Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data
Abstract In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables...
Saved in:
Published in | Statistical Applications in Genetics and Molecular Biology Vol. 8; no. 1; pp. 28 - 27 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
bepress
01.01.2009
De Gruyter Berkeley Electronic Press |
Subjects | |
Online Access | Get full text |
ISSN | 1544-6115 1544-6115 |
DOI | 10.2202/1544-6115.1470 |
Cover
Loading…
Abstract | Abstract
In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set.
Submitted: April 6, 2009 · Accepted: May 29, 2009 · Published: June 9, 2009
Recommended Citation
Witten, Daniela M. and Tibshirani, Robert J.
(2009)
"Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data,"
Statistical Applications in Genetics and Molecular Biology:
Vol. 8
:
Iss.
1, Article 28.
DOI: 10.2202/1544-6115.1470
Available at: http://www.bepress.com/sagmb/vol8/iss1/art28 |
---|---|
AbstractList | In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set. In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set.In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set. Abstract In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set. Submitted: April 6, 2009 · Accepted: May 29, 2009 · Published: June 9, 2009 Recommended Citation Witten, Daniela M. and Tibshirani, Robert J. (2009) "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology: Vol. 8 : Iss. 1, Article 28. DOI: 10.2202/1544-6115.1470 Available at: http://www.bepress.com/sagmb/vol8/iss1/art28 |
Author | Tibshirani, Robert J Witten, Daniela M |
Author_xml | – sequence: 1 fullname: Witten, Daniela M – sequence: 2 fullname: Tibshirani, Robert J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19572827$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv1DAUhS1URF9sWSKv2GXwK3FmgzSavhAVqHS6tpzkpjU4drA9tP339cyUqCAhL2zZ3znHuucQ7TnvAKF3lMwYI-wjLYUoKkrLGRWSvEIH08Xei_M-OozxByGMMk7eoH06LyWrmTxAN6cPCVw03kXse3w96hABL3WOMa22eOlDAKtTBvDCafsYTcT3Jt3hxTjajKStNHl8Ds4PpsUnOulj9LrXNsLb5_0I3ZydrpYXxeW388_LxWXRiJKmgkIlGskIp2Le1XXV58U6yYFIWraS96JuOtnNed8QIomsS9Zz1kANVdnyecWP0Ked77huBuhacCloq8ZgBh0elddG_f3izJ269b8VqyvKGc8GH54Ngv-1hpjUYGIL1moHfh1VJYVgNaUZfP8yaYr4M8kMiB3QBh9jgF61Jm2nk4ONVZSoTWFq04nadKI2hWXZ7B_Z5Pw_QbETmJjgYaJ1-Jk_y2WprlZCnX1ZnVxdsK_qe-bxjm9gDBDjpIj6dmi2lk8de7Eu |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2014_12_025 crossref_primary_10_1109_TNNLS_2021_3116784 crossref_primary_10_1371_journal_pone_0267047 crossref_primary_10_1109_TNNLS_2013_2262949 crossref_primary_10_1371_journal_pone_0112168 crossref_primary_10_1038_s41598_017_10074_x crossref_primary_10_1080_10543406_2015_1052491 crossref_primary_10_1214_23_AOAS1760 crossref_primary_10_1371_journal_pone_0237511 crossref_primary_10_1186_1687_4153_2013_9 crossref_primary_10_1111_rssc_12494 crossref_primary_10_1109_TMI_2021_3057660 crossref_primary_10_1007_s40305_022_00449_x crossref_primary_10_1109_TSP_2019_2910475 crossref_primary_10_1109_TCBB_2014_2325035 