Gut microbiota and diet in patients with different glucose tolerance

Type 2 diabetes (T2D) is a serious disease. The gut microbiota (GM) has recently been identified as a new potential risk factor in addition to well-known diabetes risk factors. To investigate the GM composition in association with the dietary patterns in patients with different glucose tolerance, we...

Full description

Saved in:
Bibliographic Details
Published inEndocrine Connections Vol. 5; no. 1; pp. 1 - 9
Main Authors Egshatyan, Lilit, Kashtanova, Daria, Popenko, Anna, Tkacheva, Olga, Tyakht, Alexander, Alexeev, Dmitry, Karamnova, Natalia, Kostryukova, Elena, Babenko, Vladislav, Vakhitova, Maria, Boytsov, Sergey
Format Journal Article
LanguageEnglish
Published England Bioscientifica Ltd 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Type 2 diabetes (T2D) is a serious disease. The gut microbiota (GM) has recently been identified as a new potential risk factor in addition to well-known diabetes risk factors. To investigate the GM composition in association with the dietary patterns in patients with different glucose tolerance, we analyzed 92 patients: with normal glucose tolerance (n=48), prediabetes (preD, n=24), and T2D (n=20). Metagenomic analysis was performed using 16S rRNA sequencing. The diet has been studied by a frequency method with a quantitative evaluation of food intake using a computer program. Microbiota in the samples was predominantly represented by Firmicutes, in a less degree by Bacteroidetes. Blautia was a dominant genus in all samples. The representation of Blautia, Serratia was lower in preD than in T2D patients, and even lower in those with normal glucose tolerance. After the clustering of the samples into groups according to the percentage of protein, fat, carbohydrates in the diet, the representation of the Bacteroides turned to be lower and Prevotella abundance turned to be higher in carbohydrate cluster. There were more patients with insulin resistance, T2D in the fat–protein cluster. Using the Calinski–Harabasz index identified the samples with more similar diets. It was discovered that half of the patients with a high-fat diet had normal tolerance, the others had T2D. The regression analysis showed that these T2D patients also had a higher representation of Blautia. Our study provides the further evidence concerning the structural modulation of the GM in the T2DM pathogenesis depending on the dietary patterns.
AbstractList Type 2 diabetes (T2D) is a serious disease. The gut microbiota (GM) has recently been identified as a new potential risk factor in addition to well-known diabetes risk factors. To investigate the GM composition in association with the dietary patterns in patients with different glucose tolerance, we analyzed 92 patients: with normal glucose tolerance ( n =48), prediabetes (preD, n =24), and T2D ( n =20). Metagenomic analysis was performed using 16S rRNA sequencing. The diet has been studied by a frequency method with a quantitative evaluation of food intake using a computer program. Microbiota in the samples was predominantly represented by Firmicutes, in a less degree by Bacteroidetes. Blautia was a dominant genus in all samples. The representation of Blautia, Serratia was lower in preD than in T2D patients, and even lower in those with normal glucose tolerance. After the clustering of the samples into groups according to the percentage of protein, fat, carbohydrates in the diet, the representation of the Bacteroides turned to be lower and Prevotella abundance turned to be higher in carbohydrate cluster. There were more patients with insulin resistance, T2D in the fat–protein cluster. Using the Calinski–Harabasz index identified the samples with more similar diets. It was discovered that half of the patients with a high-fat diet had normal tolerance, the others had T2D. The regression analysis showed that these T2D patients also had a higher representation of Blautia. Our study provides the further evidence concerning the structural modulation of the GM in the T2DM pathogenesis depending on the dietary patterns.
Type 2 diabetes (T2D) is a serious disease. The gut microbiota (GM) has recently been identified as a new potential risk factor in addition to well-known diabetes risk factors. To investigate the GM composition in association with the dietary patterns in patients with different glucose tolerance, we analyzed 92 patients: with normal glucose tolerance (n=48), prediabetes (preD, n=24), and T2D (n=20). Metagenomic analysis was performed using 16S rRNA sequencing. The diet has been studied by a frequency method with a quantitative evaluation of food intake using a computer program. Microbiota in the samples was predominantly represented by Firmicutes, in a less degree by Bacteroidetes. Blautia was a dominant genus in all samples. The representation of Blautia, Serratia was lower in preD than in T2D patients, and even lower in those with normal glucose tolerance. After the clustering of the samples into groups according to the percentage of protein, fat, carbohydrates in the diet, the representation of the Bacteroides turned to be lower and Prevotella abundance turned to be higher in carbohydrate cluster. There were more patients with insulin resistance, T2D in the fat-protein cluster. Using the Calinski-Harabasz index identified the samples with more similar diets. It was discovered that half of the patients with a high-fat diet had normal tolerance, the others had T2D. The regression analysis showed that these T2D patients also had a higher representation of Blautia. Our study provides the further evidence concerning the structural modulation of the GM in the T2DM pathogenesis depending on the dietary patterns.
