Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development

Cytochrome P450 2C9 (CYP2C9) is one of the most abundant CYP enzymes in the human liver. CYP2C9 metabolizes more than 100 therapeutic drugs, including tolbutamide, glyburide, diclofenac, celecoxib, torasemide, phenytoin losartan, and S-warfarin). Some natural and herbal compounds are also metabolize...

Full description

Saved in:
Bibliographic Details
Published inCurrent medicinal chemistry Vol. 16; no. 27; p. 3480
Main Authors Zhou, Shu-Feng, Zhou, Zhi-Wei, Yang, Li-Ping, Cai, Jian-Ping
Format Journal Article
LanguageEnglish
Published United Arab Emirates 01.09.2009
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Cytochrome P450 2C9 (CYP2C9) is one of the most abundant CYP enzymes in the human liver. CYP2C9 metabolizes more than 100 therapeutic drugs, including tolbutamide, glyburide, diclofenac, celecoxib, torasemide, phenytoin losartan, and S-warfarin). Some natural and herbal compounds are also metabolized by CYP2C9, probably leading to the formation of toxic metabolites. CYP2C9 also plays a role in the metabolism of several endogenous compounds such as steroids, melatonin, retinoids and arachidonic acid. Many CYP2C9 substrates are weak acids, but CYP2C9 also has the capacity to metabolise neutral, highly lipophilic compounds. A number of ligand-based and homology models of CYP2C9 have been reported and this has provided insights into the binding of ligands to the active site of CYP2C9. Data from the site-directed mutagenesis studies have revealed that a number of residues (e.g. Arg97, Phe110, Val113, Phe114, Arg144, Ser286, Asn289, Asp293 and Phe476) play an important role in ligand binding and determination of substrate specificity. The resolved crystal structures of CYP2C9 have confirmed the importance of these residues in substrate recognition and ligand orientation. CYP2C9 is activated by dapsone and its analogues and R-lansoprazole in a stereo-specific and substrate-dependent manner, probably through binding to the active site and inducing positive cooperativity. CYP2C9 is subject to induction by rifampin, phenobarbital, and dexamethasone, indicating the involvement of pregnane X receptor, constitutive androstane receptor and glucocorticoid receptor in the regulation of CYP2C9. A number of compounds have been found to inhibit CYP2C9 and this may provide an explanation for some clinically important drug interactions. Tienilic acid, suprofen and silybin are mechanism-based inhibitors of CYP2C9. Given the critical role of CYP2C9 in drug metabolism and the presence of polymorphisms, it is important to identify drug candidates as potential substrates, inducer or inhibitors of CYP2C9 in drug development and drug discovery scientists should develop drugs with minimal interactions with this enzyme. Further studies are warranted to explore the molecular determinants for ligand-CYP2C9 binding and the structure-activity relationships.
AbstractList Cytochrome P450 2C9 (CYP2C9) is one of the most abundant CYP enzymes in the human liver. CYP2C9 metabolizes more than 100 therapeutic drugs, including tolbutamide, glyburide, diclofenac, celecoxib, torasemide, phenytoin losartan, and S-warfarin). Some natural and herbal compounds are also metabolized by CYP2C9, probably leading to the formation of toxic metabolites. CYP2C9 also plays a role in the metabolism of several endogenous compounds such as steroids, melatonin, retinoids and arachidonic acid. Many CYP2C9 substrates are weak acids, but CYP2C9 also has the capacity to metabolise neutral, highly lipophilic compounds. A number of ligand-based and homology models of CYP2C9 have been reported and this has provided insights into the binding of ligands to the active site of CYP2C9. Data from the site-directed mutagenesis studies have revealed that a number of residues (e.g. Arg97, Phe110, Val113, Phe114, Arg144, Ser286, Asn289, Asp293 and Phe476) play an important role in ligand binding and determination of substrate specificity. The resolved crystal structures of CYP2C9 have confirmed the importance of these residues in substrate recognition and ligand orientation. CYP2C9 is activated by dapsone and its analogues and R-lansoprazole in a stereo-specific and substrate-dependent manner, probably through binding to the active site and inducing positive cooperativity. CYP2C9 is subject to induction by rifampin, phenobarbital, and dexamethasone, indicating the involvement of pregnane X receptor, constitutive androstane receptor and glucocorticoid receptor in the regulation of CYP2C9. A number of compounds have been found to inhibit CYP2C9 and this may provide an explanation for some clinically important drug interactions. Tienilic acid, suprofen and silybin are mechanism-based inhibitors of CYP2C9. Given the critical role of CYP2C9 in drug metabolism and the presence of polymorphisms, it is important to identify drug candidates as potential substrates, inducer or inhibitors of CYP2C9 in drug development and drug discovery scientists should develop drugs with minimal interactions with this enzyme. Further studies are warranted to explore the molecular determinants for ligand-CYP2C9 binding and the structure-activity relationships.
