Identification of specific calcitonin-like receptor residues important for calcitonin gene-related peptide high affinity binding

Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein-coupled receptor belonging to the secretin receptor family. Previous...

Full description

Saved in:
Bibliographic Details
Published inBMC pharmacology Vol. 6; no. 1; p. 9
Main Authors Banerjee, Sugato, Evanson, Janel, Harris, Erik, Lowe, Stephen L, Thomasson, Kathryn A, Porter, James E
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 15.06.2006
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein-coupled receptor belonging to the secretin receptor family. Previous studies on the calcitonin-like receptor (CLR), which requires co-expression of the receptor-activity-modifying protein-1 (RAMP1) to function as a CGRP receptor, have shown an 18 amino acid N-terminus sequence important for binding CGRP. Moreover, several investigations have recognized the C-terminal amidated phenylalanine (F37) of CGRP as essential for docking to the mature receptor. Therefore, we hypothesize that hydrophobic amino acids within the previously characterized 18 amino acid CLR N-terminus domain are important binding contacts for the C-terminal phenylalaninamide of CGRP. Two leucine residues within this previously characterized CLR N-terminus domain, when mutated to alanine and expressed on HEK293T cells stably transfected with RAMP1, demonstrated a significantly decreased binding affinity for CGRP compared to wild type receptor. Additional decreases in binding affinity for CGRP were not found when both leucine mutations were expressed in the same CLR construct. Decreased binding characteristic of these leucine mutant receptors was observed for all CGRP ligands tested that contained the necessary amidated phenylalanine at their C-terminus. However, there was no difference in the potency of CGRP to increase cAMP production by these leucine mutant receptors when compared to wild type CLR, consistent with the notion that the neuropeptide C-terminal F37 is important for docking but not activation of the receptor. This observation was conserved when modified CGRP ligands lacking the amidated F37 demonstrated similar potencies to generate cAMP at both wild type and mutant CLRs. Furthermore, these modified CGRP ligands displayed a significant but similar loss of binding for all leucine mutant and wild type CLR because the important receptor contact on the neuropeptide was missing in all experimental situations. These results are consistent with previous structure-function investigations of the neuropeptide and are the first to propose specific CLR binding contacts for the amidated F37 of CGRP that are important for docking but not activation of the mature CGRP receptor.
AbstractList BACKGROUND: Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein-coupled receptor belonging to the secretin receptor family. Previous studies on the calcitonin-like receptor (CLR), which requires co-expression of the receptor-activity-modifying protein-1 (RAMP1) to function as a CGRP receptor, have shown an 18 amino acid N-terminus sequence important for binding CGRP. Moreover, several investigations have recognized the C-terminal amidated phenylalanine (F37) of CGRP as essential for docking to the mature receptor. Therefore, we hypothesize that hydrophobic amino acids within the previously characterized 18 amino acid CLR N-terminus domain are important binding contacts for the C-terminal phenylalaninamide of CGRP. RESULTS: Two leucine residues within this previously characterized CLR N-terminus domain, when mutated to alanine and expressed on HEK293T cells stably transfected with RAMP1, demonstrated a significantly decreased binding affinity for CGRP compared to wild type receptor. Additional decreases in binding affinity for CGRP were not found when both leucine mutations were expressed in the same CLR construct. Decreased binding characteristic of these leucine mutant receptors was observed for all CGRP ligands tested that contained the necessary amidated phenylalanine at their C-terminus. However, there was no difference in the potency of CGRP to increase cAMP production by these leucine mutant receptors when compared to wild type CLR, consistent with the notion that the neuropeptide C-terminal F37 is important for docking but not activation of the receptor. This observation was conserved when modified CGRP ligands lacking the amidated F37 demonstrated similar potencies to generate cAMP at both wild type and mutant CLRs. Furthermore, these modified CGRP ligands displayed a significant but similar loss of binding for all leucine mutant and wild type CLR because the important receptor contact on the neuropeptide was missing in all experimental situations. CONCLUSION: These results are consistent with previous structure-function investigations of the neuropeptide and are the first to propose specific CLR binding contacts for the amidated F37 of CGRP that are important for docking but not activation of the mature CGRP receptor.
Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein- coupled receptor belonging to the secretin receptor family. Previous studies on the calcitonin-like receptor (CLR), which requires co-expression of the receptor-activity-modifying protein-1 (RAMP1) to function as a CGRP receptor, have shown an 18 amino acid N-terminus sequence important for binding CGRP. Moreover, several investigations have recognized the C-terminal amidated phenylalanine (F37) of CGRP as essential for docking to the mature receptor. Therefore, we hypothesize that hydrophobic amino acids within the previously characterized 18 amino acid CLR N-terminus domain are important binding contacts for the C-terminal phenylalaninamide of CGRP. Two leucine residues within this previously characterized CLR N-terminus domain, when mutated to alanine and expressed on HEK293T cells stably transfected with RAMP1, demonstrated a significantly decreased binding affinity for CGRP compared to wild type receptor. Additional decreases in binding affinity for CGRP were not found when both leucine mutations were expressed in the same CLR construct. Decreased binding characteristic of these leucine mutant receptors was observed for all CGRP ligands tested that contained the necessary amidated phenylalanine at their C-terminus. However, there was no difference in the potency of CGRP to increase cAMP production by these leucine mutant receptors when compared to wild type CLR, consistent with the notion that the neuropeptide C-terminal F37 is important for docking but not activation of the receptor. This observation was conserved when modified CGRP ligands lacking the amidated F37 demonstrated similar potencies to generate cAMP at both wild type and mutant CLRs. Furthermore, these modified CGRP ligands displayed a significant but similar loss of binding for all leucine mutant and wild type CLR because the important receptor contact on the neuropeptide was missing in all experimental situations. These results are consistent with previous structure-function investigations of the neuropeptide and are the first to propose specific CLR binding contacts for the amidated F37 of CGRP that are important for docking but not activation of the mature CGRP receptor.
Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein-coupled receptor belonging to the secretin receptor family. Previous studies on the calcitonin-like receptor (CLR), which requires co-expression of the receptor-activity-modifying protein-1 (RAMP1) to function as a CGRP receptor, have shown an 18 amino acid N-terminus sequence important for binding CGRP. Moreover, several investigations have recognized the C-terminal amidated phenylalanine (F37) of CGRP as essential for docking to the mature receptor. Therefore, we hypothesize that hydrophobic amino acids within the previously characterized 18 amino acid CLR N-terminus domain are important binding contacts for the C-terminal phenylalaninamide of CGRP.BACKGROUNDCalcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein-coupled receptor belonging to the secretin receptor family. Previous studies on the calcitonin-like receptor (CLR), which requires co-expression of the receptor-activity-modifying protein-1 (RAMP1) to function as a CGRP receptor, have shown an 18 amino acid N-terminus sequence important for binding CGRP. Moreover, several investigations have recognized the C-terminal amidated phenylalanine (F37) of CGRP as essential for docking to the mature receptor. Therefore, we hypothesize that hydrophobic amino acids within the previously characterized 18 amino acid CLR N-terminus domain are important binding contacts for the C-terminal phenylalaninamide of CGRP.Two leucine residues within this previously characterized CLR N-terminus domain, when mutated to alanine and expressed on HEK293T cells stably transfected with RAMP1, demonstrated a significantly decreased binding affinity for CGRP compared to wild type receptor. Additional decreases in binding affinity for CGRP were not found when both leucine mutations were expressed in the same CLR construct. Decreased binding characteristic of these leucine mutant receptors was observed for all CGRP ligands tested that contained the necessary amidated phenylalanine at their C-terminus. However, there was no difference in the potency of CGRP to increase cAMP production by these leucine mutant receptors when compared to wild type CLR, consistent with the notion that the neuropeptide C-terminal F37 is important for docking but not activation of the receptor. This observation was conserved when modified CGRP ligands lacking the amidated F37 demonstrated similar potencies to generate cAMP at both wild type and mutant CLRs. Furthermore, these modified CGRP ligands displayed a significant but similar loss of binding for all leucine mutant and wild type CLR because the important receptor contact on the neuropeptide was missing in all experimental situations.RESULTSTwo leucine residues within this previously characterized CLR N-terminus domain, when mutated to alanine and expressed on HEK293T cells stably transfected with RAMP1, demonstrated a significantly decreased binding affinity for CGRP compared to wild type receptor. Additional decreases in binding affinity for CGRP were not found when both leucine mutations were expressed in the same CLR construct. Decreased binding characteristic of these leucine mutant receptors was observed for all CGRP ligands tested that contained the necessary amidated phenylalanine at their C-terminus. However, there was no difference in the potency of CGRP to increase cAMP production by these leucine mutant receptors when compared to wild type CLR, consistent with the notion that the neuropeptide C-terminal F37 is important for docking but not activation of the receptor. This observation was conserved when modified CGRP ligands lacking the amidated F37 demonstrated similar potencies to generate cAMP at both wild type and mutant CLRs. Furthermore, these modified CGRP ligands displayed a significant but similar loss of binding for all leucine mutant and wild type CLR because the important receptor contact on the neuropeptide was missing in all experimental situations.These results are consistent with previous structure-function investigations of the neuropeptide and are the first to propose specific CLR binding contacts for the amidated F37 of CGRP that are important for docking but not activation of the mature CGRP receptor.CONCLUSIONThese results are consistent with previous structure-function investigations of the neuropeptide and are the first to propose specific CLR binding contacts for the amidated F37 of CGRP that are important for docking but not activation of the mature CGRP receptor.
Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein-coupled receptor belonging to the secretin receptor family. Previous studies on the calcitonin-like receptor (CLR), which requires co-expression of the receptor-activity-modifying protein-1 (RAMP1) to function as a CGRP receptor, have shown an 18 amino acid N-terminus sequence important for binding CGRP. Moreover, several investigations have recognized the C-terminal amidated phenylalanine (F37) of CGRP as essential for docking to the mature receptor. Therefore, we hypothesize that hydrophobic amino acids within the previously characterized 18 amino acid CLR N-terminus domain are important binding contacts for the C-terminal phenylalaninamide of CGRP. Two leucine residues within this previously characterized CLR N-terminus domain, when mutated to alanine and expressed on HEK293T cells stably transfected with RAMP1, demonstrated a significantly decreased binding affinity for CGRP compared to wild type receptor. Additional decreases in binding affinity for CGRP were not found when both leucine mutations were expressed in the same CLR construct. Decreased binding characteristic of these leucine mutant receptors was observed for all CGRP ligands tested that contained the necessary amidated phenylalanine at their C-terminus. However, there was no difference in the potency of CGRP to increase cAMP production by these leucine mutant receptors when compared to wild type CLR, consistent with the notion that the neuropeptide C-terminal F37 is important for docking but not activation of the receptor. This observation was conserved when modified CGRP ligands lacking the amidated F37 demonstrated similar potencies to generate cAMP at both wild type and mutant CLRs. Furthermore, these modified CGRP ligands displayed a significant but similar loss of binding for all leucine mutant and wild type CLR because the important receptor contact on the neuropeptide was missing in all experimental situations. These results are consistent with previous structure-function investigations of the neuropeptide and are the first to propose specific CLR binding contacts for the amidated F37 of CGRP that are important for docking but not activation of the mature CGRP receptor.
ArticleNumber 9
Author Lowe, Stephen L
Porter, James E
Banerjee, Sugato
Harris, Erik
Thomasson, Kathryn A
Evanson, Janel
AuthorAffiliation 2 Department of Chemistry, University of North Dakota, Grand Forks, ND 58202-9024, USA
1 Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
AuthorAffiliation_xml – name: 1 Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
– name: 2 Department of Chemistry, University of North Dakota, Grand Forks, ND 58202-9024, USA
Author_xml – sequence: 1
  givenname: Sugato
  surname: Banerjee
  fullname: Banerjee, Sugato
– sequence: 2
  givenname: Janel
  surname: Evanson
  fullname: Evanson, Janel
– sequence: 3
  givenname: Erik
  surname: Harris
  fullname: Harris, Erik
– sequence: 4
  givenname: Stephen L
  surname: Lowe
  fullname: Lowe, Stephen L
– sequence: 5
  givenname: Kathryn A
  surname: Thomasson
  fullname: Thomasson, Kathryn A
– sequence: 6
  givenname: James E
  surname: Porter
  fullname: Porter, James E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16776831$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1TAQhS1URB-wZIu8YpdiJ44dbxCoAlqpEhtYW449uXcgsYOdW6k7fjoOt_QBqlh5PPP5aMZnjslBiAEIecnZKeedfMOF4lVdc1bJSj8hR7f3g3vxITnO-RtjXHVCPSOHXColu4YfkZ8XHsKCAzq7YAw0DjTP4NYEdXZ0uMSAoRrxO9AEDuYlphJk9DvIFKc5psWGhQ4lfcfTDQSoEox2AU_n8go90C1uttQOAwZcrmmPwWPYPCdPBztmeHFznpCvHz98OTuvLj9_ujh7f1n1ohW6krVuda8YU0J1jWS68Vo50UrhgTPhle_lwLyCRntZD4NotGM1tG3LocC2OSFv97rzrp_AuzJ1sqOZE042XZto0TysBNyaTbwyvK1bLusi8G4v0GN8ROBhxcXJrA6Y1QEjjS4Sr296SPFH-b_FTJgdjKMNEHfZyE5qpZX4L8h1raRQq-Kr-1PddvPH4AJUe8ClmHOC4Q5hZl2gf1ps_uKLpb9Xo8yE4yOvfgFv_cvb