crossref_primary_10_1080_00949655_2025_2472803 crossref_primary_10_1038_s41598_018_31399_1 crossref_primary_10_1016_j_metabol_2018_08_002 crossref_primary_10_1016_j_molonc_2015_10_011 crossref_primary_10_1371_journal_pone_0130700 crossref_primary_10_1109_JTEHM_2024_3463720 crossref_primary_10_1016_j_media_2020_101795 crossref_primary_10_2174_1381612826666200612163819 crossref_primary_10_1093_sleep_zsae048 crossref_primary_10_1093_bioinformatics_btad353 crossref_primary_10_1093_bioinformatics_btae321 crossref_primary_10_1093_bib_bbaa032 crossref_primary_10_1109_TCBB_2011_79 crossref_primary_10_1093_bib_bbaf043 crossref_primary_10_1016_j_csda_2015_04_004 crossref_primary_10_1016_j_jpsychires_2024_03_046 crossref_primary_10_1093_bib_bbac207 crossref_primary_10_1039_c3mb25506a crossref_primary_10_1109_TSP_2015_2481861 crossref_primary_10_1109_LSP_2011_2177259 crossref_primary_10_1016_j_ymssp_2025_112511 crossref_primary_10_1038_s41467_024_46888_3 crossref_primary_10_1093_bioinformatics_btaa655 crossref_primary_10_1109_TNNLS_2015_2487364 crossref_primary_10_7554_eLife_52984 crossref_primary_10_1093_bib_bbae300 crossref_primary_10_1093_bib_bbae421 crossref_primary_10_1002_gepi_22513 crossref_primary_10_1007_s12532_018_0153_6 crossref_primary_10_1093_bioinformatics_btt610 crossref_primary_10_1080_10255842_2022_2066973 crossref_primary_10_1093_bioinformatics_btu140 crossref_primary_10_1093_bioinformatics_btaa530 crossref_primary_10_1016_j_jmva_2013_03_004 crossref_primary_10_1007_s12031_021_01915_6 crossref_primary_10_3389_fonc_2021_725133 crossref_primary_10_1016_j_media_2013_10_010 crossref_primary_10_1038_s41598_018_29433_3 crossref_primary_10_15252_msb_20188754 crossref_primary_10_1109_ACCESS_2020_2999513 crossref_primary_10_1109_TKDE_2019_2958342 crossref_primary_10_1038_srep44272 crossref_primary_10_1016_j_arcontrol_2020_09_004 crossref_primary_10_1016_j_media_2020_101656 crossref_primary_10_1093_bioinformatics_btz822 crossref_primary_10_7717_peerj_9493 crossref_primary_10_1038_s42003_024_06573_z crossref_primary_10_1109_ACCESS_2017_2728532 crossref_primary_10_3390_ijms24032458 crossref_primary_10_1093_bioinformatics_btv220 crossref_primary_10_1002_pmic_201900409 crossref_primary_10_3389_fonc_2020_01383 crossref_primary_10_1093_bib_bbz070 crossref_primary_10_1007_s12561_024_09459_0 crossref_primary_10_1002_wics_1553 crossref_primary_10_1016_j_ymeth_2024_09_016 crossref_primary_10_1371_journal_pone_0035236 crossref_primary_10_1111_2041_210X_12378 crossref_primary_10_1016_j_ymeth_2023_07_007 crossref_primary_10_1016_j_media_2021_102003 crossref_primary_10_1214_14_AOAS792 crossref_primary_10_1016_j_csda_2019_106835 crossref_primary_10_1186_s12859_016_0926_8 crossref_primary_10_1093_bioinformatics_btaa434 crossref_primary_10_1002_gepi_21802 crossref_primary_10_1146_annurev_micro_060221_012134 crossref_primary_10_1214_11_AOAS472 crossref_primary_10_1016_j_jmva_2021_104781 crossref_primary_10_1016_j_neuroimage_2013_09_048 crossref_primary_10_1093_bioinformatics_btz058 