Polymeric nanocarrier systems for photodynamic therapy
Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requ...
Saved in:
Published in | Biomaterials research Vol. 18; no. 1; p. 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
08.12.2014
BioMed Central Ltd 한국생체재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2055-7124 1226-4601 2055-7124 |
DOI | 10.1186/2055-7124-18-19 |
Cover
Loading…
Abstract | Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates. |
---|---|
AbstractList | Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates. Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates. KCI Citation Count: 1 Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates.Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates. |
Author | Li, Li Huh, Kang Moo |
Author_xml | – sequence: 1 givenname: Li surname: Li fullname: Li, Li organization: Department of Polymer Science and Engineering, Chungnam National University – sequence: 2 givenname: Kang Moo surname: Huh fullname: Huh, Kang Moo email: khuh@cnu.ac.kr organization: Department of Polymer Science and Engineering, Chungnam National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26331070$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001976653$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1Us1PHCEUJ41NtVvPvTV77GWUxwADlybWVGtiYtPYM2FYcNEZmMJsk_nvZZ1q1XRPj_B-X7zHe7QXYrAIfQR8BCD4McGMVQ0QWoGoQL5BB083e8_O--gw51uMMVCQlMl3aJ_wugbc4APEf8Ru6m3yZhl0iEan5G1a5imPts9LF9NyWMcxrqag-wIa1zbpYfqA3jrdZXv4ty7Qr7Nv16ffq8ur84vTk8uqpcWsIpxZ4RreGMIFZjXGArQzjhvmjGR0RaAVIFailUbiRjiKOQjHBG8Fdq6uF-jzrBuSU3fGq6j9Q72J6i6pk5_XF4o2mJQHLdCXGTps2t6ujA1j0p0aku91mh6ILzvBr4vMH0UZI5STIvB1Fmh93CHwsmNir7ZTVtspKxAK5L_AQ4q_NzaPqvfZ2K7TwcZNVtBgWUsQ0BTop-eBn4wel1MAbAaYFHNO1injRz36uLX3nQKstv_gPxmOX_EepXcz8MzIBRlubFK3cZNC2exOyj3w78Ji |
CitedBy_id | crossref_primary_10_3390_pharmaceutics15051548 crossref_primary_10_1007_s00216_016_0120_x crossref_primary_10_1002_mabi_201900032 crossref_primary_10_1002_adhm_201700181 crossref_primary_10_1016_j_pdpdt_2020_101913 crossref_primary_10_3389_fbioe_2021_783354 crossref_primary_10_1039_C5NR08691D crossref_primary_10_1016_j_ejpb_2020_02_012 crossref_primary_10_1002_chem_202401700 crossref_primary_10_1016_j_jphotochemrev_2024_100665 crossref_primary_10_1007_s10904_019_01391_x crossref_primary_10_2174_1567201816666190123125813 crossref_primary_10_1016_j_pmatsci_2022_100974 crossref_primary_10_1142_S1088424621300032 crossref_primary_10_1021_acsami_0c06311 crossref_primary_10_5802_crchim_383 crossref_primary_10_1016_j_ejps_2020_105213 crossref_primary_10_1021_acs_biomac_7b01037 crossref_primary_10_2174_1573413718666211222162041 crossref_primary_10_3390_molecules25071607 crossref_primary_10_1007_s00396_016_3992_6 crossref_primary_10_1177_1010428317706913 crossref_primary_10_1186_s40824_016_0081_3 