Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data

Abstract In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables...

Full description

Saved in:
Bibliographic Details
Published inStatistical Applications in Genetics and Molecular Biology Vol. 8; no. 1; pp. 28 - 27
Main Authors Witten, Daniela M, Tibshirani, Robert J
Format Journal Article
LanguageEnglish
Published Germany bepress 01.01.2009
De Gruyter
Berkeley Electronic Press
Subjects
Online AccessGet full text
ISSN1544-6115
1544-6115
DOI10.2202/1544-6115.1470

Cover

Loading…
Abstract Abstract In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set. Submitted: April 6, 2009 · Accepted: May 29, 2009 · Published: June 9, 2009 Recommended Citation Witten, Daniela M. and Tibshirani, Robert J. (2009) "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology: Vol. 8 : Iss. 1, Article 28. DOI: 10.2202/1544-6115.1470 Available at: http://www.bepress.com/sagmb/vol8/iss1/art28
AbstractList In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set.
In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set.In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set.
Abstract In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set. Submitted: April 6, 2009 · Accepted: May 29, 2009 · Published: June 9, 2009 Recommended Citation Witten, Daniela M. and Tibshirani, Robert J. (2009) "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology: Vol. 8 : Iss. 1, Article 28. DOI: 10.2202/1544-6115.1470 Available at: http://www.bepress.com/sagmb/vol8/iss1/art28
Author Tibshirani, Robert J
Witten, Daniela M
Author_xml – sequence: 1
  fullname: Witten, Daniela M
– sequence: 2
  fullname: Tibshirani, Robert J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19572827$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAUhS1URF9sWSKv2GXwK3FmgzSavhAVqHS6tpzkpjU4drA9tP339cyUqCAhL2zZ3znHuucQ7TnvAKF3lMwYI-wjLYUoKkrLGRWSvEIH08Xei_M-OozxByGMMk7eoH06LyWrmTxAN6cPCVw03kXse3w96hABL3WOMa22eOlDAKtTBvDCafsYTcT3Jt3hxTjajKStNHl8Ds4PpsUnOulj9LrXNsLb5_0I3ZydrpYXxeW388_LxWXRiJKmgkIlGskIp2Le1XXV58U6yYFIWraS96JuOtnNed8QIomsS9Zz1kANVdnyecWP0Ked77huBuhacCloq8ZgBh0elddG_f3izJ269b8VqyvKGc8GH54Ngv-1hpjUYGIL1moHfh1VJYVgNaUZfP8yaYr4M8kMiB3QBh9jgF61Jm2nk4ONVZSoTWFq04nadKI2hWXZ7B_Z5Pw_QbETmJjgYaJ1-Jk_y2WprlZCnX1ZnVxdsK_qe-bxjm9gDBDjpIj6dmi2lk8de7Eu
CitedBy_id crossref_primary_10_1016_j_neuroimage_2014_12_025
crossref_primary_10_1109_TNNLS_2021_3116784
crossref_primary_10_1371_journal_pone_0267047
crossref_primary_10_1109_TNNLS_2013_2262949
crossref_primary_10_1371_journal_pone_0112168
crossref_primary_10_1038_s41598_017_10074_x
crossref_primary_10_1080_10543406_2015_1052491
crossref_primary_10_1214_23_AOAS1760
crossref_primary_10_1371_journal_pone_0237511
crossref_primary_10_1186_1687_4153_2013_9
crossref_primary_10_1111_rssc_12494
crossref_primary_10_1109_TMI_2021_3057660
crossref_primary_10_1007_s40305_022_00449_x
crossref_primary_10_1109_TSP_2019_2910475
crossref_primary_10_1109_TCBB_2014_2325035
crossref_primary_10_1080_00949655_2025_2472803
crossref_primary_10_1038_s41598_018_31399_1