crossref_primary_10_1002_bimj_202300370 crossref_primary_10_1016_j_xgen_2023_100359 crossref_primary_10_1002_sta4_253 crossref_primary_10_1016_j_csda_2011_07_012 crossref_primary_10_1093_bioinformatics_btae360 crossref_primary_10_1080_19490976_2023_2297860 crossref_primary_10_7717_peerj_cs_1993 crossref_primary_10_1007_s10620_020_06105_9 crossref_primary_10_1016_j_cbpa_2021_102111 crossref_primary_10_1109_TSP_2021_3061218 crossref_primary_10_3389_fgene_2019_00995 crossref_primary_10_1016_j_artmed_2024_102787 crossref_primary_10_1007_s11357_024_01341_7 crossref_primary_10_1093_bib_bbae038 crossref_primary_10_1002_gepi_22566 crossref_primary_10_1371_journal_pone_0104993 crossref_primary_10_1142_S0217595922500014 crossref_primary_10_3389_fonc_2022_892207 crossref_primary_10_1371_journal_pcbi_1003876 crossref_primary_10_3389_fnins_2015_00366 crossref_primary_10_1186_s12859_020_03567_6 crossref_primary_10_3389_fgene_2022_1032768 crossref_primary_10_1016_j_csda_2022_107547 crossref_primary_10_1109_TMI_2017_2783244 crossref_primary_10_1038_s41598_022_10942_1 crossref_primary_10_1093_bioinformatics_bts655 crossref_primary_10_1038_s41598_020_68301_x crossref_primary_10_1109_TCYB_2019_2904753 crossref_primary_10_1128_msystems_00151_23 crossref_primary_10_1016_j_eswa_2023_121293 crossref_primary_10_1214_13_AOAS659 crossref_primary_10_1016_j_crmeth_2024_100781 crossref_primary_10_1007_s12031_021_01963_y crossref_primary_10_1016_j_nicl_2024_103660 crossref_primary_10_3389_fnins_2019_00642 crossref_primary_10_1002_hbm_25090 crossref_primary_10_1007_s12144_022_02754_3 crossref_primary_10_3390_electronics13183756 crossref_primary_10_1111_biom_13536 crossref_primary_10_3389_fgene_2017_00084 crossref_primary_10_1002_bimj_201500106 crossref_primary_10_1093_bib_bbae061 crossref_primary_10_1109_TPAMI_2013_104 crossref_primary_10_1093_bioinformatics_btw485 crossref_primary_10_3390_cancers13143423 crossref_primary_10_1016_j_eswa_2023_119530 crossref_primary_10_1534_genetics_118_301865 crossref_primary_10_3233_JAD_220975 crossref_primary_10_1002_sta4_272 crossref_primary_10_1371_journal_pone_0210966 crossref_primary_10_1371_journal_pone_0128854 crossref_primary_10_3389_fmolb_2020_590842 crossref_primary_10_3390_biom13050728 crossref_primary_10_1109_TSP_2017_2698365 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1371_journal_pone_0191932 crossref_primary_10_1002_bimj_202300037 crossref_primary_10_1109_TMI_2020_2995510 crossref_primary_10_3389_fgene_2023_1286800 crossref_primary_10_1371_journal_pone_0024709 crossref_primary_10_1016_j_bspc_2021_102698 crossref_primary_10_1109_TSP_2018_2878544 crossref_primary_10_1177_1177932219899051 crossref_primary_10_1016_j_breast_2025_103892 crossref_primary_10_1038_s41598_017_13930_y crossref_primary_10_1186_s12859_021_04296_0 crossref_primary_10_1186_s12859_022_04669_z crossref_primary_10_1371_journal_pgen_1007841 crossref_primary_10_1016_j_xcrm_2022_100857 crossref_primary_10_1016_j_cell_2020_07_005 