crossref_primary_10_2217_nnm_2017_0292 crossref_primary_10_1039_D0TB01357A crossref_primary_10_1016_j_ijpharm_2020_120078 crossref_primary_10_1016_j_saa_2016_09_032 crossref_primary_10_1088_2053_1591_ab1278 crossref_primary_10_1080_09205063_2019_1580664 crossref_primary_10_1007_s11051_016_3444_8 crossref_primary_10_1002_advs_202003584 crossref_primary_10_1016_j_msec_2016_09_005 crossref_primary_10_1039_C5RA25650J crossref_primary_10_34133_bmr_0101 crossref_primary_10_1186_s40824_023_00360_3 crossref_primary_10_2200_S01047ED1V01Y202009MOP006 crossref_primary_10_1007_s12010_023_04475_0 crossref_primary_10_1016_j_jconrel_2019_05_035 crossref_primary_10_1070_RCR4811 crossref_primary_10_3389_fchem_2022_969809 crossref_primary_10_1016_j_jphotobiol_2021_112284 crossref_primary_10_1016_j_ccr_2016_06_007 crossref_primary_10_1177_20406223241233206 crossref_primary_10_1016_j_ijbiomac_2017_01_103 crossref_primary_10_1002_adtp_202200165 crossref_primary_10_1002_admt_202300877 crossref_primary_10_1016_j_jphotobiol_2017_05_028 crossref_primary_10_1039_D0TB02085K crossref_primary_10_1016_j_pdpdt_2021_102706 crossref_primary_10_3390_ph11040133 crossref_primary_10_1039_D4PY00318G crossref_primary_10_1111_php_13209 crossref_primary_10_1039_C8NR01512K crossref_primary_10_1016_j_jiec_2023_03_053 crossref_primary_10_1016_j_mencom_2018_11_008 crossref_primary_10_1016_j_pdpdt_2018_05_017 crossref_primary_10_1007_s43630_022_00175_6 crossref_primary_10_2174_1389450122999210101230743 crossref_primary_10_3390_nano12193350 crossref_primary_10_1166_jbt_2022_3194 crossref_primary_10_1016_j_dyepig_2022_111047 crossref_primary_10_1142_S1088424617300014 crossref_primary_10_1002_adfm_202418138 crossref_primary_10_1039_C7NR04403H crossref_primary_10_1111_php_13730 crossref_primary_10_3390_nano11092426 crossref_primary_10_1007_s10876_024_02728_4 crossref_primary_10_3390_molecules23081936 crossref_primary_10_1021_acsanm_1c04254 |
Cites_doi | 10.1016/j.addr.2003.07.013 10.1016/j.biomaterials.2011.02.009 10.1016/j.biomaterials.2013.05.017 10.1016/j.ijpharm.2014.05.064 10.1093/jnci/90.12.889 10.3109/1354750X.2012.715672 10.1016/j.ijpharm.2005.10.048 10.1039/c3pp50393c 10.1517/17425247.3.1.139 10.18388/abp.2005_3447 10.14712/fb2011057010012 10.1002/jpp.328 10.1021/jm040074b 10.1111/j.2042-7158.1995.tb05815.x 10.1021/bm5003619 10.1007/978-1-61779-052-2_11 10.1039/c4tb00181h 10.1016/S1470-2045(05)70263-1 10.1038/bjc.1996.516 10.1016/S0939-6411(02)00128-5 10.1016/S0959-8049(01)00171-X 10.1016/j.jconrel.2011.09.085 10.1016/j.addr.2003.07.014 10.1016/j.jinorgbio.2009.12.011 10.1016/j.colsurfb.2009.09.001 10.1016/j.biomaterials.2010.04.030 10.1016/0140-6736(93)92789-V 10.1039/c0cc01413c 10.1002/cmdc.200600244 10.1007/978-1-60761-697-9_18 10.1039/b811248g 10.1038/nbt1175 10.1111/j.1751-1097.2009.00585.x 10.1016/S1011-1344(96)07372-1 10.1039/c0pp00147c 