Predicting 60–4 visual field tests using 3D facial reconstruction

BackgroundDespite, the potential clinical utility of 60–4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an artificial intelligence-driven platform to predict fa...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of ophthalmology Vol. 108; no. 1; pp. 112 - 116
Main Authors Jamali Dogahe, Sepideh, Garmany, Armin, Sadegh Mousavi, Seyedmostafa, Khanna, Cheryl L
Format Journal Article
LanguageEnglish
Published BMA House, Tavistock Square, London, WC1H 9JR BMJ Publishing Group Ltd 01.01.2024
BMJ Publishing Group LTD
Subjects
Online AccessGet full text
ISSN0007-1161
1468-2079
1468-2079
DOI10.1136/bjo-2022-321651

Cover

Loading…
Abstract BackgroundDespite, the potential clinical utility of 60–4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an artificial intelligence-driven platform to predict facial structure-dependent visual field defects on 60–4 visual field tests.MethodsSubjects with no ocular pathology were included. Participants were subject to optical coherence tomography, 60–4 Swedish interactive thresholding algorithm visual field tests and photography. The predicted visual field was compared with observed 60–4 visual field results in subjects. Average and point-specific sensitivity, specificity, precision, negative predictive value, accuracy, and F1-scores were primary outcome measures.Results30 healthy were enrolled. Three-dimensional facial reconstruction using a convolution neural network (CNN) was able to predict facial contour-dependent 60–4 visual field defects in 30 subjects without ocular pathology. Overall model accuracy was 97%±3% and 96%±3% and the F1-score, dependent on precision and sensitivity, was 58%±19% and 55%±15% for the right eye and left eye, respectively. Spatial-dependent model performance was observed with increased sensitivity and precision within the far inferior nasal field reflected by an average F1-score of 76%±20% and 70%±29% for the right eye and left eye, respectively.ConclusionsThis pilot study reports the development of a CNN-enhanced platform capable of predicting 60–4 visual field defects in healthy controls based on facial contour. Further study with this platform may enhance understanding of the influence of facial contour on 60–4 visual field testing.
AbstractList BackgroundDespite, the potential clinical utility of 60–4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an artificial intelligence-driven platform to predict facial structure-dependent visual field defects on 60–4 visual field tests.MethodsSubjects with no ocular pathology were included. Participants were subject to optical coherence tomography, 60–4 Swedish interactive thresholding algorithm visual field tests and photography. The predicted visual field was compared with observed 60–4 visual field results in subjects. Average and point-specific sensitivity, specificity, precision, negative predictive value, accuracy, and F1-scores were primary outcome measures.Results30 healthy were enrolled. Three-dimensional facial reconstruction using a convolution neural network (CNN) was able to predict facial contour-dependent 60–4 visual field defects in 30 subjects without ocular pathology. Overall model accuracy was 97%±3% and 96%±3% and the F1-score, dependent on precision and sensitivity, was 58%±19% and 55%±15% for the right eye and left eye, respectively. Spatial-dependent model performance was observed with increased sensitivity and precision within the far inferior nasal field reflected by an average F1-score of 76%±20% and 70%±29% for the right eye and left eye, respectively.ConclusionsThis pilot study reports the development of a CNN-enhanced platform capable of predicting 60–4 visual field defects in healthy controls based on facial contour. Further study with this platform may enhance understanding of the influence of facial contour on 60–4 visual field testing.
The effect of facial contour on 60–4 visual field defects has not been elucidated. In this study, a convolution neural network-augmented platform allowed for prediction of 60–4 field defects due to facial contour.
Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an artificial intelligence-driven platform to predict facial structure-dependent visual field defects on 60-4 visual field tests. Subjects with no ocular pathology were included. Participants were subject to optical coherence tomography, 60-4 Swedish interactive thresholding algorithm visual field tests and photography. The predicted visual field was compared with observed 60-4 visual field results in subjects. Average and point-specific sensitivity, specificity, precision, negative predictive value, accuracy, and F1-scores were primary outcome measures. 30 healthy were enrolled. Three-dimensional facial reconstruction using a convolution neural network (CNN) was able to predict facial contour-dependent 60-4 visual field defects in 30 subjects without ocular pathology. Overall model accuracy was 97%±3% and 96%±3% and the F1-score, dependent on precision and sensitivity, was 58%±19% and 55%±15% for the right eye and left eye, respectively. Spatial-dependent model performance was observed with increased sensitivity and precision within the far inferior nasal field reflected by an average F1-score of 76%±20% and 70%±29% for the right eye and left eye, respectively. This pilot study reports the development of a CNN-enhanced platform capable of predicting 60-4 visual field defects in healthy controls based on facial contour. Further study with this platform may enhance understanding of the influence of facial contour on 60-4 visual field testing.
Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an artificial intelligence-driven platform to predict facial structure-dependent visual field defects on 60-4 visual field tests.BACKGROUNDDespite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an artificial intelligence-driven platform to predict facial structure-dependent visual field defects on 60-4 visual field tests.Subjects with no ocular pathology were included. Participants were subject to optical coherence tomography, 60-4 Swedish interactive thresholding algorithm visual field tests and photography. The predicted visual field was compared with observed 60-4 visual field results in subjects. Average and point-specific sensitivity, specificity, precision, negative predictive value, accuracy, and F1-scores were primary outcome measures.METHODSSubjects with no ocular pathology were included. Participants were subject to optical coherence tomography, 60-4 Swedish interactive thresholding algorithm visual field tests and photography. The predicted visual field was compared with observed 60-4 visual field results in subjects. Average and point-specific sensitivity, specificity, precision, negative predictive value, accuracy, and F1-scores were primary outcome measures.30 healthy were enrolled. Three-dimensional facial reconstruction using a convolution neural network (CNN) was able to predict facial contour-dependent 60-4 visual field defects in 30 subjects without ocular pathology. Overall model accuracy was 97%±3% and 96%±3% and the F1-score, dependent on precision and sensitivity, was 58%±19% and 55%±15% for the right eye and left eye, respectively. Spatial-dependent model performance was observed with increased sensitivity and precision within the far inferior nasal field reflected by an average F1-score of 76%±20% and 70%±29% for the right eye and left eye, respectively.RESULTS30 healthy were enrolled. Three-dimensional facial reconstruction using a convolution neural network (CNN) was able to predict facial contour-dependent 60-4 visual field defects in 30 subjects without ocular pathology. Overall model accuracy was 97%±3% and 96%±3% and the F1-score, dependent on precision and sensitivity, was 58%±19% and 55%±15% for the right eye and left eye, respectively. Spatial-dependent model performance was observed with increased sensitivity and precision within the far inferior nasal field reflected by an average F1-score of 76%±20% and 70%±29% for the right eye and left eye, respectively.This pilot study reports the development of a CNN-enhanced platform capable of predicting 60-4 visual field defects in healthy controls based on facial contour. Further study with this platform may enhance understanding of the influence of facial contour on 60-4 visual field testing.CONCLUSIONSThis pilot study reports the development of a CNN-enhanced platform capable of predicting 60-4 visual field defects in healthy controls based on facial contour. Further study with this platform may enhance understanding of the influence of facial contour on 60-4 visual field testing.
Author Jamali Dogahe, Sepideh
Garmany, Armin
Khanna, Cheryl L
Sadegh Mousavi, Seyedmostafa
AuthorAffiliation 1 Department of Ophthalmology, Mayo Clinic, Rochester, MN
2 Graduate School of Biomedical Sciences, Alix School of Medicine, Medical Scientist Training Program, Mayo Clinic Rochester, MN
AuthorAffiliation_xml – name: 1 Department of Ophthalmology, Mayo Clinic, Rochester, MN
– name: 2 Graduate School of Biomedical Sciences, Alix School of Medicine, Medical Scientist Training Program, Mayo Clinic Rochester, MN
Author_xml – sequence: 1
  givenname: Sepideh
  surname: Jamali Dogahe
  fullname: Jamali Dogahe, Sepideh
  organization: Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 2
  givenname: Armin
  surname: Garmany
  fullname: Garmany, Armin
  organization: Graduate School of Biomedical Sciences, Alix School of Medicine, Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 3
  givenname: Seyedmostafa
  surname: Sadegh Mousavi
  fullname: Sadegh Mousavi, Seyedmostafa
  organization: Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 4
  givenname: Cheryl L
  orcidid: 0000-0002-3735-4297
  surname: Khanna
  fullname: Khanna, Cheryl L