crossref_primary_10_1038_s43247_021_00225_4 crossref_primary_10_2174_1574893618666230406105659 crossref_primary_10_3390_ht8010004 crossref_primary_10_1080_01621459_2023_2271199 crossref_primary_10_1214_25_EJS2351 crossref_primary_10_1214_12_AOAS578 crossref_primary_10_1093_bib_bbv108 crossref_primary_10_1016_j_cmpb_2019_105073 crossref_primary_10_1109_TCBB_2020_2983010 crossref_primary_10_1007_s00429_023_02731_x crossref_primary_10_1016_j_jneumeth_2014_09_001 crossref_primary_10_1098_rsif_2023_0344 crossref_primary_10_1146_annurev_psych_040323_115131 crossref_primary_10_1590_1678_4499_20180146 crossref_primary_10_1109_ACCESS_2020_2968634 crossref_primary_10_1371_journal_pone_0255579 crossref_primary_10_1038_s41598_017_13999_5 crossref_primary_10_1186_s12859_017_1740_7 crossref_primary_10_1093_bioinformatics_btx594 crossref_primary_10_1186_s13040_015_0052_6 crossref_primary_10_1186_s13059_018_1455_8 crossref_primary_10_1016_j_biopsych_2019_12_001 crossref_primary_10_3389_fnins_2022_879703 crossref_primary_10_3389_fnins_2024_1428900 crossref_primary_10_3390_microorganisms8122032 crossref_primary_10_3389_fnins_2014_00258 crossref_primary_10_1016_j_isci_2023_107378 crossref_primary_10_18632_oncotarget_28302 crossref_primary_10_1038_s41564_022_01121_z crossref_primary_10_1093_bib_bbad025 crossref_primary_10_1002_imo2_8 crossref_primary_10_1016_j_inffus_2017_09_008 crossref_primary_10_1093_bioinformatics_bty671 crossref_primary_10_1038_s41586_022_04724_y crossref_primary_10_1093_bib_bbz138 crossref_primary_10_1186_s13063_023_07115_4 crossref_primary_10_4018_IJDWM_319956 crossref_primary_10_1038_s41562_019_0738_8 crossref_primary_10_1093_bioinformatics_btab109 crossref_primary_10_1214_12_AOAS597 crossref_primary_10_1109_TMI_2019_2918839 crossref_primary_10_1109_TCBB_2022_3143897 crossref_primary_10_1016_j_tics_2024_07_005 crossref_primary_10_1016_j_bbi_2023_07_022 crossref_primary_10_1093_biostatistics_kxw010 crossref_primary_10_1111_biom_13458 crossref_primary_10_1093_bioinformatics_btx374 crossref_primary_10_1186_s12859_021_04279_1 crossref_primary_10_1016_j_procs_2024_09_488 crossref_primary_10_15252_emmm_202012595 crossref_primary_10_1371_journal_pone_0153404 crossref_primary_10_1371_journal_pcbi_1007677 crossref_primary_10_1016_j_compbiomed_2024_108051 crossref_primary_10_1016_j_jneumeth_2016_06_011 crossref_primary_10_1186_s12859_016_1455_1 crossref_primary_10_1016_j_neuroimage_2012_06_061 crossref_primary_10_1093_bioinformatics_btx245 crossref_primary_10_1016_j_semperi_2021_151408 crossref_primary_10_1093_biostatistics_kxw001 crossref_primary_10_2174_1386207323666200428114823 crossref_primary_10_1093_bioinformatics_btw033 crossref_primary_10_1093_bioinformatics_btq174 crossref_primary_10_1016_j_celrep_2021_108975 crossref_primary_10_1016_j_jvcir_2016_06_012 crossref_primary_10_1016_j_neuroimage_2020_116745 crossref_primary_10_1016_j_jmva_2020_104715 crossref_primary_10_1016_j_jaut_2020_102581 crossref_primary_10_1093_bib_bbac500 crossref_primary_10_1093_biomet_asaa007 