crossref_primary_10_1016_j_metabol_2018_08_002
crossref_primary_10_1016_j_molonc_2015_10_011
crossref_primary_10_1371_journal_pone_0130700
crossref_primary_10_1109_JTEHM_2024_3463720
crossref_primary_10_1016_j_media_2020_101795
crossref_primary_10_2174_1381612826666200612163819
crossref_primary_10_1093_sleep_zsae048
crossref_primary_10_1093_bioinformatics_btad353
crossref_primary_10_1093_bioinformatics_btae321
crossref_primary_10_1093_bib_bbaa032
crossref_primary_10_1109_TCBB_2011_79
crossref_primary_10_1093_bib_bbaf043
crossref_primary_10_1016_j_csda_2015_04_004
crossref_primary_10_1016_j_jpsychires_2024_03_046
crossref_primary_10_1093_bib_bbac207
crossref_primary_10_1039_c3mb25506a
crossref_primary_10_1109_TSP_2015_2481861
crossref_primary_10_1109_LSP_2011_2177259
crossref_primary_10_1016_j_ymssp_2025_112511
crossref_primary_10_1038_s41467_024_46888_3
crossref_primary_10_1093_bioinformatics_btaa655
crossref_primary_10_1109_TNNLS_2015_2487364
crossref_primary_10_7554_eLife_52984
crossref_primary_10_1093_bib_bbae300
crossref_primary_10_1093_bib_bbae421
crossref_primary_10_1002_gepi_22513
crossref_primary_10_1007_s12532_018_0153_6
crossref_primary_10_1093_bioinformatics_btt610
crossref_primary_10_1080_10255842_2022_2066973
crossref_primary_10_1093_bioinformatics_btu140
crossref_primary_10_1093_bioinformatics_btaa530
crossref_primary_10_1016_j_jmva_2013_03_004
crossref_primary_10_1007_s12031_021_01915_6
crossref_primary_10_3389_fonc_2021_725133
crossref_primary_10_1016_j_media_2013_10_010
crossref_primary_10_1038_s41598_018_29433_3
crossref_primary_10_15252_msb_20188754
crossref_primary_10_1109_ACCESS_2020_2999513
crossref_primary_10_1109_TKDE_2019_2958342
crossref_primary_10_1038_srep44272
crossref_primary_10_1016_j_arcontrol_2020_09_004
crossref_primary_10_1016_j_media_2020_101656
crossref_primary_10_1093_bioinformatics_btz822
crossref_primary_10_7717_peerj_9493
crossref_primary_10_1038_s42003_024_06573_z
crossref_primary_10_1109_ACCESS_2017_2728532
crossref_primary_10_3390_ijms24032458
crossref_primary_10_1093_bioinformatics_btv220
crossref_primary_10_1002_pmic_201900409
crossref_primary_10_3389_fonc_2020_01383
crossref_primary_10_1093_bib_bbz070
crossref_primary_10_1007_s12561_024_09459_0
crossref_primary_10_1002_wics_1553
crossref_primary_10_1016_j_ymeth_2024_09_016
crossref_primary_10_1371_journal_pone_0035236
crossref_primary_10_1111_2041_210X_12378
crossref_primary_10_1016_j_ymeth_2023_07_007
crossref_primary_10_1016_j_media_2021_102003
crossref_primary_10_1214_14_AOAS792
crossref_primary_10_1016_j_csda_2019_106835
crossref_primary_10_1186_s12859_016_0926_8
crossref_primary_10_1093_bioinformatics_btaa434
crossref_primary_10_1002_gepi_21802
crossref_primary_10_1146_annurev_micro_060221_012134
crossref_primary_10_1214_11_AOAS472
crossref_primary_10_1016_j_jmva_2021_104781
crossref_primary_10_1016_j_neuroimage_2013_09_048
crossref_primary_10_1093_bioinformatics_btz058
crossref_primary_10_1002_bimj_202300370
crossref_primary_10_1016_j_xgen_2023_100359
crossref_primary_10_1002_sta4_253
crossref_primary_10_1016_j_csda_2011_07_012
