Machine learning in cardiovascular medicine: are we there yet?
Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learni...
Saved in:
Published in | Heart (British Cardiac Society) Vol. 104; no. 14; pp. 1156 - 1164 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Publishing Group Ltd and British Cardiovascular Society
01.07.2018
BMJ Publishing Group LTD |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. |
---|---|
AbstractList | Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine.Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine. |
Author | Sengupta, Partho P Dudley, Joel T Shameer, Khader Johnson, Kipp W Glicksberg, Benjamin S |
Author_xml | – sequence: 1 givenname: Khader surname: Shameer fullname: Shameer, Khader organization: Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA – sequence: 2 givenname: Kipp W surname: Johnson fullname: Johnson, Kipp W organization: Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York City, New York, USA – sequence: 3 givenname: Benjamin S surname: Glicksberg fullname: Glicksberg, Benjamin S organization: Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California, USA – sequence: 4 givenname: Joel T surname: Dudley fullname: Dudley, Joel T organization: Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York City, New York, USA – sequence: 5 givenname: Partho P surname: Sengupta fullname: Sengupta, Partho P organization: Division of Cardiology, West Virginia Heart and Vascular Institute, Morgantown, West Virginia, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29352006$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1P3DAQhq2KquzS_oOqisSFS8CO40m8BxBCfFSi4kKl3izHnnS9yjpgJ6D993i1y1biAD15ZD3PeMbvlOz53iMh3xk9ZozDyRx1GBa-ywvKqpwzxmT9iUxYCfX66s9eqrkQOVBe7ZNpjAtKaSlr-EL2C8lFQSlMyOkvbebOY9aldt75v5nzmdHBuv5JRzN2OmRLtM4kZpbpgNkzZsMcU7HC4ewr-dzqLuK37XlAfl9d3l_c5Ld31z8vzm_zpmQw5AaoLYBJXllArgGEqA2XTasRGyM4SqhtS3ljwVS2qUtAy2XbYtlaYQvDD8jRpu9D6B9HjINaumiw67THfowq7S6FBKiKhB6-QRf9GHyaThUUqooKXtNE_dhSY5P2Uw_BLXVYqdefSUC5AUzoYwzY7hBG1ToA9RqAWgegNgEkbfZGM27Qg-v9ELTrPpJPNnKzXPzvc_SfsdvzXeUFePGsBg |
CitedBy_id | crossref_primary_10_1186_s12911_023_02169_5 crossref_primary_10_1038_s41598_020_77243_3 crossref_primary_10_46604_peti_2021_7217 crossref_primary_10_1007_s13167_019_00188_9 crossref_primary_10_7197_cmj_vi_742161 crossref_primary_10_1016_S0140_6736_23_02754_X crossref_primary_10_1053_j_semtcvs_2020_10_007 crossref_primary_10_1053_j_ackd_2021_03_002 crossref_primary_10_1097_IIO_0000000000000298 crossref_primary_10_1007_s00146_018_0834_8 crossref_primary_10_1039_D1MO00411E crossref_primary_10_1080_23744731_2022_2067466 crossref_primary_10_1186_s12933_019_0879_0 crossref_primary_10_26634_jds_2_1_20811 crossref_primary_10_1016_j_jtcvs_2020_06_131 crossref_primary_10_3390_jcm10235518 crossref_primary_10_4103_jispcd_JISPCD_4_22 crossref_primary_10_3390_ijerph20105775 crossref_primary_10_1093_hmg_ddy114 crossref_primary_10_1109_LSENS_2024_3425760 crossref_primary_10_1007_s42058_022_00091_9 crossref_primary_10_1016_j_jocs_2020_101211 crossref_primary_10_2196_12422 crossref_primary_10_3390_diagnostics14131431 crossref_primary_10_36660_abc_20230274 crossref_primary_10_3390_jcdd11120395 crossref_primary_10_1186_s40360_022_00588_0 crossref_primary_10_30699_jambs_31_146_210 crossref_primary_10_1016_j_cjca_2021_11_009 crossref_primary_10_3389_fcvm_2022_990788 crossref_primary_10_1007_s12553_020_00438_1 crossref_primary_10_1093_ehjdh_ztab054 crossref_primary_10_1016_j_jtcvs_2018_03_075 crossref_primary_10_1016_j_medin_2020_04_003 crossref_primary_10_3389_fcvm_2021_797002 crossref_primary_10_2196_48290 crossref_primary_10_1007_s11548_021_02468_0 crossref_primary_10_1007_s11936_020_0805_5 crossref_primary_10_12677_ACM_2022_1281157 crossref_primary_10_4103_hm_HM_D_23_00036 crossref_primary_10_1016_j_cmpb_2021_106190 crossref_primary_10_3390_medicina57090956 crossref_primary_10_1136_bmjopen_2018_024605 crossref_primary_10_1016_j_jacc_2018_03_521 crossref_primary_10_1093_eurheartj_ehac758 crossref_primary_10_1007_s00521_023_08333_2 crossref_primary_10_3389_fams_2020_00034 crossref_primary_10_1093_eurheartj_ehz158 crossref_primary_10_1007_s11883_019_0771_0 crossref_primary_10_1016_j_jacc_2020_11_030 crossref_primary_10_1093_icb_icab068 crossref_primary_10_1080_14789450_2021_1962303 crossref_primary_10_32628_IJSRST20748 crossref_primary_10_1007_s12639_020_01262_0 crossref_primary_10_1038_s41746_021_00468_7 crossref_primary_10_1016_j_cjca_2021_03_003 crossref_primary_10_1177_21925682211008424 crossref_primary_10_1530_ERP_18_0056 crossref_primary_10_1007_s40119_022_00273_7 crossref_primary_10_1016_j_ijinfomgt_2019_05_003 crossref_primary_10_1002_ehf2_13073 crossref_primary_10_1007_s00521_025_11070_3 crossref_primary_10_3390_diagnostics12040795 crossref_primary_10_1016_j_ijmedinf_2020_104326 crossref_primary_10_1016_j_cjca_2022_02_008 crossref_primary_10_1016_j_metabol_2022_155179 crossref_primary_10_1007_s40778_022_00216_x crossref_primary_10_1007_s11831_023_09892_2 crossref_primary_10_32604_cmc_2023_041031 crossref_primary_10_3389_fcvm_2022_873582 crossref_primary_10_1038_s41569_023_00900_3 crossref_primary_10_1016_j_imu_2022_101103 crossref_primary_10_1126_sciadv_aau6792 crossref_primary_10_3390_math7111051 crossref_primary_10_1007_s11760_024_03060_0 crossref_primary_10_1515_bams_2020_0069 crossref_primary_10_1007_s12170_023_00723_4 crossref_primary_10_3390_ijerph18063187 crossref_primary_10_4258_hir_2024_30_1_73 crossref_primary_10_4330_wjc_v15_i3_95 crossref_primary_10_1038_s41598_023_43943_9 crossref_primary_10_1097_ACO_0000000000000730 crossref_primary_10_1111_jce_14936 crossref_primary_10_1007_s11831_023_09915_y crossref_primary_10_3233_JAD_221002 crossref_primary_10_3390_jcm8111834 crossref_primary_10_4103_apc_APC_55_19 crossref_primary_10_1016_j_jcmg_2019_06_009 crossref_primary_10_3389_fimmu_2022_985863 crossref_primary_10_3389_fmicb_2019_02120 crossref_primary_10_1016_j_ipha_2024_12_003 crossref_primary_10_1016_j_vgie_2020_08_013 