Author Kashtanova, Daria
Egshatyan, Lilit
Popenko, Anna
Alexeev, Dmitry
Karamnova, Natalia
Kostryukova, Elena
Tyakht, Alexander
Vakhitova, Maria
Tkacheva, Olga
Babenko, Vladislav
Boytsov, Sergey
AuthorAffiliation 3 The ‘Russian Clinical Research Center for Gerontology’ , 16, 1st Leonova Street, Moscow, RF 192226 , Russian Federation
5 Moscow Institute of Physics and Technology , Dolgoprudny, Institusky Lane, 9 Moscow, RF 141700 , Russian Federation
4 ‘Chronic noncommunicable Diseases Primary Prevention in the Healthcare System’ Department, National Research Centre for Preventive Medicine , bld. 10, Petroverigskiy Lane, Moscow
1 ‘Research of Age and Age-Associated Conditions’ Department, National Research Centre for Preventive Medicine , Building 10, Petroverigskiy Lane, Moscow, RF 101000 , Russian Federation
2 Laboratory of Bioinformatics, Scientific Research Institute for Physical-Chemical Medicine , Building 1a, Malaya Pirogovskaya street, Moscow, RF 119435 , Russian Federation
6 National Research Centre for Preventive Medicine , bld. 10, Petroverigskiy Lane, Moscow
AuthorAffiliation_xml – name: 3 The ‘Russian Clinical Research Center for Gerontology’ , 16, 1st Leonova Street, Moscow, RF 192226 , Russian Federation
– name: 2 Laboratory of Bioinformatics, Scientific Research Institute for Physical-Chemical Medicine , Building 1a, Malaya Pirogovskaya street, Moscow, RF 119435 , Russian Federation
– name: 6 National Research Centre for Preventive Medicine , bld. 10, Petroverigskiy Lane, Moscow
– name: 1 ‘Research of Age and Age-Associated Conditions’ Department, National Research Centre for Preventive Medicine , Building 10, Petroverigskiy Lane, Moscow, RF 101000 , Russian Federation
– name: 4 ‘Chronic noncommunicable Diseases Primary Prevention in the Healthcare System’ Department, National Research Centre for Preventive Medicine , bld. 10, Petroverigskiy Lane, Moscow
– name: 5 Moscow Institute of Physics and Technology , Dolgoprudny, Institusky Lane, 9 Moscow, RF 141700 , Russian Federation
Author_xml – sequence: 1
  givenname: Lilit
  surname: Egshatyan
  fullname: Egshatyan, Lilit
  email: lilit.egshatyan@yandex.ru
– sequence: 2
  givenname: Daria
  surname: Kashtanova
  fullname: Kashtanova, Daria
– sequence: 3
  givenname: Anna
  surname: Popenko
  fullname: Popenko, Anna
– sequence: 4
  givenname: Olga
  surname: Tkacheva
  fullname: Tkacheva, Olga
– sequence: 5
  givenname: Alexander
  surname: Tyakht
  fullname: Tyakht, Alexander
– sequence: 6
  givenname: Dmitry
  surname: Alexeev
  fullname: Alexeev, Dmitry
– sequence: 7
  givenname: Natalia
  surname: Karamnova
  fullname: Karamnova, Natalia
– sequence: 8
  givenname: Elena
  surname: Kostryukova
  fullname: Kostryukova, Elena
– sequence: 9
  givenname: Vladislav
  surname: Babenko
  fullname: Babenko, Vladislav
– sequence: 10
  givenname: Maria
  surname: Vakhitova
  fullname: Vakhitova, Maria
– sequence: 11
  givenname: Sergey
  surname: Boytsov