crossref_primary_10_1093_bioinformatics_btae360
crossref_primary_10_1080_19490976_2023_2297860
crossref_primary_10_7717_peerj_cs_1993
crossref_primary_10_1007_s10620_020_06105_9
crossref_primary_10_1016_j_cbpa_2021_102111
crossref_primary_10_1109_TSP_2021_3061218
crossref_primary_10_3389_fgene_2019_00995
crossref_primary_10_1016_j_artmed_2024_102787
crossref_primary_10_1007_s11357_024_01341_7
crossref_primary_10_1093_bib_bbae038
crossref_primary_10_1002_gepi_22566
crossref_primary_10_1371_journal_pone_0104993
crossref_primary_10_1142_S0217595922500014
crossref_primary_10_3389_fonc_2022_892207
crossref_primary_10_1371_journal_pcbi_1003876
crossref_primary_10_3389_fnins_2015_00366
crossref_primary_10_1186_s12859_020_03567_6
crossref_primary_10_3389_fgene_2022_1032768
crossref_primary_10_1016_j_csda_2022_107547
crossref_primary_10_1109_TMI_2017_2783244
crossref_primary_10_1038_s41598_022_10942_1
crossref_primary_10_1093_bioinformatics_bts655
crossref_primary_10_1038_s41598_020_68301_x
crossref_primary_10_1109_TCYB_2019_2904753
crossref_primary_10_1128_msystems_00151_23
crossref_primary_10_1016_j_eswa_2023_121293
crossref_primary_10_1214_13_AOAS659
crossref_primary_10_1016_j_crmeth_2024_100781
crossref_primary_10_1007_s12031_021_01963_y
crossref_primary_10_1016_j_nicl_2024_103660
crossref_primary_10_3389_fnins_2019_00642
crossref_primary_10_1002_hbm_25090
crossref_primary_10_1007_s12144_022_02754_3
crossref_primary_10_3390_electronics13183756
crossref_primary_10_1111_biom_13536
crossref_primary_10_3389_fgene_2017_00084
crossref_primary_10_1002_bimj_201500106
crossref_primary_10_1093_bib_bbae061
crossref_primary_10_1109_TPAMI_2013_104
crossref_primary_10_1093_bioinformatics_btw485
crossref_primary_10_3390_cancers13143423
crossref_primary_10_1016_j_eswa_2023_119530
crossref_primary_10_1534_genetics_118_301865
crossref_primary_10_3233_JAD_220975
crossref_primary_10_1002_sta4_272
crossref_primary_10_1371_journal_pone_0210966
crossref_primary_10_1371_journal_pone_0128854
crossref_primary_10_3389_fmolb_2020_590842
crossref_primary_10_3390_biom13050728
crossref_primary_10_1109_TSP_2017_2698365
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1371_journal_pone_0191932
crossref_primary_10_1002_bimj_202300037
crossref_primary_10_1109_TMI_2020_2995510
crossref_primary_10_3389_fgene_2023_1286800
crossref_primary_10_1371_journal_pone_0024709
crossref_primary_10_1016_j_bspc_2021_102698
crossref_primary_10_1109_TSP_2018_2878544
crossref_primary_10_1177_1177932219899051
crossref_primary_10_1016_j_breast_2025_103892
crossref_primary_10_1038_s41598_017_13930_y
crossref_primary_10_1186_s12859_021_04296_0
crossref_primary_10_1186_s12859_022_04669_z
crossref_primary_10_1371_journal_pgen_1007841
crossref_primary_10_1016_j_xcrm_2022_100857
crossref_primary_10_1016_j_cell_2020_07_005
crossref_primary_10_1038_s43247_021_00225_4
crossref_primary_10_2174_1574893618666230406105659
crossref_primary_10_3390_ht8010004
crossref_primary_10_1080_01621459_2023_2271199
crossref_primary_10_1214_25_EJS2351
crossref_primary_10_1214_12_AOAS578