CitedBy_id crossref_primary_10_1016_j_tips_2011_05_007
crossref_primary_10_3389_fphys_2022_826122
crossref_primary_10_1186_1471_2210_6_14
crossref_primary_10_3892_mmr_2018_8494
crossref_primary_10_1517_17460440903413496
crossref_primary_10_1002_cne_21607
crossref_primary_10_1111_j_1476_5381_2011_01525_x
crossref_primary_10_1097_HJH_0b013e328329bbd7
crossref_primary_10_3389_fphar_2015_00264
crossref_primary_10_1016_j_peptides_2011_05_022
crossref_primary_10_1021_acsptsci_9b00061
crossref_primary_10_1111_head_13432
crossref_primary_10_1016_j_peptides_2009_10_021
crossref_primary_10_1016_j_peptides_2011_03_004
crossref_primary_10_3390_cells1040699
Cites_doi 10.1161/01.RES.73.3.579
10.1002/ana.410330109
10.1016/S0022-3565(24)35310-8
10.1007/s00210-005-1064-4
10.1074/jbc.M305719200
10.1074/jbc.M107323200
10.1006/bbrc.1995.1047
10.1111/j.1476-5381.1992.tb14272.x
10.1042/bj2910205
10.1016/S0014-2999(02)01538-8
10.1016/0014-2999(90)90422-3
10.1016/0196-9781(92)90067-D
10.1038/sj.bjp.0703110
10.1016/S0014-2999(00)00934-1
10.1093/cvr/27.8.1477
10.1038/sj.bjp.0705040
10.1124/mi.5.5.10
10.1016/S0014-5793(02)03585-8
10.1210/edrv-17-5-533
10.1016/0003-2697(76)90527-3
10.1210/mend.13.10.0359
10.1016/S0014-2999(02)01544-3
10.1161/01.HYP.0000151130.34874.fa
10.1016/0006-2952(73)90196-2
10.1073/pnas.0503942102
10.1002/prot.340040106
10.1096/fasebj.1.5.3315805
10.1021/bi00420a005
10.1038/sj.bjp.0703152
10.1038/30666
10.1074/jbc.M109661200
10.1021/jm00069a012
10.1021/bi00216a036
10.1074/jbc.M304770200
10.1021/bi048111o
10.1073/pnas.74.12.5463
10.1021/bi049153f
10.1016/0163-7258(92)90036-Y
10.1016/0006-291X(86)90392-X
10.1139/y97-079
10.1021/jm970533r
ContentType Journal Article
Copyright Copyright © 2006 Banerjee et al; licensee BioMed Central Ltd. 2006 Banerjee et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2006 Banerjee et al; licensee BioMed Central Ltd. 2006 Banerjee et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1186/1471-2210-6-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1471-2210
EndPage 9
ExternalDocumentID PMC1525162
oai_biomedcentral_com_1471_2210_6_9
16776831
10_1186_1471_2210_6_9
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R15 GM066726
– fundername: NIGMS NIH HHS
  grantid: 1R15GM66726
– fundername: NCRR NIH HHS
  grantid: 5P20RR017699
– fundername: NIDDK NIH HHS
  grantid: 5R21DK62865
– fundername: NIDDK NIH HHS
  grantid: R21 DK062865
– fundername: NCRR NIH HHS
  grantid: P20 RR017699
– fundername: NCRR NIH HHS
  grantid: P20RR016741
GroupedDBID ---
23N
2VQ
2WC
4.4
53G
6J9
AAFWJ
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
ADUKV
AHBYD
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
HH5
HYE
IAO
IHR
INH
INR
KQ8
M48
MK0
ML~
O5R
O5S
OK1
OVT
P2P
PGMZT
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
W2D
WOQ
WOW
XSB
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
M~E
NPM
7TK
8FD
FR3
P64
RC3
7X8
ABVAZ
AFGXO
AFNRJ
5PM
ID FETCH-LOGICAL-b4549-62959b700747836093d97c4564de104d7db6f0d7e39d62ff439c02e5551e093a3
IEDL.DBID M48
ISSN 1471-2210
IngestDate Thu Aug 21 14:08:14 EDT 2025
Wed May 22 07:13:17 EDT 2024
Fri Jul 11 11:40:51 EDT 2025
Fri Jul 11 13:08:53 EDT 2025
Sat Sep 28 07:42:25 EDT 2024
Tue Jul 01 02:10:15 EDT 2025
Thu Apr 24 23:05:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b4549-62959b700747836093d97c4564de104d7db6f0d7e39d62ff439c02e5551e093a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2210-6-9
PMID 16776831
PQID 19276479
PQPubID 23462
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1525162
biomedcentral_primary_oai_biomedcentral_com_1471_2210_6_9
proquest_miscellaneous_68697974
proquest_miscellaneous_19276479