  fullname: Boytsov, Sergey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26555712$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtLwzAUDjJxc-7FHyB9FKGaa5u-CFLnFAa-6HNI03SLtM1sUsV_b8o2URHzcnKS73I43zEYtbbVAJwieIkYgVfzPEYshjCjB2CCIc1ikiA6-nYfg5lzLzAcjhJO4BEY44QxliI8AbeL3keNUZ0tjPUykm0ZlUb7yLTRRnqjW--id-PX4bWqdBf6aFX3yjodeVvrTrZKn4DDStZOz3Z1Cp7v5k_5fbx8XDzkN8u4oCjzYU6YEExZiUtMKccFg4pIBTMmCeWQc55BnhIWGkaUIgVOiyorVaoky3CSkim43upu-qLRpQrDdLIWm840svsQVhrx86c1a7Gyb4ImKU0wDwLnO4HOvvbaedEYp3Rdy1bb3gmU0ixBCGEaoGffvb5M9qsLALgFhN051-lKKOPDxuxgbWqBoBgCEvM8VDEEFCgXvyh71T_BO_0QjFNDEKYySv5H-QSrCJ6s
CitedBy_id crossref_primary_10_1017_S0007114519000680
crossref_primary_10_1016_j_clnu_2019_02_035
crossref_primary_10_1128_msystems_00172_22
crossref_primary_10_3390_nu11092089
crossref_primary_10_1177_1535370217743765
crossref_primary_10_1080_10408398_2016_1252712
crossref_primary_10_1128_MRA_00513_23
crossref_primary_10_1007_s40618_019_01022_9
crossref_primary_10_5582_bst_2021_01275
crossref_primary_10_1093_femsec_fiac133
crossref_primary_10_33667_2078_5631_2020_30_48_53
crossref_primary_10_69964_BMCC_2024_1_3_42_52
crossref_primary_10_3389_fcimb_2022_820367
crossref_primary_10_3389_fendo_2025_1520436
crossref_primary_10_1007_s00125_021_05464_w
crossref_primary_10_1038_s41586_020_2881_9
crossref_primary_10_1080_21645515_2018_1514354
crossref_primary_10_1017_gmb_2021_1
crossref_primary_10_1109_TCBB_2021_3082183
crossref_primary_10_3390_nu15204369
crossref_primary_10_3390_plants9030383
crossref_primary_10_1007_s10517_017_3700_7
crossref_primary_10_3748_wjg_v26_i46_7338
crossref_primary_10_1016_j_bbadis_2018_09_032
crossref_primary_10_12677_ACM_2021_114244
crossref_primary_10_1371_journal_pone_0264215
crossref_primary_10_1016_j_artres_2017_02_007
crossref_primary_10_3390_biology10101027
crossref_primary_10_3390_life14081016
crossref_primary_10_3390_nu11122888
crossref_primary_10_1155_2020_4673250
crossref_primary_10_1080_13880209_2022_2056208
crossref_primary_10_1016_j_lfs_2022_121212
crossref_primary_10_17816_JOWD321748
crossref_primary_10_3389_fpubh_2020_553850
crossref_primary_10_1016_j_micres_2022_127291
crossref_primary_10_1016_j_psj_2023_102813
crossref_primary_10_1186_s13073_021_00851_9
crossref_primary_10_3389_fnut_2022_941969
crossref_primary_10_1016_j_ifset_2021_102896
crossref_primary_10_1128_mSystems_00109_20
crossref_primary_10_1016_j_envpol_2018_07_039
crossref_primary_10_3389_fcimb_2022_943427
crossref_primary_10_3389_fmicb_2022_900021
crossref_primary_10_1007_s42770_022_00686_5
crossref_primary_10_1007_s10123_023_00324_6
crossref_primary_10_1080_10408398_2020_1836605
crossref_primary_10_3389_fcimb_2019_00224
crossref_primary_10_3390_ijms24065369
crossref_primary_10_3390_nu15153360
crossref_primary_10_3389_fmicb_2023_1244179
crossref_primary_10_3390_nu14040813
crossref_primary_10_3390_nu15102277
crossref_primary_10_3390_ijms18122645
crossref_primary_10_3389_fendo_2024_1486793
crossref_primary_10_1038_s41598_024_60386_y
crossref_primary_10_3390_microorganisms7060176
crossref_primary_10_1038_s41598_021_98958_x
crossref_primary_10_1128_mSystems_00857_19