crossref_primary_10_1093_bib_bby027 crossref_primary_10_1016_j_compbiomed_2022_106085 crossref_primary_10_1177_1471082X17707429 crossref_primary_10_1093_bioinformatics_btw836 crossref_primary_10_1371_journal_pcbi_1009044 crossref_primary_10_3389_fmicb_2022_929738 crossref_primary_10_1007_s12561_011_9048_z crossref_primary_10_3389_fgene_2022_854752 crossref_primary_10_1038_s41467_022_31845_9 crossref_primary_10_3390_metabo11030184 crossref_primary_10_1007_s10886_018_0932_6 crossref_primary_10_1109_LSENS_2022_3193017 crossref_primary_10_1155_2015_142612 crossref_primary_10_14348_molcells_2021_0042 crossref_primary_10_3390_e22020208 crossref_primary_10_1038_s41598_020_67605_2 crossref_primary_10_1109_JBHI_2017_2784621 crossref_primary_10_1136_jim_2017_000457 crossref_primary_10_1016_j_neuroimage_2018_11_026 crossref_primary_10_1093_nsr_nww025 crossref_primary_10_1186_s12864_022_08759_3 crossref_primary_10_1093_bib_bbab600 crossref_primary_10_1111_biom_13043 crossref_primary_10_1093_cercor_bhac419 crossref_primary_10_1093_nar_gkad566 crossref_primary_10_1093_bib_bbx167 crossref_primary_10_1016_j_csda_2018_03_015 crossref_primary_10_1109_TCBB_2021_3122917 crossref_primary_10_1016_j_media_2021_102297 crossref_primary_10_1109_TBME_2017_2771483 crossref_primary_10_1038_ejhg_2013_69 crossref_primary_10_1038_s41598_020_70229_1 crossref_primary_10_3389_fonc_2015_00193 crossref_primary_10_1371_journal_pgen_1010517 crossref_primary_10_1186_s12859_020_3455_4 crossref_primary_10_1080_02664763_2021_1967892 crossref_primary_10_1093_bioinformatics_btw295 crossref_primary_10_1038_s41598_022_07632_3 crossref_primary_10_1093_bioinformatics_btz320 crossref_primary_10_1109_JBHI_2024_3372294 crossref_primary_10_1093_nar_gkz422 crossref_primary_10_1093_bioinformatics_btaf066 crossref_primary_10_1371_journal_pcbi_1009224 crossref_primary_10_1186_s12859_024_05900_9 crossref_primary_10_3389_fgene_2021_783713 crossref_primary_10_1038_s41579_018_0029_9 crossref_primary_10_1093_bib_bby120 crossref_primary_10_1016_j_neulet_2021_136147 crossref_primary_10_1109_JBHI_2020_2972581 crossref_primary_10_1007_s11704_016_5568_5 crossref_primary_10_1093_bioinformatics_btu465 crossref_primary_10_3390_vaccines11071236 crossref_primary_10_1186_s12918_016_0312_1 crossref_primary_10_3389_fnagi_2020_553635 crossref_primary_10_3390_genes15050631 crossref_primary_10_1093_bioinformatics_btt372 crossref_primary_10_1109_TCBB_2017_2748944 crossref_primary_10_1109_TMI_2018_2815583 crossref_primary_10_1016_j_dcn_2024_101483 crossref_primary_10_1109_TMI_2017_2721301 crossref_primary_10_1007_s11042_016_3993_y crossref_primary_10_1016_j_cma_2020_112906 crossref_primary_10_1016_j_jcs_2016_06_013 crossref_primary_10_1109_TMI_2019_2920608 crossref_primary_10_1007_s12031_024_02274_8 crossref_primary_10_1093_bioinformatics_btz226 crossref_primary_10_1093_scan_nsaa061 crossref_primary_10_1016_j_gpb_2023_03_005 crossref_primary_10_1080_03014460_2024_2415035 crossref_primary_10_1093_bioinformatics_btv544 crossref_primary_10_1016_j_crmeth_2021_100152 crossref_primary_10_1016_j_neuroimage_2023_120183 crossref_primary_10_1016_j_neuroimage_2010_01_041 crossref_primary_10_1038_s41598_019_47277_3 crossref_primary_10_1109_TCBB_2019_2947428 crossref_primary_10_1016_j_cmpb_2023_107450 crossref_primary_10_1109_TCBB_2022_3172289 crossref_primary_10_3390_molecules27238257 crossref_primary_10_1186_s13040_023_00334_0 crossref_primary_10_1007_s11432_021_3589_5 |
ContentType | Journal Article |
Copyright | Copyright © 2009 The Berkeley Electronic Press. All rights reserved 2009 |
Copyright_xml | – notice: Copyright © 2009 The Berkeley Electronic Press. All rights reserved 2009 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.2202/1544-6115.1470 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1544-6115 |
EndPage | 27 |
ExternalDocumentID | PMC2861323 19572827 10_2202_1544_6115_1470 ark_67375_QT4_FKTDQH2N_R sagmb1470 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: N01-HV-28183 – fundername: NHLBI NIH HHS grantid: N01 HV028183 |
GroupedDBID | --- -~S 0R~ 123 1WD 4.4 9-L AAAEU AAAVF AACIX AAFPC AAGVJ AAILP AAKRG AALGR AAONY AAOWA AAPJK AAQCX AASQH AASQN AAWFC AAXCG AAXMT ABABW ABAOT ABAQN ABFKT ABIQR ABJNI ABLVI ABMIY ABPLS ABRDF ABRQL ABUVI ABVMU ABWLS ABXMZ ABYBW ACEFL ACGFO ACGFS ACHNZ ACMKP ACONX ACPMA ACXLN ACZBO ADALX ADEQT ADGQD ADGYE ADOZN ADUQZ AEDGQ AEGVQ AEICA AEJQW AEKEB AEMOE AENEX AEQDQ AEQLX AERZL AEXIE AFAUI AFBAA AFBQV AFCXV AFGNR AFQUK AFYRI AGBEV AGGNV AGWTP AHCWZ AHVWV AHXUK AIAGR AIERV AIKXB AJATJ AJPIC AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMAVY ASPBG ASYPN AVWKF AZFZN AZMOX BAKPI BBCWN BBDJO BCIFA BDLBQ BSCLL CS3 DASCH DBYYV DU5 EBS EJD EMOBN F5P FEDTE FSTRU H13 HVGLF HZ~ IY9 J9A K.~ KDIRW LG7 MV1 NQBSW O9- P2P QD8 SA. SLJYH T2Y UK5 WTRAM ~Z8 AAYXX ABDRH ACDEB ACRPL ACUND ACYCL ADNMO AECWL AFBDD AFSHE AGQPQ AGQYU AIWOI CITATION CKPZI LVMAB CAG CGR COF CUY CVF ECM EIF NPM ROL RYL 7X8 5PM ADNPR |
ID | FETCH-LOGICAL-b451t-1e64b7203149d886f6f62d73e0715c73f48bd7d93fb00707852f32be8e65c3963 |
ISSN | 1544-6115 |
IngestDate | Thu Aug 21 14:10:49 EDT 2025 Fri Jul 11 02:12:02 EDT 2025 Mon Jul 21 06:03:54 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 01:57:39 EDT 2025 Wed Oct 30 09:41:42 EDT 2024 Fri Oct 12 16:17:08 EDT 2018 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b451t-1e64b7203149d886f6f62d73e0715c73f48bd7d93fb00707852f32be8e65c3963 |
Notes | istex:2FEC9DF2C8792EB0239C9B24F7EAEF2A98B8AA89 sagmb.2009.8.1.1470.pdf ark:/67375/QT4-FKTDQH2N-R ArticleID:1544-6115.1470 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.2202/1544-6115.1470 |
PMID | 19572827 |
PQID | 67442811 |
PQPubID | 23479 |
PageCount | 27 |
ParticipantIDs | bepress_primary_sagmb1470 crossref_citationtrail_10_2202_1544_6115_1470 proquest_miscellaneous_67442811 pubmed_primary_19572827 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2861323 crossref_primary_10_2202_1544_6115_1470 istex_primary_ark_67375_QT4_FKTDQH2N_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Statistical Applications in Genetics and Molecular Biology |
