Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures

Abstract Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently l...

Full description

Saved in:
Bibliographic Details
Published inThe International Journal of Biostatistics Vol. 6; no. 1; pp. 16 - 35
Main Author Austin, Peter C
Format Journal Article
LanguageEnglish
Published Germany bepress 22.04.2010
De Gruyter
Berkeley Electronic Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters. Recommended Citation Austin, Peter C. (2010) "Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures," The International Journal of Biostatistics: Vol. 6 : Iss. 1, Article 16. DOI: 10.2202/1557-4679.1195 Available at: http://www.bepress.com/ijb/vol6/iss1/16
AbstractList Abstract Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters. Recommended Citation Austin, Peter C. (2010) "Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures," The International Journal of Biostatistics: Vol. 6 : Iss. 1, Article 16. DOI: 10.2202/1557-4679.1195 Available at: http://www.bepress.com/ijb/vol6/iss1/16
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.
Author Austin, Peter C
Author_xml – sequence: 1
  fullname: Austin, Peter C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20949128$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1vEzEUtFAR_YArR-QbpwTb--FdDkhVKBQpBURBHC2v_Zw4ctap7W3UP8Fvrpe0UUDqyU_vvZmxZ3yKjnrfA0KvKZkyRtg7WlV8Uta8nVLaVs_Qyb5xdFAfo9MYV4SUtKHtC3TMSFu2lDUn6M9FTHYtk-0X-GpwyTq4BYfnfmHzQOEfsAgQo_U9vvIaXMS_l9DjtAT8dVh3ELA3eOaGmCBEbGNGbt_jczzz640MNmZcXvhojYEAfcLXKWuNzNLha2_SVgbA34NXoIcs9BI9N9JFePVwnqFfny5-zi4n82-fv8zO55OurGmaFIzVLVdGUqkKTZjhutC6qpqS11xJ4BoKkw_eGFJwBU2rOHQSNM9dwkhxhj7seDdDtwat8tWCdGITshfhTnhpxb-T3i7Fwt8Klo0rGpYJ3j4QBH8zQExibaMC52QPfoiiaXhFqorQvPnmUGqv8ZhBXih3Cyr4GAMYoezokh-VrROUiDFqMaYpxjTFGHWGTf-DPTI_CWh2gK10OS2dkx3uciFWfgh9dvsJYH3whg4243fYS9lV95f7HoTjyx0
CitedBy_id crossref_primary_10_1080_00220973_2024_2376627
crossref_primary_10_1111_josh_12527
crossref_primary_10_1186_s12875_014_0210_9
crossref_primary_10_1371_journal_pone_0084601
crossref_primary_10_1093_biostatistics_kxy012
crossref_primary_10_1016_j_annemergmed_2017_09_011
crossref_primary_10_1177_1740774516634316
crossref_primary_10_1007_s10750_021_04535_8
crossref_primary_10_3390_su12135300
crossref_primary_10_1093_esr_jcab055
crossref_primary_10_1017_psrm_2016_49
crossref_primary_10_1097_ALN_0000000000004787
crossref_primary_10_1186_s13012_019_0868_4
crossref_primary_10_3390_insects9030118
crossref_primary_10_1111_j_1467_9515_2011_00834_x
crossref_primary_10_3389_fpsyg_2021_685496
crossref_primary_10_3917_rfs_572_0213
crossref_primary_10_1371_journal_pone_0123456
crossref_primary_10_1080_02770903_2020_1741611
crossref_primary_10_3390_vision7030061
crossref_primary_10_1080_00273171_2018_1545630
crossref_primary_10_1186_s12879_021_06965_0
crossref_primary_10_1080_07418825_2015_1115539
crossref_primary_10_1177_0958928714538219
crossref_primary_10_1111_ecpo_12307
crossref_primary_10_1212_WNL_0000000000209947
crossref_primary_10_1002_sim_7668
crossref_primary_10_1371_journal_pone_0060650
crossref_primary_10_1002_jrsm_1210
crossref_primary_10_1161_CIRCOUTCOMES_111_960724
crossref_primary_10_1186_s12906_020_02910_x
crossref_primary_10_1002_sim_6451
crossref_primary_10_1371_journal_pone_0146721
crossref_primary_10_3390_healthcare9070891
crossref_primary_10_1007_s10519_023_10140_3
crossref_primary_10_1002_sim_7141
crossref_primary_10_1016_j_jsams_2021_10_007
crossref_primary_10_1080_10705511_2018_1431545
crossref_primary_10_1177_00224294231185321
crossref_primary_10_1177_0963662515622394
crossref_primary_10_1093_rheumatology_keae706
crossref_primary_10_1371_journal_pone_0152178