crossref_primary_10_1007_s12223_023_01119_y
crossref_primary_10_1371_journal_pone_0262618
crossref_primary_10_1016_j_biopha_2021_112094
crossref_primary_10_1016_j_foodres_2021_110124
crossref_primary_10_1016_j_mcp_2020_101570
crossref_primary_10_18632_aging_206103
crossref_primary_10_1016_j_lfs_2021_120060
crossref_primary_10_1155_2021_6674965
crossref_primary_10_1186_s40168_017_0332_0
crossref_primary_10_3389_fendo_2022_1060488
crossref_primary_10_1007_s11892_018_1057_6
crossref_primary_10_1016_j_ebiom_2019_11_051
crossref_primary_10_3390_biomedicines10020308
crossref_primary_10_1152_physiolgenomics_00110_2017
crossref_primary_10_4239_wjd_v16_i3_102277
crossref_primary_10_26442_00403660_2020_10_000778
crossref_primary_10_1017_gmb_2023_6
crossref_primary_10_1186_s41110_021_00153_5
crossref_primary_10_1016_j_metabol_2017_04_014
crossref_primary_10_12938_bmfh_2019_031
crossref_primary_10_22207_JPAM_15_1_29
crossref_primary_10_3390_life11010055
crossref_primary_10_1080_07315724_2019_1657515
crossref_primary_10_1007_s13668_020_00307_3
crossref_primary_10_3389_fcimb_2019_00101
crossref_primary_10_3390_microorganisms6040098
crossref_primary_10_1139_cjas_2022_0001
crossref_primary_10_26442_00403660_2019_11_000300
crossref_primary_10_1186_s12866_021_02207_0
crossref_primary_10_1007_s00592_023_02064_5
crossref_primary_10_3389_fnut_2017_00034
crossref_primary_10_3390_microorganisms11071749
crossref_primary_10_3390_healthcare10050921
crossref_primary_10_1016_j_biopha_2024_117710
crossref_primary_10_3390_nu10050576
crossref_primary_10_1016_j_tem_2017_05_001
crossref_primary_10_21508_1027_4065_2021_66_1_31_38
crossref_primary_10_3390_medicina58010009
crossref_primary_10_1002_oby_23127
crossref_primary_10_1080_19490976_2021_1902705
crossref_primary_10_3389_fmicb_2021_680622
crossref_primary_10_26442_20751753_2021_12_201289
crossref_primary_10_3390_nu16142300
crossref_primary_10_1016_j_fct_2017_11_001
crossref_primary_10_1038_s41586_019_1236_x
crossref_primary_10_1186_s12902_022_01155_8
crossref_primary_10_3389_fnins_2019_01184
crossref_primary_10_1186_s12944_019_1167_4
crossref_primary_10_3389_fmed_2020_00538
crossref_primary_10_3389_fphar_2021_647529
crossref_primary_10_1007_s00253_019_09786_z
crossref_primary_10_1038_s41598_018_30735_9
crossref_primary_10_1039_D0FO00428F
crossref_primary_10_1080_14712598_2024_2409880
crossref_primary_10_29219_fnr_v65_5781
crossref_primary_10_2217_fmb_2016_0130
crossref_primary_10_7717_peerj_8481
crossref_primary_10_2147_DMSO_S447784
crossref_primary_10_3945_jn_116_235358
crossref_primary_10_1371_journal_pone_0172086
crossref_primary_10_1186_s40168_018_0472_x
crossref_primary_10_1249_MSS_0000000000002112
crossref_primary_10_1210_jc_2017_02153
crossref_primary_10_1210_clinem_dgz263
crossref_primary_10_3390_nu10040438
crossref_primary_10_3390_jcm8040452
crossref_primary_10_3390_ph16050695
ContentType Journal Article
Copyright 2016 The authors
2015 The authors.
2016 The authors 2016
Copyright_xml – notice: 2016 The authors
– notice: 2015 The authors.
