Polymeric nanocarrier systems for photodynamic therapy

Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requ...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials research Vol. 18; no. 1; p. 19
Main Authors Li, Li, Huh, Kang Moo
Format Journal Article
LanguageEnglish
Published London BioMed Central 08.12.2014
BioMed Central Ltd
한국생체재료학회
Subjects
Online AccessGet full text
ISSN2055-7124
1226-4601
2055-7124
DOI10.1186/2055-7124-18-19

Cover

Loading…
Abstract Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates.
AbstractList Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates.
Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates. KCI Citation Count: 1
Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates.Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates.
Author Li, Li
Huh, Kang Moo
Author_xml – sequence: 1
  givenname: Li
  surname: Li
  fullname: Li, Li
  organization: Department of Polymer Science and Engineering, Chungnam National University
– sequence: 2
  givenname: Kang Moo
  surname: Huh
  fullname: Huh, Kang Moo
  email: khuh@cnu.ac.kr
  organization: Department of Polymer Science and Engineering, Chungnam National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26331070$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001976653$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1Us1PHCEUJ41NtVvPvTV77GWUxwADlybWVGtiYtPYM2FYcNEZmMJsk_nvZZ1q1XRPj_B-X7zHe7QXYrAIfQR8BCD4McGMVQ0QWoGoQL5BB083e8_O--gw51uMMVCQlMl3aJ_wugbc4APEf8Ru6m3yZhl0iEan5G1a5imPts9LF9NyWMcxrqag-wIa1zbpYfqA3jrdZXv4ty7Qr7Nv16ffq8ur84vTk8uqpcWsIpxZ4RreGMIFZjXGArQzjhvmjGR0RaAVIFailUbiRjiKOQjHBG8Fdq6uF-jzrBuSU3fGq6j9Q72J6i6pk5_XF4o2mJQHLdCXGTps2t6ujA1j0p0aku91mh6ILzvBr4vMH0UZI5STIvB1Fmh93CHwsmNir7ZTVtspKxAK5L_AQ4q_NzaPqvfZ2K7TwcZNVtBgWUsQ0BTop-eBn4wel1MAbAaYFHNO1injRz36uLX3nQKstv_gPxmOX_EepXcz8MzIBRlubFK3cZNC2exOyj3w78Ji
CitedBy_id crossref_primary_10_3390_pharmaceutics15051548
crossref_primary_10_1007_s00216_016_0120_x
crossref_primary_10_1002_mabi_201900032
crossref_primary_10_1002_adhm_201700181
crossref_primary_10_1016_j_pdpdt_2020_101913
crossref_primary_10_3389_fbioe_2021_783354
crossref_primary_10_1039_C5NR08691D
crossref_primary_10_1016_j_ejpb_2020_02_012
crossref_primary_10_1002_chem_202401700
crossref_primary_10_1016_j_jphotochemrev_2024_100665
crossref_primary_10_1007_s10904_019_01391_x
crossref_primary_10_2174_1567201816666190123125813
crossref_primary_10_1016_j_pmatsci_2022_100974
crossref_primary_10_1142_S1088424621300032
crossref_primary_10_1021_acsami_0c06311
crossref_primary_10_5802_crchim_383
crossref_primary_10_1016_j_ejps_2020_105213
crossref_primary_10_1021_acs_biomac_7b01037
crossref_primary_10_2174_1573413718666211222162041
crossref_primary_10_3390_molecules25071607
crossref_primary_10_1007_s00396_016_3992_6
crossref_primary_10_1177_1010428317706913
crossref_primary_10_1186_s40824_016_0081_3
crossref_primary_10_2217_nnm_2017_0292
crossref_primary_10_1039_D0TB01357A
crossref_primary_10_1016_j_ijpharm_2020_120078
crossref_primary_10_1016_j_saa_2016_09_032
crossref_primary_10_1088_2053_1591_ab1278