  email: cheryl@mayo.edu
  organization: Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36428007$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rHSEUxaWkNC-vXWdXBrIJlGm8V0edVQgv_QeBdtGuZXSc1Mc8TXQmkF2_Q79hPkl9vDRtCikuRM_vHK-cA7IXYnCEHAJ9C8DEiVnHGilizRBEA8_IArhQ5Uq2e2RBKZU1gIB9cpDzuhxRgHxB9pngqIq4IKsvyfXeTj5cVoLe_fjJqxuf526sBu_GvppcnnI1563Ozquhs75oydkY8pTmYozhJXk-dGN2r-73Jfn2_t3X1cf64vOHT6uzi9pwTqd6MHaQCiw0VFjWNso4p8pyzPUWWtM01vQ9V8hbBqAQjGtkL61A5FQqxpbkdJd7NZtN8bgwpW7UV8lvunSrY-f1YyX47_oy3migSFtWYpfk-D4hxeu5fE1vfLZuHLvg4pw1Sk4b4JKpgh79g67jnEL5n8aWohJCAv6XKlkgUOGWev334A8T_66hACc7wKaYc3LDAwJUb4vWpWi9LVrvii6ONzuH2az_vPkU_QtWyKcX
Cites_doi 10.1016/j.ogla.2019.01.003
10.1038/s41598-019-50677-0
10.1111/opo.12362
10.1038/s41536-021-00169-5
10.1167/iovs.15-19053
10.1001/jamaophthalmol.2019.5939
10.1186/s12886-017-0522-3
10.1016/j.ophtha.2020.03.008
10.1001/jamaophthalmol.2016.1284
10.5301/EJO.2011.6299
10.1097/IJG.0000000000001066
10.1016/j.ophtha.2020.12.020
10.1038/s41598-021-91173-8
10.1016/j.optm.2008.12.011
10.1212/01.wnl.0000201313.24970.b8
10.1016/j.ophtha.2021.07.032
10.1136/bjophthalmol-2020-316897
10.1016/j.ajo.2018.01.001
10.1016/j.ogla.2020.12.001
10.1016/j.ajo.2021.01.023
10.1177/112067211002000419
10.1136/bmjopen-2017-018831
10.1097/IJG.0000000000001494
10.1007/BF00927261
10.1167/iovs.07-0326
10.1007/s13755-022-00181-z
10.1136/bjophthalmol-2019-314170
10.1167/iovs.17-23713
10.1016/S2214-109X(20)30489-7
10.1097/IJG.0000000000001843
10.1167/iovs.12-10428
10.3310/hsdr02270
10.1007/978-3-030-01264-9_33
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.
2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
2023 Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.
Copyright_xml – notice: Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2023 Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BTHHO
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1136/bjo-2022-321651
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central (New) (NC LIVE)
BMJ Journals
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
BMJ Journals
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
ProQuest Health & Medical Research Collection
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)

ProQuest One Academic Middle East (New)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-2079
EndPage 116
ExternalDocumentID PMC10209349
36428007
10_1136_bjo_2022_321651
bjophthalmol
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  grantid: T32 GM 65841
  funderid: http://dx.doi.org/10.13039/100000057
– fundername: Mayo Clinic Foundation
  grantid: No specific award number.
– fundername: NIGMS NIH HHS
  grantid: T32 GM065841
– fundername: NIGMS NIH HHS
  grantid: T32 GM145408
GroupedDBID ---
-~X
.55
.GJ
.VT
0R~
18M
23N
2WC
354
39C
3O-
4.4
40O
53G
5GY
5RE
5VS
6J9
7X7
7~S
88E
8FI
8FJ
8R4
8R5
AAHLL
AAKAS
AAOJX
AAWJN
ABAAH
ABJNI
ABKDF
ABMQD
ABTFR
ABUWG
ABVAJ
ACCCW
ACGFO
ACGFS
ACGTL
ACHTP
ACMFJ
ACNCT
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADZCM
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DU5
E3Z
EBS
EJD
F5P
FYUFA
H13
HAJ
HMCUK
HYE
HZ~
IAO
IEA
IHR
IOF
ITC
J5H
KQ8
L7B
M1P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
W8F
WH7
WOQ
X7M
XOL
YFH
YQY
ZGI
AAFWJ
AAYXX
ACQHZ
AERUA
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-b440t-fbcf781c1506c3958bee8e8ee3edc19b55cbdd48249311821be57d7c622407833
IEDL.DBID BENPR
ISSN 0007-1161
1468-2079
IngestDate Thu Aug 21 18:29:49 EDT 2025
Fri Sep 05 11:20:00 EDT 2025
Fri Jul 25 23:19:34 EDT 2025
Sat Jul 26 00:05:51 EDT 2025
Mon Jul 21 05:59:48 EDT 2025
Tue Jul 01 01:48:17 EDT 2025
Thu Apr 24 22:49:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords diagnostic tests/investigation
glaucoma
field of vision
Language English
License Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b440t-fbcf781c1506c3958bee8e8ee3edc19b55cbdd48249311821be57d7c622407833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Study conception and design: CLK; data collection: SJD, MSS; analysis and interpretation of results: AG, SJD, MSS, CLK; draft manuscript preparation: AG; Manuscript editing and review: CLK, SJD, MSS, AG. All authors reviewed the results and approved the final version of the manuscript.