10.1007/s11934-003-0073-4 10.1155/2002/743109 10.1211/0022357011775352 10.1021/bc100116v 10.1016/S0007-1226(95)90065-9 10.1111/j.1365-2230.2011.04248.x 10.1016/j.colsurfb.2014.01.001 10.1111/j.1751-1097.1993.tb02962.x 10.1007/978-1-60761-609-2_11 10.1016/S0065-2571(00)00013-3 10.1016/j.biomaterials.2011.07.023 10.1021/cr900236h 10.2174/092986706776360888 10.1016/S1359-6446(05)03575-0 10.1016/j.pharmthera.2006.05.006 10.1021/jo060041z 10.1016/S1572-1000(05)00098-0 10.1016/j.carbpol.2011.05.011 10.1038/nrc1071 10.1080/02652040600775525 10.1016/j.biomaterials.2013.09.075 10.2174/09298673113209990211 10.1021/bm5000407 10.1016/j.addr.2008.08.003 10.1021/mp100060v 10.2147/IJN.S39615 10.1562/2005-09-01-RA-669 10.1111/j.1751-1097.1991.tb08468.x 10.1517/17425240802444673 10.1111/j.1751-1097.1996.tb05670.x 10.1016/S1011-1344(01)00267-6 10.1074/jbc.M109.054973 10.1039/B915149B 10.1016/S0928-0987(03)00017-4 10.2174/092986710793205453 10.1016/j.jconrel.2013.07.002 10.1111/j.1751-1097.2007.00194.x 10.1021/jp810324v 10.1111/j.1751-1097.1986.tb05648.x 10.1615/CritRevTherDrugCarrierSyst.v25.i5.10 |
ContentType | Journal Article |
Copyright | Li and Huh; licensee BioMed Central Ltd. 2014 |
Copyright_xml | – notice: Li and Huh; licensee BioMed Central Ltd. 2014 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM ACYCR |
DOI | 10.1186/2055-7124-18-19 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-7124 |
EndPage | 19 |
ExternalDocumentID | oai_kci_go_kr_ARTI_470226 PMC4552462 oai_biomedcentral_com_2055_7124_18_19 26331070 10_1186_2055_7124_18_19 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 4.4 5VS 9ZL AAFWJ ACGFS ACPRK ADBBV ADFRT ADRAZ ADUKV AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ASPBG AVWKF BAPOH BCNDV BFQNJ BMC C6C EBLON EBS EJD GROUPED_DOAJ GX1 H13 HYE IAO IHR KQ8 M48 OK1 PGMZT RBZ ROL RPM RSV SOJ AAYXX ALIPV CITATION 7X7 8FE 8FH 8FI 8FJ ABUWG AFKRA BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU EMOBN FYUFA HCIFZ HMCUK ISR ITC LK8 M7P NPM PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC UKHRP 7X8 AAJSJ ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 M~E 5PM ACYCR |
ID | FETCH-LOGICAL-b4419-265e8f767c2680530081afcf6c5fc954d21b818d8b9c9078f40618f586b80ff33 |
IEDL.DBID | RBZ |
ISSN | 2055-7124 1226-4601 |
IngestDate | Sun Mar 09 07:51:33 EDT 2025 Thu Aug 21 13:36:40 EDT 2025 Wed May 22 07:13:01 EDT 2024 Fri Sep 05 00:05:36 EDT 2025 Mon Jul 21 05:56:42 EDT 2025 Tue Jul 01 04:52:12 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Sat Sep 06 07:28:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Conjugates Polymer Drug delivery Photodynamic therapy Nanocarrier Photosensitizer |
Language | English |
License | This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b4419-265e8f767c2680530081afcf6c5fc954d21b818d8b9c9078f40618f586b80ff33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 G704-001603.2015.19.1.002 http://www.biomaterialsres.com/content/pdf/2055-7124-18-19.pdf |