crossref_primary_10_1080_09205063_2019_1580664
crossref_primary_10_1007_s11051_016_3444_8
crossref_primary_10_1002_advs_202003584
crossref_primary_10_1016_j_msec_2016_09_005
crossref_primary_10_1039_C5RA25650J
crossref_primary_10_34133_bmr_0101
crossref_primary_10_1186_s40824_023_00360_3
crossref_primary_10_2200_S01047ED1V01Y202009MOP006
crossref_primary_10_1007_s12010_023_04475_0
crossref_primary_10_1016_j_jconrel_2019_05_035
crossref_primary_10_1070_RCR4811
crossref_primary_10_3389_fchem_2022_969809
crossref_primary_10_1016_j_jphotobiol_2021_112284
crossref_primary_10_1016_j_ccr_2016_06_007
crossref_primary_10_1177_20406223241233206
crossref_primary_10_1016_j_ijbiomac_2017_01_103
crossref_primary_10_1002_adtp_202200165
crossref_primary_10_1002_admt_202300877
crossref_primary_10_1016_j_jphotobiol_2017_05_028
crossref_primary_10_1039_D0TB02085K
crossref_primary_10_1016_j_pdpdt_2021_102706
crossref_primary_10_3390_ph11040133
crossref_primary_10_1039_D4PY00318G
crossref_primary_10_1111_php_13209
crossref_primary_10_1039_C8NR01512K
crossref_primary_10_1016_j_jiec_2023_03_053
crossref_primary_10_1016_j_mencom_2018_11_008
crossref_primary_10_1016_j_pdpdt_2018_05_017
crossref_primary_10_1007_s43630_022_00175_6
crossref_primary_10_2174_1389450122999210101230743
crossref_primary_10_3390_nano12193350
crossref_primary_10_1166_jbt_2022_3194
crossref_primary_10_1016_j_dyepig_2022_111047
crossref_primary_10_1142_S1088424617300014
crossref_primary_10_1002_adfm_202418138
crossref_primary_10_1039_C7NR04403H
crossref_primary_10_1111_php_13730
crossref_primary_10_3390_nano11092426
crossref_primary_10_1007_s10876_024_02728_4
crossref_primary_10_3390_molecules23081936
crossref_primary_10_1021_acsanm_1c04254
Cites_doi 10.1016/j.addr.2003.07.013
10.1016/j.biomaterials.2011.02.009
10.1016/j.biomaterials.2013.05.017
10.1016/j.ijpharm.2014.05.064
10.1093/jnci/90.12.889
10.3109/1354750X.2012.715672
10.1016/j.ijpharm.2005.10.048
10.1039/c3pp50393c
10.1517/17425247.3.1.139
10.18388/abp.2005_3447
10.14712/fb2011057010012
10.1002/jpp.328
10.1021/jm040074b
10.1111/j.2042-7158.1995.tb05815.x
10.1021/bm5003619
10.1007/978-1-61779-052-2_11
10.1039/c4tb00181h
10.1016/S1470-2045(05)70263-1
10.1038/bjc.1996.516
10.1016/S0939-6411(02)00128-5
10.1016/S0959-8049(01)00171-X
10.1016/j.jconrel.2011.09.085
10.1016/j.addr.2003.07.014
10.1016/j.jinorgbio.2009.12.011
10.1016/j.colsurfb.2009.09.001
10.1016/j.biomaterials.2010.04.030
10.1016/0140-6736(93)92789-V
10.1039/c0cc01413c
10.1002/cmdc.200600244
10.1007/978-1-60761-697-9_18
10.1039/b811248g
10.1038/nbt1175
10.1111/j.1751-1097.2009.00585.x
10.1016/S1011-1344(96)07372-1
10.1039/c0pp00147c
10.1007/s11934-003-0073-4
10.1155/2002/743109
10.1211/0022357011775352
10.1021/bc100116v
10.1016/S0007-1226(95)90065-9
10.1111/j.1365-2230.2011.04248.x
10.1016/j.colsurfb.2014.01.001
10.1111/j.1751-1097.1993.tb02962.x
10.1007/978-1-60761-609-2_11
10.1016/S0065-2571(00)00013-3
10.1016/j.biomaterials.2011.07.023
10.1021/cr900236h
10.2174/092986706776360888
10.1016/S1359-6446(05)03575-0
10.1016/j.pharmthera.2006.05.006