crossref_primary_10_1016_j_procs_2022_07_030 crossref_primary_10_1111_tbed_13902 crossref_primary_10_1136_bjophthalmol_2020_318609 crossref_primary_10_1016_j_cardfail_2018_04_003 crossref_primary_10_1016_j_ijcard_2024_132167 crossref_primary_10_1093_bib_bbz059 crossref_primary_10_1007_s11886_020_01329_7 crossref_primary_10_1371_journal_pone_0291451 crossref_primary_10_3934_aci_2022002 crossref_primary_10_1016_j_jhin_2022_01_002 crossref_primary_10_1161_CIRCHEARTFAILURE_123_011306 crossref_primary_10_1161_CIRCOUTCOMES_119_006021 crossref_primary_10_3390_electronics11234015 crossref_primary_10_3390_life13041029 crossref_primary_10_1007_s00392_020_01691_0 crossref_primary_10_1098_rsif_2020_0267 crossref_primary_10_1007_s12170_020_00649_1 crossref_primary_10_1093_cvr_cvab067 crossref_primary_10_3390_healthcare10010154 crossref_primary_10_1177_17407745221149222 crossref_primary_10_1530_ERP_18_0081 crossref_primary_10_4330_wjc_v13_i10_546 crossref_primary_10_3389_fmed_2019_00036 crossref_primary_10_1016_j_echo_2018_10_003 crossref_primary_10_1111_jonm_13769 crossref_primary_10_1038_s41746_022_00625_6 crossref_primary_10_7759_cureus_44374 crossref_primary_10_1007_s11886_021_01584_2 crossref_primary_10_1016_j_suscom_2023_100868 crossref_primary_10_1016_j_echo_2020_07_016 crossref_primary_10_1007_s00228_021_03213_x crossref_primary_10_1177_10760296231171082 crossref_primary_10_1016_j_smhl_2022_100285 crossref_primary_10_1016_j_ibmed_2022_100048 crossref_primary_10_3389_fcvm_2022_895917 crossref_primary_10_1016_j_mayocp_2023_05_006 crossref_primary_10_3346_jkms_2023_38_e395 crossref_primary_10_1136_heartjnl_2018_313303 crossref_primary_10_1109_JSEN_2020_3004239 crossref_primary_10_1016_j_socscimed_2022_114782 crossref_primary_10_1016_j_ijcard_2021_07_024 crossref_primary_10_1093_europace_euaa172 crossref_primary_10_15420_usc_2019_19_2 crossref_primary_10_3389_fbioe_2021_649866 crossref_primary_10_3389_fdata_2023_1270756 crossref_primary_10_3390_medsci12010003 crossref_primary_10_1097_TP_0000000000002923 crossref_primary_10_1002_med_21658 crossref_primary_10_3390_jcm14020324 crossref_primary_10_1016_j_micpro_2022_104748 crossref_primary_10_15420_icr_2020_04 crossref_primary_10_1007_s12410_019_9490_8 crossref_primary_10_1016_j_ijcard_2023_05_030 crossref_primary_10_3390_biomedicines12030568 crossref_primary_10_1016_j_inffus_2023_101813 crossref_primary_10_1016_j_spinee_2020_02_003 crossref_primary_10_4250_jcvi_2021_0039 crossref_primary_10_3389_fcvm_2021_675431 crossref_primary_10_1177_0046958021997338 crossref_primary_10_1016_j_health_2022_100132 crossref_primary_10_1093_eurheartj_ehaa159 crossref_primary_10_3389_fcvm_2020_00045 crossref_primary_10_1016_j_ijcard_2021_05_017 crossref_primary_10_1093_ehjdh_ztaa012 crossref_primary_10_1007_s12350_018_1284_x crossref_primary_10_1016_j_retram_2020_01_002 crossref_primary_10_1080_23808993_2018_1528871 crossref_primary_10_1016_j_egyai_2022_100170 crossref_primary_10_1177_24755303211000757 crossref_primary_10_1259_bjr_20180437 crossref_primary_10_31083_j_rcm2308256 crossref_primary_10_1016_j_jcin_2019_04_048 crossref_primary_10_1186_s42444_022_00062_2 crossref_primary_10_1016_j_clinmicnews_2019_06_004 crossref_primary_10_3390_diagnostics12102526 crossref_primary_10_38124_ijisrt_IJISRT24JUL1400 crossref_primary_10_1016_j_cpcardiol_2021_100847 crossref_primary_10_1016_j_jacadv_2024_101012 crossref_primary_10_2196_30483 crossref_primary_10_3390_s24175708 crossref_primary_10_2196_17620 crossref_primary_10_3389_fimmu_2021_669811 crossref_primary_10_1007_s12551_022_01040_7 crossref_primary_10_1007_s00395_023_00982_7 crossref_primary_10_1016_j_jcmg_2018_04_026 crossref_primary_10_1097_CRD_0000000000000294 crossref_primary_10_1016_j_cvdhj_2024_03_007 crossref_primary_10_1152_ajpheart_00241_2021 crossref_primary_10_1186_s12911_023_02242_z crossref_primary_10_1109_ACCESS_2024_3412789 crossref_primary_10_36548_rrrj_2024_1_005 crossref_primary_10_1016_j_reprotox_2019_07_005 crossref_primary_10_1093_bib_bbz119 crossref_primary_10_2139_ssrn_4102486 crossref_primary_10_1038_s41746_019_0122_0 crossref_primary_10_1097_IIO_0000000000000246 crossref_primary_10_3390_healthcare11162240 crossref_primary_10_1016_j_trci_2019_08_001 crossref_primary_10_3390_nu13020695 crossref_primary_10_1038_s41467_022_32222_2 crossref_primary_10_62486_agsalud202316 crossref_primary_10_1161_JAHA_119_012788 crossref_primary_10_1186_s43055_024_01356_2 crossref_primary_10_1007_s00392_023_02331_z crossref_primary_10_1007_s11936_019_0728_1 crossref_primary_10_1109_JTEHM_2022_3227204 crossref_primary_10_1016_j_ebiom_2019_05_007 crossref_primary_10_1155_2020_2836064 crossref_primary_10_2196_24388 crossref_primary_10_7759_cureus_39160 crossref_primary_10_1093_europace_euaa377 crossref_primary_10_18632_aging_204688 crossref_primary_10_1186_s12874_021_01487_4 crossref_primary_10_1097_CM9_0000000000001650 crossref_primary_10_1007_s10554_022_02738_1 crossref_primary_10_1016_j_jcin_2019_06_013 crossref_primary_10_1016_j_eswa_2023_120211 crossref_primary_10_1136_bmjopen_2020_041537 crossref_primary_10_1002_jcu_23215 crossref_primary_10_2196_39193 crossref_primary_10_1161_CIRCULATIONAHA_120_047571 crossref_primary_10_1016_j_survophthal_2018_09_002 crossref_primary_10_3389_fmed_2021_655686 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_1007_s12170_023_00731_4 crossref_primary_10_1016_j_jocd_2020_10_004 crossref_primary_10_1016_j_cjco_2020_12_019 crossref_primary_10_1109_ACCESS_2019_2941898 crossref_primary_10_1007_s44163_023_00049_5 crossref_primary_10_1080_08839514_2023_2175111 crossref_primary_10_3390_biomedicines10030639 crossref_primary_10_1007_s11886_020_01299_w crossref_primary_10_1007_s40572_020_00282_5 crossref_primary_10_1016_j_medine_2020_04_015 crossref_primary_10_1177_10760296231179438 crossref_primary_10_1016_j_echo_2021_01_019 crossref_primary_10_1177_1179546820927404 crossref_primary_10_32604_iasc_2022_019133 crossref_primary_10_1177_0003319719896475 crossref_primary_10_3390_life14010145 