OpenAccessLink | http://dx.doi.org/10.1186/2055-7124-18-19 |
PMID | 26331070 |
PQID | 1709391817 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_470226 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552462 biomedcentral_primary_oai_biomedcentral_com_2055_7124_18_19 proquest_miscellaneous_1709391817 pubmed_primary_26331070 crossref_citationtrail_10_1186_2055_7124_18_19 crossref_primary_10_1186_2055_7124_18_19 springer_journals_10_1186_2055_7124_18_19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20141208 |
PublicationDateYYYYMMDD | 2014-12-08 |
PublicationDate_xml | – month: 12 year: 2014 text: 20141208 day: 8 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Biomaterials research |
PublicationTitleAbbrev | Biomater Res |
PublicationTitleAlternate | Biomater Res |
PublicationYear | 2014 |
Publisher | BioMed Central BioMed Central Ltd 한국생체재료학회 |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: 한국생체재료학회 |
References | e_1_3_5_27_2 Krammer B (e_1_3_5_19_2) 2001; 21 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_65_2 e_1_3_5_46_2 e_1_3_5_67_2 e_1_3_5_88_2 e_1_3_5_69_2 e_1_3_5_29_2 Kreimer-Birnbaum M (e_1_3_5_30_2) 1989; 26 Nehoff H (e_1_3_5_48_2) 2014; 9 e_1_3_5_80_2 Milla Sanabria L (e_1_3_5_18_2) 1835; 2013 e_1_3_5_40_2 e_1_3_5_61_2 e_1_3_5_86_2 e_1_3_5_42_2 e_1_3_5_84_2 e_1_3_5_9_2 Hamblin MR (e_1_3_5_2_2) 2008 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 Matsumura Y (e_1_3_5_57_2) 1986; 46 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_77_2 e_1_3_5_56_2 e_1_3_5_79_2 e_1_3_5_71_2 e_1_3_5_50_2 e_1_3_5_73_2 e_1_3_5_52_2 e_1_3_5_75_2 e_1_3_5_31_2 Wilson BC (e_1_3_5_7_2) 2002; 16 Vrouenraets MB (e_1_3_5_32_2) 2003; 23 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 Daicoviciu D (e_1_3_5_25_2) 2011; 57 e_1_3_5_43_2 e_1_3_5_66_2 e_1_3_5_89_2 e_1_3_5_45_2 e_1_3_5_68_2 e_1_3_5_87_2 e_1_3_5_47_2 e_1_3_5_49_2 Namiki Y (e_1_3_5_63_2) 2004; 50 Nowis D (e_1_3_5_17_2) 2005; 52 e_1_3_5_81_2 e_1_3_5_60_2 e_1_3_5_62_2 e_1_3_5_85_2 e_1_3_5_41_2 e_1_3_5_64_2 e_1_3_5_83_2 e_1_3_5_8_2 Vancikova Z (e_1_3_5_20_2) 1998; 99 e_1_3_5_4_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_55_2 e_1_3_5_76_2 Zimcik P (e_1_3_5_6_2) 2004; 53 e_1_3_5_78_2 Ryumina AP (e_1_3_5_82_2) 1830; 2013 e_1_3_5_59_2 Maeda H (e_1_3_5_58_2) 1989; 6 e_1_3_5_70_2 e_1_3_5_51_2 e_1_3_5_72_2 e_1_3_5_53_2 e_1_3_5_74_2 Juarranz A (e_1_3_5_3_2) 2008; 10 |