10.1021/jo060041z
10.1016/S1572-1000(05)00098-0
10.1016/j.carbpol.2011.05.011
10.1038/nrc1071
10.1080/02652040600775525
10.1016/j.biomaterials.2013.09.075
10.2174/09298673113209990211
10.1021/bm5000407
10.1016/j.addr.2008.08.003
10.1021/mp100060v
10.2147/IJN.S39615
10.1562/2005-09-01-RA-669
10.1111/j.1751-1097.1991.tb08468.x
10.1517/17425240802444673
10.1111/j.1751-1097.1996.tb05670.x
10.1016/S1011-1344(01)00267-6
10.1074/jbc.M109.054973
10.1039/B915149B
10.1016/S0928-0987(03)00017-4
10.2174/092986710793205453
10.1016/j.jconrel.2013.07.002
10.1111/j.1751-1097.2007.00194.x
10.1021/jp810324v
10.1111/j.1751-1097.1986.tb05648.x
10.1615/CritRevTherDrugCarrierSyst.v25.i5.10
ContentType Journal Article
Copyright Li and Huh; licensee BioMed Central Ltd. 2014
Copyright_xml – notice: Li and Huh; licensee BioMed Central Ltd. 2014
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.1186/2055-7124-18-19
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7124
EndPage 19
ExternalDocumentID oai_kci_go_kr_ARTI_470226
PMC4552462
oai_biomedcentral_com_2055_7124_18_19
26331070
10_1186_2055_7124_18_19
Genre Journal Article
Review
GroupedDBID 0R~
4.4
5VS
9ZL
AAFWJ
ACGFS
ACPRK
ADBBV
ADFRT
ADRAZ
ADUKV
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ASPBG
AVWKF
BAPOH
BCNDV
BFQNJ
BMC
C6C
EBLON
EBS
EJD
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
KQ8
M48
OK1
PGMZT
RBZ
ROL
RPM
RSV
SOJ
AAYXX
ALIPV
CITATION
7X7
8FE
8FH
8FI
8FJ
ABUWG
AFKRA
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
EMOBN
FYUFA
HCIFZ
HMCUK
ISR
ITC
LK8
M7P
NPM
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
UKHRP
7X8
AAJSJ
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
M~E
5PM
ACYCR
ID FETCH-LOGICAL-b4419-265e8f767c2680530081afcf6c5fc954d21b818d8b9c9078f40618f586b80ff33
IEDL.DBID RBZ
ISSN 2055-7124
1226-4601
IngestDate Sun Mar 09 07:51:33 EDT 2025
Thu Aug 21 13:36:40 EDT 2025
Wed May 22 07:13:01 EDT 2024
Fri Sep 05 00:05:36 EDT 2025
Mon Jul 21 05:56:42 EDT 2025
Tue Jul 01 04:52:12 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Sat Sep 06 07:28:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Conjugates
Polymer
Drug delivery
Photodynamic therapy
Nanocarrier
Photosensitizer
Language English
License This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b4419-265e8f767c2680530081afcf6c5fc954d21b818d8b9c9078f40618f586b80ff33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
G704-001603.2015.19.1.002
http://www.biomaterialsres.com/content/pdf/2055-7124-18-19.pdf
OpenAccessLink http://dx.doi.org/10.1186/2055-7124-18-19
PMID 26331070
PQID 1709391817
PQPubID 23479
PageCount 1
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_470226
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4552462
biomedcentral_primary_oai_biomedcentral_com_2055_7124_18_19
proquest_miscellaneous_1709391817
pubmed_primary_26331070
crossref_citationtrail_10_1186_2055_7124_18_19
crossref_primary_10_1186_2055_7124_18_19
springer_journals_10_1186_2055_7124_18_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20141208
PublicationDateYYYYMMDD 2014-12-08