PublicationTitleAlternate | Stat Appl Genet Mol Biol |
PublicationYear | 2009 |
Publisher | bepress De Gruyter Berkeley Electronic Press |
Publisher_xml | – name: bepress – name: De Gruyter – name: Berkeley Electronic Press |
SSID | ssj0021230 |
Score | 2.3809059 |
SecondaryResourceType | review_article |
Snippet | Abstract
In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements... In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are... |
SourceID | pubmedcentral proquest pubmed crossref istex bepress |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28 |
SubjectTerms | Algorithms CGH Computational Biology/Bioinformatics DNA copy number fused lasso gene expression General Biostatistics Genetics Genomics - statistics & numerical data Humans Laboratory and Basic Science Research lasso microarray Microarrays Models, Statistical Multivariate Analysis SNP sparse canonical correlation analysis Statistical Models Statistical Theory and Methods |
Title | Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data |
URI | http://www.bepress.com/sagmb/vol8/iss1/art28/ https://api.istex.fr/ark:/67375/QT4-FKTDQH2N-R/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/19572827 https://www.proquest.com/docview/67442811 https://pubmed.ncbi.nlm.nih.gov/PMC2861323 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagFRIviDvh6gcED1VG4ziN89iVbtXQJgYd2psVJw5Moxd1mTT49ZxjO7dqSDBViqrEsaN8X47Psc-FkLe54DrMU-EXgmc-hwnQT7I09vMCEBc64UGM8c6HR6PZCT84jU6bHXwTXVKqnez3tXElN0EVzgGuGCX7H8jWncIJ-A_4whEQhuM_YTy9Mv7nzpXt6xqMVD2YpMuVDXacYOUN6-vWJB8xC6_j1rY1ap_72kQnAwfKtK2uoipqMjljRoF11_ccnkrXOZ4XVZXdgcvq1KznlKWTbCaYPW2WX-dnCpfGbVEp5-I9ONjprEMkW-sQu3pzrlGOTVvle2ovEu2kK-dgq9r4zUr8im2WbQt1xkyS2PpmEO621kgL4fXCQBwkUQw2ZNxMbrXL4efDCROgu7DwNukzsClYj_TH-7vTb7V9DpP40Ob1xCE_dAc02WVt72AqKeum3FFm-vhdXl1nqWw73LY0mPl9cs-ZHnRsefSA3NLLh-SOLUb66xE5adhEVwW1bKI1m2iLTbRiE0U20TabaLmijk0U2fSYnOxN55OZ74pu-IpHQekHesQV7s2D6ZwLMSrgx_I41KCLRlkcFlyoPM6TsFA2VVTEipApLfQoykIQ509IDx5MPyM0z8LhsNARGMEZT0cqzZjOIxAFgcigz8QjnnuPcm1Tq8iL9PtC4ev2iF-9WZm5bPVYNOWnBKsV4ZEIj0R4pG3_vm5fdfa3lu8MUHWzdHOO3o1xJI_nXO59mn88nrEj-cUjbyokJchc3EhLl3p1eQGtOVjtQeCRpxbXZkhHEY_EHcTrBpjNvXtlefbDZHV37Hx-4ztfkLvNd_mS9MrNpX4FGnOpXjum_wGglMbb |
linkProvider | Walter de Gruyter |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensions+of+Sparse+Canonical+Correlation+Analysis+with+Applications+to+Genomic+Data&rft.jtitle=Statistical+applications+in+genetics+and+molecular+biology&rft.au=Witten%2C+Daniela+M&rft.au=Tibshirani%2C+Robert+J.&rft.date=2009-01-01&rft.pub=Berkeley+Electronic+Press&rft.eissn=1544-6115&rft.volume=8&rft.issue=1&rft_id=info:doi/10.2202%2F1544-6115.1470&rft_id=info%3Apmid%2F19572827&rft.externalDocID=PMC2861323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-6115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-6115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-6115&client=summon |