crossref_primary_10_1093_bib_bbv108
crossref_primary_10_1016_j_cmpb_2019_105073
crossref_primary_10_1109_TCBB_2020_2983010
crossref_primary_10_1007_s00429_023_02731_x
crossref_primary_10_1016_j_jneumeth_2014_09_001
crossref_primary_10_1098_rsif_2023_0344
crossref_primary_10_1146_annurev_psych_040323_115131
crossref_primary_10_1590_1678_4499_20180146
crossref_primary_10_1109_ACCESS_2020_2968634
crossref_primary_10_1371_journal_pone_0255579
crossref_primary_10_1038_s41598_017_13999_5
crossref_primary_10_1186_s12859_017_1740_7
crossref_primary_10_1093_bioinformatics_btx594
crossref_primary_10_1186_s13040_015_0052_6
crossref_primary_10_1186_s13059_018_1455_8
crossref_primary_10_1016_j_biopsych_2019_12_001
crossref_primary_10_3389_fnins_2022_879703
crossref_primary_10_3389_fnins_2024_1428900
crossref_primary_10_3390_microorganisms8122032
crossref_primary_10_3389_fnins_2014_00258
crossref_primary_10_1016_j_isci_2023_107378
crossref_primary_10_18632_oncotarget_28302
crossref_primary_10_1038_s41564_022_01121_z
crossref_primary_10_1093_bib_bbad025
crossref_primary_10_1002_imo2_8
crossref_primary_10_1016_j_inffus_2017_09_008
crossref_primary_10_1093_bioinformatics_bty671
crossref_primary_10_1038_s41586_022_04724_y
crossref_primary_10_1093_bib_bbz138
crossref_primary_10_1186_s13063_023_07115_4
crossref_primary_10_4018_IJDWM_319956
crossref_primary_10_1038_s41562_019_0738_8
crossref_primary_10_1093_bioinformatics_btab109
crossref_primary_10_1214_12_AOAS597
crossref_primary_10_1109_TMI_2019_2918839
crossref_primary_10_1109_TCBB_2022_3143897
crossref_primary_10_1016_j_tics_2024_07_005
crossref_primary_10_1016_j_bbi_2023_07_022
crossref_primary_10_1093_biostatistics_kxw010
crossref_primary_10_1111_biom_13458
crossref_primary_10_1093_bioinformatics_btx374
crossref_primary_10_1186_s12859_021_04279_1
crossref_primary_10_1016_j_procs_2024_09_488
crossref_primary_10_15252_emmm_202012595
crossref_primary_10_1371_journal_pone_0153404
crossref_primary_10_1371_journal_pcbi_1007677
crossref_primary_10_1016_j_compbiomed_2024_108051
crossref_primary_10_1016_j_jneumeth_2016_06_011
crossref_primary_10_1186_s12859_016_1455_1
crossref_primary_10_1016_j_neuroimage_2012_06_061
crossref_primary_10_1093_bioinformatics_btx245
crossref_primary_10_1016_j_semperi_2021_151408
crossref_primary_10_1093_biostatistics_kxw001
crossref_primary_10_2174_1386207323666200428114823
crossref_primary_10_1093_bioinformatics_btw033
crossref_primary_10_1093_bioinformatics_btq174
crossref_primary_10_1016_j_celrep_2021_108975
crossref_primary_10_1016_j_jvcir_2016_06_012
crossref_primary_10_1016_j_neuroimage_2020_116745
crossref_primary_10_1016_j_jmva_2020_104715
crossref_primary_10_1016_j_jaut_2020_102581
crossref_primary_10_1093_bib_bbac500
crossref_primary_10_1093_biomet_asaa007
crossref_primary_10_1093_bib_bby027
crossref_primary_10_1016_j_compbiomed_2022_106085
crossref_primary_10_1177_1471082X17707429
crossref_primary_10_1093_bioinformatics_btw836
crossref_primary_10_1371_journal_pcbi_1009044
crossref_primary_10_3389_fmicb_2022_929738
crossref_primary_10_1007_s12561_011_9048_z