PublicationDate_xml – month: 12
  year: 2014
  text: 20141208
  day: 8
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Biomaterials research
PublicationTitleAbbrev Biomater Res
PublicationTitleAlternate Biomater Res
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
한국생체재료학회
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: 한국생체재료학회
References e_1_3_5_27_2
Krammer B (e_1_3_5_19_2) 2001; 21
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_65_2
e_1_3_5_46_2
e_1_3_5_67_2
e_1_3_5_88_2
e_1_3_5_69_2
e_1_3_5_29_2
Kreimer-Birnbaum M (e_1_3_5_30_2) 1989; 26
Nehoff H (e_1_3_5_48_2) 2014; 9
e_1_3_5_80_2
Milla Sanabria L (e_1_3_5_18_2) 1835; 2013
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_86_2
e_1_3_5_42_2
e_1_3_5_84_2
e_1_3_5_9_2
Hamblin MR (e_1_3_5_2_2) 2008
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
Matsumura Y (e_1_3_5_57_2) 1986; 46
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_77_2
e_1_3_5_56_2
e_1_3_5_79_2
e_1_3_5_71_2
e_1_3_5_50_2
e_1_3_5_73_2
e_1_3_5_52_2
e_1_3_5_75_2
e_1_3_5_31_2
Wilson BC (e_1_3_5_7_2) 2002; 16
Vrouenraets MB (e_1_3_5_32_2) 2003; 23
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
Daicoviciu D (e_1_3_5_25_2) 2011; 57
e_1_3_5_43_2
e_1_3_5_66_2
e_1_3_5_89_2
e_1_3_5_45_2
e_1_3_5_68_2
e_1_3_5_87_2
e_1_3_5_47_2
e_1_3_5_49_2
Namiki Y (e_1_3_5_63_2) 2004; 50
Nowis D (e_1_3_5_17_2) 2005; 52
e_1_3_5_81_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_85_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_83_2
e_1_3_5_8_2
Vancikova Z (e_1_3_5_20_2) 1998; 99
e_1_3_5_4_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_55_2
e_1_3_5_76_2
Zimcik P (e_1_3_5_6_2) 2004; 53
e_1_3_5_78_2
Ryumina AP (e_1_3_5_82_2) 1830; 2013
e_1_3_5_59_2
Maeda H (e_1_3_5_58_2) 1989; 6
e_1_3_5_70_2
e_1_3_5_51_2
e_1_3_5_72_2
e_1_3_5_53_2
e_1_3_5_74_2
Juarranz A (e_1_3_5_3_2) 2008; 10
References_xml – ident: e_1_3_5_46_2
  doi: 10.1016/j.addr.2003.07.013
– ident: e_1_3_5_88_2
  doi: 10.1016/j.biomaterials.2011.02.009
– ident: e_1_3_5_52_2
  doi: 10.1016/j.biomaterials.2013.05.017
– ident: e_1_3_5_77_2
  doi: 10.1016/j.ijpharm.2014.05.064
– volume-title: Advances in Photodynamic Therapy : Basic, Translational, and Clinical
  year: 2008
  ident: e_1_3_5_2_2
– volume: 53
  start-page: 219
  year: 2004
  ident: e_1_3_5_6_2
  article-title: Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles
  publication-title: Ceska Slovenska Farmacie Casopis Ceske Farmaceuticke Spolecnosti Slovenske Farmaceuticke Spolecnosti
– ident: e_1_3_5_5_2
  doi: 10.1093/jnci/90.12.889
– volume: 6
  start-page: 193
  year: 1989
  ident: e_1_3_5_58_2
  article-title: Tumoritropic and lymphotropic principles of macromolecular drugs
  publication-title: Crit Rev Ther Drug Carrier Syst
– ident: e_1_3_5_89_2
  doi: 10.3109/1354750X.2012.715672
– volume: 50
  start-page: 65
  year: 2004
  ident: e_1_3_5_63_2
  article-title: Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome
  publication-title: Pharmacol Res Off J Ital Pharmacol Soc
– ident: e_1_3_5_39_2
  doi: 10.1016/j.ijpharm.2005.10.048
– volume: 10
  start-page: 148
  year: 2008
  ident: e_1_3_5_3_2
  article-title: Photodynamic therapy of cancer. Basic principles and applications
  publication-title: Clin Transl Oncol Off Publ Federation Spanish Oncol Soc National Cancer Institute Mexico
– ident: e_1_3_5_28_2
  doi: 10.1039/c3pp50393c
– ident: e_1_3_5_72_2
  doi: 10.1517/17425247.3.1.139
– volume: 52
  start-page: 339
  year: 2005
  ident: e_1_3_5_17_2
  article-title: Direct tumor damage mechanisms of photodynamic therapy
  publication-title: Acta Biochim Pol
  doi: 10.18388/abp.2005_3447
– volume: 57
  start-page: 12
  year: 2011
  ident: e_1_3_5_25_2
  article-title: Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats
  publication-title: Folia Biol
  doi: 10.14712/fb2011057010012
– volume: 99
  start-page: 1
  year: 1998
  ident: e_1_3_5_20_2
  article-title: Principles of the photodynamic therapy and its impact on the immune system
  publication-title: Sb Lek
– ident: e_1_3_5_4_2
  doi: 10.1002/jpp.328
– ident: e_1_3_5_22_2
  doi: 10.1021/jm040074b
– ident: e_1_3_5_69_2
  doi: 10.1111/j.2042-7158.1995.tb05815.x
– ident: e_1_3_5_53_2
  doi: 10.1021/bm5003619
– ident: e_1_3_5_41_2
  doi: 10.1007/978-1-61779-052-2_11
– ident: e_1_3_5_56_2
  doi: 10.1039/c4tb00181h
– ident: e_1_3_5_10_2
  doi: 10.1016/S1470-2045(05)70263-1
– ident: e_1_3_5_12_2
  doi: 10.1038/bjc.1996.516
– ident: e_1_3_5_71_2
  doi: 10.1016/S0939-6411(02)00128-5
– ident: e_1_3_5_34_2
  doi: 10.1016/S0959-8049(01)00171-X
– ident: e_1_3_5_37_2
  doi: 10.1016/j.jconrel.2011.09.085
– ident: e_1_3_5_35_2
  doi: 10.1016/j.addr.2003.07.014
– ident: e_1_3_5_29_2
  doi: 10.1016/j.jinorgbio.2009.12.011
– ident: e_1_3_5_68_2
  doi: 10.1016/j.colsurfb.2009.09.001
– volume: 26
  start-page: 157
  year: 1989
  ident: e_1_3_5_30_2
  article-title: Modified porphyrins, chlorins, phthalocyanines, and purpurins: second-generation photosensitizers for photodynamic therapy
  publication-title: Semin Hematol
– ident: e_1_3_5_50_2
  doi: 10.1016/j.biomaterials.2010.04.030
– ident: e_1_3_5_33_2
  doi: 10.1016/0140-6736(93)92789-V
– ident: e_1_3_5_45_2
  doi: 10.1039/c0cc01413c
– ident: e_1_3_5_86_2
  doi: 10.1002/cmdc.200600244
– ident: e_1_3_5_11_2
  doi: 10.1007/978-1-60761-697-9_18
– ident: e_1_3_5_76_2
  doi: 10.1039/b811248g
– ident: e_1_3_5_79_2
  doi: 10.1038/nbt1175
– ident: e_1_3_5_23_2
  doi: 10.1111/j.1751-1097.2009.00585.x
– ident: e_1_3_5_9_2
  doi: 10.1016/S1011-1344(96)07372-1
– volume: 46
  start-page: 6387
  year: 1986
  ident: e_1_3_5_57_2
  article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
  publication-title: Cancer Res
– ident: e_1_3_5_85_2
  doi: 10.1039/c0pp00147c
– ident: e_1_3_5_13_2
  doi: 10.1007/s11934-003-0073-4
– volume: 16
  start-page: 393
  year: 2002
  ident: e_1_3_5_7_2
  article-title: Photodynamic therapy for cancer: principles
  publication-title: Can J Gastroenterol J Can Gastroenterol
  doi: 10.1155/2002/743109
– ident: e_1_3_5_43_2
  doi: 10.1211/0022357011775352
– ident: e_1_3_5_49_2
  doi: 10.1021/bc100116v
– volume: 21
  start-page: 4271
  year: 2001
  ident: e_1_3_5_19_2
  article-title: Vascular effects of photodynamic therapy
  publication-title: Anticancer Res
– ident: e_1_3_5_14_2
  doi: 10.1016/S0007-1226(95)90065-9
– ident: e_1_3_5_15_2
  doi: 10.1111/j.1365-2230.2011.04248.x
– ident: e_1_3_5_78_2
  doi: 10.1016/j.colsurfb.2014.01.001
– volume: 2013
  start-page: 5059
  year: 1830
  ident: e_1_3_5_82_2
  article-title: Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells
  publication-title: Biochim Biophys Acta
– ident: e_1_3_5_62_2
  doi: 10.1111/j.1751-1097.1993.tb02962.x
– ident: e_1_3_5_65_2
  doi: 10.1007/978-1-60761-609-2_11
– volume: 9
  start-page: 2539
  year: 2014
  ident: e_1_3_5_48_2
  article-title: Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect
  publication-title: Int J Nanomedicine
– ident: e_1_3_5_47_2
  doi: 10.1016/S0065-2571(00)00013-3
– ident: e_1_3_5_54_2
  doi: 10.1016/j.biomaterials.2011.07.023
– ident: e_1_3_5_84_2
  doi: 10.1021/cr900236h
– ident: e_1_3_5_61_2
  doi: 10.2174/092986706776360888
– ident: e_1_3_5_66_2
  doi: 10.1016/S1359-6446(05)03575-0
– ident: e_1_3_5_73_2
  doi: 10.1016/j.pharmthera.2006.05.006
– ident: e_1_3_5_31_2
  doi: 10.1021/jo060041z
– ident: e_1_3_5_21_2
  doi: 10.1016/S1572-1000(05)00098-0
– ident: e_1_3_5_51_2
  doi: 10.1016/j.carbpol.2011.05.011
– ident: e_1_3_5_8_2
  doi: 10.1038/nrc1071
– volume: 23
  start-page: 505
  year: 2003
  ident: e_1_3_5_32_2
  article-title: Basic principles, applications in oncology and improved selectivity of photodynamic therapy
  publication-title: Anticancer Res
– volume: 2013
  start-page: 36
  year: 1835
  ident: e_1_3_5_18_2
  article-title: Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment
  publication-title: Biochim Biophys Acta
– ident: e_1_3_5_38_2
  doi: 10.1080/02652040600775525
– ident: e_1_3_5_80_2
  doi: 10.1016/j.biomaterials.2013.09.075
– ident: e_1_3_5_36_2
  doi: 10.2174/09298673113209990211
– ident: e_1_3_5_44_2
  doi: 10.1021/bm5000407
– ident: e_1_3_5_40_2
  doi: 10.1016/j.addr.2008.08.003
– ident: e_1_3_5_75_2
  doi: 10.1021/mp100060v
– ident: e_1_3_5_42_2
  doi: 10.2147/IJN.S39615
– ident: e_1_3_5_59_2
  doi: 10.1562/2005-09-01-RA-669
– ident: e_1_3_5_26_2
  doi: 10.1111/j.1751-1097.1991.tb08468.x
– ident: e_1_3_5_64_2
  doi: 10.1517/17425240802444673
– ident: e_1_3_5_60_2
  doi: 10.1111/j.1751-1097.1996.tb05670.x
– ident: e_1_3_5_16_2
  doi: 10.1016/S1011-1344(01)00267-6
– ident: e_1_3_5_81_2
  doi: 10.1074/jbc.M109.054973
– ident: e_1_3_5_24_2
  doi: 10.1039/B915149B
– ident: e_1_3_5_70_2
  doi: 10.1016/S0928-0987(03)00017-4
– ident: e_1_3_5_83_2
  doi: 10.2174/092986710793205453
– ident: e_1_3_5_55_2
  doi: 10.1016/j.jconrel.2013.07.002
– ident: e_1_3_5_74_2
  doi: 10.1111/j.1751-1097.2007.00194.x
– ident: e_1_3_5_87_2
  doi: 10.1021/jp810324v
– ident: e_1_3_5_27_2
  doi: 10.1111/j.1751-1097.1986.tb05648.x
– ident: e_1_3_5_67_2
  doi: 10.1615/CritRevTherDrugCarrierSyst.v25.i5.10
SSID ssj0001419459
Score 2.2165644
SecondaryResourceType review_article
Snippet Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor...