crossref_primary_10_1016_j_tcm_2021_02_002 crossref_primary_10_1016_j_ijcard_2022_02_009 crossref_primary_10_1016_j_cpcardiol_2025_102994 crossref_primary_10_3389_fgene_2022_868015 crossref_primary_10_21595_jmai_2024_24174 crossref_primary_10_1016_j_ijmedinf_2020_104274 crossref_primary_10_1007_s10554_021_02505_8 crossref_primary_10_1016_j_clinbiochem_2019_04_013 crossref_primary_10_31083_j_rcm2302045 crossref_primary_10_3389_fcvm_2022_839400 crossref_primary_10_1016_j_artd_2021_07_012 crossref_primary_10_1155_2020_4972346 crossref_primary_10_1136_heartjnl_2018_313377 crossref_primary_10_1016_j_avsg_2019_11_037 crossref_primary_10_12688_f1000research_19721_1 crossref_primary_10_3390_jcdd10020087 crossref_primary_10_1007_s11042_024_18953_y crossref_primary_10_1109_RBME_2018_2885714 crossref_primary_10_1002_ehf2_14479 crossref_primary_10_1186_s12911_021_01652_1 crossref_primary_10_1002_ejhf_1333 crossref_primary_10_1155_2020_4625218 crossref_primary_10_3390_app14083463 crossref_primary_10_36930_40340711 crossref_primary_10_1007_s10554_020_02083_1 crossref_primary_10_2217_pme_2019_0113 crossref_primary_10_4274_atfm_galenos_2023_48569 crossref_primary_10_1253_circrep_CR_22_0101 crossref_primary_10_1002_cnm_3325 crossref_primary_10_1007_s40119_024_00368_3 crossref_primary_10_3390_ijms22168954 crossref_primary_10_1016_j_imu_2022_101090 crossref_primary_10_3389_fphys_2021_798510 crossref_primary_10_1016_j_transproceed_2022_04_029 crossref_primary_10_1016_j_humgen_2024_201356 crossref_primary_10_1186_s12877_021_02392_7 crossref_primary_10_1016_j_resuscitation_2019_06_006 crossref_primary_10_3390_e26010067 crossref_primary_10_1186_s41231_019_0050_7 crossref_primary_10_3389_fcvm_2020_618849 crossref_primary_10_3904_kjim_2018_349 crossref_primary_10_1007_s12551_021_00815_8 crossref_primary_10_35940_ijrte_D6632_0511122 crossref_primary_10_1007_s40471_019_00209_1 crossref_primary_10_1016_j_jtcvs_2022_09_013 crossref_primary_10_1177_1074248420928651 |
Cites_doi | 10.1016/j.jacc.2017.01.062 10.1161/CIRCOUTCOMES.116.003039 10.2174/092986611796378729 10.1080/17434440.2017.1300057 10.1016/j.jacc.2016.05.092 10.1016/j.gpb.2016.03.006 10.1093/bib/bbv118 10.1093/bib/bbw136 10.1016/j.jacc.2016.08.062 10.1161/CIRCIMAGING.115.004330 10.1186/s12967-015-0709-4 10.1161/CIRCIMAGING.116.005059 10.4137/CMC.S18746 10.1016/j.jacc.2016.09.915 10.1093/bib/bbv084 10.1007/s00439-013-1355-7 10.1016/j.cmpb.2014.06.010 10.1126/science.aaa8415 10.1016/j.echo.2010.12.008 10.1093/eurheartj/eht571 10.1109/10.846677 10.1126/scitranslmed.aaa9364 10.1016/j.jacbts.2016.11.010 10.1136/bmj.i2416 10.1038/srep11817 10.1038/ng.2480 10.1093/jamia/ocw042 10.1016/j.jacc.2016.10.029 10.4137/BBI.S4464 10.1001/jamacardio.2016.3956 10.1016/j.media.2015.05.010 10.1161/CIRCULATIONAHA.115.020109 10.1186/s12916-014-0242-y 10.1016/j.compbiomed.2015.08.015 10.1016/j.inffus.2016.11.007 10.1056/NEJMp1702071 10.1016/j.cmpb.2015.12.021 10.1111/j.1541-0420.2011.01572.x 10.1161/JAHA.114.001234 10.1146/annurev-bioeng-071516-044442 10.1136/bmj.g4164 10.1101/173682 |
ContentType | Journal Article |
Copyright | Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted. 2018 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted. |
Copyright_xml | – notice: Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted. – notice: 2018 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8AF 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR BTHHO CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1136/heartjnl-2017-311198 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest STEM Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central BMJ Journals ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition BMJ Journals ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-201X |
EndPage | 1164 |
ExternalDocumentID | 29352006 10_1136_heartjnl_2017_311198 heartjnl |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA189201 – fundername: NIDDK NIH HHS grantid: R01 DK098242 – fundername: NCATS NIH HHS grantid: UL1 TR000067 |
GroupedDBID | --- .55 .VT 0R~ 29I 2WC 354 39C 3O- 4.4 40O 53G 5GY 5RE 7X7 7~S 88E 88I 8AF 8FI 8FJ 8R4 8R5 AAFWJ AAHLL AAKAS AAOJX AAWJN AAWTL AAYEP ABAAH ABJNI ABKDF ABMQD ABOCM ABUWG ABVAJ ACGFS ACGOD ACGTL ACHTP ACMFJ ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADUGQ ADZCM AEKJL AENEX AFFNX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ AKKEP ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZFZN AZQEC BAWUL BCR BENPR BLC BLJBA BOMFT BPHCQ BTHHO BVXVI C1A CAG CCPQU COF CXRWF DIK DU5 DWQXO E3Z EBS EJD EX3 F5P FEDTE FYUFA GNUQQ GX1 H13 HAJ HCIFZ HMCUK HVGLF HYE HZ~ IAO IEA IHR INH INR IOF ITC J5H L7B M1P M2P N4W N9A NTWIH NXWIF O9- OK1 OVD P2P PCD PEA PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UKHRP UYXKK V24 VM9 WH7 WOQ WOW X7M YFH YQY ZGI ZXP AAYXX ACQHZ ADGHP AERUA CITATION PHGZM CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-b416t-c60d261937d6e3a66558c39bfaeebc53e968df03bd6c7db846ed39ffe4fd5d2c3 |
IEDL.DBID | 7X7 |
ISSN | 1355-6037 1468-201X |
IngestDate | Fri Jul 11 08:10:45 EDT 2025 Fri Jul 25 21:34:06 EDT 2025 Mon Jul 21 05:36:35 EDT 2025 Thu Apr 24 23:13:10 EDT 2025 Tue Jul 01 04:32:29 EDT 2025 Thu Apr 24 22:50:07 EDT 2025 Thu Apr 24 23:02:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | heart disease |
Language | English |
License | Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b416t-c60d261937d6e3a66558c39bfaeebc53e968df03bd6c7db846ed39ffe4fd5d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29352006 |
PQID | 2067705380 |
PQPubID | 2041068 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1989596672 proquest_journals_2067705380 pubmed_primary_29352006 crossref_primary_10_1136_heartjnl_2017_311198 crossref_citationtrail_10_1136_heartjnl_2017_311198 bmj_primary_10_1136_heartjnl_2017_311198 bmj_journals_10_1136_heartjnl_2017_311198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Heart (British Cardiac Society) |
PublicationTitleAbbrev | Heart |