References_xml | – ident: e_1_3_5_46_2 doi: 10.1016/j.addr.2003.07.013 – ident: e_1_3_5_88_2 doi: 10.1016/j.biomaterials.2011.02.009 – ident: e_1_3_5_52_2 doi: 10.1016/j.biomaterials.2013.05.017 – ident: e_1_3_5_77_2 doi: 10.1016/j.ijpharm.2014.05.064 – volume-title: Advances in Photodynamic Therapy : Basic, Translational, and Clinical year: 2008 ident: e_1_3_5_2_2 – volume: 53 start-page: 219 year: 2004 ident: e_1_3_5_6_2 article-title: Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles publication-title: Ceska Slovenska Farmacie Casopis Ceske Farmaceuticke Spolecnosti Slovenske Farmaceuticke Spolecnosti – ident: e_1_3_5_5_2 doi: 10.1093/jnci/90.12.889 – volume: 6 start-page: 193 year: 1989 ident: e_1_3_5_58_2 article-title: Tumoritropic and lymphotropic principles of macromolecular drugs publication-title: Crit Rev Ther Drug Carrier Syst – ident: e_1_3_5_89_2 doi: 10.3109/1354750X.2012.715672 – volume: 50 start-page: 65 year: 2004 ident: e_1_3_5_63_2 article-title: Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome publication-title: Pharmacol Res Off J Ital Pharmacol Soc – ident: e_1_3_5_39_2 doi: 10.1016/j.ijpharm.2005.10.048 – volume: 10 start-page: 148 year: 2008 ident: e_1_3_5_3_2 article-title: Photodynamic therapy of cancer. Basic principles and applications publication-title: Clin Transl Oncol Off Publ Federation Spanish Oncol Soc National Cancer Institute Mexico – ident: e_1_3_5_28_2 doi: 10.1039/c3pp50393c – ident: e_1_3_5_72_2 doi: 10.1517/17425247.3.1.139 – volume: 52 start-page: 339 year: 2005 ident: e_1_3_5_17_2 article-title: Direct tumor damage mechanisms of photodynamic therapy publication-title: Acta Biochim Pol doi: 10.18388/abp.2005_3447 – volume: 57 start-page: 12 year: 2011 ident: e_1_3_5_25_2 article-title: Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats publication-title: Folia Biol doi: 10.14712/fb2011057010012 – volume: 99 start-page: 1 year: 1998 ident: e_1_3_5_20_2 article-title: Principles of the photodynamic therapy and its impact on the immune system publication-title: Sb Lek – ident: e_1_3_5_4_2 doi: 10.1002/jpp.328 – ident: e_1_3_5_22_2 doi: 10.1021/jm040074b – ident: e_1_3_5_69_2 doi: 10.1111/j.2042-7158.1995.tb05815.x – ident: e_1_3_5_53_2 doi: 10.1021/bm5003619 – ident: e_1_3_5_41_2 doi: 10.1007/978-1-61779-052-2_11 – ident: e_1_3_5_56_2 doi: 10.1039/c4tb00181h – ident: e_1_3_5_10_2 doi: 10.1016/S1470-2045(05)70263-1 – ident: e_1_3_5_12_2 doi: 10.1038/bjc.1996.516 – ident: e_1_3_5_71_2 doi: 10.1016/S0939-6411(02)00128-5 – ident: e_1_3_5_34_2 doi: 10.1016/S0959-8049(01)00171-X – ident: e_1_3_5_37_2 doi: 10.1016/j.jconrel.2011.09.085 – ident: e_1_3_5_35_2 doi: 10.1016/j.addr.2003.07.014 – ident: e_1_3_5_29_2 doi: 10.1016/j.jinorgbio.2009.12.011 – ident: e_1_3_5_68_2 doi: 10.1016/j.colsurfb.2009.09.001 – volume: 26 start-page: 157 year: 1989 ident: e_1_3_5_30_2 article-title: Modified porphyrins, chlorins, phthalocyanines, and purpurins: second-generation photosensitizers for photodynamic therapy publication-title: Semin Hematol – ident: e_1_3_5_50_2 doi: 10.1016/j.biomaterials.2010.04.030 – ident: e_1_3_5_33_2 doi: 10.1016/0140-6736(93)92789-V – ident: e_1_3_5_45_2 doi: 10.1039/c0cc01413c – ident: e_1_3_5_86_2 doi: 10.1002/cmdc.200600244 – ident: e_1_3_5_11_2 doi: 10.1007/978-1-60761-697-9_18 – ident: e_1_3_5_76_2 doi: 10.1039/b811248g – ident: e_1_3_5_79_2 doi: 10.1038/nbt1175 – ident: e_1_3_5_23_2 doi: 10.1111/j.1751-1097.2009.00585.x – ident: e_1_3_5_9_2 doi: 10.1016/S1011-1344(96)07372-1 – volume: 46 start-page: 6387 year: 1986 ident: e_1_3_5_57_2 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res – ident: e_1_3_5_85_2 doi: 10.1039/c0pp00147c – ident: e_1_3_5_13_2 doi: 10.1007/s11934-003-0073-4 – volume: 16 start-page: 393 year: 2002 ident: e_1_3_5_7_2 article-title: Photodynamic therapy for cancer: principles publication-title: Can J Gastroenterol J Can Gastroenterol doi: 10.1155/2002/743109 – ident: e_1_3_5_43_2 doi: 10.1211/0022357011775352 – ident: e_1_3_5_49_2 doi: 10.1021/bc100116v – volume: 21 start-page: 4271 year: 2001 ident: e_1_3_5_19_2 article-title: Vascular effects of photodynamic therapy publication-title: Anticancer Res – ident: e_1_3_5_14_2 doi: 10.1016/S0007-1226(95)90065-9 – ident: e_1_3_5_15_2 doi: 10.1111/j.1365-2230.2011.04248.x – ident: e_1_3_5_78_2 doi: 10.1016/j.colsurfb.2014.01.001 – volume: 2013 start-page: 5059 year: 1830 ident: e_1_3_5_82_2 article-title: Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells publication-title: Biochim Biophys Acta – ident: e_1_3_5_62_2 doi: 10.1111/j.1751-1097.1993.tb02962.x – ident: e_1_3_5_65_2 doi: 10.1007/978-1-60761-609-2_11 – volume: 9 start-page: 2539 year: 2014 ident: e_1_3_5_48_2 article-title: Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect publication-title: Int J Nanomedicine – ident: e_1_3_5_47_2 doi: 10.1016/S0065-2571(00)00013-3 – ident: e_1_3_5_54_2 doi: 10.1016/j.biomaterials.2011.07.023 – ident: e_1_3_5_84_2 doi: 10.1021/cr900236h – ident: e_1_3_5_61_2 doi: 10.2174/092986706776360888 – ident: e_1_3_5_66_2 doi: 10.1016/S1359-6446(05)03575-0 – ident: e_1_3_5_73_2 doi: 10.1016/j.pharmthera.2006.05.006 – ident: e_1_3_5_31_2 doi: 10.1021/jo060041z – ident: e_1_3_5_21_2 doi: 10.1016/S1572-1000(05)00098-0 – ident: e_1_3_5_51_2 doi: 10.1016/j.carbpol.2011.05.011 – ident: e_1_3_5_8_2 doi: 10.1038/nrc1071 – volume: 23 start-page: 505 year: 2003 ident: e_1_3_5_32_2 article-title: Basic principles, applications in oncology and improved selectivity of photodynamic therapy publication-title: Anticancer Res – volume: 2013 start-page: 36 year: 1835 ident: e_1_3_5_18_2 article-title: Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment publication-title: Biochim Biophys Acta – ident: e_1_3_5_38_2 doi: 10.1080/02652040600775525 – ident: e_1_3_5_80_2 doi: 10.1016/j.biomaterials.2013.09.075 – ident: e_1_3_5_36_2 doi: 10.2174/09298673113209990211 – ident: e_1_3_5_44_2 doi: 10.1021/bm5000407 – ident: e_1_3_5_40_2 doi: 10.1016/j.addr.2008.08.003 – ident: e_1_3_5_75_2 doi: 10.1021/mp100060v – ident: e_1_3_5_42_2 doi: 10.2147/IJN.S39615 – ident: e_1_3_5_59_2 doi: 10.1562/2005-09-01-RA-669 – ident: e_1_3_5_26_2 doi: 10.1111/j.1751-1097.1991.tb08468.x – ident: e_1_3_5_64_2 doi: 10.1517/17425240802444673 – ident: e_1_3_5_60_2 doi: 10.1111/j.1751-1097.1996.tb05670.x – ident: e_1_3_5_16_2 doi: 10.1016/S1011-1344(01)00267-6 – ident: e_1_3_5_81_2 doi: 10.1074/jbc.M109.054973 – ident: e_1_3_5_24_2 doi: 10.1039/B915149B – ident: e_1_3_5_70_2 doi: 10.1016/S0928-0987(03)00017-4 – ident: e_1_3_5_83_2 doi: 10.2174/092986710793205453 – ident: e_1_3_5_55_2 doi: 10.1016/j.jconrel.2013.07.002 – ident: e_1_3_5_74_2 doi: 10.1111/j.1751-1097.2007.00194.x – ident: e_1_3_5_87_2 doi: 10.1021/jp810324v – ident: e_1_3_5_27_2 doi: 10.1111/j.1751-1097.1986.tb05648.x – ident: e_1_3_5_67_2 doi: 10.1615/CritRevTherDrugCarrierSyst.v25.i5.10 |
SSID | ssj0001419459 |
Score | 2.2165644 |
SecondaryResourceType | review_article |
Snippet | Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor... |
SourceID | nrf pubmedcentral biomedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19 |
SubjectTerms | Biomaterials Chemistry and Materials Science Materials Science Review 의공학 |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8QwEA4-LnoQ364vKnjQQ2TbJmmCiIgoKigeXPAWmjRRcWm1u4L7752krVrdPfWQtmkyM51vmub7ENq3hBnlfqvQJraYWNvFKeQVnFBKFVOGZl4b8PaOXfXIzSN9_JEDqidwMLa0c3pSvbJ_9Pk-OoWAP_EBzxnU75TiBBIVDqEiEtNoFtIScy5-W2N9_8GFQL3uxdNCgByYQCVSU_2MuYfjCGYxQB8nYtzaCd9vJbDpvLTjsOn_Xyz_rLP69HW5iBZq3BmcVY6yhKZMvozmf7ERriB2X_RHfgEnyNMcclzp1OyCiut5EAC6Dd6ei2GRVSL2QbV1a7SKepcXD-dXuJZVwAqwj8ARo4bbhCU6Yhxi0KGC1GrLNLVaUJJFoYI0nnElNJTO3Lqczy3lTPGutXG8hmbyIjcbKNDKah1xo1OdkVRoeGMpwAupCmnGiUg66Lg1d_KtotCQjtS63QLxJZ0RpDOCDLkMRQcdNTMtdc1Y7oQz-tJXLpz9v-Dg-4Kmp4mn7oHp5Kt-8c_ijk-FfC0llBHXkiQAbRic0xhWQtC5lZQ0N8XHQIZJV8QCwBGMcL0y9HeHjd90UNJygdbY2y35y7Mn9iaURoRFHXTYOItsAmLSODYn9r-F5gDceVLKLt9GM8Pyw-wAgBqqXR8YX72HE0s priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLYoLDAgbsKlIDHAEJTDp5gQAgESiAEkNit2bFq1SqoeA_-e5yQtTUsHpgy25fjZzve9PPt7CF1YTI1yxyq0SWyArQ2DFHAlYIQQRZUhWZkb8OWVPn7g50_yWYskubsws_H7iFPwzQkJGIBQEIG3I1pojTiRMReVpXe_P1Mw-OJE1NI9f7Sbu87ea6BQKx_Yvwjm4jnJuWBpiUEPW2izJo_-bTXb22jF5DtoY0ZScBfRt6L3XUZh_DzNAagGLiWdXwk2D32gqH6_XYyKrMpE71f3r7730MfD_fvdY1DnRggUEBgRxJQYbhllOqYcNpKD9tRqSzWxWhCcxZECLM64Ehr8X24dcHNLOFU8tDZJ9tFqXuTmEPlaWa1jbnSqM5wKDZ8dBaCfqohkHAvmoZuG7WS_0sGQTpm6WQKbRDrLS2d5GXEZCQ9dTywtdS077rJf9GTpfnC62OBy2mDS09Kq5zB1sqs75bu451chuwMJvsCTxAz4CYU6k4mVsHNcOCTNTTEeyoiFIhHAcGCEB9VETzuMaQK8l4UeYo0l0Bh7syTvtEt1bkxIjGnsoavJYpH1Z2G4bBxH_6h7jNaBs5VakyE_QaujwdicAi8aqbNyT_wAapsGkA priority: 102 providerName: Springer Nature |
Title | Polymeric nanocarrier systems for photodynamic therapy |