pubmed_primary_16776831
crossref_primary_10_1186_1471_2210_6_9
crossref_citationtrail_10_1186_1471_2210_6_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-06-15
PublicationDateYYYYMMDD 2006-06-15
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-15
  day: 15
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC pharmacology
PublicationTitleAlternate BMC Pharmacol
PublicationYear 2006
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References F Sanger (211_CR38) 1977; 74
S Hilairet (211_CR40) 2001; 276
T Dennis (211_CR12) 1989; 251
S Gulbenkian (211_CR2) 1993; 73
SC Supowit (211_CR6) 2005; 45
HJ Motulsky (211_CR43) 1987; 1
YJ Li (211_CR8) 2002; 442
Y Cheng (211_CR28) 1973; 22
R Verheggen (211_CR4) 2005; 371
P Dauber-Osguthorpe (211_CR45) 1988; 4
JW Tams (211_CR20) 1998; 5
H Doods (211_CR33) 2000; 129
JE Porter (211_CR41) 2000; 292
AL Breeze (211_CR44) 1991; 30
LM Ittner (211_CR36) 2005; 44
SJ Peroutka (211_CR5) 2005; 5
DR Poyner (211_CR31) 1992; 56
PJ Goadsby (211_CR1) 1993; 33
JJ Mallee (211_CR35) 2002; 277
YV Tan (211_CR24) 2003; 278
T Chiba (211_CR13) 1989; 256
L Edvinsson (211_CR3) 2001; 415
M Dong (211_CR23) 2004; 279
M Castro (211_CR37) 2005; 102
JP O'Connell (211_CR16) 1993; 291
DD Smith (211_CR32) 1993; 36
SJ Wimalawansa (211_CR9) 1996; 17
B Rist (211_CR17) 1998; 41
FM Wisskirchen (211_CR19) 2000; 129
B Fluhmann (211_CR21) 1995; 206
MM Bradford (211_CR42) 1976; 72
Y Dumont (211_CR14) 1997; 75
B Lynch (211_CR30) 1988; 27
NG Uren (211_CR7) 1993; 27
SG Howitt (211_CR18) 2003; 138
P Rovero (211_CR29) 1992; 13
M Chauhan (211_CR25) 2005; 44
D Van Rossum (211_CR27) 1994; 269
LM McLatchie (211_CR22) 1998; 393
M Schindler (211_CR34) 2002; 442
D Koller (211_CR26) 2002; 531
A Evdokiou (211_CR39) 1999; 13
DR Poyner (211_CR15) 1992; 105
CA Maggi (211_CR10) 1990; 179
JR Tippins (211_CR11) 1986; 134
3315805 - FASEB J. 1987 Nov;1(5):365-74
12065071 - Eur J Pharmacol. 2002 May 10;442(3):187-93
4202581 - Biochem Pharmacol. 1973 Dec 1;22(23):3099-108
12807902 - J Biol Chem. 2003 Sep 19;278(38):36531-6
15583078 - Hypertension. 2005 Jan;45(1):109-14
15983761 - Naunyn Schmiedebergs Arch Pharmacol. 2005 May;371(5):383-92
16249526 - Mol Interv. 2005 Oct;5(5):304-11
12540523 - Br J Pharmacol. 2003 Jan;138(2):325-32
9276147 - Can J Physiol Pharmacol. 1997 Jun;75(6):671-6
9620797 - Nature. 1998 May 28;393(6683):333-9
2537579 - Am J Physiol. 1989 Feb;256(2 Pt 1):E331-5
9438028 - J Med Chem. 1998 Jan 1;41(1):117-23
3484952 - Biochem Biophys Res Commun. 1986 Feb 13;134(3):1306-11
2364983 - Eur J Pharmacol. 1990 Apr 10;179(1-2):217-9
1338400 - Pharmacol Ther. 1992;56(1):23-51
271968 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7
8182554 - J Pharmacol Exp Ther. 1994 May;269(2):846-53
942051 - Anal Biochem. 1976 May 7;72:248-54
8221800 - Cardiovasc Res. 1993 Aug;27(8):1477-81
7688669 - Circ Res. 1993 Sep;73(3):579-88
8897024 - Endocr Rev. 1996 Oct;17(5):533-85
1988044 - Biochemistry. 1991 Jan 15;30(2):575-82
1313730 - Br J Pharmacol. 1992 Feb;105(2):441-7
11535606 - J Biol Chem. 2001 Nov 9;276(45):42182-90
7689110 - J Med Chem. 1993 Aug 20;36(17):2536-41
16236727 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16084-9
10517675 - Mol Endocrinol. 1999 Oct;13(10):1738-50
10711339 - Br J Pharmacol. 2000 Feb;129(3):420-3
12065069 - Eur J Pharmacol. 2002 May 10;442(3):173-7
3264724 - Biochemistry. 1988 Oct 4;27(20):7600-7
1336185 - Peptides. 1992 Sep-Oct;13(5):1025-7
8385932 - Biochem J. 1993 Apr 1;291 ( Pt 1):205-10
11847213 - J Biol Chem. 2002 Apr 19;277(16):14294-8
2553933 - J Pharmacol Exp Ther. 1989 Nov;251(2):718-25
15823033 - Biochemistry. 2005 Apr 19;44(15):5749-54
10604981 - J Pharmacol Exp Ther. 2000 Jan;292(1):440-8
12435594 - FEBS Lett. 2002 Nov 20;531(3):464-8