PublicationTitleAlternate | Heart |
PublicationYear | 2018 |
Publisher | BMJ Publishing Group Ltd and British Cardiovascular Society BMJ Publishing Group LTD |
Publisher_xml | – name: BMJ Publishing Group Ltd and British Cardiovascular Society – name: BMJ Publishing Group LTD |
References | Shameer, Denny, Ding (R12) 2014; 133 van Loo, van den Heuvel, Schoevers (R20) 2014; 12 Sengupta, Huang, Bansal (R8) 2016; 9 Frizzell, Liang, Schulte (R41) 2017; 2 Johnson, Shameer, Glicksberg (R1) 2017; 2 O’Connor, Wray, Tomlinson (R18) 2016; 5 Zhao, Zeng, Socinski (R39) 2011; 67 Shameer, Johnson, Yahi (R9) 2016; 22 Zhang, Ambale-Venkatesh, Bluemke (R29) 2015; 13 Jordan, Mitchell (R17) 2015; 349 Ruiz-Fernández, Monsalve Torra, Soriano-Payá (R25) 2016; 126 Alonso-Betanzos, Bolón-Canedo, Heyndrickx (R22) 2015; 9 Shameer, Glicksberg, Hodos (R14) 2017 Ojeda, Müller, Börnigen (R21) 2016; 14 Kini, Vengrenyuk, Shameer (R5) 2017; 69 Lagerholm, Peterson, Braccini (R30) 2000; 47 Douglas, Garcia, Haines (R16) 2011; 24 Tajik (R3) 2016; 68 Shameer, Pugalenthi, Kandaswamy (R26) 2011; 18 Shen, Wu, Suk (R32) 2017; 19 Shameer, Badgeley, Miotto (R48) 2017; 18 van der Laan, Fall, Soumaré (R46) 2016; 68 Shameer, Pugalenthi, Kandaswamy (R23) 2010; 4 Holmes, Asselbergs, Palmer (R45) 2015; 36 Chen, Asch (R2) 2017; 376 Li, Cheng, Glicksberg (R15) 2015; 7 Deloukas, Kanoni, Willenborg (R11) 2013; 45 Narula, Shameer, Salem Omar (R31) 2017; 69 Shameer, Tripathi, Kalari (R10) 2016; 17 Holmes, Dale, Zuccolo (R44) 2014; 349 Hemani, Bowden, Haycock (R47) 2017 Lee, Kurokawa, Tu (R37) 2015; 5 Mortazavi, Downing, Bucholz (R42) 2016; 9 Slomka, Dey, Sitek (R6) 2017; 14 Tylman, Waszyrowski, Napieralski (R24) 2016; 69 Gao, Li, Loomes (R33) 2017; 36 Narula, Shameer, Salem Omar (R7) 2016; 68 Goldstein, Navar, Pencina (R40) 2017; 24 Nagueh (R4) 2016; 9 Almeida, Borba, Pereira (R28) 2014; 117 Damen, Hooft, Schuit (R19) 2016; 353 Kullo, Jouni, Austin (R13) 2016; 133 Xiong, Kola, Heo (R27) 2015; 24 Ruiz-Fernández, Monsalve Torra, Soriano-Payá 2016; 126 Shameer, Tripathi, Kalari 2016; 17 Holmes, Dale, Zuccolo 2014; 349 Nagueh 2016; 9 Shameer, Pugalenthi, Kandaswamy 2011; 18 Lee, Kurokawa, Tu 2015; 5 Damen, Hooft, Schuit 2016; 353 O’Connor, Wray, Tomlinson 2016; 5 Shameer, Badgeley, Miotto 2017; 18 Holmes, Asselbergs, Palmer 2015; 36 Tajik 2016; 68 Ojeda, Müller, Börnigen 2016; 14 Jordan, Mitchell 2015; 349 Lagerholm, Peterson, Braccini 2000; 47 Goldstein, Navar, Pencina 2017; 24 Shen, Wu, Suk 2017; 19 van der Laan, Fall, Soumaré 2016; 68 Douglas, Garcia, Haines 2011; 24 Almeida, Borba, Pereira 2014; 117 van Loo, van den Heuvel, Schoevers 2014; 12 Shameer, Denny, Ding 2014; 133 Hemani, Bowden, Haycock 2017 Sengupta, Huang, Bansal 2016; 9 Zhang, Ambale-Venkatesh, Bluemke 2015; 13 Kullo, Jouni, Austin 2016; 133 Xiong, Kola, Heo 2015; 24 Shameer, Glicksberg, Hodos 2017 Li, Cheng, Glicksberg 2015; 7 Gao, Li, Loomes 2017; 36 Zhao, Zeng, Socinski 2011; 67 Alonso-Betanzos, Bolón-Canedo, Heyndrickx 2015; 9 Chen, Asch 2017; 376 Narula, Shameer, Salem Omar 2017; 69 Mortazavi, Downing, Bucholz 2016; 9 Tylman, Waszyrowski, Napieralski 2016; 69 Slomka, Dey, Sitek 2017; 14 Deloukas, Kanoni, Willenborg 2013; 45 Kini, Vengrenyuk, Shameer 2017; 69 Frizzell, Liang, Schulte 2017; 2 Johnson, Shameer, Glicksberg 2017; 2 Narula, Shameer, Salem Omar 2016; 68 Shameer, Pugalenthi, Kandaswamy 2010; 4 Shameer, Johnson, Yahi 2016; 22 2020050721404178000_104.14.1156.16 2020050721404178000_104.14.1156.17 2020050721404178000_104.14.1156.18 2020050721404178000_104.14.1156.19 Lagerholm (2020050721404178000_104.14.1156.30) 2000; 47 Alonso-Betanzos (2020050721404178000_104.14.1156.22) 2015; 9 Slomka (2020050721404178000_104.14.1156.6) 2017; 14 Janecek (2020050721404178000_104.14.1156.43) 2008; 4 2020050721404178000_104.14.1156.12 2020050721404178000_104.14.1156.13 Gao (2020050721404178000_104.14.1156.33) 2017; 36 2020050721404178000_104.14.1156.14 2020050721404178000_104.14.1156.15 2020050721404178000_104.14.1156.10 2020050721404178000_104.14.1156.11 Ojeda (2020050721404178000_104.14.1156.21) 2016; 14 Shameer (2020050721404178000_104.14.1156.9) 2016; 22 2020050721404178000_104.14.1156.20 2020050721404178000_104.14.1156.4 2020050721404178000_104.14.1156.3 George EPB (2020050721404178000_104.14.1156.49) 1976; 71 2020050721404178000_104.14.1156.5 Johnson (2020050721404178000_104.14.1156.1) 2017; 2 2020050721404178000_104.14.1156.8 2020050721404178000_104.14.1156.38 2020050721404178000_104.14.1156.7 2020050721404178000_104.14.1156.39 Lee (2020050721404178000_104.14.1156.37) 2015; 5 Frizzell (2020050721404178000_104.14.1156.41) 2017; 2 2020050721404178000_104.14.1156.34 2020050721404178000_104.14.1156.35 2020050721404178000_104.14.1156.36 2020050721404178000_104.14.1156.31 2020050721404178000_104.14.1156.32 Zhang (2020050721404178000_104.14.1156.29) 2015; 13 Shameer (2020050721404178000_104.14.1156.26) 2011; 18 Ruiz-Fernández (2020050721404178000_104.14.1156.25) 2016; 126 Chen (2020050721404178000_104.14.1156.2) 2017; 376 2020050721404178000_104.14.1156.40 Xiong (2020050721404178000_104.14.1156.27) 2015; 24 Almeida (2020050721404178000_104.14.1156.28) 2014; 117 2020050721404178000_104.14.1156.45 2020050721404178000_104.14.1156.46 Tylman (2020050721404178000_104.14.1156.24) 2016; 69 2020050721404178000_104.14.1156.47 2020050721404178000_104.14.1156.48 Shameer (2020050721404178000_104.14.1156.23) 2010; 4 2020050721404178000_104.14.1156.42 2020050721404178000_104.14.1156.44 29945950 - Heart. 2018 Jul;104(14):1227 29945951 - Heart. 2018 Jul;104(14):1228 |