URI | https://link.springer.com/article/10.1186/2055-7124-18-19 https://www.ncbi.nlm.nih.gov/pubmed/26331070 https://www.proquest.com/docview/1709391817 http://dx.doi.org/10.1186/2055-7124-18-19 https://pubmed.ncbi.nlm.nih.gov/PMC4552462 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001976653 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 생체재료학회지, 2015, 19(1), , pp.01-14 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB516QUOCMproaxSqYdyCMrDT3GiKxCtRFWhIiEuVuzYgFglaHc58O8ZO9mFLHDqJTnYjuPxY77x2N8AfHeEWe2PVRibu5g4l8QF6pWYU0o105aWITbg-R92dkl-X9GrF7LoBQ9-Khha55TGHNVQnKK9I3vwOSM89wP44uf1y3YKQWs8hEab52-JfN75xsLl9lFHJ_WqsXsPbr49NbngOg0a6XQNVlsoGR03fb8On2z1BVZeEQxuAPtbj56CTyaqigrV1tgHqIsa-uZJhIA1eritp3XZxKWPmttYT5tweXryb3gWt5ESYo1wRsYZo1Y4zrjJmMBp5RV94YxjhjojKSmzVKNmLoWWBq1h4bwaF44KpkXiXJ5vwVJVV3YHIqOdMZmwpjAlKaTBRUgjBCh0SktBJO_DUUd26qFhxVCep7qbglNGeckrL3mVCpXKPhzOJK1MS0LuY2GMVDBGBHtb4Me8wKymD7N-w65T9-Yu_It_39TqfqzQMvilCEe0wjDPrGMVziPvHCkqWz9OVMoTmUvEO9jC7aaj5xVmLEcUzJM-8M4Q6LS9m1Ld3QaubkJpRljWh4PZYFHtIjH5qB27_yXhPVhGTBe4KBPxFZam40e7j7hpqgfQG7LhIOw64POciEGYQ89RkRSo |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPbQcKvqCpRSC1EN7CMrDT_UEFWhpefQAEurFih2bRawStLsc-PcdO8mW8DhxysF2nBk_5pvY8w3AV0eY1f5ahbG5i4lzSVygXYk5pVQzbWkZcgMen7DhOfl1QS8W4LSLhfFB58WsUX5LdzPauR-JPg7bd3drrFn0gqEPT2nM0VjFKXpFchFecU8u5d33vb__f7oQ9NlDArV5_Zbu54l3PAiBH_cs12I1cU-B0sd3Kx8csAa7dbACb1vAGe02oryDBVu9h-V7NIQfgP2px3fh5CaqigqN28SnsYsakudphLA2uhnVs7psstdHTczW3Uc4P9g_-zmM23wKsUbQI-OMUSscZ9xkTODi83CgcMYxQ52RlJRZqtF-l0JLgz6zcN7YC0cF0yJxLs8_wVJVV3YNIqOdMZmwpjAlKaTBrUojUCh0SktBJB_Aj57u1E3DnaE8m3W_BIdTec0rr3mVCpXKAex0mlampSr3GTPGKrgsgj1u8G3eoOvp2arbOHTq2lyFb_HPy1pdTxT6D4eKcMQ0DOt0A6twtfkjlKKy9e1UpTyRuURUhBKuNgM97zBjOWJlngyA96ZAT_Z-SXU1CozehNKMsGwA37vJotqtZPqcHOsv0vAWvB6eHR-po8OT35_hDaLAwF6ZiA1Ymk1u7RdEWjO9GVbPP_0MJIU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RUL0gMqzCwWCxAEOafPwUz2VllXLo1ohKlVcrNix2WpXyWp3e-i_Z-wkS9PHiVMixY7jGdvzTez5BuCDI8xqf6zC2NzFxLkkLtCuxJxSqpm2tAy5AX-csuMz8vWcnq_BqIuF8UHnxbIRfkt3M969Hok-Dcs33pjJ3qx0zawXDJ14SmOO1ipO0S2S6_AAm2N-nP_8_PvfXxeCTnvIoLYq3_L93PGOGzHw057pWq_m7i5Uevtw5Y0d1mC4hlvwuEWc0UEzRJ7Amq2ewuY1HsJnwEb19Cps3URVUaF1m_s8dlHD8ryIENdGs3G9rMsmfX3UBG1dPYez4Zdfh8dxm1Ah1oh6ZJwxaoXjjJuMCZx9Hg8UzjhmqDOSkjJLNRrwUmhp0GkWzlt74ahgWiTO5fkL2Kjqym5DZLQzJhPWFKYkhTS4VmlECoVOaSmI5APY78lOzRryDOXprPtPUJ_KS155yatUqFQOYLeTtDItV7lPmTFVwWcR7HaFj6sKXUv3Fn2PqlMTcxG-xV__1GoyV-hAnCjCEdQwLNMpVuF083soRWXry4VKeSJzibAIe_iyUfSqwYzlCJZ5MgDeGwK9vvefVBfjQOlNKM0IywbwqRssql1LFvf149V_SfgdPBwdDdX3k9Nvr-ERosDAXpmIHdhYzi_tG0RaS_02TJ6_lyAkWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymeric+nanocarrier+systems+for+photodynamic+therapy&rft.jtitle=Biomaterials+research&rft.au=Li%2C+Li&rft.au=Huh%2C+Kang+Moo&rft.date=2014-12-08&rft.issn=1226-4601&rft.volume=18&rft.spage=19&rft_id=info:doi/10.1186%2F2055-7124-18-19&rft_id=info%3Apmid%2F26331070&rft.externalDocID=26331070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7124&client=summon |