7818539 - Biochem Biophys Res Commun. 1995 Jan 5;206(1):341-7
8388188 - Ann Neurol. 1993 Jan;33(1):48-56
10696108 - Br J Pharmacol. 2000 Mar;129(5):1049-55
3054871 - Proteins. 1988;4(1):31-47
9606712 - Receptors Channels. 1998;5(2):79-90
15641806 - Biochemistry. 2005 Jan 18;44(2):782-9
11245850 - Eur J Pharmacol. 2001 Mar 9;415(1):39-44
14583624 - J Biol Chem. 2004 Jan 9;279(2):1167-75
References_xml – volume: 73
  start-page: 579
  year: 1993
  ident: 211_CR2
  publication-title: Circ Res
  doi: 10.1161/01.RES.73.3.579
– volume: 33
  start-page: 48
  year: 1993
  ident: 211_CR1
  publication-title: Ann Neurol
  doi: 10.1002/ana.410330109
– volume: 292
  start-page: 440
  year: 2000
  ident: 211_CR41
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(24)35310-8
– volume: 371
  start-page: 383
  year: 2005
  ident: 211_CR4
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
  doi: 10.1007/s00210-005-1064-4
– volume: 279
  start-page: 1167
  year: 2004
  ident: 211_CR23
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M305719200
– volume: 276
  start-page: 42182
  year: 2001
  ident: 211_CR40
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M107323200
– volume: 206
  start-page: 341
  year: 1995
  ident: 211_CR21
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.1047
– volume: 105
  start-page: 441
  year: 1992
  ident: 211_CR15
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.1992.tb14272.x
– volume: 291
  start-page: 205
  year: 1993
  ident: 211_CR16
  publication-title: Biochem J
  doi: 10.1042/bj2910205
– volume: 442
  start-page: 173
  year: 2002
  ident: 211_CR8
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(02)01538-8
– volume: 179
  start-page: 217
  year: 1990
  ident: 211_CR10
  publication-title: Eur J Pharmacol
  doi: 10.1016/0014-2999(90)90422-3
– volume: 256
  start-page: E331
  year: 1989
  ident: 211_CR13
  publication-title: Am J Physiol
– volume: 13
  start-page: 1025
  year: 1992
  ident: 211_CR29
  publication-title: Peptides
  doi: 10.1016/0196-9781(92)90067-D
– volume: 129
  start-page: 420
  year: 2000
  ident: 211_CR33
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0703110
– volume: 415
  start-page: 39
  year: 2001
  ident: 211_CR3
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(00)00934-1
– volume: 27
  start-page: 1477
  year: 1993
  ident: 211_CR7
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/27.8.1477
– volume: 138
  start-page: 325
  year: 2003
  ident: 211_CR18
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0705040
– volume: 269
  start-page: 846
  year: 1994
  ident: 211_CR27
  publication-title: J Pharmacol Exp Ther
– volume: 5
  start-page: 304
  year: 2005
  ident: 211_CR5
  publication-title: Mol Interv
  doi: 10.1124/mi.5.5.10
– volume: 531
  start-page: 464
  year: 2002
  ident: 211_CR26
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(02)03585-8
– volume: 17
  start-page: 533
  year: 1996
  ident: 211_CR9
  publication-title: Endocr Rev
  doi: 10.1210/edrv-17-5-533
– volume: 72
  start-page: 248
  year: 1976
  ident: 211_CR42
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(76)90527-3
– volume: 13
  start-page: 1738
  year: 1999
  ident: 211_CR39
  publication-title: Mol Endocrinol
  doi: 10.1210/mend.13.10.0359
– volume: 5
  start-page: 79
  year: 1998
  ident: 211_CR20
  publication-title: Receptors Channels
– volume: 442
  start-page: 187
  year: 2002
  ident: 211_CR34
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(02)01544-3
– volume: 45
  start-page: 109
  year: 2005
  ident: 211_CR6
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000151130.34874.fa
– volume: 22
  start-page: 3099
  year: 1973
  ident: 211_CR28
  publication-title: Biochem Pharmacol
  doi: 10.1016/0006-2952(73)90196-2
– volume: 251
  start-page: 718
  year: 1989
  ident: 211_CR12
  publication-title: J Pharmacol Exp Ther
– volume: 102
  start-page: 16084
  year: 2005
  ident: 211_CR37
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0503942102
– volume: 4
  start-page: 31
  year: 1988
  ident: 211_CR45
  publication-title: Proteins
  doi: 10.1002/prot.340040106
– volume: 1
  start-page: 365
  year: 1987
  ident: 211_CR43
  publication-title: FASEB J
  doi: 10.1096/fasebj.1.5.3315805
– volume: 27
  start-page: 7600
  year: 1988
  ident: 211_CR30
  publication-title: Biochemistry
  doi: 10.1021/bi00420a005
– volume: 129
  start-page: 1049
  year: 2000
  ident: 211_CR19
  publication-title: Br J Pharmacol
  doi: 10.1038/sj.bjp.0703152
– volume: 393
  start-page: 333
  year: 1998
  ident: 211_CR22
  publication-title: Nature
  doi: 10.1038/30666
– volume: 277
  start-page: 14294
  year: 2002
  ident: 211_CR35
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109661200
– volume: 36
  start-page: 2536
  year: 1993
  ident: 211_CR32
  publication-title: J Med Chem
  doi: 10.1021/jm00069a012
– volume: 30
  start-page: 575
  year: 1991
  ident: 211_CR44
  publication-title: Biochemistry
  doi: 10.1021/bi00216a036
– volume: 278
  start-page: 36531
  year: 2003
  ident: 211_CR24
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M304770200
– volume: 44
  start-page: 5749
  year: 2005
  ident: 211_CR36
  publication-title: Biochemistry
  doi: 10.1021/bi048111o
– volume: 74
  start-page: 5463
  year: 1977
  ident: 211_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.74.12.5463
– volume: 44
  start-page: 782
  year: 2005
  ident: 211_CR25
  publication-title: Biochemistry
  doi: 10.1021/bi049153f
– volume: 56
  start-page: 32
  year: 1992
  ident: 211_CR31
  publication-title: Pharmacol Ther
  doi: 10.1016/0163-7258(92)90036-Y
– volume: 134
  start-page: 1306
  year: 1986
  ident: 211_CR11
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/0006-291X(86)90392-X
– volume: 75
  start-page: 671
  year: 1997
  ident: 211_CR14
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/y97-079
– volume: 41
  start-page: 117
  year: 1998
  ident: 211_CR17
  publication-title: J Med Chem
  doi: 10.1021/jm970533r
– reference: 8221800 - Cardiovasc Res. 1993 Aug;27(8):1477-81
– reference: 9276147 - Can J Physiol Pharmacol. 1997 Jun;75(6):671-6
– reference: 12435594 - FEBS Lett. 2002 Nov 20;531(3):464-8
– reference: 3264724 - Biochemistry. 1988 Oct 4;27(20):7600-7
– reference: 7688669 - Circ Res. 1993 Sep;73(3):579-88
– reference: 8897024 - Endocr Rev. 1996 Oct;17(5):533-85
– reference: 3484952 - Biochem Biophys Res Commun. 1986 Feb 13;134(3):1306-11
– reference: 2553933 - J Pharmacol Exp Ther. 1989 Nov;251(2):718-25
– reference: 11535606 - J Biol Chem. 2001 Nov 9;276(45):42182-90
– reference: 1988044 - Biochemistry. 1991 Jan 15;30(2):575-82
– reference: 4202581 - Biochem Pharmacol. 1973 Dec 1;22(23):3099-108
– reference: 9620797 - Nature. 1998 May 28;393(6683):333-9
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 7818539 - Biochem Biophys Res Commun. 1995 Jan 5;206(1):341-7
– reference: 12065071 - Eur J Pharmacol. 2002 May 10;442(3):187-93
– reference: 11847213 - J Biol Chem. 2002 Apr 19;277(16):14294-8
– reference: 271968 - Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7
– reference: 8388188 - Ann Neurol. 1993 Jan;33(1):48-56
– reference: 15583078 - Hypertension. 2005 Jan;45(1):109-14
– reference: 1313730 - Br J Pharmacol. 1992 Feb;105(2):441-7
– reference: 7689110 - J Med Chem. 1993 Aug 20;36(17):2536-41
– reference: 12807902 - J Biol Chem. 2003 Sep 19;278(38):36531-6
– reference: 1336185 - Peptides. 1992 Sep-Oct;13(5):1025-7
– reference: 11245850 - Eur J Pharmacol. 2001 Mar 9;415(1):39-44
– reference: 12540523 - Br J Pharmacol. 2003 Jan;138(2):325-32
– reference: 15983761 - Naunyn Schmiedebergs Arch Pharmacol. 2005 May;371(5):383-92
– reference: 10711339 - Br J Pharmacol. 2000 Feb;129(3):420-3
– reference: 9438028 - J Med Chem. 1998 Jan 1;41(1):117-23
– reference: 14583624 - J Biol Chem. 2004 Jan 9;279(2):1167-75
– reference: 3315805 - FASEB J. 1987 Nov;1(5):365-74
– reference: 9606712 - Receptors Channels. 1998;5(2):79-90
– reference: 10604981 - J Pharmacol Exp Ther. 2000 Jan;292(1):440-8
– reference: 8385932 - Biochem J. 1993 Apr 1;291 ( Pt 1):205-10
– reference: 2537579 - Am J Physiol. 1989 Feb;256(2 Pt 1):E331-5
– reference: 16249526 - Mol Interv. 2005 Oct;5(5):304-11
– reference: 12065069 - Eur J Pharmacol. 2002 May 10;442(3):173-7
– reference: 3054871 - Proteins. 1988;4(1):31-47
– reference: 15823033 - Biochemistry. 2005 Apr 19;44(15):5749-54
– reference: 8182554 - J Pharmacol Exp Ther. 1994 May;269(2):846-53
– reference: 15641806 - Biochemistry. 2005 Jan 18;44(2):782-9
– reference: 16236727 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16084-9
– reference: 2364983 - Eur J Pharmacol. 1990 Apr 10;179(1-2):217-9
– reference: 10517675 - Mol Endocrinol. 1999 Oct;13(10):1738-50
– reference: 1338400 - Pharmacol Ther. 1992;56(1):23-51
– reference: 10696108 - Br J Pharmacol. 2000 Mar;129(5):1049-55
SSID ssj0017847
Score 1.7167232
Snippet Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related...
BACKGROUND: Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular...
SourceID pubmedcentral
biomedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9
SubjectTerms Binding Sites
Calcitonin Gene-Related Peptide - chemistry
Calcitonin Gene-Related Peptide - metabolism
Calcitonin Receptor-Like Protein
Cells, Cultured
Cyclic AMP - biosynthesis
Humans
Models, Molecular
Radioligand Assay
Receptors, Calcitonin - chemistry
Receptors, Calcitonin - metabolism
Structure-Activity Relationship
Title Identification of specific calcitonin-like receptor residues important for calcitonin gene-related peptide high affinity binding
URI https://www.ncbi.nlm.nih.gov/pubmed/16776831
https://www.proquest.com/docview/19276479
https://www.proquest.com/docview/68697974
http://dx.doi.org/10.1186/1471-2210-6-9
https://pubmed.ncbi.nlm.nih.gov/PMC1525162
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKe-GCgPKxQIsP1Z7WsI4dOz5UVYVaVZVa9dCVerPi2BYRS3bpbiX2xk9nJsk2zUK5cIuSiZx4Zux5tucNIQeY_JjwwFkRhWCyiClzaZ6Dx_Mg80JAUI5A8eJSnU3k-U1601EKtR24-Cu0w3pSk9vpp58_Vkfg8Ie1w2fqM4cBliWAXZhi5gnZgUlJo49eyG5DQWd1rbF70TXd5ubrG3nv0_509UcMunmU8sHcdPqcPGuDSnrcWMELshWql2R41bBSr0b0ukuyWozokF51fNWrXfKrSdaN7eodnUWK-Zd4g4IGC_D5qqzYtPwWKIyPYQ4wHS7AjOEjafm97rxqSSH8fSBPwTIDq1NlgqdzPDzjA0V2ZJrHWMJIsqKurHNqXpHJ6cn1lzPWFmZgTgKeZCoxqXG6Id8XamyEN7pAYhofAN55jbl9Y6-DMF4lMULQU4yTkEJ0FkA4F6_JdjWrwltCveMmcuGSmHHpXMyNL5SSmfBjGZ2SA2J6-rDzhoTDIi12_wl4qEVdWtSlVdYMyGitO1u0jOdYeGNqa-STqU3x4b34upVHBD-uDcGCM-IOS16F2d3CQrisldT_kFCZMhow3IC8aQyna0ppgH6CD4jumVTvj_tPqvJrTQiONay4St79R1-9J0-bxSXFePqBbC9v78IehFtLt4-TXbpfu9NvVIgusg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+specific+calcitonin-like+receptor+residues+important+for+calcitonin+gene-related+peptide+high+affinity+binding&rft.jtitle=BMC+pharmacology&rft.au=Banerjee%2C+Sugato&rft.au=Evanson%2C+Janel&rft.au=Harris%2C+Erik&rft.au=Lowe%2C+Stephen&rft.date=2006-06-15&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2210&rft.eissn=1471-2210&rft.volume=6&rft.issue=1&rft.spage=9&rft.epage=9&rft_id=info:doi/10.1186%2F1471-2210-6-9&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biomedcentral_com_1471_2210_6_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2210&client=summon