crossref_primary_10_1016_j_csda_2014_09_021
crossref_primary_10_1177_0013164417719111
crossref_primary_10_1177_00207152231217749
crossref_primary_10_1111_josh_12630
crossref_primary_10_1371_journal_pone_0283019
crossref_primary_10_1161_CIRCOUTCOMES_113_000685
crossref_primary_10_22237_jmasm_1509494520
crossref_primary_10_1007_s11136_020_02751_8
crossref_primary_10_1371_journal_pone_0274738
crossref_primary_10_1007_s10680_015_9356_y
crossref_primary_10_1016_j_socscimed_2017_01_044
crossref_primary_10_1177_0962280218785504
crossref_primary_10_3102_1076998618776348
crossref_primary_10_1016_j_jatrs_2024_100053
crossref_primary_10_1111_1745_9125_12020
crossref_primary_10_1177_1065912913492584
crossref_primary_10_1177_073491491704100105
crossref_primary_10_1093_icc_dtv005
crossref_primary_10_1111_1748_8583_12357
crossref_primary_10_1080_14459795_2017_1355405
crossref_primary_10_1177_0020715215626769
crossref_primary_10_1371_journal_pone_0183213
crossref_primary_10_1371_journal_pone_0112653
crossref_primary_10_1890_12_1683_1
crossref_primary_10_1177_0001699316675022
crossref_primary_10_3109_14659891_2015_1018970
crossref_primary_10_1080_00273171_2016_1262236
crossref_primary_10_1007_s10648_014_9287_x
crossref_primary_10_1017_S1368980023002094
crossref_primary_10_1111_jedm_12190
crossref_primary_10_1002_sim_7057
crossref_primary_10_1002_jeab_507
crossref_primary_10_1186_s12874_025_02497_2
crossref_primary_10_3310_phr05070
crossref_primary_10_1186_s40608_016_0106_4
crossref_primary_10_1016_j_rec_2015_04_018
crossref_primary_10_1097_CCM_0000000000003149
crossref_primary_10_1161_STROKEAHA_118_023885
crossref_primary_10_1016_j_ssmph_2016_03_005
crossref_primary_10_1080_00220973_2015_1027805
crossref_primary_10_2196_39386
crossref_primary_10_1016_j_ijpe_2018_09_020
crossref_primary_10_1111_ajo_12351
crossref_primary_10_2139_ssrn_2322088
crossref_primary_10_2190_HS_43_3_i
crossref_primary_10_1016_j_recesp_2015_04_018
crossref_primary_10_2139_ssrn_2487849
crossref_primary_10_1093_esr_jcv059
crossref_primary_10_1016_j_electstud_2018_10_003
crossref_primary_10_1016_j_paid_2023_112500
crossref_primary_10_1038_s41386_023_01592_6
crossref_primary_10_1093_humrep_dex277
crossref_primary_10_1007_s40614_023_00388_9
crossref_primary_10_1093_geronb_gbv007
crossref_primary_10_1371_journal_pone_0263192
crossref_primary_10_1017_S0033291724002174
crossref_primary_10_1017_psrm_2015_67
crossref_primary_10_1155_2024_4658333
crossref_primary_10_1111_1471_0528_16396
ContentType Journal Article
Copyright Copyright © 2010 The Berkeley Electronic Press. All rights reserved 2010
Copyright_xml – notice: Copyright © 2010 The Berkeley Electronic Press. All rights reserved 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.2202/1557-4679.1195
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-4679
ExternalDocumentID PMC2949382
20949128
10_2202_1557_4679_1195
10_2202_1557_4679_119561
ijb1195
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP 86508
GroupedDBID ---
-~S
0R~
123
1WD
4.4
53G
9-L
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AALGR
AAONY
AAOUV
AAOWA
AAPJK
AAQCX
AARVR
AASQH
AAXCG
ABAQN
ABDRH
ABFKT
ABJNI
ABMBZ
ABMIY
ABPLS
ABRDF
ABRQL
ABSOE
ABWLS
ABYBW
ABYKJ
ACDEB
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACPMA
ACRPL
ACUND
ACXLN
ACYCL
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADNMO
ADOZN
ADUQZ
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AFBAA
AFBDD
AFBQV
AFCXV
AFGNR
AFSHE
AFYRI
AGBEV
AGGNV
AGQPQ
AGQYU
AHCWZ
AHVWV
AHXUK
AIKXB
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
CKPZI
CS3
DASCH
DU5
EBS
EJD
F5P
FEDTE
H13
HVGLF
HZ~
IY9
J9A
K.~
KDIRW
LG7
LVMAB
MV1
NQBSW
O9-
OVD
P2P
QD8
SA.
T2Y
TEORI
UK5
WTRAM
~Z8
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADNPR
5PM
ID FETCH-LOGICAL-b461t-322697cfa1ac3d02f7d3dd5584767cae7de3fae778f037ce89c7ebaed7fae0203
ISSN 1557-4679
IngestDate Thu Aug 21 17:56:30 EDT 2025
Tue Aug 05 11:18:41 EDT 2025
Mon Jul 21 06:01:29 EDT 2025
Tue Jul 01 01:02:47 EDT 2025
Thu Apr 24 23:01:55 EDT 2025
Thu Jul 10 10:39:59 EDT 2025
Fri Oct 12 16:17:00 EDT 2018
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords BUGS
R
random effects model
Monte Carlo simulations
SAS
hierarchical models
Stata
generalized linear mixed models
multilevel models
statistical software
Bayesian analysis
mixed effects model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b461t-322697cfa1ac3d02f7d3dd5584767cae7de3fae778f037ce89c7ebaed7fae0203
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.degruyter.com/document/doi/10.2202/1557-4679.1195/pdf
PMID 20949128
PQID 887505501
PQPubID 23479
PageCount 20
ParticipantIDs bepress_primary_ijb1195
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2949382
crossref_citationtrail_10_2202_1557_4679_1195
proquest_miscellaneous_887505501
pubmed_primary_20949128
walterdegruyter_journals_10_2202_1557_4679_119561
crossref_primary_10_2202_1557_4679_1195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-4-22
PublicationDateYYYYMMDD 2010-04-22
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-4-22
  day: 22
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle The International Journal of Biostatistics
PublicationTitleAlternate Int J Biostat
PublicationYear 2010
Publisher bepress
De Gruyter
Berkeley Electronic Press
Publisher_xml – name: bepress
– name: De Gruyter
– name: Berkeley Electronic Press
References 11338155 - Can J Public Health. 2001 Mar-Apr;92(2):150-4
19716262 - J Clin Epidemiol. 2010 Feb;63(2):142-53
References_xml – reference: 11338155 - Can J Public Health. 2001 Mar-Apr;92(2):150-4
– reference: 19716262 - J Clin Epidemiol. 2010 Feb;63(2):142-53
SSID ssj0041819
Score 2.2268023
Snippet Abstract Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and...
Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational...
SourceID pubmedcentral
proquest
pubmed
crossref
walterdegruyter
bepress
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16
SubjectTerms Bayes Theorem
Bayesian analysis
BUGS
Cluster Analysis
Computation
Data Interpretation, Statistical
General Biostatistics
generalized linear mixed models
Health Services Research
hierarchical models
Humans
Linear Models
Logistic Models
mixed effects model
Models, Statistical
Monte Carlo Method
Monte Carlo simulations
multilevel models
random effects model
SAS
Software
Stata
statistical software
Title Estimating Multilevel Logistic Regression Models When the Number of Clusters is Low: A Comparison of Different Statistical Software Procedures
URI http://www.bepress.com/ijb/vol6/iss1/16/
https://www.degruyter.com/doi/10.2202/1557-4679.1195
https://www.ncbi.nlm.nih.gov/pubmed/20949128
https://www.proquest.com/docview/887505501
https://pubmed.ncbi.nlm.nih.gov/PMC2949382
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyQuFW-Wl3xA4oBS8nbCbYsWKgScWtSbFTs23WqVoCbRqvyI_ubO2E6y2-1KwCW7cpxRku_LeMYezxDyNpS5ZomQXqwz3wN_o_AyoUsvkCooYpkLbYLHv_9Ij07ir6fJ6RiQaXaXtOJA_rl1X8n_oAptgCvukv0HZAeh0AD_AV84AsJw_CuM5_B9osUJ3r7ZSLvECCCswmuyL8Or-2WjXCtT8mzZvAfV68IaTSEQE4ux7DBXQoOVzb_Vq36n-lp1QlCLtohKa0xTIxtziIACX2HcmNlrUHYXLhrxfOTf9nSjs30PF3XTixqMepx2sRkNTNCwm791MxK4mB574ei_ChvCu65UE-aBQraqUd3S5jRxukU4q1Xtbsybyj4MTfLYQdIBZq8bh7Uh2HBxLvDMXbIXgisRTsje7Mvh_Gc_Xsdg4-Qmq66TY1N7ovQPm7LBRXLPtmnEbHkm2wG2-ysT_FAC7t1l2y-2Gxvm-AHZdwDQmWXSQ3JHVY_IPVuO9PIxuRr5REc-0Z5PdOQTtXyiyCcKfKKWT7TWtOcTXTRw5eojndGRTdhhYBNdYxPt2URHNj0hJ5_nx5-OPFevwxNxGrQejA1pzqQugkJGpR9qVkZlmeBCfMpkoVipIg0_LNN-xKTKcsmUKFTJoBVXxJ-SSVVX6jmhRRkpBb4EqA0ZizjICxkqrUWkdaLApJ-SZw4K_ttmZeEO5inxemi4dGnusdrKkoO7i6ByBJUjqNz2fzf070Xt6kl7pDnoYFxYKypVdw2HgRocicQP4LYs8IOo0M_jHGzAKWEblBg6YHr3zTPV4sykeQ_hyiiDRw1ukIc7FdTsuNE0eLHz9bwk98dP9hWZtBedeg1mdSveuO_iGiRS10Y
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwSX5Q3l6QMSJ7fN0wm3UroU6PYAu2hvlp_dQkhRk6hafgS_mXGcRNtd9gKnSunYtevxzDfx-BuEXvkyNTQSkoQmGRGINzhJhFHEk9rjoUyFqZPHDxfx7Dj8eBKdnLsLY9MqlV5uqrPSMaQO1VpW9kVZyzXgQ7g-BC9ICezxdGApy4an5Y_sOtpLQohXemhv_P7t9Gtrj-GZlzq6xr80BdgrXMrprmO6hDYvJ03ub-sD7W605_zSwW0k2xm5dJTvg6oUA_nrAtnj_035DtpvYCseOz27i67p_B664QpZnt1Hv6dgKSz2zZe4vtKb2VwkPK-vF60k_qyXLt82x7b4WlZgcAI5BvCJF3VJErw2eJJVlrWhwKsCWm7f4DGedFUSrcC7pphLiS1ErnuGMX0BR7LlG43rOw-qgh96gI4PpkeTGWkqPRARxl5JwKrEKZWGe1wGauQbqgKlInuEG1PJNVU6MPBBEzMKqNRJKqkWXCsKT-1Z6kPUy9e5fowwV4HWgEJB4WQoQi_l0tfGiMCYSAMY7KNHzYKzn47Pg62-CfuX9hFpFYDJhiDd1unIGARKdgmYXQJml4A5-dedfNvVVZK41ScGu9ceyfBcr6uCgYkHCBqNPBiWU6-uKx8C7xTQQx_RHcXrBCwx-O43-eq0Jgj3oWWQwFS9CyrKGgNVXDHQ2HvyD21eopuzo8M5m39YfHqKbrn8ipD4_jPUKzeVfg6wrRQvmn35B-9qQ1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKxCX5blQnj4gcXLbJE6ccCvdlgWWCgGLuFl-lkKVrppE1fIj-M2M4ySiu-wFTpXSsWN3xp5v6vE3CD0PVWZZLBWhNh0RiDcESaXVJFAmEFRl0tbJ4-_nydEJffs1brMJiyatUpvFpjorPUPqUK9V5f4oa7kGQgjXh-AFGYE1ng0cZdnwVNuraC-lEMv00N749avpl3Y7puDCMs_W-JeWgHqlzzjd9UsXwObFnMn9bX2e3Q32D7c0u4lkOyGfjfJjUJVyoH6e43r8rxnfQvsNaMVjb2W30RWT30HXfBnLs7vo1xT2CYd88wWuL_SuXCYSPq4vFy0V_mgWPts2x6702qrA4AJyDNATz-uCJHht8WRVOc6GAi8LaLl9icd40tVIdAKHTSmXEjuAXPcMY_oEbmQrNgbXNx50BS-6h05m08-TI9LUeSCSJkFJYE9JMqasCISK9Ci0TEdax-4AN2FKGKZNZOGDpXYUMWXSTDEjhdEMnrqT1APUy9e5eYCw0JExgEHB3BSVNMiECo21MrI2NgAF--h-o29-6tk8-PK7dL9oH5FW_1w19OiuSseKQ5jkNMCdBrjTAPfyLzr5tqvLJHFrThzWrjuQEblZVwWHDR4AaDwKYFjeurquQgi7M8AOfcR27K4TcLTgu9_ky281PXgILaMUphqcs1DebE_FJQNNgof_0OYZuv7hcMaP38zfPUI3fHIFJWH4GPXKTWWeAGYr5dNmVf4G9gpB-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Multilevel+Logistic+Regression+Models+When+the+Number+of+Clusters+is+Low%3A+A+Comparison+of+Different+Statistical+Software+Procedures&rft.jtitle=The+International+Journal+of+Biostatistics&rft.au=Austin%2C+Peter+C&rft.date=2010-04-22&rft.pub=bepress&rft.issn=1557-4679&rft.eissn=1557-4679&rft.volume=6&rft.issue=1&rft.spage=16&rft_id=info:doi/10.2202%2F1557-4679.1195&rft.externalDocID=ijb1195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-4679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-4679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-4679&client=summon