Contributions
ORCID 0000-0002-3735-4297
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10209349
PMID 36428007
PQID 2740162822
PQPubID 2041039
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10209349
proquest_miscellaneous_2740514738
proquest_journals_2902866712
proquest_journals_2740162822
pubmed_primary_36428007
crossref_primary_10_1136_bjo_2022_321651
bmj_journals_10_1136_bjo_2022_321651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace BMA House, Tavistock Square, London, WC1H 9JR
PublicationPlace_xml – name: BMA House, Tavistock Square, London, WC1H 9JR
– name: England
– name: London
PublicationTitle British journal of ophthalmology
PublicationTitleAbbrev Br J Ophthalmol
PublicationTitleAlternate Br J Ophthalmol
PublicationYear 2024
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
References Subhi, Latham, Myint (R20) 2017; 7
Subhi, Latham, Myint (R21) 2017; 37
Mandal, Saxena, Dhiman (R37) 2021; 105
Shukla, De Moraes, Cioffi (R7) 2020; 29
Young, Stewart, Hunt (R18) 1990; 228
Henson, Chaudry, Artes (R31) 2000; 41
Varma, Vajaranant, Burkemper (R3) 2016; 134
Odden, Mihailovic, Boland (R17) 2016; 57
Yamazaki, Sugisaki, Araie (R14) 2019; 9
Maguire, Liu, Glassman (R34) 2020; 138
Lombardi, Zenouda, Azoulay-Sebban (R22) 2018; 27
Wu, Medeiros, Weinreb (R13) 2019; 2
(R2) 2021; 9
Choi, Li, Fan (R27) 2021; 4
Garg, De Moraes, Cioffi (R6) 2018; 187
Hood, De Moraes (R4) 2018; 59
Jiang, Ye, Zhang (R9) 2021; 11
Sugisaki, Asaoka, Inoue (R8) 2020; 104
Rucker, Hamilton, Bardenstein (R36) 2006; 66
Berbar (R33) 2022; 10
Abu, Marín-Franch, Racette (R10) 2021; 30
Nouri-Mahdavi, Mohammadzadeh, Rabiolo (R25) 2021; 226
Garmany, Yamada, Terzic (R1) 2021; 6
Rutkowski, May (R11) 2017; 17
Berezina, Khouri, Kolomeyer (R16) 2011; 21
Xiong, Li, Song (R26) 2022; 129
Yousefi, Elze, Pasquale (R24) 2020; 127
Dixit, Yohannan, Boland (R23) 2021; 128
Russell, Crabb, Malik (R32) 2012; 53
Freeman, Muñoz, Rubin (R15) 2007; 48
Sherman, Slotnick, Boneta (R19) 2009; 80
Akçakaya, Gökçeer, Erbil (R35) 2010; 20
2023121908200648000_108.1.112.19
2023121908200648000_108.1.112.18
2023121908200648000_108.1.112.15
2023121908200648000_108.1.112.37
2023121908200648000_108.1.112.14
Xiong (2023121908200648000_108.1.112.26) 2022; 129
2023121908200648000_108.1.112.36
2023121908200648000_108.1.112.17
2023121908200648000_108.1.112.16
2023121908200648000_108.1.112.11
2023121908200648000_108.1.112.33
2023121908200648000_108.1.112.10
2023121908200648000_108.1.112.32
2023121908200648000_108.1.112.35
2023121908200648000_108.1.112.12
Henson (2023121908200648000_108.1.112.31) 2000; 41
2023121908200648000_108.1.112.30
2023121908200648000_108.1.112.9
Choi (2023121908200648000_108.1.112.27) 2021; 4
2023121908200648000_108.1.112.7
2023121908200648000_108.1.112.8
2023121908200648000_108.1.112.5
2023121908200648000_108.1.112.6
Garmany (2023121908200648000_108.1.112.1) 2021; 6
2023121908200648000_108.1.112.29
2023121908200648000_108.1.112.25
2023121908200648000_108.1.112.28
Varma (2023121908200648000_108.1.112.3) 2016; 134
2023121908200648000_108.1.112.22
2023121908200648000_108.1.112.4
2023121908200648000_108.1.112.21
2023121908200648000_108.1.112.24
2023121908200648000_108.1.112.23
2023121908200648000_108.1.112.20
(2023121908200648000_108.1.112.2) 2021; 9
Maguire (2023121908200648000_108.1.112.34) 2020; 138
Wu (2023121908200648000_108.1.112.13) 2019; 2
References_xml – volume: 2
  start-page: 95
  year: 2019
  ident: R13
  article-title: Comparing 10-2 and 24-2 visual fields for detecting progressive central visual loss in glaucoma eyes with early central abnormalities
  publication-title: Ophthalmol Glaucoma
  doi: 10.1016/j.ogla.2019.01.003
– volume: 9
  year: 2019
  ident: R14
  article-title: Relationship between Vision-Related quality of life and central 10° of the binocular integrated visual field in advanced glaucoma