SourceID nrf
pubmedcentral
biomedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19
SubjectTerms Biomaterials
Chemistry and Materials Science
Materials Science
Review
의공학
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8QwEA4-LnoQ364vKnjQQ2TbJmmCiIgoKigeXPAWmjRRcWm1u4L7752krVrdPfWQtmkyM51vmub7ENq3hBnlfqvQJraYWNvFKeQVnFBKFVOGZl4b8PaOXfXIzSN9_JEDqidwMLa0c3pSvbJ_9Pk-OoWAP_EBzxnU75TiBBIVDqEiEtNoFtIScy5-W2N9_8GFQL3uxdNCgByYQCVSU_2MuYfjCGYxQB8nYtzaCd9vJbDpvLTjsOn_Xyz_rLP69HW5iBZq3BmcVY6yhKZMvozmf7ERriB2X_RHfgEnyNMcclzp1OyCiut5EAC6Dd6ei2GRVSL2QbV1a7SKepcXD-dXuJZVwAqwj8ARo4bbhCU6Yhxi0KGC1GrLNLVaUJJFoYI0nnElNJTO3Lqczy3lTPGutXG8hmbyIjcbKNDKah1xo1OdkVRoeGMpwAupCmnGiUg66Lg1d_KtotCQjtS63QLxJZ0RpDOCDLkMRQcdNTMtdc1Y7oQz-tJXLpz9v-Dg-4Kmp4mn7oHp5Kt-8c_ijk-FfC0llBHXkiQAbRic0xhWQtC5lZQ0N8XHQIZJV8QCwBGMcL0y9HeHjd90UNJygdbY2y35y7Mn9iaURoRFHXTYOItsAmLSODYn9r-F5gDceVLKLt9GM8Pyw-wAgBqqXR8YX72HE0s
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLYoLDAgbsKlIDHAEJTDp5gQAgESiAEkNit2bFq1SqoeA_-e5yQtTUsHpgy25fjZzve9PPt7CF1YTI1yxyq0SWyArQ2DFHAlYIQQRZUhWZkb8OWVPn7g50_yWYskubsws_H7iFPwzQkJGIBQEIG3I1pojTiRMReVpXe_P1Mw-OJE1NI9f7Sbu87ea6BQKx_Yvwjm4jnJuWBpiUEPW2izJo_-bTXb22jF5DtoY0ZScBfRt6L3XUZh_DzNAagGLiWdXwk2D32gqH6_XYyKrMpE71f3r7730MfD_fvdY1DnRggUEBgRxJQYbhllOqYcNpKD9tRqSzWxWhCcxZECLM64Ehr8X24dcHNLOFU8tDZJ9tFqXuTmEPlaWa1jbnSqM5wKDZ8dBaCfqohkHAvmoZuG7WS_0sGQTpm6WQKbRDrLS2d5GXEZCQ9dTywtdS077rJf9GTpfnC62OBy2mDS09Kq5zB1sqs75bu451chuwMJvsCTxAz4CYU6k4mVsHNcOCTNTTEeyoiFIhHAcGCEB9VETzuMaQK8l4UeYo0l0Bh7syTvtEt1bkxIjGnsoavJYpH1Z2G4bBxH_6h7jNaBs5VakyE_QaujwdicAi8aqbNyT_wAapsGkA
  priority: 102
  providerName: Springer Nature
Title Polymeric nanocarrier systems for photodynamic therapy
URI https://link.springer.com/article/10.1186/2055-7124-18-19
https://www.ncbi.nlm.nih.gov/pubmed/26331070
https://www.proquest.com/docview/1709391817
http://dx.doi.org/10.1186/2055-7124-18-19
https://pubmed.ncbi.nlm.nih.gov/PMC4552462
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001976653
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 생체재료학회지, 2015, 19(1), , pp.01-14
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB516QUOCMproaxSqYdyCMrDT3GiKxCtRFWhIiEuVuzYgFglaHc58O8ZO9mFLHDqJTnYjuPxY77x2N8AfHeEWe2PVRibu5g4l8QF6pWYU0o105aWITbg-R92dkl-X9GrF7LoBQ9-Khha55TGHNVQnKK9I3vwOSM89wP44uf1y3YKQWs8hEab52-JfN75xsLl9lFHJ_WqsXsPbr49NbngOg0a6XQNVlsoGR03fb8On2z1BVZeEQxuAPtbj56CTyaqigrV1tgHqIsa-uZJhIA1eritp3XZxKWPmttYT5tweXryb3gWt5ESYo1wRsYZo1Y4zrjJmMBp5RV94YxjhjojKSmzVKNmLoWWBq1h4bwaF44KpkXiXJ5vwVJVV3YHIqOdMZmwpjAlKaTBRUgjBCh0SktBJO_DUUd26qFhxVCep7qbglNGeckrL3mVCpXKPhzOJK1MS0LuY2GMVDBGBHtb4Me8wKymD7N-w65T9-Yu_It_39TqfqzQMvilCEe0wjDPrGMVziPvHCkqWz9OVMoTmUvEO9jC7aaj5xVmLEcUzJM-8M4Q6LS9m1Ld3QaubkJpRljWh4PZYFHtIjH5qB27_yXhPVhGTBe4KBPxFZam40e7j7hpqgfQG7LhIOw64POciEGYQ89RkRSo
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPbQcKvqCpRSC1EN7CMrDT_UEFWhpefQAEurFih2bRawStLsc-PcdO8mW8DhxysF2nBk_5pvY8w3AV0eY1f5ahbG5i4lzSVygXYk5pVQzbWkZcgMen7DhOfl1QS8W4LSLhfFB58WsUX5LdzPauR-JPg7bd3drrFn0gqEPT2nM0VjFKXpFchFecU8u5d33vb__f7oQ9NlDArV5_Zbu54l3PAiBH_cs12I1cU-B0sd3Kx8csAa7dbACb1vAGe02oryDBVu9h-V7NIQfgP2px3fh5CaqigqN28SnsYsakudphLA2uhnVs7psstdHTczW3Uc4P9g_-zmM23wKsUbQI-OMUSscZ9xkTODi83CgcMYxQ52RlJRZqtF-l0JLgz6zcN7YC0cF0yJxLs8_wVJVV3YNIqOdMZmwpjAlKaTBrUojUCh0SktBJB_Aj57u1E3DnaE8m3W_BIdTec0rr3mVCpXKAex0mlampSr3GTPGKrgsgj1u8G3eoOvp2arbOHTq2lyFb_HPy1pdTxT6D4eKcMQ0DOt0A6twtfkjlKKy9e1UpTyRuURUhBKuNgM97zBjOWJlngyA96ZAT_Z-SXU1CozehNKMsGwA37vJotqtZPqcHOsv0vAWvB6eHR-po8OT35_hDaLAwF6ZiA1Ymk1u7RdEWjO9GVbPP_0MJIU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RUL0gMqzCwWCxAEOafPwUz2VllXLo1ohKlVcrNix2WpXyWp3e-i_Z-wkS9PHiVMixY7jGdvzTez5BuCDI8xqf6zC2NzFxLkkLtCuxJxSqpm2tAy5AX-csuMz8vWcnq_BqIuF8UHnxbIRfkt3M969Hok-Dcs33pjJ3qx0zawXDJ14SmOO1ipO0S2S6_AAm2N-nP_8_PvfXxeCTnvIoLYq3_L93PGOGzHw057pWq_m7i5Uevtw5Y0d1mC4hlvwuEWc0UEzRJ7Amq2ewuY1HsJnwEb19Cps3URVUaF1m_s8dlHD8ryIENdGs3G9rMsmfX3UBG1dPYez4Zdfh8dxm1Ah1oh6ZJwxaoXjjJuMCZx9Hg8UzjhmqDOSkjJLNRrwUmhp0GkWzlt74ahgWiTO5fkL2Kjqym5DZLQzJhPWFKYkhTS4VmlECoVOaSmI5APY78lOzRryDOXprPtPUJ_KS155yatUqFQOYLeTtDItV7lPmTFVwWcR7HaFj6sKXUv3Fn2PqlMTcxG-xV__1GoyV-hAnCjCEdQwLNMpVuF083soRWXry4VKeSJzibAIe_iyUfSqwYzlCJZ5MgDeGwK9vvefVBfjQOlNKM0IywbwqRssql1LFvf149V_SfgdPBwdDdX3k9Nvr-ERosDAXpmIHdhYzi_tG0RaS_02TJ6_lyAkWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymeric+nanocarrier+systems+for+photodynamic+therapy&rft.jtitle=Biomaterials+research&rft.au=Li%2C+Li&rft.au=Huh%2C+Kang+Moo&rft.date=2014-12-08&rft.issn=1226-4601&rft.volume=18&rft.spage=19&rft_id=info:doi/10.1186%2F2055-7124-18-19&rft_id=info%3Apmid%2F26331070&rft.externalDocID=26331070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7124&client=summon