References_xml | – volume: 69 start-page: 2101 year: 2017 ident: R31 article-title: Reply: deep learning with unsupervised feature in echocardiographic imaging publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2017.01.062 – year: 2017 ident: R47 article-title: Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome publication-title: bioRxiv – volume: 9 start-page: 629 year: 2016 ident: R42 article-title: Analysis of machine learning techniques for heart failure readmissions publication-title: Circ Cardiovasc Qual Outcomes doi: 10.1161/CIRCOUTCOMES.116.003039 – volume: 18 start-page: 1010 year: 2011 ident: R26 article-title: 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach publication-title: Protein Pept Lett doi: 10.2174/092986611796378729 – volume: 14 start-page: 197 year: 2017 ident: R6 article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2017.1300057 – volume: 68 start-page: 934 year: 2016 ident: R46 article-title: Cystatin C and cardiovascular disease: a mendelian randomization study publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.05.092 – volume: 14 start-page: 235 year: 2016 ident: R21 article-title: Comparison of cox model methods in a low-dimensional setting with few events publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2016.03.006 – volume: 18 start-page: 105 year: 2017 ident: R48 article-title: Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams publication-title: Brief Bioinform doi: 10.1093/bib/bbv118 – year: 2017 ident: R14 article-title: Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning publication-title: Brief Bioinform doi: 10.1093/bib/bbw136 – volume: 68 start-page: 2287 year: 2016 ident: R7 article-title: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.08.062 – volume: 9 year: 2016 ident: R8 article-title: Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.115.004330 – volume: 13 start-page: 343 year: 2015 ident: R29 article-title: Information maximizing component analysis of left ventricular remodeling due to myocardial infarction publication-title: J Transl Med doi: 10.1186/s12967-015-0709-4 – volume: 9 year: 2016 ident: R4 article-title: Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.116.005059 – volume: 9 start-page: 57 year: 2015 ident: R22 article-title: Exploring guidelines for classification of major heart failure subtypes by using machine learning publication-title: Clin Med Insights Cardiol doi: 10.4137/CMC.S18746 – volume: 22 start-page: 276 year: 2016 ident: R9 article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort publication-title: Pac Symp Biocomput – volume: 68 start-page: 2296 year: 2016 ident: R3 article-title: Machine learning for echocardiographic imaging: embarking on another incredible journey publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.09.915 – volume: 17 start-page: 841 year: 2016 ident: R10 article-title: Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment publication-title: Brief Bioinform doi: 10.1093/bib/bbv084 – volume: 133 start-page: 95 year: 2014 ident: R12 article-title: A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects publication-title: Hum Genet doi: 10.1007/s00439-013-1355-7 – volume: 117 start-page: 257 year: 2014 ident: R28 article-title: Cardiovascular risk analysis by means of pulse morphology and clustering methodologies publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2014.06.010 – volume: 349 start-page: 255 year: 2015 ident: R17 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 24 start-page: 229 year: 2011 ident: R16 article-title: ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2010.12.008 – volume: 36 start-page: 539 year: 2015 ident: R45 article-title: Mendelian randomization of blood lipids for coronary heart disease publication-title: Eur Heart J doi: 10.1093/eurheartj/eht571 – volume: 47 start-page: 838 year: 2000 ident: R30 article-title: Clustering ECG complexes using hermite functions and self-organizing maps publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.846677 – volume: 7 start-page: 311ra174 year: 2015 ident: R15 article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa9364 – volume: 2 start-page: 311 year: 2017 ident: R1 article-title: Enabling precision cardiology through multiscale biology and systems medicine publication-title: JACC Basic Transl Sci doi: 10.1016/j.jacbts.2016.11.010 – volume: 353 start-page: i2416 year: 2016 ident: R19 article-title: Prediction models for cardiovascular disease risk in the general population: systematic review publication-title: BMJ doi: 10.1136/bmj.i2416 – volume: 5 start-page: 11817 year: 2015 ident: R37 article-title: Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs publication-title: Sci Rep doi: 10.1038/srep11817 – volume: 45 start-page: 25 year: 2013 ident: R11 article-title: Large-scale association analysis identifies new risk loci for coronary artery disease publication-title: Nat Genet doi: 10.1038/ng.2480 – volume: 24 start-page: 198 year: 2017 ident: R40 article-title: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocw042 – volume: 69 start-page: 628 year: 2017 ident: R5 article-title: Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: the YELLOW II study publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.10.029 – volume: 4 start-page: 33 year: 2010 ident: R23 article-title: Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach publication-title: Bioinform Biol Insights doi: 10.4137/BBI.S4464 – volume: 2 start-page: 204 year: 2017 ident: R41 article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2016.3956 – volume: 24 start-page: 77 year: 2015 ident: R27 article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest publication-title: Med Image Anal doi: 10.1016/j.media.2015.05.010 – volume: 133 start-page: 1181 year: 2016 ident: R13 article-title: Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.020109 – volume: 12 start-page: 242 year: 2014 ident: R20 article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis publication-title: BMC Med doi: 10.1186/s12916-014-0242-y – volume: 69 start-page: 245 year: 2016 ident: R24 article-title: Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.08.015 – volume: 36 start-page: 103 year: 2017 ident: R33 article-title: A fused deep learning architecture for viewpoint classification of echocardiography publication-title: Information Fusion doi: 10.1016/j.inffus.2016.11.007 – volume: 376 start-page: 2507 year: 2017 ident: R2 article-title: Machine learning and prediction in medicine - beyond the peak of inflated expectations publication-title: N Engl J Med doi: 10.1056/NEJMp1702071 – volume: 126 start-page: 118 year: 2016 ident: R25 article-title: Aid decision algorithms to estimate the risk in congenital heart surgery publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2015.12.021 – volume: 67 start-page: 1422 year: 2011 ident: R39 article-title: Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01572.x – volume: 5 year: 2016 ident: R18 article-title: Impact of surgical complexity on health-related quality of life in congenital heart disease surgical survivors publication-title: J Am Heart Assoc doi: 10.1161/JAHA.114.001234 – volume: 19 start-page: 221 year: 2017 ident: R32 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – volume: 349 start-page: g4164 year: 2014 ident: R44 article-title: Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data publication-title: BMJ doi: 10.1136/bmj.g4164 – volume: 376 start-page: 2507 year: 2017 article-title: Machine learning and prediction in medicine - beyond the peak of inflated expectations publication-title: N Engl J Med doi: 10.1056/NEJMp1702071 – volume: 14 start-page: 197 year: 2017 article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2017.1300057 – volume: 19 start-page: 221 year: 2017 article-title: Deep learning in medical image analysis publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-071516-044442 – volume: 12 start-page: 242 year: 2014 article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis publication-title: BMC Med doi: 10.1186/s12916-014-0242-y – volume: 349 start-page: g4164 year: 2014 article-title: Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data publication-title: BMJ doi: 10.1136/bmj.g4164 – volume: 9 start-page: 57 year: 2015 article-title: Exploring guidelines for classification of major heart failure subtypes by using machine learning publication-title: Clin Med Insights Cardiol doi: 10.4137/CMC.S18746 – volume: 24 start-page: 77 year: 2015 article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest publication-title: Med Image Anal doi: 10.1016/j.media.2015.05.010 – volume: 36 start-page: 539 year: 2015 article-title: Mendelian randomization of blood lipids for coronary heart disease publication-title: Eur Heart J doi: 10.1093/eurheartj/eht571 – volume: 68 start-page: 934 year: 2016 article-title: Cystatin C and cardiovascular disease: a mendelian randomization study publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.05.092 – volume: 69 start-page: 2101 year: 2017 article-title: Reply: deep learning with unsupervised feature in echocardiographic imaging publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2017.01.062 – volume: 9 start-page: 629 year: 2016 article-title: Analysis of machine learning techniques for heart failure readmissions publication-title: Circ Cardiovasc Qual Outcomes doi: 10.1161/CIRCOUTCOMES.116.003039 – volume: 9 year: 2016 article-title: Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.115.004330 – volume: 9 year: 2016 article-title: Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.116.005059 – volume: 69 start-page: 628 year: 2017 article-title: Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: the YELLOW II study publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.10.029 – volume: 13 start-page: 343 year: 2015 article-title: Information maximizing component analysis of left ventricular remodeling due to myocardial infarction publication-title: J Transl Med doi: 10.1186/s12967-015-0709-4 – volume: 133 start-page: 1181 year: 2016 article-title: Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.020109 – volume: 18 start-page: 1010 year: 2011 article-title: 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach publication-title: Protein Pept Lett doi: 10.2174/092986611796378729 – volume: 17 start-page: 841 year: 2016 article-title: Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment publication-title: Brief Bioinform doi: 10.1093/bib/bbv084 – volume: 24 start-page: 198 year: 2017 article-title: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocw042 – year: 2017 article-title: Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning publication-title: Brief Bioinform doi: 10.1093/bib/bbw136 – volume: 126 start-page: 118 year: 2016 article-title: Aid decision algorithms to estimate the risk in congenital heart surgery publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2015.12.021 – volume: 2 start-page: 204 year: 2017 article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2016.3956 – volume: 68 start-page: 2296 year: 2016 article-title: Machine learning for echocardiographic imaging: embarking on another incredible journey publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.09.915 – volume: 7 start-page: 311ra174 year: 2015 article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa9364 – volume: 24 start-page: 229 year: 2011 article-title: ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2010.12.008 – volume: 5 year: 2016 article-title: Impact of surgical complexity on health-related quality of life in congenital heart disease surgical survivors publication-title: J Am Heart Assoc doi: 10.1161/JAHA.114.001234 – volume: 133 start-page: 95 year: 2014 article-title: A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects publication-title: Hum Genet doi: 10.1007/s00439-013-1355-7 – volume: 67 start-page: 1422 year: 2011 article-title: Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01572.x – volume: 36 start-page: 103 year: 2017 article-title: A fused deep learning architecture for viewpoint classification of echocardiography publication-title: Information Fusion doi: 10.1016/j.inffus.2016.11.007 – volume: 4 start-page: 33 year: 2010 article-title: Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach publication-title: Bioinform Biol Insights doi: 10.4137/BBI.S4464 – volume: 18 start-page: 105 year: 2017 article-title: Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams publication-title: Brief Bioinform doi: 10.1093/bib/bbv118 – volume: 47 start-page: 838 year: 2000 article-title: Clustering ECG complexes using hermite functions and self-organizing maps publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.846677 – volume: 5 start-page: 11817 year: 2015 article-title: Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs publication-title: Sci Rep doi: 10.1038/srep11817 – volume: 68 start-page: 2287 year: 2016 article-title: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.08.062 – volume: 69 start-page: 245 year: 2016 article-title: Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.08.015 – volume: 14 start-page: 235 year: 2016 article-title: Comparison of cox model methods in a low-dimensional setting with few events publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2016.03.006 – volume: 117 start-page: 257 year: 2014 article-title: Cardiovascular risk analysis by means of pulse morphology and clustering methodologies publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2014.06.010 – volume: 2 start-page: 311 year: 2017 article-title: Enabling precision cardiology through multiscale biology and systems medicine publication-title: JACC Basic Transl Sci doi: 10.1016/j.jacbts.2016.11.010 – volume: 22 start-page: 276 year: 2016 article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort publication-title: Pac Symp Biocomput – volume: 45 start-page: 25 year: 2013 article-title: Large-scale association analysis identifies new risk loci for coronary artery disease publication-title: Nat Genet doi: 10.1038/ng.2480 – volume: 349 start-page: 255 year: 2015 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – year: 2017 article-title: Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome publication-title: bioRxiv – volume: 353 start-page: i2416 year: 2016 article-title: Prediction models for cardiovascular disease risk in the general population: systematic review publication-title: BMJ doi: 10.1136/bmj.i2416 – ident: 2020050721404178000_104.14.1156.34 – volume: 117 start-page: 257 year: 2014 ident: 2020050721404178000_104.14.1156.28 article-title: Cardiovascular risk analysis by means of pulse morphology and clustering methodologies publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2014.06.010 – ident: 2020050721404178000_104.14.1156.46 doi: 10.1016/j.jacc.2016.05.092 – ident: 2020050721404178000_104.14.1156.11 doi: 10.1038/ng.2480 – volume: 376 start-page: 2507 year: 2017 ident: 2020050721404178000_104.14.1156.2 article-title: Machine learning and prediction in medicine - beyond the peak of inflated expectations publication-title: N Engl J Med doi: 10.1056/NEJMp1702071 – ident: 2020050721404178000_104.14.1156.17 doi: 10.1126/science.aaa8415 – ident: 2020050721404178000_104.14.1156.48 doi: 10.1093/bib/bbv118 – ident: 2020050721404178000_104.14.1156.45 doi: 10.1093/eurheartj/eht571 – volume: 36 start-page: 103 year: 2017 ident: 2020050721404178000_104.14.1156.33 article-title: A fused deep learning architecture for viewpoint classification of echocardiography publication-title: Information Fusion doi: 10.1016/j.inffus.2016.11.007 – volume: 4 start-page: 33 year: 2010 ident: 2020050721404178000_104.14.1156.23 article-title: Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach publication-title: Bioinform Biol Insights doi: 10.4137/BBI.S4464 – ident: 2020050721404178000_104.14.1156.5 doi: 10.1016/j.jacc.2016.10.029 – volume: 2 start-page: 311 year: 2017 ident: 2020050721404178000_104.14.1156.1 article-title: Enabling precision cardiology through multiscale biology and systems medicine publication-title: JACC Basic Transl Sci doi: 10.1016/j.jacbts.2016.11.010 – volume: 2 start-page: 204 year: 2017 ident: 2020050721404178000_104.14.1156.41 article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2016.3956 – ident: 2020050721404178000_104.14.1156.35 – ident: 2020050721404178000_104.14.1156.8 doi: 10.1161/CIRCIMAGING.115.004330 – ident: 2020050721404178000_104.14.1156.19 doi: 10.1136/bmj.i2416 – ident: 2020050721404178000_104.14.1156.13 doi: 10.1161/CIRCULATIONAHA.115.020109 – ident: 2020050721404178000_104.14.1156.16 doi: 10.1016/j.echo.2010.12.008 – ident: 2020050721404178000_104.14.1156.3 doi: 10.1016/j.jacc.2016.09.915 – volume: 24 start-page: 77 year: 2015 ident: 2020050721404178000_104.14.1156.27 article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest publication-title: Med Image Anal doi: 10.1016/j.media.2015.05.010 – ident: 2020050721404178000_104.14.1156.7 doi: 10.1016/j.jacc.2016.08.062 – ident: 2020050721404178000_104.14.1156.14 doi: 10.1093/bib/bbw136 – volume: 69 start-page: 245 year: 2016 ident: 2020050721404178000_104.14.1156.24 article-title: Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.08.015 – ident: 2020050721404178000_104.14.1156.18 doi: 10.1161/JAHA.114.001234 – ident: 2020050721404178000_104.14.1156.20 doi: 10.1186/s12916-014-0242-y – volume: 126 start-page: 118 year: 2016 ident: 2020050721404178000_104.14.1156.25 article-title: Aid decision algorithms to estimate the risk in congenital heart surgery publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2015.12.021 – ident: 2020050721404178000_104.14.1156.47 doi: 10.1101/173682 – ident: 2020050721404178000_104.14.1156.38 – ident: 2020050721404178000_104.14.1156.44 doi: 10.1136/bmj.g4164 – ident: 2020050721404178000_104.14.1156.15 doi: 10.1126/scitranslmed.aaa9364 – ident: 2020050721404178000_104.14.1156.32 doi: 10.1146/annurev-bioeng-071516-044442 – volume: 18 start-page: 1010 year: 2011 ident: 2020050721404178000_104.14.1156.26 article-title: 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach publication-title: Protein Pept Lett doi: 10.2174/092986611796378729 – ident: 2020050721404178000_104.14.1156.39 doi: 10.1111/j.1541-0420.2011.01572.x – volume: 71 start-page: 791 volume-title: Science and statistics year: 1976 ident: 2020050721404178000_104.14.1156.49 – volume: 47 start-page: 838 year: 2000 ident: 2020050721404178000_104.14.1156.30 article-title: Clustering ECG complexes using hermite functions and self-organizing maps publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.846677 – volume: 13 start-page: 343 year: 2015 ident: 2020050721404178000_104.14.1156.29 article-title: Information maximizing component analysis of left ventricular remodeling due to myocardial infarction publication-title: J Transl Med doi: 10.1186/s12967-015-0709-4 – volume: 9 start-page: 57 year: 2015 ident: 2020050721404178000_104.14.1156.22 article-title: Exploring guidelines for classification of major heart failure subtypes by using machine learning publication-title: Clin Med Insights Cardiol – volume: 22 start-page: 276 year: 2016 ident: 2020050721404178000_104.14.1156.9 article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort publication-title: Pac Symp Biocomput – volume: 14 start-page: 197 year: 2017 ident: 2020050721404178000_104.14.1156.6 article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2017.1300057 – ident: 2020050721404178000_104.14.1156.12 doi: 10.1007/s00439-013-1355-7 – volume: 5 start-page: 11817 year: 2015 ident: 2020050721404178000_104.14.1156.37 article-title: Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs publication-title: Sci Rep doi: 10.1038/srep11817 – ident: 2020050721404178000_104.14.1156.42 doi: 10.1161/CIRCOUTCOMES.116.003039 – volume: 14 start-page: 235 year: 2016 ident: 2020050721404178000_104.14.1156.21 article-title: Comparison of cox model methods in a low-dimensional setting with few events publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2016.03.006 – ident: 2020050721404178000_104.14.1156.31 doi: 10.1016/j.jacc.2017.01.062 – ident: 2020050721404178000_104.14.1156.36 – ident: 2020050721404178000_104.14.1156.10 doi: 10.1093/bib/bbv084 – volume: 4 start-page: 90 volume-title: On the relationship between feature selection and classification accuracy year: 2008 ident: 2020050721404178000_104.14.1156.43 – ident: 2020050721404178000_104.14.1156.40 doi: 10.1093/jamia/ocw042 – ident: 2020050721404178000_104.14.1156.4 doi: 10.1161/CIRCIMAGING.116.005059 – reference: 29945950 - Heart. 2018 Jul;104(14):1227 – reference: 29945951 - Heart. 2018 Jul;104(14):1228 |
SSID | ssj0004986 |
Score | 2.6536527 |
SecondaryResourceType | review_article |
Snippet | Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being... |
SourceID | proquest pubmed crossref bmj |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1156 |
SubjectTerms | Algorithms Artificial intelligence Automation Big Data Cardiology Cardiovascular disease Causality Clinical trials Clinical Trials as Topic Datasets Datasets as Topic Diagnostic Imaging Electronic health records Genetic Predisposition to Disease Genomics heart disease Heart failure Humans Hypotheses Machine Learning Medical imaging Medicine Patients Phenotype Registries Review System theory |
Title | Machine learning in cardiovascular medicine: are we there yet? |
URI | https://heart.bmj.com/content/104/14/1156.full https://www.ncbi.nlm.nih.gov/pubmed/29352006 https://www.proquest.com/docview/2067705380 https://www.proquest.com/docview/1989596672 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8UwEB5cQLyIu8-NCB70EOxr0qT1oKgoIjwRUXi30myiaJ9LRfz3Ztr0PTy4nJs0zcw0882SGYBtpb2WV4rTgheCcpVGNGXM0Dh2zqGNoQy6BnqX4vyWX_STfnC4vYW0yvZMrA9qM9DoI9_DMuPSS0waHT6_UOwahdHV0EJjHCaxdBmmdMm-HN2LzOpOj12vU6mImAxX57pM7GG76OqhfPRS0kVHnZ-ON1TU08N3BfUD6qy1z9kszATYSI4aPs_BmC3nYaoXAuMLcNCrkyItCV0g7sh9SfS3XFPShtH3SfFqyYcliP0s-bTV4SLcnp3enJzT0BqBKk_bimoRGbR9mDTCskKIJEk1y5QrrFU6YTYTqXERU0ZoaZQHGdawzDnLnUlMrNkSTJSD0q4A4VJLZ7RIuMm4irvKAzyuJVfKa3OmeQd2PVXyINpveW01MJG3FMyRgnlDwQ7s4NjnplDGH0NZS-Zch3Lk2BXj8Y9ZdDjrf6ustxwc7WAkSh3YGj72vxXGSorSDt79LrM0S7wpKOMOLDecHy7oERIWqxKrv798Dab9l6RNbu86TFSv73bDI5hKbdZiugmTx6eXV9dfLVztKA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRaJ9QRwtLKeRQKIPFknsOAkSIE4tx66qCiTeQnxVRTTLEYT4U_2NHefYFQ8UXnj2PR575vOMZwBWpUIpLyWnGc8E5TL2aMyYpkFgrXUYQ2r3NNDtic4FP7kML0fgb_MXxrlVNndieVHrvnJv5BsuzHiEHBN7O7d31GWNctbVJoVGxRan5vkJIdvD1vEB7u9aEBwdnu93aJ1VgEqcVkGV8LSDDSzSwrBMiDCMFUukzYyRKmQmEbG2HpNaqEhLlM9Gs8Raw60OdaAY9vsJRjlDKNOC0b3D3o-fw5-YSZlb0kcpToXHovqzns_EhktQXVznN8iXvnsa9BHuo0CTf65fisRX9NxS3h1NwHitqJLdirMmYcTkUzDWrU3x07DdLd0wDanzTvwiv3OiXni3ksZwv0mye0OeDHHapiHPptj5ChcfQrZv0Mr7uZkFwiMVWa1EyHXCZeBLVCm5iriUqD8wxdvwHamS1ofpIS1xChNpQ8HUUTCtKNiGdVf3tgrN8UZV1pA5VXUAdJeH4-aNVnTQ6n2jLDQ7OFzBkHnbsDIoxoPsrDNZbvqPuMokTkIEn1HQhplq5wcDok7mwmOJuf93vgyfO-fds_TsuHc6D19wVnHlWbwAreL-0Syi_lTIpZppCVx99Dn5B2mMLBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKqFeUN9doMWVWqk9WJvEjp1UalEFXUHpoh6KtLc0flUgyPIIQvy1_rrO5LErDgUunOP4MZ7xzHjG8wG8Mxa1vDGSl7JUXJos4pkQjidJCIF8DOPoamC8p7b35fdJOlmAv_1bGEqr7M_E5qB2U0t35EMqM66RY7JoGLq0iJ9bo42TU04IUhRp7eE0WhbZ9VeX6L6df97Zwr1-nySjb782t3mHMMANTrHmVkWOXAihnfKiVCpNMytyE0rvjU2Fz1XmQiSMU1Y7g7raO5GH4GVwqUuswH4fwEMt0phkTE_0_E1m3qBMxqjPuYqE7p7txUINCaq6PqyOkENjuiSM0fFH1WaOD68rx_9YvI3mGz2G5c5kZV9bHnsCC756CkvjLij_DL6Mm4RMzzoEij_soGL2Wp4r60P4n1h55tmlZ2R3enbl643nsH8vRHsBi9W08q-ASW11cFal0uXSJLFB41JaLY1BS0JYOYCPSJWiE6vzovFYhCp6ChZEwaKl4AA-UNuTtkjHLU1FT-bCdqXQCZHj6Ja_-Oyvu42y1u_gfAVzNh7A29lnFGmK05SVn17gKvMsT9EN1ckAXrY7PxsQrTMqlKVWbu58HZZQOoofO3u7q_AIJ5W1KcZrsFifXfjXaEjV5k3DsQx-37eI_AMt0S7o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+cardiovascular+medicine%3A+are+we+there+yet%3F&rft.jtitle=Heart+%28British+Cardiac+Society%29&rft.au=Shameer%2C+Khader&rft.au=Johnson%2C+Kipp+W&rft.au=Glicksberg%2C+Benjamin+S&rft.au=Dudley%2C+Joel+T&rft.date=2018-07-01&rft.eissn=1468-201X&rft.volume=104&rft.issue=14&rft.spage=1156&rft_id=info:doi/10.1136%2Fheartjnl-2017-311198&rft_id=info%3Apmid%2F29352006&rft.externalDocID=29352006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-6037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-6037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-6037&client=summon |