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-50677-0
– volume: 37
  start-page: 399
  year: 2017
  ident: R21
  article-title: Functional visual fields: relationship of visual field areas to self-reported function
  publication-title: Ophthalmic Physiol Opt
  doi: 10.1111/opo.12362
– volume: 6
  start-page: 57
  year: 2021
  ident: R1
  article-title: Longevity leap: mind the healthspan gap
  publication-title: NPJ Regen Med
  doi: 10.1038/s41536-021-00169-5
– volume: 57
  start-page: 2797
  year: 2016
  ident: R17
  article-title: Evaluation of central and peripheral visual field concordance in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-19053
– volume: 138
  start-page: 285
  year: 2020
  ident: R34
  article-title: Visual field changes over 5 years in patients treated with Panretinal photocoagulation or ranibizumab for proliferative diabetic retinopathy
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2019.5939
– volume: 17
  year: 2017
  ident: R11
  article-title: The peripheral and Central Humphrey visual field - morphological changes during aging
  publication-title: BMC Ophthalmol
  doi: 10.1186/s12886-017-0522-3
– volume: 127
  start-page: 1170
  year: 2020
  ident: R24
  article-title: Monitoring glaucomatous functional loss using an artificial Intelligence-Enabled Dashboard
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.03.008
– volume: 134
  start-page: 802
  year: 2016
  ident: R3
  article-title: Visual impairment and blindness in adults in the United States: demographic and geographic variations from 2015 to 2050
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2016.1284
– volume: 21
  start-page: 415
  year: 2011
  ident: R16
  article-title: Peripheral visual field thresholds using Humphrey field analyzer program 60-4 in normal eyes
  publication-title: Eur J Ophthalmol
  doi: 10.5301/EJO.2011.6299
– volume: 27
  start-page: 1017
  year: 2018
  ident: R22
  article-title: Correlation between visual function and performance of simulated daily living activities in glaucomatous patients
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0000000000001066
– volume: 128
  start-page: 1016
  year: 2021
  ident: R23
  article-title: Assessing glaucoma progression using machine learning trained on longitudinal visual field and clinical data
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.12.020
– volume: 11
  year: 2021
  ident: R9
  article-title: Intraocular asymmetry of visual field defects in primary angle-closure glaucoma, high-tension glaucoma, and normal-tension glaucoma in a Chinese population
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-91173-8
– volume: 80
  start-page: 487
  year: 2009
  ident: R19
  article-title: Discordance between structure and function in glaucoma: possible anatomical explanations
  publication-title: Optometry
  doi: 10.1016/j.optm.2008.12.011
– volume: 66
  start-page: 595
  year: 2006
  ident: R36
  article-title: Linezolid-associated toxic optic neuropathy
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000201313.24970.b8
– volume: 129
  year: 2022
  ident: R26
  article-title: Multimodal machine learning using visual fields and peripapillary circular OCT scans in detection of glaucomatous optic neuropathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.07.032
– volume: 105
  start-page: 1024
  year: 2021
  ident: R37
  article-title: Prospective study to evaluate incidence and indicators for early detection of ethambutol toxicity
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2020-316897
– volume: 187
  start-page: 92
  year: 2018
  ident: R6
  article-title: Baseline 24-2 central visual field damage is predictive of global progressive field loss
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2018.01.001