Author Yang, Li-Ping
Zhou, Shu-Feng
Cai, Jian-Ping
Zhou, Zhi-Wei
Author_xml – sequence: 1
  givenname: Shu-Feng
  surname: Zhou
  fullname: Zhou, Shu-Feng
  email: shufeng.zhou@rmit.edu.au
  organization: Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia. shufeng.zhou@rmit.edu.au
– sequence: 2
  givenname: Zhi-Wei
  surname: Zhou
  fullname: Zhou, Zhi-Wei
– sequence: 3
  givenname: Li-Ping
  surname: Yang
  fullname: Yang, Li-Ping
– sequence: 4
  givenname: Jian-Ping
  surname: Cai
  fullname: Cai, Jian-Ping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19515014$$D View this record in MEDLINE/PubMed
BookMark eNo1kM1KxDAcxIMo7oe-gAfJA1hN0qRJjlJcFRYUVPC2JOm_NtIvknRhn8DXdtnVy8wcZn6HWaDTfugBoStKbhmV_I5oplUhiZZKEyGLXJygOVVSZCLPP2doEeM3IZRpQs7RjGpBBaF8jn7eJhtTMAniDfZ9NTkIh9R469MQIjZ9hfeNyaUpQGZc8lufdjhAa5If-tj4MeKhxs3UmR6XuzS4Jgwd4FcuCGalPhB8N7beHRd7Oq7C9IUr2EI7jB306QKd1aaNcPnnS_Sxengvn7L1y-Nzeb_OLBcqZU5Ka6XVOSW2YEQJZUEpy3IuHHHMKF5DnktRU2uZNcpwV-yF1Ry4oWDYEl0fueNkO6g2Y_CdCbvN_yPsF2VyZjw
CitedBy_id crossref_primary_10_1089_jmf_2017_4123
crossref_primary_10_1016_j_cbpc_2018_08_006
crossref_primary_10_3390_molecules16086591
crossref_primary_10_3390_vetsci12010017
crossref_primary_10_2174_1381612827666210810090805
crossref_primary_10_3390_molecules15096466
crossref_primary_10_1007_s11356_021_16354_4
crossref_primary_10_1021_acs_chemrestox_4c00199
crossref_primary_10_1016_j_drudis_2016_06_004
crossref_primary_10_1016_j_gene_2015_04_084
crossref_primary_10_1007_s40140_021_00457_2
crossref_primary_10_1016_j_smallrumres_2023_106950
crossref_primary_10_1186_s12302_020_00409_3
crossref_primary_10_1080_17425255_2016_1201067
crossref_primary_10_1016_j_chemosphere_2024_142989
crossref_primary_10_3109_07420528_2016_1169192
crossref_primary_10_1039_C4RA09160D
crossref_primary_10_1080_07391102_2020_1778535
crossref_primary_10_1002_bmc_5439
crossref_primary_10_1186_s10020_019_0098_x
crossref_primary_10_1016_j_bmcl_2013_04_040
crossref_primary_10_17116_jnevro202312311140
crossref_primary_10_1038_tpj_2013_2
crossref_primary_10_1080_17425255_2021_1921147
crossref_primary_10_3389_fphar_2023_1293295
crossref_primary_10_1016_j_saa_2021_120712
crossref_primary_10_1016_j_neubiorev_2014_05_011
crossref_primary_10_1016_j_jhazmat_2024_135586
crossref_primary_10_1016_j_tox_2009_08_013
crossref_primary_10_2174_1570180820666230818100059
crossref_primary_10_3390_ani14060929
crossref_primary_10_1080_10937404_2013_842523
crossref_primary_10_3390_genes9120578
crossref_primary_10_3390_jpm11090851
crossref_primary_10_3390_molecules23040920
crossref_primary_10_1016_j_jpba_2018_01_010
crossref_primary_10_1038_s41598_020_76366_x
crossref_primary_10_1371_journal_pone_0116409
crossref_primary_10_1016_j_jsmc_2014_08_011
crossref_primary_10_3390_jpm12050788
crossref_primary_10_3390_molecules26071917
crossref_primary_10_1007_s10072_011_0612_6
crossref_primary_10_1124_dmd_117_076331
crossref_primary_10_1177_070674371205700902
crossref_primary_10_3389_fphar_2021_666296
crossref_primary_10_3390_ijms21186842
crossref_primary_10_52711_0974_360X_2024_00134
crossref_primary_10_1038_pr_2017_145
crossref_primary_10_1073_pnas_1010194108
crossref_primary_10_1093_gbe_evac167
crossref_primary_10_3109_00498254_2013_820007
crossref_primary_10_1089_ars_2010_3109
crossref_primary_10_1016_j_cld_2016_08_011
crossref_primary_10_2217_pgs_16_5
crossref_primary_10_1016_j_jamda_2016_09_021
crossref_primary_10_2174_1872312815666220707114744
crossref_primary_10_1002_rcm_7763
crossref_primary_10_3390_pharmaceutics16010003
crossref_primary_10_1016_j_apsb_2021_11_019
crossref_primary_10_1016_j_cbi_2011_09_002
crossref_primary_10_1007_s12272_021_01363_1
crossref_primary_10_1016_j_taap_2013_12_020
crossref_primary_10_15275_rusomj_2021_0320
crossref_primary_10_1016_j_pharmthera_2014_05_011
crossref_primary_10_1021_acs_joc_4c02623
crossref_primary_10_1093_toxsci_kfy242
crossref_primary_10_1016_j_bmc_2012_01_049
crossref_primary_10_1016_j_pharep_2016_01_002
crossref_primary_10_3390_ijms252011111
crossref_primary_10_1038_tpj_2012_40
crossref_primary_10_1111_j_1538_7836_2010_04097_x
crossref_primary_10_1016_j_envpol_2018_07_094
crossref_primary_10_1080_17512433_2021_1997585
crossref_primary_10_3390_molecules180910681
crossref_primary_10_1111_j_2042_7158_2011_01340_x
crossref_primary_10_3109_00498254_2015_1115914
crossref_primary_10_1371_journal_pone_0028257
crossref_primary_10_4238_vol9_3gmr938
crossref_primary_10_1124_dmd_114_056978
crossref_primary_10_1007_s12272_017_0917_y
crossref_primary_10_1186_s40360_020_00406_5
crossref_primary_10_1080_07391102_2023_2166992
crossref_primary_10_1177_1756285616650619
crossref_primary_10_3390_pharmaceutics14061190
crossref_primary_10_1016_j_csbj_2020_10_013
crossref_primary_10_1371_journal_pone_0049134
crossref_primary_10_17352_2455_3476_000018
crossref_primary_10_1002_ptr_5220
crossref_primary_10_1080_03602532_2020_1758714
crossref_primary_10_1002_dta_1997
crossref_primary_10_3390_jpm8010001
crossref_primary_10_1098_rstb_2013_0583
crossref_primary_10_1002_prp2_264
crossref_primary_10_3103_S0891416814030033
crossref_primary_10_1038_s41598_021_96590_3
crossref_primary_10_1080_14740338_2017_1389891
crossref_primary_10_1016_j_ejps_2019_01_010
crossref_primary_10_1038_tpj_2012_52
crossref_primary_10_1097_FPC_0b013e3283395c6a
crossref_primary_10_3390_molecules22030443
crossref_primary_10_1007_s10266_019_00457_z
crossref_primary_10_1111_j_1439_0531_2012_01986_x
crossref_primary_10_1016_j_sciaf_2023_e01835
crossref_primary_10_1016_j_heliyon_2024_e30818
crossref_primary_10_3109_03639045_2014_886697
crossref_primary_10_1007_s10822_012_9578_6
crossref_primary_10_3390_molecules21050554
crossref_primary_10_52711_0974_360X_2021_01068
crossref_primary_10_1038_s41401_022_00996_2
crossref_primary_10_1089_gtmb_2011_0301
crossref_primary_10_1016_j_phrs_2016_06_030
crossref_primary_10_1371_journal_pone_0074053
crossref_primary_10_1007_s13369_022_06782_w
crossref_primary_10_1517_17425255_2013_816283
crossref_primary_10_3390_pharmaceutics13010124
crossref_primary_10_1002_etc_2755
crossref_primary_10_1186_s40168_025_02070_5
crossref_primary_10_1016_j_cbi_2022_109799
crossref_primary_10_3390_jpm10040198
crossref_primary_10_15360_1813_9779_2019_2_27_35
crossref_primary_10_3109_00498254_2015_1036954
crossref_primary_10_3390_cosmetics12010017
crossref_primary_10_1515_ract_2020_0025
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.2174/092986709789057635
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1875-533X
ExternalDocumentID 19515014
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.5.
0R~
29F
36B
3V.
4.4
53G
5GY
69Q
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEGP
AAVXF
ABEEF
ABJCF
ABJNI
ABUWG
ABVDF
ACGFS
ACGOD
ACITR
ACIWK
ACPRK
ACZAY
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
AFUQM
AGJNZ
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ANTIV
AZQEC
BENPR
BGLVJ
BPHCQ
BVXVI
C1A
CCPQU
CGR
CS3
CUY
CVF
D1I
DU5
DWQXO
EBS
ECM
EIF
EJD
F5P
FYUFA
GH2
GNUQQ
HCIFZ
HMCUK
HZ~
IPNFZ
KB.
KCGFV
KFI
LK5
M1P
M2P
M7R
NPM
O9-
P2P
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RIG
UKHRP
ID FETCH-LOGICAL-b458t-c77bb7b9310b620858be88b2345c0c2a84fe3375f1bb2ba8a4c68a42f4e4a1ea2
IngestDate Thu Jan 02 23:03:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b458t-c77bb7b9310b620858be88b2345c0c2a84fe3375f1bb2ba8a4c68a42f4e4a1ea2
PMID 19515014
ParticipantIDs pubmed_primary_19515014
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United Arab Emirates
PublicationPlace_xml – name: United Arab Emirates
PublicationTitle Current medicinal chemistry
PublicationTitleAlternate Curr Med Chem
PublicationYear 2009
SSID ssj0012900
Score 2.3707712
SecondaryResourceType review_article
Snippet Cytochrome P450 2C9 (CYP2C9) is one of the most abundant CYP enzymes in the human liver. CYP2C9 metabolizes more than 100 therapeutic drugs, including...
SourceID pubmed
SourceType Index Database
StartPage 3480
SubjectTerms Aryl Hydrocarbon Hydroxylases - antagonists & inhibitors
Aryl Hydrocarbon Hydroxylases - genetics
Aryl Hydrocarbon Hydroxylases - metabolism
Catalytic Domain
Chromosomes, Human, Pair 10
Cytochrome P-450 CYP2C9
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Drug Discovery
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Humans
Receptors, Cytoplasmic and Nuclear - metabolism
Structure-Activity Relationship
Substrate Specificity
Title Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development
URI https://www.ncbi.nlm.nih.gov/pubmed/19515014
Volume 16
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLU6IMFsEJT3S16g2UwNieMkzhJFoNGIQV10RMVmFDvOJEi0VadZlB_gi_g_ru24TjMgHhvLsiMryj299X2di9ArWUVVBJuEqSAFA0WBHkyrkmRU6JxXFRWmS8TZx-TknJ3O4_lo9KOXtdRuxGv57Zd1Jf8jVVgDueoq2X-Q7O5QWIA5yBdGkDCMfyVj_as37LJGGGBdg5zW3bxuRGM66RjPuGGJbdeK6DoG0y5i7bLg6mZl0jlst758u1nKWnMYHE9ZHBzTPLPxhUHmebluL13F1S555ss-k2kXt9cMJK6tnPdTL1vjeK1bAp_0crj-uW7IJ9XsdFLn1f7QkGnjn85tL-1TgLhfdy4Mn6MF_0BW7YLVRODiOd_Ty0kPf5ZAoNOyEbPdn4bqX5tXJhpFM6556XSRb6wZ9_oPgwhXXw0gQrhd6rDqn3cHlNxu6wAdgHGiu61qF1EXuqJZENjqLP06b66_jOGptQcMbBlzp5ndRXc6YwS_tci6h0ZqMUa3cyesMbp11qVejNHR1JKcbyd45mv2rib4CE89_fn2PvruUTnBDpN65hCJAU_4OiLxHiLxssIGkdgjEmtEYkCkOaGPSDgda0TiHiIfoPP372b5CenafRDBYr4hMk2FSEUGBodIdOtYLhTngkYsloGkBWeViqI0rkIhqCh4wWQCA62YYkWoCvoQ3VgsF-oxwkoERRHSIFGhYjIrueSlimmmJJOyjMon6JH97hcry-ly4STy9Lc7z9Chx-5zdLMCJaJewI10I14aBPwE9XCPlA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Substrates%2C+inducers%2C+inhibitors+and+structure-activity+relationships+of+human+Cytochrome+P450+2C9+and+implications+in+drug+development&rft.jtitle=Current+medicinal+chemistry&rft.au=Zhou%2C+Shu-Feng&rft.au=Zhou%2C+Zhi-Wei&rft.au=Yang%2C+Li-Ping&rft.au=Cai%2C+Jian-Ping&rft.date=2009-09-01&rft.eissn=1875-533X&rft.volume=16&rft.issue=27&rft.spage=3480&rft_id=info:doi/10.2174%2F092986709789057635&rft_id=info%3Apmid%2F19515014&rft_id=info%3Apmid%2F19515014&rft.externalDocID=19515014