– notice: 2016 The authors 2016
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1530/EC-15-0094
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Gut microbiota and glucose metabolism
EISSN 2049-3614
EndPage 9
ExternalDocumentID PMC4674628
26555712
10_1530_EC_15_0094
Genre Journal Article
GroupedDBID 53G
5VS
AAFZV
ABLYK
ABSGY
ABSQV
ADBBV
ADRAZ
AIPOO
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
DIK
EBS
EE-
EJD
F9R
FRJ
GROUPED_DOAJ
GX1
HYE
INIJC
IPNFZ
KQ8
M48
M~E
OK1
RHF
RIG
RPM
TBS
AAKMT
AAYXX
CITATION
H13
PGMZT
NPM
7X8
5PM
ID FETCH-LOGICAL-b419t-15063245d2d24482b50c3ac095a348088890873534853cc3b27bf9dc7ca592673
IEDL.DBID M48
ISSN 2049-3614
IngestDate Thu Aug 21 17:29:11 EDT 2025
Fri Jul 11 12:18:56 EDT 2025
Thu Apr 03 06:53:50 EDT 2025
Tue Jul 01 02:04:24 EDT 2025
Thu Apr 24 23:01:58 EDT 2025
Sun Jan 07 07:18:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 16S rRNA
type 2 diabetes
insulin resistance
gut microbiota
impaired glucose metabolism
dietary patterns
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License.
2015 The authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b419t-15063245d2d24482b50c3ac095a348088890873534853cc3b27bf9dc7ca592673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1530/EC-15-0094
PMID 26555712
PQID 1749611124
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4674628
proquest_miscellaneous_1749611124
pubmed_primary_26555712
crossref_citationtrail_10_1530_EC_15_0094
crossref_primary_10_1530_EC_15_0094
bioscientifica_primary_10_1530_EC_15_0094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bristol
PublicationTitle Endocrine Connections
PublicationTitleAlternate Endocr Connect
PublicationYear 2016
Publisher Bioscientifica Ltd
Publisher_xml – name: Bioscientifica Ltd
SSID ssj0000816830
Score 2.3724916
Snippet Type 2 diabetes (T2D) is a serious disease. The gut microbiota (GM) has recently been identified as a new potential risk factor in addition to well-known...
SourceID pubmedcentral
proquest
pubmed
crossref
bioscientifica
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
Title Gut microbiota and diet in patients with different glucose tolerance
URI http://dx.doi.org/10.1530/EC-15-0094
https://www.ncbi.nlm.nih.gov/pubmed/26555712
https://www.proquest.com/docview/1749611124
https://pubmed.ncbi.nlm.nih.gov/PMC4674628
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58XBQUtb4frCiCh2iS7T5yEJHaB0I9WegtZDe7GKip2hT03zubbIutInhJCJlsyExmd2Yy-T6Ezg0h2hDJPJNI7tVlQD2hjfB85pvAaJUIaf937j6yTq_-0Kf9BTTh73QKHP2a2lk-qd774Orj7fMWHP6mZO8h_nWz4cEtbI_cIlqGFYlbB-26ML-ckS25BPEdOunsJatoTWYVbmTZnDO3QP2IOuebJ7-tRq0NtO7CSHxX2X0TLeh8C9XuckihXz7xBS4bO8uKeQ3dt8cFfskqxKUiwUme4jTTBc5y7GBVR9jWY_GELaXArpMdF8OBttQbehv1Ws2nRsdz5AmerAdR4VnkQAiWaBqmsIKLUFJfkURBRJWQuoC5RUS-4ITCASVKERlyaaJUcZXQKGSc7KClfJjrPYRTw01KpBGR1uDvRjIhTSAtFJhmkqt9dDmrwvi1QsqIbYYB6o6bDdjHVt0gO9FurBwKuSXDGPwqezaV_WvE04mRYnAN-70jyfVwPIoh2YoYzOUhyOxWRpuOEzJKKQ_CfcRnzDkVsLDbs2fy7LmE37b8LCwUB_946kO0AoGWK90coaXifayPIZgp5ElZBIBtux-clG_tF17Q9g8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+microbiota+and+diet+in+patients+with+different+glucose+tolerance&rft.jtitle=Endocrine+Connections&rft.au=Egshatyan%2C+Lilit&rft.au=Kashtanova%2C+Daria&rft.au=Popenko%2C+Anna&rft.au=Tkacheva%2C+Olga&rft.date=2016-01-01&rft.pub=Bioscientifica+Ltd&rft.eissn=2049-3614&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1530%2FEC-15-0094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-3614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-3614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-3614&client=summon