– volume: 4
  start-page: 390
  year: 2021
  ident: R27
  article-title: Predicting global test-retest variability of visual fields in glaucoma
  publication-title: Ophthalmol Glaucoma
  doi: 10.1016/j.ogla.2020.12.001
– volume: 226
  start-page: 172
  year: 2021
  ident: R25
  article-title: Prediction of visual field progression from OCT structural measures in moderate to advanced glaucoma
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2021.01.023
– volume: 20
  start-page: 763
  year: 2010
  ident: R35
  article-title: Detecting retinal vigabatrin toxicity in patients with partial symptomatic or cryptogenic epilepsy
  publication-title: Eur J Ophthalmol
  doi: 10.1177/112067211002000419
– volume: 7
  year: 2017
  ident: R20
  article-title: Functional visual fields: a cross-sectional UK study to determine which visual field paradigms best reflect difficulty with mobility function
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-018831
– volume: 29
  start-page: 435
  year: 2020
  ident: R7
  article-title: The relationship between intraocular pressure and rates of central versus peripheral visual field progression
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0000000000001494
– volume: 228
  start-page: 454
  year: 1990
  ident: R18
  article-title: Static threshold variability in the peripheral visual field in normal subjects
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/BF00927261
– volume: 48
  start-page: 4445
  year: 2007
  ident: R15
  article-title: Visual field loss increases the risk of falls in older adults: the Salisbury eye evaluation
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.07-0326
– volume: 10
  start-page: 14
  year: 2022
  ident: R33
  article-title: Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-022-00181-z
– volume: 104
  start-page: 642
  year: 2020
  ident: R8
  article-title: Predicting Humphrey 10-2 visual field from 24-2 visual field in eyes with advanced glaucoma
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2019-314170
– volume: 59
  start-page: 788
  year: 2018
  ident: R4
  article-title: Challenges to the common clinical paradigm for diagnosis of glaucomatous damage with OCT and visual fields
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-23713
– volume: 9
  start-page: e144
  year: 2021
  ident: R2
  article-title: Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision 2020: the right to sight: an analysis for the global burden of disease study
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(20)30489-7
– volume: 41
  start-page: 417
  year: 2000
  ident: R31
  article-title: Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes
  publication-title: Invest Ophthalmol Vis Sci
– volume: 30
  start-page: 769
  year: 2021
  ident: R10
  article-title: Detecting progression in patients with different clinical presentations of primary open-angle glaucoma
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0000000000001843
– volume: 53
  start-page: 5985
  year: 2012
  ident: R32
  article-title: The relationship between variability and sensitivity in large-scale longitudinal visual field data
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-10428
– ident: 2023121908200648000_108.1.112.35
  doi: 10.1177/112067211002000419
– ident: 2023121908200648000_108.1.112.17
  doi: 10.1167/iovs.15-19053
– volume: 2
  start-page: 95
  year: 2019
  ident: 2023121908200648000_108.1.112.13
  article-title: Comparing 10-2 and 24-2 visual fields for detecting progressive central visual loss in glaucoma eyes with early central abnormalities
  publication-title: Ophthalmol Glaucoma
  doi: 10.1016/j.ogla.2019.01.003
– ident: 2023121908200648000_108.1.112.22
  doi: 10.1097/IJG.0000000000001066
– ident: 2023121908200648000_108.1.112.5
  doi: 10.3310/hsdr02270
