crossref_primary_10_1097_ALN_0000000000004787 crossref_primary_10_1186_s13012_019_0868_4 crossref_primary_10_3390_insects9030118 crossref_primary_10_1111_j_1467_9515_2011_00834_x crossref_primary_10_3389_fpsyg_2021_685496 crossref_primary_10_3917_rfs_572_0213 crossref_primary_10_1371_journal_pone_0123456 crossref_primary_10_1080_02770903_2020_1741611 crossref_primary_10_3390_vision7030061 crossref_primary_10_1080_00273171_2018_1545630 crossref_primary_10_1186_s12879_021_06965_0 crossref_primary_10_1080_07418825_2015_1115539 crossref_primary_10_1177_0958928714538219 crossref_primary_10_1111_ecpo_12307 crossref_primary_10_1212_WNL_0000000000209947 crossref_primary_10_1002_sim_7668 crossref_primary_10_1371_journal_pone_0060650 crossref_primary_10_1002_jrsm_1210 crossref_primary_10_1161_CIRCOUTCOMES_111_960724 crossref_primary_10_1186_s12906_020_02910_x crossref_primary_10_1002_sim_6451 crossref_primary_10_1371_journal_pone_0146721 crossref_primary_10_3390_healthcare9070891 crossref_primary_10_1007_s10519_023_10140_3 crossref_primary_10_1002_sim_7141 crossref_primary_10_1016_j_jsams_2021_10_007 crossref_primary_10_1080_10705511_2018_1431545 crossref_primary_10_1177_00224294231185321 crossref_primary_10_1177_0963662515622394 crossref_primary_10_1093_rheumatology_keae706 crossref_primary_10_1371_journal_pone_0152178 crossref_primary_10_1016_j_csda_2014_09_021 crossref_primary_10_1177_0013164417719111 crossref_primary_10_1177_00207152231217749 crossref_primary_10_1111_josh_12630 crossref_primary_10_1371_journal_pone_0283019 crossref_primary_10_1161_CIRCOUTCOMES_113_000685 crossref_primary_10_22237_jmasm_1509494520 crossref_primary_10_1007_s11136_020_02751_8 crossref_primary_10_1371_journal_pone_0274738 crossref_primary_10_1007_s10680_015_9356_y crossref_primary_10_1016_j_socscimed_2017_01_044 crossref_primary_10_1177_0962280218785504 crossref_primary_10_3102_1076998618776348 crossref_primary_10_1016_j_jatrs_2024_100053 crossref_primary_10_1111_1745_9125_12020 crossref_primary_10_1177_1065912913492584 crossref_primary_10_1177_073491491704100105 crossref_primary_10_1093_icc_dtv005 crossref_primary_10_1111_1748_8583_12357 crossref_primary_10_1080_14459795_2017_1355405 crossref_primary_10_1177_0020715215626769 crossref_primary_10_1371_journal_pone_0183213 crossref_primary_10_1371_journal_pone_0112653 crossref_primary_10_1890_12_1683_1 crossref_primary_10_1177_0001699316675022 crossref_primary_10_3109_14659891_2015_1018970 crossref_primary_10_1080_00273171_2016_1262236 crossref_primary_10_1007_s10648_014_9287_x crossref_primary_10_1017_S1368980023002094 crossref_primary_10_1111_jedm_12190 crossref_primary_10_1002_sim_7057 crossref_primary_10_1002_jeab_507 crossref_primary_10_1186_s12874_025_02497_2 crossref_primary_10_3310_phr05070 crossref_primary_10_1186_s40608_016_0106_4 crossref_primary_10_1016_j_rec_2015_04_018 crossref_primary_10_1097_CCM_0000000000003149 crossref_primary_10_1161_STROKEAHA_118_023885 crossref_primary_10_1016_j_ssmph_2016_03_005 crossref_primary_10_1080_00220973_2015_1027805 crossref_primary_10_2196_39386 crossref_primary_10_1016_j_ijpe_2018_09_020 crossref_primary_10_1111_ajo_12351 crossref_primary_10_2139_ssrn_2322088 crossref_primary_10_2190_HS_43_3_i crossref_primary_10_1016_j_recesp_2015_04_018 crossref_primary_10_2139_ssrn_2487849 crossref_primary_10_1093_esr_jcv059 crossref_primary_10_1016_j_electstud_2018_10_003 crossref_primary_10_1016_j_paid_2023_112500 crossref_primary_10_1038_s41386_023_01592_6 crossref_primary_10_1093_humrep_dex277 crossref_primary_10_1007_s40614_023_00388_9 crossref_primary_10_1093_geronb_gbv007 crossref_primary_10_1371_journal_pone_0263192 crossref_primary_10_1017_S0033291724002174 crossref_primary_10_1017_psrm_2015_67 crossref_primary_10_1155_2024_4658333 crossref_primary_10_1111_1471_0528_16396 |
ContentType | Journal Article |
Copyright | Copyright © 2010 The Berkeley Electronic Press. All rights reserved 2010 |
Copyright_xml | – notice: Copyright © 2010 The Berkeley Electronic Press. All rights reserved 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.2202/1557-4679.1195 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-4679 |
ExternalDocumentID | PMC2949382 20949128 10_2202_1557_4679_1195 10_2202_1557_4679_119561 ijb1195 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP 86508 |
GroupedDBID | --- -~S 0R~ 123 1WD 4.4 53G 9-L AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AALGR AAONY AAOUV AAOWA AAPJK AAQCX AARVR AASQH AAXCG ABAQN ABDRH ABFKT ABJNI ABMBZ ABMIY ABPLS ABRDF ABRQL ABSOE ABWLS ABYBW ABYKJ ACDEB ACEFL ACGFO ACGFS ACHNZ ACMKP ACONX ACPMA ACRPL ACUND ACXLN ACYCL ACZBO ADEQT ADGQD ADGYE ADJVZ ADNMO ADOZN ADUQZ AECWL AEDGQ AEGVQ AEICA AEJQW AEKEB AEMOE AENEX AEQDQ AEQLX AERZL AFBAA AFBDD AFBQV AFCXV AFGNR AFSHE AFYRI AGBEV AGGNV AGQPQ AGQYU AHCWZ AHVWV AHXUK AIKXB AIWOI AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMAVY ASPBG ASYPN AVWKF AZFZN AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV CKPZI CS3 DASCH DU5 EBS EJD F5P FEDTE H13 HVGLF HZ~ IY9 J9A K.~ KDIRW LG7 LVMAB MV1 NQBSW O9- OVD P2P QD8 SA. T2Y TEORI UK5 WTRAM ~Z8 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADNPR 5PM |
ID | FETCH-LOGICAL-b461t-322697cfa1ac3d02f7d3dd5584767cae7de3fae778f037ce89c7ebaed7fae0203 |
ISSN | 1557-4679 |
IngestDate | Thu Aug 21 17:56:30 EDT 2025 Tue Aug 05 11:18:41 EDT 2025 Mon Jul 21 06:01:29 EDT 2025 Tue Jul 01 01:02:47 EDT 2025 Thu Apr 24 23:01:55 EDT 2025 Thu Jul 10 10:39:59 EDT 2025 Fri Oct 12 16:17:00 EDT 2018 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | BUGS R random effects model Monte Carlo simulations SAS hierarchical models Stata generalized linear mixed models multilevel models statistical software Bayesian analysis mixed effects model |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b461t-322697cfa1ac3d02f7d3dd5584767cae7de3fae778f037ce89c7ebaed7fae0203 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.degruyter.com/document/doi/10.2202/1557-4679.1195/pdf |
PMID | 20949128 |
PQID | 887505501 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | bepress_primary_ijb1195 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2949382 crossref_citationtrail_10_2202_1557_4679_1195 proquest_miscellaneous_887505501 pubmed_primary_20949128 walterdegruyter_journals_10_2202_1557_4679_119561 crossref_primary_10_2202_1557_4679_1195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-4-22 |
PublicationDateYYYYMMDD | 2010-04-22 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-4-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | The International Journal of Biostatistics |
PublicationTitleAlternate | Int J Biostat |
PublicationYear | 2010 |
Publisher | bepress De Gruyter Berkeley Electronic Press |
Publisher_xml | – name: bepress – name: De Gruyter – name: Berkeley Electronic Press |
References | 11338155 - Can J Public Health. 2001 Mar-Apr;92(2):150-4 19716262 - J Clin Epidemiol. 2010 Feb;63(2):142-53 |
References_xml | – reference: 11338155 - Can J Public Health. 2001 Mar-Apr;92(2):150-4 – reference: 19716262 - J Clin Epidemiol. 2010 Feb;63(2):142-53 |
SSID | ssj0041819 |
Score | 2.2268023 |
Snippet | Abstract
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and... Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational... |
SourceID | pubmedcentral proquest pubmed crossref walterdegruyter bepress |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16 |
SubjectTerms | Bayes Theorem Bayesian analysis BUGS Cluster Analysis Computation Data Interpretation, Statistical General Biostatistics generalized linear mixed models Health Services Research hierarchical models Humans Linear Models Logistic Models mixed effects model Models, Statistical Monte Carlo Method Monte Carlo simulations multilevel models random effects model SAS Software Stata statistical software |
Title | Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures |
URI | http://www.bepress.com/ijb/vol6/iss1/16/ https://www.degruyter.com/doi/10.2202/1557-4679.1195 https://www.ncbi.nlm.nih.gov/pubmed/20949128 https://www.proquest.com/docview/887505501 https://pubmed.ncbi.nlm.nih.gov/PMC2949382 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyQuFW-Wl3xA4oBS8nbCbYsWKgScWtSbFTs23WqVoCbRqvyI_ubO2E6y2-1KwCW7cpxRku_LeMYezxDyNpS5ZomQXqwz3wN_o_AyoUsvkCooYpkLbYLHv_9Ij07ir6fJ6RiQaXaXtOJA_rl1X8n_oAptgCvukv0HZAeh0AD_AV84AsJw_CuM5_B9osUJ3r7ZSLvECCCswmuyL8Or-2WjXCtT8mzZvAfV68IaTSEQE4ux7DBXQoOVzb_Vq36n-lp1QlCLtohKa0xTIxtziIACX2HcmNlrUHYXLhrxfOTf9nSjs30PF3XTixqMepx2sRkNTNCwm791MxK4mB574ei_ChvCu65UE-aBQraqUd3S5jRxukU4q1Xtbsybyj4MTfLYQdIBZq8bh7Uh2HBxLvDMXbIXgisRTsje7Mvh_Gc_Xsdg4-Qmq66TY1N7ovQPm7LBRXLPtmnEbHkm2wG2-ysT_FAC7t1l2y-2Gxvm-AHZdwDQmWXSQ3JHVY_IPVuO9PIxuRr5REc-0Z5PdOQTtXyiyCcKfKKWT7TWtOcTXTRw5eojndGRTdhhYBNdYxPt2URHNj0hJ5_nx5-OPFevwxNxGrQejA1pzqQugkJGpR9qVkZlmeBCfMpkoVipIg0_LNN-xKTKcsmUKFTJoBVXxJ-SSVVX6jmhRRkpBb4EqA0ZizjICxkqrUWkdaLApJ-SZw4K_ttmZeEO5inxemi4dGnusdrKkoO7i6ByBJUjqNz2fzf070Xt6kl7pDnoYFxYKypVdw2HgRocicQP4LYs8IOo0M_jHGzAKWEblBg6YHr3zTPV4sykeQ_hyiiDRw1ukIc7FdTsuNE0eLHz9bwk98dP9hWZtBedeg1mdSveuO_iGiRS10Y |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwSX5Q3l6QMSJ7fN0wm3UroU6PYAu2hvlp_dQkhRk6hafgS_mXGcRNtd9gKnSunYtevxzDfx-BuEXvkyNTQSkoQmGRGINzhJhFHEk9rjoUyFqZPHDxfx7Dj8eBKdnLsLY9MqlV5uqrPSMaQO1VpW9kVZyzXgQ7g-BC9ICezxdGApy4an5Y_sOtpLQohXemhv_P7t9Gtrj-GZlzq6xr80BdgrXMrprmO6hDYvJ03ub-sD7W605_zSwW0k2xm5dJTvg6oUA_nrAtnj_035DtpvYCseOz27i67p_B664QpZnt1Hv6dgKSz2zZe4vtKb2VwkPK-vF60k_qyXLt82x7b4WlZgcAI5BvCJF3VJErw2eJJVlrWhwKsCWm7f4DGedFUSrcC7pphLiS1ErnuGMX0BR7LlG43rOw-qgh96gI4PpkeTGWkqPRARxl5JwKrEKZWGe1wGauQbqgKlInuEG1PJNVU6MPBBEzMKqNRJKqkWXCsKT-1Z6kPUy9e5fowwV4HWgEJB4WQoQi_l0tfGiMCYSAMY7KNHzYKzn47Pg62-CfuX9hFpFYDJhiDd1unIGARKdgmYXQJml4A5-dedfNvVVZK41ScGu9ceyfBcr6uCgYkHCBqNPBiWU6-uKx8C7xTQQx_RHcXrBCwx-O43-eq0Jgj3oWWQwFS9CyrKGgNVXDHQ2HvyD21eopuzo8M5m39YfHqKbrn8ipD4_jPUKzeVfg6wrRQvmn35B-9qQ1E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKxCX5blQnj4gcXLbJE6ccCvdlgWWCgGLuFl-lkKVrppE1fIj-M2M4ySiu-wFTpXSsWN3xp5v6vE3CD0PVWZZLBWhNh0RiDcESaXVJFAmEFRl0tbJ4-_nydEJffs1brMJiyatUpvFpjorPUPqUK9V5f4oa7kGQgjXh-AFGYE1ng0cZdnwVNuraC-lEMv00N749avpl3Y7puDCMs_W-JeWgHqlzzjd9UsXwObFnMn9bX2e3Q32D7c0u4lkOyGfjfJjUJVyoH6e43r8rxnfQvsNaMVjb2W30RWT30HXfBnLs7vo1xT2CYd88wWuL_SuXCYSPq4vFy0V_mgWPts2x6702qrA4AJyDNATz-uCJHht8WRVOc6GAi8LaLl9icd40tVIdAKHTSmXEjuAXPcMY_oEbmQrNgbXNx50BS-6h05m08-TI9LUeSCSJkFJYE9JMqasCISK9Ci0TEdax-4AN2FKGKZNZOGDpXYUMWXSTDEjhdEMnrqT1APUy9e5eYCw0JExgEHB3BSVNMiECo21MrI2NgAF--h-o29-6tk8-PK7dL9oH5FW_1w19OiuSseKQ5jkNMCdBrjTAPfyLzr5tqvLJHFrThzWrjuQEblZVwWHDR4AaDwKYFjeurquQgi7M8AOfcR27K4TcLTgu9_ky281PXgILaMUphqcs1DebE_FJQNNgof_0OYZuv7hcMaP38zfPUI3fHIFJWH4GPXKTWWeAGYr5dNmVf4G9gpB-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Multilevel+Logistic+Regression+Models+When+the+Number+of+Clusters+is+Low%3A+A+Comparison+of+Different+Statistical+Software+Procedures&rft.jtitle=The+International+Journal+of+Biostatistics&rft.au=Austin%2C+Peter+C&rft.date=2010-04-22&rft.pub=bepress&rft.issn=1557-4679&rft.eissn=1557-4679&rft.volume=6&rft.issue=1&rft.spage=16&rft_id=info:doi/10.2202%2F1557-4679.1195&rft.externalDocID=ijb1195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-4679&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-4679&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-4679&client=summon |