crossref_primary_10_3389_fgene_2022_854752
crossref_primary_10_1038_s41467_022_31845_9
crossref_primary_10_3390_metabo11030184
crossref_primary_10_1007_s10886_018_0932_6
crossref_primary_10_1109_LSENS_2022_3193017
crossref_primary_10_1155_2015_142612
crossref_primary_10_14348_molcells_2021_0042
crossref_primary_10_3390_e22020208
crossref_primary_10_1038_s41598_020_67605_2
crossref_primary_10_1109_JBHI_2017_2784621
crossref_primary_10_1136_jim_2017_000457
crossref_primary_10_1016_j_neuroimage_2018_11_026
crossref_primary_10_1093_nsr_nww025
crossref_primary_10_1186_s12864_022_08759_3
crossref_primary_10_1093_bib_bbab600
crossref_primary_10_1111_biom_13043
crossref_primary_10_1093_cercor_bhac419
crossref_primary_10_1093_nar_gkad566
crossref_primary_10_1093_bib_bbx167
crossref_primary_10_1016_j_csda_2018_03_015
crossref_primary_10_1109_TCBB_2021_3122917
crossref_primary_10_1016_j_media_2021_102297
crossref_primary_10_1109_TBME_2017_2771483
crossref_primary_10_1038_ejhg_2013_69
crossref_primary_10_1038_s41598_020_70229_1
crossref_primary_10_3389_fonc_2015_00193
crossref_primary_10_1371_journal_pgen_1010517
crossref_primary_10_1186_s12859_020_3455_4
crossref_primary_10_1080_02664763_2021_1967892
crossref_primary_10_1093_bioinformatics_btw295
crossref_primary_10_1038_s41598_022_07632_3
crossref_primary_10_1093_bioinformatics_btz320
crossref_primary_10_1109_JBHI_2024_3372294
crossref_primary_10_1093_nar_gkz422
crossref_primary_10_1093_bioinformatics_btaf066
crossref_primary_10_1371_journal_pcbi_1009224
crossref_primary_10_1186_s12859_024_05900_9
crossref_primary_10_3389_fgene_2021_783713
crossref_primary_10_1038_s41579_018_0029_9
crossref_primary_10_1093_bib_bby120
crossref_primary_10_1016_j_neulet_2021_136147
crossref_primary_10_1109_JBHI_2020_2972581
crossref_primary_10_1007_s11704_016_5568_5
crossref_primary_10_1093_bioinformatics_btu465
crossref_primary_10_3390_vaccines11071236
crossref_primary_10_1186_s12918_016_0312_1
crossref_primary_10_3389_fnagi_2020_553635
crossref_primary_10_3390_genes15050631
crossref_primary_10_1093_bioinformatics_btt372
crossref_primary_10_1109_TCBB_2017_2748944
crossref_primary_10_1109_TMI_2018_2815583
crossref_primary_10_1016_j_dcn_2024_101483
crossref_primary_10_1109_TMI_2017_2721301
crossref_primary_10_1007_s11042_016_3993_y
crossref_primary_10_1016_j_cma_2020_112906
crossref_primary_10_1016_j_jcs_2016_06_013
crossref_primary_10_1109_TMI_2019_2920608
crossref_primary_10_1007_s12031_024_02274_8
crossref_primary_10_1093_bioinformatics_btz226
crossref_primary_10_1093_scan_nsaa061
crossref_primary_10_1016_j_gpb_2023_03_005
crossref_primary_10_1080_03014460_2024_2415035
crossref_primary_10_1093_bioinformatics_btv544
crossref_primary_10_1016_j_crmeth_2021_100152
crossref_primary_10_1016_j_neuroimage_2023_120183
crossref_primary_10_1016_j_neuroimage_2010_01_041
crossref_primary_10_1038_s41598_019_47277_3
crossref_primary_10_1109_TCBB_2019_2947428
crossref_primary_10_1016_j_cmpb_2023_107450
crossref_primary_10_1109_TCBB_2022_3172289
crossref_primary_10_3390_molecules27238257
crossref_primary_10_1186_s13040_023_00334_0
crossref_primary_10_1007_s11432_021_3589_5
ContentType Journal Article
Copyright Copyright © 2009 The Berkeley Electronic Press. All rights reserved 2009
Copyright_xml – notice: Copyright © 2009 The Berkeley Electronic Press. All rights reserved 2009
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.2202/1544-6115.1470
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1544-6115
EndPage 27
ExternalDocumentID PMC2861323
19572827
10_2202_1544_6115_1470
ark_67375_QT4_FKTDQH2N_R
sagmb1470
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: N01-HV-28183
– fundername: NHLBI NIH HHS
  grantid: N01 HV028183
GroupedDBID ---
-~S
0R~
123
1WD
4.4
9-L
AAAEU
AAAVF
AACIX
AAFPC
AAGVJ
AAILP
AAKRG
AALGR
AAONY
AAOWA
AAPJK
AAQCX
AASQH
AASQN
AAWFC
AAXCG
AAXMT
ABABW
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABLVI
ABMIY
ABPLS
ABRDF
ABRQL
ABUVI
ABVMU
ABWLS
ABXMZ
ABYBW
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACPMA
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADOZN
ADUQZ
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFAUI
AFBAA
AFBQV
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AGGNV
AGWTP
AHCWZ
AHVWV
AHXUK
AIAGR
AIERV
AIKXB
AJATJ
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
BAKPI
BBCWN
BBDJO
BCIFA
BDLBQ
BSCLL
CS3
DASCH
DBYYV
DU5
EBS
EJD
EMOBN
F5P
FEDTE
FSTRU
H13
HVGLF
HZ~
IY9
J9A
K.~
KDIRW
LG7
MV1
NQBSW
O9-
P2P
QD8
SA.
SLJYH
T2Y
UK5
WTRAM
~Z8
AAYXX
ABDRH
ACDEB
ACRPL
ACUND
ACYCL
ADNMO
AECWL
AFBDD
AFSHE
AGQPQ
AGQYU
AIWOI
CITATION
CKPZI
LVMAB
CAG
CGR
COF
CUY
CVF
ECM
EIF
NPM
ROL
RYL
7X8
5PM
ADNPR
ID FETCH-LOGICAL-b451t-1e64b7203149d886f6f62d73e0715c73f48bd7d93fb00707852f32be8e65c3963
ISSN 1544-6115
IngestDate Thu Aug 21 14:10:49 EDT 2025
Fri Jul 11 02:12:02 EDT 2025
Mon Jul 21 06:03:54 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Tue Jul 01 01:57:39 EDT 2025
Wed Oct 30 09:41:42 EDT 2024
Fri Oct 12 16:17:08 EDT 2018
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b451t-1e64b7203149d886f6f62d73e0715c73f48bd7d93fb00707852f32be8e65c3963
Notes istex:2FEC9DF2C8792EB0239C9B24F7EAEF2A98B8AA89
sagmb.2009.8.1.1470.pdf
ark:/67375/QT4-FKTDQH2N-R
ArticleID:1544-6115.1470
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.2202/1544-6115.1470
PMID 19572827
PQID 67442811
PQPubID 23479
PageCount 27
ParticipantIDs bepress_primary_sagmb1470
crossref_citationtrail_10_2202_1544_6115_1470
proquest_miscellaneous_67442811
pubmed_primary_19572827
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2861323
crossref_primary_10_2202_1544_6115_1470
istex_primary_ark_67375_QT4_FKTDQH2N_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Statistical Applications in Genetics and Molecular Biology
PublicationTitleAlternate Stat Appl Genet Mol Biol
PublicationYear 2009
Publisher bepress
De Gruyter
Berkeley Electronic Press
Publisher_xml – name: bepress
– name: De Gruyter
– name: Berkeley Electronic Press
SSID ssj0021230
Score 2.3809059
SecondaryResourceType review_article
Snippet Abstract In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements...
In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are...
SourceID pubmedcentral
proquest
pubmed
crossref
istex
bepress
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Algorithms
CGH
Computational Biology/Bioinformatics
DNA copy number
fused lasso
gene expression
General Biostatistics
Genetics
Genomics - statistics & numerical data
Humans
Laboratory and Basic Science Research
lasso
microarray
Microarrays
Models, Statistical
Multivariate Analysis
SNP
sparse canonical correlation analysis
Statistical Models
Statistical Theory and Methods
Title Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data
URI http://www.bepress.com/sagmb/vol8/iss1/art28/
https://api.istex.fr/ark:/67375/QT4-FKTDQH2N-R/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19572827
https://www.proquest.com/docview/67442811
https://pubmed.ncbi.nlm.nih.gov/PMC2861323
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagFRIviDvh6gcED1VG4ziN89iVbtXQJgYd2psVJw5Moxd1mTT49ZxjO7dqSDBViqrEsaN8X47Psc-FkLe54DrMU-EXgmc-hwnQT7I09vMCEBc64UGM8c6HR6PZCT84jU6bHXwTXVKqnez3tXElN0EVzgGuGCX7H8jWncIJ-A_4whEQhuM_YTy9Mv7nzpXt6xqMVD2YpMuVDXacYOUN6-vWJB8xC6_j1rY1ap_72kQnAwfKtK2uoipqMjljRoF11_ccnkrXOZ4XVZXdgcvq1KznlKWTbCaYPW2WX-dnCpfGbVEp5-I9ONjprEMkW-sQu3pzrlGOTVvle2ovEu2kK-dgq9r4zUr8im2WbQt1xkyS2PpmEO621kgL4fXCQBwkUQw2ZNxMbrXL4efDCROgu7DwNukzsClYj_TH-7vTb7V9DpP40Ob1xCE_dAc02WVt72AqKeum3FFm-vhdXl1nqWw73LY0mPl9cs-ZHnRsefSA3NLLh-SOLUb66xE5adhEVwW1bKI1m2iLTbRiE0U20TabaLmijk0U2fSYnOxN55OZ74pu-IpHQekHesQV7s2D6ZwLMSrgx_I41KCLRlkcFlyoPM6TsFA2VVTEipApLfQoykIQ509IDx5MPyM0z8LhsNARGMEZT0cqzZjOIxAFgcigz8QjnnuPcm1Tq8iL9PtC4ev2iF-9WZm5bPVYNOWnBKsV4ZEIj0R4pG3_vm5fdfa3lu8MUHWzdHOO3o1xJI_nXO59mn88nrEj-cUjbyokJchc3EhLl3p1eQGtOVjtQeCRpxbXZkhHEY_EHcTrBpjNvXtlefbDZHV37Hx-4ztfkLvNd_mS9MrNpX4FGnOpXjum_wGglMbb
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensions+of+Sparse+Canonical+Correlation+Analysis+with+Applications+to+Genomic+Data&rft.jtitle=Statistical+applications+in+genetics+and+molecular+biology&rft.au=Witten%2C+Daniela+M&rft.au=Tibshirani%2C+Robert+J.&rft.date=2009-01-01&rft.pub=Berkeley+Electronic+Press&rft.eissn=1544-6115&rft.volume=8&rft.issue=1&rft_id=info:doi/10.2202%2F1544-6115.1470&rft_id=info%3Apmid%2F19572827&rft.externalDocID=PMC2861323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-6115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-6115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-6115&client=summon