– volume: 9
  start-page: e144
  year: 2021
  ident: 2023121908200648000_108.1.112.2
  article-title: Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision 2020: the right to sight: an analysis for the global burden of disease study
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(20)30489-7
– volume: 41
  start-page: 417
  year: 2000
  ident: 2023121908200648000_108.1.112.31
  article-title: Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes
  publication-title: Invest Ophthalmol Vis Sci
– ident: 2023121908200648000_108.1.112.12
– ident: 2023121908200648000_108.1.112.36
  doi: 10.1212/01.wnl.0000201313.24970.b8
– ident: 2023121908200648000_108.1.112.10
  doi: 10.1097/IJG.0000000000001843
– ident: 2023121908200648000_108.1.112.11
  doi: 10.1186/s12886-017-0522-3
– ident: 2023121908200648000_108.1.112.14
  doi: 10.1038/s41598-019-50677-0
– ident: 2023121908200648000_108.1.112.23
  doi: 10.1016/j.ophtha.2020.12.020
– ident: 2023121908200648000_108.1.112.6
  doi: 10.1016/j.ajo.2018.01.001
– ident: 2023121908200648000_108.1.112.37
  doi: 10.1136/bjophthalmol-2020-316897
– ident: 2023121908200648000_108.1.112.18
  doi: 10.1007/BF00927261
– ident: 2023121908200648000_108.1.112.15
  doi: 10.1167/iovs.07-0326
– ident: 2023121908200648000_108.1.112.7
  doi: 10.1097/IJG.0000000000001494
– ident: 2023121908200648000_108.1.112.29
– ident: 2023121908200648000_108.1.112.32
  doi: 10.1167/iovs.12-10428
– ident: 2023121908200648000_108.1.112.28
  doi: 10.1007/978-3-030-01264-9_33
– ident: 2023121908200648000_108.1.112.24
  doi: 10.1016/j.ophtha.2020.03.008
– volume: 138
  start-page: 285
  year: 2020
  ident: 2023121908200648000_108.1.112.34
  article-title: Visual field changes over 5 years in patients treated with Panretinal photocoagulation or ranibizumab for proliferative diabetic retinopathy
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2019.5939
– ident: 2023121908200648000_108.1.112.19
  doi: 10.1016/j.optm.2008.12.011
– ident: 2023121908200648000_108.1.112.20
  doi: 10.1136/bmjopen-2017-018831
– ident: 2023121908200648000_108.1.112.30
– ident: 2023121908200648000_108.1.112.9
  doi: 10.1038/s41598-021-91173-8
– ident: 2023121908200648000_108.1.112.33
  doi: 10.1007/s13755-022-00181-z
– ident: 2023121908200648000_108.1.112.25
  doi: 10.1016/j.ajo.2021.01.023
– volume: 6
  start-page: 57
  year: 2021
  ident: 2023121908200648000_108.1.112.1
  article-title: Longevity leap: mind the healthspan gap
  publication-title: NPJ Regen Med
  doi: 10.1038/s41536-021-00169-5
– ident: 2023121908200648000_108.1.112.21
  doi: 10.1111/opo.12362
– volume: 134
  start-page: 802
  year: 2016
  ident: 2023121908200648000_108.1.112.3
  article-title: Visual impairment and blindness in adults in the United States: demographic and geographic variations from 2015 to 2050
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2016.1284
– ident: 2023121908200648000_108.1.112.4
  doi: 10.1167/iovs.17-23713
– ident: 2023121908200648000_108.1.112.16
  doi: 10.5301/EJO.2011.6299
– volume: 129
  year: 2022
  ident: 2023121908200648000_108.1.112.26
  article-title: Multimodal machine learning using visual fields and peripapillary circular OCT scans in detection of glaucomatous optic neuropathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.07.032
– ident: 2023121908200648000_108.1.112.8
  doi: 10.1136/bjophthalmol-2019-314170
– volume: 4
  start-page: 390
  year: 2021
  ident: 2023121908200648000_108.1.112.27
  article-title: Predicting global test-retest variability of visual fields in glaucoma
  publication-title: Ophthalmol Glaucoma
  doi: 10.1016/j.ogla.2020.12.001
SSID ssj0002617
Score 2.4418697
Snippet BackgroundDespite, the potential clinical utility of 60–4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact...
Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial...
