Necessary and sufficient condition for the smoothness of intersection local time of subfractional Brownian motions

Let S H and S ̃ H be two independent d -dimensional sub-fractional Brownian motions with indices H ∈ (0, 1). Assume d ≥ 2, we investigate the intersection local time of subfractional Brownian motions ℓ T = ∫ 0 T ∫ 0 T δ S t H - S ̃ s H d s d t , T > 0 , where δ denotes the Dirac delta function at...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2011; no. 1; pp. 1 - 16
Main Author Shen, Guangjun
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 19.12.2011
Springer Nature B.V
BioMed Central Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let S H and S ̃ H be two independent d -dimensional sub-fractional Brownian motions with indices H ∈ (0, 1). Assume d ≥ 2, we investigate the intersection local time of subfractional Brownian motions ℓ T = ∫ 0 T ∫ 0 T δ S t H - S ̃ s H d s d t , T > 0 , where δ denotes the Dirac delta function at zero. By elementary inequalities, we show that ℓ T exists in L 2 if and only if Hd < 2 and it is smooth in the sense of the Meyer-Watanabe if and only if H < 2 d + 2 . As a related problem, we give also the regularity of the intersection local time process. 2010 Mathematics Subject Classification: 60G15; 60F25; 60G18; 60J55.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/1029-242X-2011-139