The effect of facial contour on 60–4 visual field defects has not been elucidated. In this study, a convolution neural network-augmented platform allowed for...
SourceID pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 112
SubjectTerms 3-D graphics
Artificial Intelligence
Defects
diagnostic tests/investigation
Eyes & eyesight
Face
field of vision
Field study
Glaucoma
Humans
Intraocular Pressure
Medical diagnosis
Neural networks
Ophthalmology
Pilot Projects
Predictive Value of Tests
Retina
Sensitivity and Specificity
Three dimensional imaging
Tomography, Optical Coherence
Toxicity
Vision Disorders - diagnosis
Visual Field Tests - methods
Visual Fields
Title Predicting 60–4 visual field tests using 3D facial reconstruction
URI https://bjo.bmj.com/content/108/1/112.full
https://www.ncbi.nlm.nih.gov/pubmed/36428007
https://www.proquest.com/docview/2740162822
https://www.proquest.com/docview/2902866712
https://www.proquest.com/docview/2740514738
https://pubmed.ncbi.nlm.nih.gov/PMC10209349
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB6xWwlxqSi_gbYyUg9crK7j35wQlFYVUqsKUWlvUew40ErNlu6WM-_AG_ZJOpN4A0spyiWSHcsZjyffjCffAOyIoLRqrOC5Fw1XUTvuQhS8ViaYSbC5KegH56Njc3iqPk31NAXc5imtcmkTO0NdzwLFyHdzohkxxor83eV3TlWj6HQ1ldAYwRqaYKfHsPZh__jk82CLiW-8B8CWCwQ3idxHSLPrz2eoIpTLngtD55Qjf3G--nW6Azn_zpz841N08BjWE4Zk7_tF34AHsX0CD4_SKflT2Du5ontKaGZmcvPzl2I_zubX-EiXr8YQXS7mjDLevzL5kTUVhc1Z5xoPdLLP4PRg_8veIU_FErhXarLgjQ-NdSIQY2CQhXY-RodXlDhbUXitg69r5dDdkuRUCB-1rW0wnU_npHwO43bWxpfA6qCdqfJKExe-rWWBKJA2eyiMrqvCZrCDoiqTss_Lzo-QpkSJliTRspdoBm-Xsiwve-qM-7tuLmX9e9icigUaSnP9d_OgEBm8GZpxc9CJR9XG2XU_BCJCK10GL_qVG6YiyfNCvcjArazp0IGIt1db2rNvHQE3grJJIVXx6v_zeg2P8B1VH7DZhDGuYNxCCLPw2zCyU7udtPUWP5ntsg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiHdDCxipSFyiruNnDghBH9rS7qpCrdRbiB2HthLZwm6LuPEf-B_8KH4JM3nB8rpVuUSyYznj8fib8fgzwBr3UsnS8DhxvIxlUDa2PvC4kNrrgTeJTumA82ish4fy9ZE6WoBv3VkYSqvsbGJtqIuJpxj5ekI0I1obnrw4-xDTrVG0u9pdodGoxW74_AldtunznU0c36dJsr11sDGM21sFYiflYBaXzpfGck_Uel6kyroQLD5BhMLz1CnlXVFIi36JIPTNXVCmMF7Xzo-lACia_CWEGSnOoqVXW-P9N73tJ37zBnCbmCOYasmEuNDr7nSCKkm58wnXtC96xb0_nV8N_4C4v2dq_rL0bd-EGy1mZS8bJbsFC6G6DVdH7a78HdjY_0jvlEDN9OD7l6-SXZxMz_GTOj-OIZqdTRll2L9jYpOVOYXpWe2K9_S1d-HwUsR4DxarSRWWgRVeWZ0nuSLufVOIFFEnGRefalXkqYlgDUWVtZNrmtV-i9AZSjQjiWaNRCN41skyO2uoOv5ddbWT9c9mE7qcUFNa7d-LewWM4ElfjJORdljyKkzOmyYQgRphI7jfjFzfFUGeHupFBHZuTPsKRPQ9X1KdHNeE3wgCB6mQ6YP_9-sxXBsejPayvZ3x7gpcx_-VTbBoFRZxNMNDhE8z96jVWQZvL3ua_ACdrCml
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJFDBSkbhEu46fOSAE3a5aSlcrRKXeQuw40EpkC7sFceM_8G_4OfwSZvKC5XWrcolkx3JmxvY39vgbgC3upZKl4XHieBnLoGxsfeBxIbXXI28SndIF54Op3j2Uz4_U0Rp86-7CUFhlNyfWE3Ux97RHPkyIZkRrw5Nh2YZFzMaTJ6fvY8ogRSetXTqNxkT2w-dP6L4tHu-NUdcPk2Sy82p7N24zDMROytEyLp0vjeWeaPa8SJV1IVh8ggiF56lTyruikBZ9FEFInLugTGG8rh0hS5uhOP2vG1wV7QDWn-1MZy_7dYC4zhvwbWKOwKolFuJCD93JHM2T4ugTrumM9IJ7d7K6Mv4Bd3-P2vxlGZxchkstfmVPG4O7AmuhugobB-0J_TXYnn2gdwqmZnr0_ctXyT4eL87wkzpWjiGyXS4YRdu_YWLMypy27FntlvdUttfh8FzEeAMG1bwKt4AVXlmdJ7kiHn5TiBQRKE00PtWqyFMTwRaKKmsH2iKrfRihM5RoRhLNGolG8KiTZXba0Hb8u-pmJ-ufzSaUqFBTiO3fi3tjjOBBX4wDk05b8irMz5omEI0aYSO42Wiu74ogrw_tIgK7otO-ApF-r5ZUx29r8m8EhKNUyPT2__t1HzZweGQv9qb7d-Ai_q5s9o02YYDKDHcRSS3dvdZkGbw-71HyA2pnLdE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+60%E2%80%934+visual+field+tests+using+3D+facial+reconstruction&rft.jtitle=British+journal+of+ophthalmology&rft.au=Jamali+Dogahe%2C+Sepideh&rft.au=Garmany%2C+Armin&rft.au=Sadegh+Mousavi%2C+Seyedmostafa&rft.au=Khanna%2C+Cheryl+L&rft.date=2024-01-01&rft.pub=BMJ+Publishing+Group+Ltd&rft.issn=0007-1161&rft.eissn=1468-2079&rft.volume=108&rft.issue=1&rft.spage=112&rft.epage=116&rft_id=info:doi/10.1136%2Fbjo-2022-321651&rft_id=info%3Apmid%2F36428007&rft.externalDBID=bjo&rft.externalDocID=bjophthalmol
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon