Machine learning in cardiovascular medicine: are we there yet?

Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learni...

Full description

Saved in:
Bibliographic Details
Published inHeart (British Cardiac Society) Vol. 104; no. 14; pp. 1156 - 1164
Main Authors Shameer, Khader, Johnson, Kipp W, Glicksberg, Benjamin S, Dudley, Joel T, Sengupta, Partho P
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd and British Cardiovascular Society 01.07.2018
BMJ Publishing Group LTD
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine.
AbstractList Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine.
Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine.Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being explicitly programmed where to look. These include a family of operations encompassing several terms like machine learning, cognitive learning, deep learning and reinforcement learning-based methods that can be used to integrate and interpret complex biomedical and healthcare data in scenarios where traditional statistical methods may not be able to perform. In this review article, we discuss the basics of machine learning algorithms and what potential data sources exist; evaluate the need for machine learning; and examine the potential limitations and challenges of implementing machine in the context of cardiovascular medicine. The most promising avenues for AI in medicine are the development of automated risk prediction algorithms which can be used to guide clinical care; use of unsupervised learning techniques to more precisely phenotype complex disease; and the implementation of reinforcement learning algorithms to intelligently augment healthcare providers. The utility of a machine learning-based predictive model will depend on factors including data heterogeneity, data depth, data breadth, nature of modelling task, choice of machine learning and feature selection algorithms, and orthogonal evidence. A critical understanding of the strength and limitations of various methods and tasks amenable to machine learning is vital. By leveraging the growing corpus of big data in medicine, we detail pathways by which machine learning may facilitate optimal development of patient-specific models for improving diagnoses, intervention and outcome in cardiovascular medicine.
Author Sengupta, Partho P
Dudley, Joel T
Shameer, Khader
Johnson, Kipp W
Glicksberg, Benjamin S
Author_xml – sequence: 1
  givenname: Khader
  surname: Shameer
  fullname: Shameer, Khader
  organization: Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
– sequence: 2
  givenname: Kipp W
  surname: Johnson
  fullname: Johnson, Kipp W
  organization: Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York City, New York, USA
– sequence: 3
  givenname: Benjamin S
  surname: Glicksberg
  fullname: Glicksberg, Benjamin S
  organization: Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California, USA
– sequence: 4
  givenname: Joel T
  surname: Dudley
  fullname: Dudley, Joel T
  organization: Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York City, New York, USA
– sequence: 5
  givenname: Partho P
  surname: Sengupta
  fullname: Sengupta, Partho P
  organization: Division of Cardiology, West Virginia Heart and Vascular Institute, Morgantown, West Virginia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29352006$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhq2KquzS_oOqisSFS8CO40m8BxBCfFSi4kKl3izHnnS9yjpgJ6D993i1y1biAD15ZD3PeMbvlOz53iMh3xk9ZozDyRx1GBa-ywvKqpwzxmT9iUxYCfX66s9eqrkQOVBe7ZNpjAtKaSlr-EL2C8lFQSlMyOkvbebOY9aldt75v5nzmdHBuv5JRzN2OmRLtM4kZpbpgNkzZsMcU7HC4ewr-dzqLuK37XlAfl9d3l_c5Ld31z8vzm_zpmQw5AaoLYBJXllArgGEqA2XTasRGyM4SqhtS3ljwVS2qUtAy2XbYtlaYQvDD8jRpu9D6B9HjINaumiw67THfowq7S6FBKiKhB6-QRf9GHyaThUUqooKXtNE_dhSY5P2Uw_BLXVYqdefSUC5AUzoYwzY7hBG1ToA9RqAWgegNgEkbfZGM27Qg-v9ELTrPpJPNnKzXPzvc_SfsdvzXeUFePGsBg
CitedBy_id crossref_primary_10_1186_s12911_023_02169_5
crossref_primary_10_1038_s41598_020_77243_3
crossref_primary_10_46604_peti_2021_7217
crossref_primary_10_1007_s13167_019_00188_9
crossref_primary_10_7197_cmj_vi_742161
crossref_primary_10_1016_S0140_6736_23_02754_X
crossref_primary_10_1053_j_semtcvs_2020_10_007
crossref_primary_10_1053_j_ackd_2021_03_002
crossref_primary_10_1097_IIO_0000000000000298
crossref_primary_10_1007_s00146_018_0834_8
crossref_primary_10_1039_D1MO00411E
crossref_primary_10_1080_23744731_2022_2067466
crossref_primary_10_1186_s12933_019_0879_0
crossref_primary_10_26634_jds_2_1_20811
crossref_primary_10_1016_j_jtcvs_2020_06_131
crossref_primary_10_3390_jcm10235518
crossref_primary_10_4103_jispcd_JISPCD_4_22
crossref_primary_10_3390_ijerph20105775
crossref_primary_10_1093_hmg_ddy114
crossref_primary_10_1109_LSENS_2024_3425760
crossref_primary_10_1007_s42058_022_00091_9
crossref_primary_10_1016_j_jocs_2020_101211
crossref_primary_10_2196_12422
crossref_primary_10_3390_diagnostics14131431
crossref_primary_10_36660_abc_20230274
crossref_primary_10_3390_jcdd11120395
crossref_primary_10_1186_s40360_022_00588_0
crossref_primary_10_30699_jambs_31_146_210
crossref_primary_10_1016_j_cjca_2021_11_009
crossref_primary_10_3389_fcvm_2022_990788
crossref_primary_10_1007_s12553_020_00438_1
crossref_primary_10_1093_ehjdh_ztab054
crossref_primary_10_1016_j_jtcvs_2018_03_075
crossref_primary_10_1016_j_medin_2020_04_003
crossref_primary_10_3389_fcvm_2021_797002
crossref_primary_10_2196_48290
crossref_primary_10_1007_s11548_021_02468_0
crossref_primary_10_1007_s11936_020_0805_5
crossref_primary_10_12677_ACM_2022_1281157
crossref_primary_10_4103_hm_HM_D_23_00036
crossref_primary_10_1016_j_cmpb_2021_106190
crossref_primary_10_3390_medicina57090956
crossref_primary_10_1136_bmjopen_2018_024605
crossref_primary_10_1016_j_jacc_2018_03_521
crossref_primary_10_1093_eurheartj_ehac758
crossref_primary_10_1007_s00521_023_08333_2
crossref_primary_10_3389_fams_2020_00034
crossref_primary_10_1093_eurheartj_ehz158
crossref_primary_10_1007_s11883_019_0771_0
crossref_primary_10_1016_j_jacc_2020_11_030
crossref_primary_10_1093_icb_icab068
crossref_primary_10_1080_14789450_2021_1962303
crossref_primary_10_32628_IJSRST20748
crossref_primary_10_1007_s12639_020_01262_0
crossref_primary_10_1038_s41746_021_00468_7
crossref_primary_10_1016_j_cjca_2021_03_003
crossref_primary_10_1177_21925682211008424
crossref_primary_10_1530_ERP_18_0056
crossref_primary_10_1007_s40119_022_00273_7
crossref_primary_10_1016_j_ijinfomgt_2019_05_003
crossref_primary_10_1002_ehf2_13073
crossref_primary_10_1007_s00521_025_11070_3
crossref_primary_10_3390_diagnostics12040795
crossref_primary_10_1016_j_ijmedinf_2020_104326
crossref_primary_10_1016_j_cjca_2022_02_008
crossref_primary_10_1016_j_metabol_2022_155179
crossref_primary_10_1007_s40778_022_00216_x
crossref_primary_10_1007_s11831_023_09892_2
crossref_primary_10_32604_cmc_2023_041031
crossref_primary_10_3389_fcvm_2022_873582
crossref_primary_10_1038_s41569_023_00900_3
crossref_primary_10_1016_j_imu_2022_101103
crossref_primary_10_1126_sciadv_aau6792
crossref_primary_10_3390_math7111051
crossref_primary_10_1007_s11760_024_03060_0
crossref_primary_10_1515_bams_2020_0069
crossref_primary_10_1007_s12170_023_00723_4
crossref_primary_10_3390_ijerph18063187
crossref_primary_10_4258_hir_2024_30_1_73
crossref_primary_10_4330_wjc_v15_i3_95
crossref_primary_10_1038_s41598_023_43943_9
crossref_primary_10_1097_ACO_0000000000000730
crossref_primary_10_1111_jce_14936
crossref_primary_10_1007_s11831_023_09915_y
crossref_primary_10_3233_JAD_221002
crossref_primary_10_3390_jcm8111834
crossref_primary_10_4103_apc_APC_55_19
crossref_primary_10_1016_j_jcmg_2019_06_009
crossref_primary_10_3389_fimmu_2022_985863
crossref_primary_10_3389_fmicb_2019_02120
crossref_primary_10_1016_j_ipha_2024_12_003
crossref_primary_10_1016_j_vgie_2020_08_013
crossref_primary_10_1016_j_procs_2022_07_030
crossref_primary_10_1111_tbed_13902
crossref_primary_10_1136_bjophthalmol_2020_318609
crossref_primary_10_1016_j_cardfail_2018_04_003
crossref_primary_10_1016_j_ijcard_2024_132167
crossref_primary_10_1093_bib_bbz059
crossref_primary_10_1007_s11886_020_01329_7
crossref_primary_10_1371_journal_pone_0291451
crossref_primary_10_3934_aci_2022002
crossref_primary_10_1016_j_jhin_2022_01_002
crossref_primary_10_1161_CIRCHEARTFAILURE_123_011306
crossref_primary_10_1161_CIRCOUTCOMES_119_006021
crossref_primary_10_3390_electronics11234015
crossref_primary_10_3390_life13041029
crossref_primary_10_1007_s00392_020_01691_0
crossref_primary_10_1098_rsif_2020_0267
crossref_primary_10_1007_s12170_020_00649_1
crossref_primary_10_1093_cvr_cvab067
crossref_primary_10_3390_healthcare10010154
crossref_primary_10_1177_17407745221149222
crossref_primary_10_1530_ERP_18_0081
crossref_primary_10_4330_wjc_v13_i10_546
crossref_primary_10_3389_fmed_2019_00036
crossref_primary_10_1016_j_echo_2018_10_003
crossref_primary_10_1111_jonm_13769
crossref_primary_10_1038_s41746_022_00625_6
crossref_primary_10_7759_cureus_44374
crossref_primary_10_1007_s11886_021_01584_2
crossref_primary_10_1016_j_suscom_2023_100868
crossref_primary_10_1016_j_echo_2020_07_016
crossref_primary_10_1007_s00228_021_03213_x
crossref_primary_10_1177_10760296231171082
crossref_primary_10_1016_j_smhl_2022_100285
crossref_primary_10_1016_j_ibmed_2022_100048
crossref_primary_10_3389_fcvm_2022_895917
crossref_primary_10_1016_j_mayocp_2023_05_006
crossref_primary_10_3346_jkms_2023_38_e395
crossref_primary_10_1136_heartjnl_2018_313303
crossref_primary_10_1109_JSEN_2020_3004239
crossref_primary_10_1016_j_socscimed_2022_114782
crossref_primary_10_1016_j_ijcard_2021_07_024
crossref_primary_10_1093_europace_euaa172
crossref_primary_10_15420_usc_2019_19_2
crossref_primary_10_3389_fbioe_2021_649866
crossref_primary_10_3389_fdata_2023_1270756
crossref_primary_10_3390_medsci12010003
crossref_primary_10_1097_TP_0000000000002923
crossref_primary_10_1002_med_21658
crossref_primary_10_3390_jcm14020324
crossref_primary_10_1016_j_micpro_2022_104748
crossref_primary_10_15420_icr_2020_04
crossref_primary_10_1007_s12410_019_9490_8
crossref_primary_10_1016_j_ijcard_2023_05_030
crossref_primary_10_3390_biomedicines12030568
crossref_primary_10_1016_j_inffus_2023_101813
crossref_primary_10_1016_j_spinee_2020_02_003
crossref_primary_10_4250_jcvi_2021_0039
crossref_primary_10_3389_fcvm_2021_675431
crossref_primary_10_1177_0046958021997338
crossref_primary_10_1016_j_health_2022_100132
crossref_primary_10_1093_eurheartj_ehaa159
crossref_primary_10_3389_fcvm_2020_00045
crossref_primary_10_1016_j_ijcard_2021_05_017
crossref_primary_10_1093_ehjdh_ztaa012
crossref_primary_10_1007_s12350_018_1284_x
crossref_primary_10_1016_j_retram_2020_01_002
crossref_primary_10_1080_23808993_2018_1528871
crossref_primary_10_1016_j_egyai_2022_100170
crossref_primary_10_1177_24755303211000757
crossref_primary_10_1259_bjr_20180437
crossref_primary_10_31083_j_rcm2308256
crossref_primary_10_1016_j_jcin_2019_04_048
crossref_primary_10_1186_s42444_022_00062_2
crossref_primary_10_1016_j_clinmicnews_2019_06_004
crossref_primary_10_3390_diagnostics12102526
crossref_primary_10_38124_ijisrt_IJISRT24JUL1400
crossref_primary_10_1016_j_cpcardiol_2021_100847
crossref_primary_10_1016_j_jacadv_2024_101012
crossref_primary_10_2196_30483
crossref_primary_10_3390_s24175708
crossref_primary_10_2196_17620
crossref_primary_10_3389_fimmu_2021_669811
crossref_primary_10_1007_s12551_022_01040_7
crossref_primary_10_1007_s00395_023_00982_7
crossref_primary_10_1016_j_jcmg_2018_04_026
crossref_primary_10_1097_CRD_0000000000000294
crossref_primary_10_1016_j_cvdhj_2024_03_007
crossref_primary_10_1152_ajpheart_00241_2021
crossref_primary_10_1186_s12911_023_02242_z
crossref_primary_10_1109_ACCESS_2024_3412789
crossref_primary_10_36548_rrrj_2024_1_005
crossref_primary_10_1016_j_reprotox_2019_07_005
crossref_primary_10_1093_bib_bbz119
crossref_primary_10_2139_ssrn_4102486
crossref_primary_10_1038_s41746_019_0122_0
crossref_primary_10_1097_IIO_0000000000000246
crossref_primary_10_3390_healthcare11162240
crossref_primary_10_1016_j_trci_2019_08_001
crossref_primary_10_3390_nu13020695
crossref_primary_10_1038_s41467_022_32222_2
crossref_primary_10_62486_agsalud202316
crossref_primary_10_1161_JAHA_119_012788
crossref_primary_10_1186_s43055_024_01356_2
crossref_primary_10_1007_s00392_023_02331_z
crossref_primary_10_1007_s11936_019_0728_1
crossref_primary_10_1109_JTEHM_2022_3227204
crossref_primary_10_1016_j_ebiom_2019_05_007
crossref_primary_10_1155_2020_2836064
crossref_primary_10_2196_24388
crossref_primary_10_7759_cureus_39160
crossref_primary_10_1093_europace_euaa377
crossref_primary_10_18632_aging_204688
crossref_primary_10_1186_s12874_021_01487_4
crossref_primary_10_1097_CM9_0000000000001650
crossref_primary_10_1007_s10554_022_02738_1
crossref_primary_10_1016_j_jcin_2019_06_013
crossref_primary_10_1016_j_eswa_2023_120211
crossref_primary_10_1136_bmjopen_2020_041537
crossref_primary_10_1002_jcu_23215
crossref_primary_10_2196_39193
crossref_primary_10_1161_CIRCULATIONAHA_120_047571
crossref_primary_10_1016_j_survophthal_2018_09_002
crossref_primary_10_3389_fmed_2021_655686
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1007_s12170_023_00731_4
crossref_primary_10_1016_j_jocd_2020_10_004
crossref_primary_10_1016_j_cjco_2020_12_019
crossref_primary_10_1109_ACCESS_2019_2941898
crossref_primary_10_1007_s44163_023_00049_5
crossref_primary_10_1080_08839514_2023_2175111
crossref_primary_10_3390_biomedicines10030639
crossref_primary_10_1007_s11886_020_01299_w
crossref_primary_10_1007_s40572_020_00282_5
crossref_primary_10_1016_j_medine_2020_04_015
crossref_primary_10_1177_10760296231179438
crossref_primary_10_1016_j_echo_2021_01_019
crossref_primary_10_1177_1179546820927404
crossref_primary_10_32604_iasc_2022_019133
crossref_primary_10_1177_0003319719896475
crossref_primary_10_3390_life14010145
crossref_primary_10_1016_j_tcm_2021_02_002
crossref_primary_10_1016_j_ijcard_2022_02_009
crossref_primary_10_1016_j_cpcardiol_2025_102994
crossref_primary_10_3389_fgene_2022_868015
crossref_primary_10_21595_jmai_2024_24174
crossref_primary_10_1016_j_ijmedinf_2020_104274
crossref_primary_10_1007_s10554_021_02505_8
crossref_primary_10_1016_j_clinbiochem_2019_04_013
crossref_primary_10_31083_j_rcm2302045
crossref_primary_10_3389_fcvm_2022_839400
crossref_primary_10_1016_j_artd_2021_07_012
crossref_primary_10_1155_2020_4972346
crossref_primary_10_1136_heartjnl_2018_313377
crossref_primary_10_1016_j_avsg_2019_11_037
crossref_primary_10_12688_f1000research_19721_1
crossref_primary_10_3390_jcdd10020087
crossref_primary_10_1007_s11042_024_18953_y
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1002_ehf2_14479
crossref_primary_10_1186_s12911_021_01652_1
crossref_primary_10_1002_ejhf_1333
crossref_primary_10_1155_2020_4625218
crossref_primary_10_3390_app14083463
crossref_primary_10_36930_40340711
crossref_primary_10_1007_s10554_020_02083_1
crossref_primary_10_2217_pme_2019_0113
crossref_primary_10_4274_atfm_galenos_2023_48569
crossref_primary_10_1253_circrep_CR_22_0101
crossref_primary_10_1002_cnm_3325
crossref_primary_10_1007_s40119_024_00368_3
crossref_primary_10_3390_ijms22168954
crossref_primary_10_1016_j_imu_2022_101090
crossref_primary_10_3389_fphys_2021_798510
crossref_primary_10_1016_j_transproceed_2022_04_029
crossref_primary_10_1016_j_humgen_2024_201356
crossref_primary_10_1186_s12877_021_02392_7
crossref_primary_10_1016_j_resuscitation_2019_06_006
crossref_primary_10_3390_e26010067
crossref_primary_10_1186_s41231_019_0050_7
crossref_primary_10_3389_fcvm_2020_618849
crossref_primary_10_3904_kjim_2018_349
crossref_primary_10_1007_s12551_021_00815_8
crossref_primary_10_35940_ijrte_D6632_0511122
crossref_primary_10_1007_s40471_019_00209_1
crossref_primary_10_1016_j_jtcvs_2022_09_013
crossref_primary_10_1177_1074248420928651
Cites_doi 10.1016/j.jacc.2017.01.062
10.1161/CIRCOUTCOMES.116.003039
10.2174/092986611796378729
10.1080/17434440.2017.1300057
10.1016/j.jacc.2016.05.092
10.1016/j.gpb.2016.03.006
10.1093/bib/bbv118
10.1093/bib/bbw136
10.1016/j.jacc.2016.08.062
10.1161/CIRCIMAGING.115.004330
10.1186/s12967-015-0709-4
10.1161/CIRCIMAGING.116.005059
10.4137/CMC.S18746
10.1016/j.jacc.2016.09.915
10.1093/bib/bbv084
10.1007/s00439-013-1355-7
10.1016/j.cmpb.2014.06.010
10.1126/science.aaa8415
10.1016/j.echo.2010.12.008
10.1093/eurheartj/eht571
10.1109/10.846677
10.1126/scitranslmed.aaa9364
10.1016/j.jacbts.2016.11.010
10.1136/bmj.i2416
10.1038/srep11817
10.1038/ng.2480
10.1093/jamia/ocw042
10.1016/j.jacc.2016.10.029
10.4137/BBI.S4464
10.1001/jamacardio.2016.3956
10.1016/j.media.2015.05.010
10.1161/CIRCULATIONAHA.115.020109
10.1186/s12916-014-0242-y
10.1016/j.compbiomed.2015.08.015
10.1016/j.inffus.2016.11.007
10.1056/NEJMp1702071
10.1016/j.cmpb.2015.12.021
10.1111/j.1541-0420.2011.01572.x
10.1161/JAHA.114.001234
10.1146/annurev-bioeng-071516-044442
10.1136/bmj.g4164
10.1101/173682
ContentType Journal Article
Copyright Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
2018 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Copyright_xml – notice: Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
– notice: 2018 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AF
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
BTHHO
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1136/heartjnl-2017-311198
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest STEM Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
BMJ Journals
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


ProQuest Central Student
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-201X
EndPage 1164
ExternalDocumentID 29352006
10_1136_heartjnl_2017_311198
heartjnl
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA189201
– fundername: NIDDK NIH HHS
  grantid: R01 DK098242
– fundername: NCATS NIH HHS
  grantid: UL1 TR000067
GroupedDBID ---
.55
.VT
0R~
29I
2WC
354
39C
3O-
4.4
40O
53G
5GY
5RE
7X7
7~S
88E
88I
8AF
8FI
8FJ
8R4
8R5
AAFWJ
AAHLL
AAKAS
AAOJX
AAWJN
AAWTL
AAYEP
ABAAH
ABJNI
ABKDF
ABMQD
ABOCM
ABUWG
ABVAJ
ACGFS
ACGOD
ACGTL
ACHTP
ACMFJ
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADUGQ
ADZCM
AEKJL
AENEX
AFFNX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
AKKEP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZFZN
AZQEC
BAWUL
BCR
BENPR
BLC
BLJBA
BOMFT
BPHCQ
BTHHO
BVXVI
C1A
CAG
CCPQU
COF
CXRWF
DIK
DU5
DWQXO
E3Z
EBS
EJD
EX3
F5P
FEDTE
FYUFA
GNUQQ
GX1
H13
HAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IAO
IEA
IHR
INH
INR
IOF
ITC
J5H
L7B
M1P
M2P
N4W
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PCD
PEA
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UKHRP
UYXKK
V24
VM9
WH7
WOQ
WOW
X7M
YFH
YQY
ZGI
ZXP
AAYXX
ACQHZ
ADGHP
AERUA
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-b416t-c60d261937d6e3a66558c39bfaeebc53e968df03bd6c7db846ed39ffe4fd5d2c3
IEDL.DBID 7X7
ISSN 1355-6037
1468-201X
IngestDate Fri Jul 11 08:10:45 EDT 2025
Fri Jul 25 21:34:06 EDT 2025
Mon Jul 21 05:36:35 EDT 2025
Thu Apr 24 23:13:10 EDT 2025
Tue Jul 01 04:32:29 EDT 2025
Thu Apr 24 22:50:07 EDT 2025
Thu Apr 24 23:02:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords heart disease
Language English
License Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b416t-c60d261937d6e3a66558c39bfaeebc53e968df03bd6c7db846ed39ffe4fd5d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29352006
PQID 2067705380
PQPubID 2041068
PageCount 9
ParticipantIDs proquest_miscellaneous_1989596672
proquest_journals_2067705380
pubmed_primary_29352006
crossref_primary_10_1136_heartjnl_2017_311198
crossref_citationtrail_10_1136_heartjnl_2017_311198
bmj_primary_10_1136_heartjnl_2017_311198
bmj_journals_10_1136_heartjnl_2017_311198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Heart (British Cardiac Society)
PublicationTitleAbbrev Heart
PublicationTitleAlternate Heart
PublicationYear 2018
Publisher BMJ Publishing Group Ltd and British Cardiovascular Society
BMJ Publishing Group LTD
Publisher_xml – name: BMJ Publishing Group Ltd and British Cardiovascular Society
– name: BMJ Publishing Group LTD
References Shameer, Denny, Ding (R12) 2014; 133
van Loo, van den Heuvel, Schoevers (R20) 2014; 12
Sengupta, Huang, Bansal (R8) 2016; 9
Frizzell, Liang, Schulte (R41) 2017; 2
Johnson, Shameer, Glicksberg (R1) 2017; 2
O’Connor, Wray, Tomlinson (R18) 2016; 5
Zhao, Zeng, Socinski (R39) 2011; 67
Shameer, Johnson, Yahi (R9) 2016; 22
Zhang, Ambale-Venkatesh, Bluemke (R29) 2015; 13
Jordan, Mitchell (R17) 2015; 349
Ruiz-Fernández, Monsalve Torra, Soriano-Payá (R25) 2016; 126
Alonso-Betanzos, Bolón-Canedo, Heyndrickx (R22) 2015; 9
Shameer, Glicksberg, Hodos (R14) 2017
Ojeda, Müller, Börnigen (R21) 2016; 14
Kini, Vengrenyuk, Shameer (R5) 2017; 69
Lagerholm, Peterson, Braccini (R30) 2000; 47
Douglas, Garcia, Haines (R16) 2011; 24
Tajik (R3) 2016; 68
Shameer, Pugalenthi, Kandaswamy (R26) 2011; 18
Shen, Wu, Suk (R32) 2017; 19
Shameer, Badgeley, Miotto (R48) 2017; 18
van der Laan, Fall, Soumaré (R46) 2016; 68
Shameer, Pugalenthi, Kandaswamy (R23) 2010; 4
Holmes, Asselbergs, Palmer (R45) 2015; 36
Chen, Asch (R2) 2017; 376
Li, Cheng, Glicksberg (R15) 2015; 7
Deloukas, Kanoni, Willenborg (R11) 2013; 45
Narula, Shameer, Salem Omar (R31) 2017; 69
Shameer, Tripathi, Kalari (R10) 2016; 17
Holmes, Dale, Zuccolo (R44) 2014; 349
Hemani, Bowden, Haycock (R47) 2017
Lee, Kurokawa, Tu (R37) 2015; 5
Mortazavi, Downing, Bucholz (R42) 2016; 9
Slomka, Dey, Sitek (R6) 2017; 14
Tylman, Waszyrowski, Napieralski (R24) 2016; 69
Gao, Li, Loomes (R33) 2017; 36
Narula, Shameer, Salem Omar (R7) 2016; 68
Goldstein, Navar, Pencina (R40) 2017; 24
Nagueh (R4) 2016; 9
Almeida, Borba, Pereira (R28) 2014; 117
Damen, Hooft, Schuit (R19) 2016; 353
Kullo, Jouni, Austin (R13) 2016; 133
Xiong, Kola, Heo (R27) 2015; 24
Ruiz-Fernández, Monsalve Torra, Soriano-Payá 2016; 126
Shameer, Tripathi, Kalari 2016; 17
Holmes, Dale, Zuccolo 2014; 349
Nagueh 2016; 9
Shameer, Pugalenthi, Kandaswamy 2011; 18
Lee, Kurokawa, Tu 2015; 5
Damen, Hooft, Schuit 2016; 353
O’Connor, Wray, Tomlinson 2016; 5
Shameer, Badgeley, Miotto 2017; 18
Holmes, Asselbergs, Palmer 2015; 36
Tajik 2016; 68
Ojeda, Müller, Börnigen 2016; 14
Jordan, Mitchell 2015; 349
Lagerholm, Peterson, Braccini 2000; 47
Goldstein, Navar, Pencina 2017; 24
Shen, Wu, Suk 2017; 19
van der Laan, Fall, Soumaré 2016; 68
Douglas, Garcia, Haines 2011; 24
Almeida, Borba, Pereira 2014; 117
van Loo, van den Heuvel, Schoevers 2014; 12
Shameer, Denny, Ding 2014; 133
Hemani, Bowden, Haycock 2017
Sengupta, Huang, Bansal 2016; 9
Zhang, Ambale-Venkatesh, Bluemke 2015; 13
Kullo, Jouni, Austin 2016; 133
Xiong, Kola, Heo 2015; 24
Shameer, Glicksberg, Hodos 2017
Li, Cheng, Glicksberg 2015; 7
Gao, Li, Loomes 2017; 36
Zhao, Zeng, Socinski 2011; 67
Alonso-Betanzos, Bolón-Canedo, Heyndrickx 2015; 9
Chen, Asch 2017; 376
Narula, Shameer, Salem Omar 2017; 69
Mortazavi, Downing, Bucholz 2016; 9
Tylman, Waszyrowski, Napieralski 2016; 69
Slomka, Dey, Sitek 2017; 14
Deloukas, Kanoni, Willenborg 2013; 45
Kini, Vengrenyuk, Shameer 2017; 69
Frizzell, Liang, Schulte 2017; 2
Johnson, Shameer, Glicksberg 2017; 2
Narula, Shameer, Salem Omar 2016; 68
Shameer, Pugalenthi, Kandaswamy 2010; 4
Shameer, Johnson, Yahi 2016; 22
2020050721404178000_104.14.1156.16
2020050721404178000_104.14.1156.17
2020050721404178000_104.14.1156.18
2020050721404178000_104.14.1156.19
Lagerholm (2020050721404178000_104.14.1156.30) 2000; 47
Alonso-Betanzos (2020050721404178000_104.14.1156.22) 2015; 9
Slomka (2020050721404178000_104.14.1156.6) 2017; 14
Janecek (2020050721404178000_104.14.1156.43) 2008; 4
2020050721404178000_104.14.1156.12
2020050721404178000_104.14.1156.13
Gao (2020050721404178000_104.14.1156.33) 2017; 36
2020050721404178000_104.14.1156.14
2020050721404178000_104.14.1156.15
2020050721404178000_104.14.1156.10
2020050721404178000_104.14.1156.11
Ojeda (2020050721404178000_104.14.1156.21) 2016; 14
Shameer (2020050721404178000_104.14.1156.9) 2016; 22
2020050721404178000_104.14.1156.20
2020050721404178000_104.14.1156.4
2020050721404178000_104.14.1156.3
George EPB (2020050721404178000_104.14.1156.49) 1976; 71
2020050721404178000_104.14.1156.5
Johnson (2020050721404178000_104.14.1156.1) 2017; 2
2020050721404178000_104.14.1156.8
2020050721404178000_104.14.1156.38
2020050721404178000_104.14.1156.7
2020050721404178000_104.14.1156.39
Lee (2020050721404178000_104.14.1156.37) 2015; 5
Frizzell (2020050721404178000_104.14.1156.41) 2017; 2
2020050721404178000_104.14.1156.34
2020050721404178000_104.14.1156.35
2020050721404178000_104.14.1156.36
2020050721404178000_104.14.1156.31
2020050721404178000_104.14.1156.32
Zhang (2020050721404178000_104.14.1156.29) 2015; 13
Shameer (2020050721404178000_104.14.1156.26) 2011; 18
Ruiz-Fernández (2020050721404178000_104.14.1156.25) 2016; 126
Chen (2020050721404178000_104.14.1156.2) 2017; 376
2020050721404178000_104.14.1156.40
Xiong (2020050721404178000_104.14.1156.27) 2015; 24
Almeida (2020050721404178000_104.14.1156.28) 2014; 117
2020050721404178000_104.14.1156.45
2020050721404178000_104.14.1156.46
Tylman (2020050721404178000_104.14.1156.24) 2016; 69
2020050721404178000_104.14.1156.47
2020050721404178000_104.14.1156.48
Shameer (2020050721404178000_104.14.1156.23) 2010; 4
2020050721404178000_104.14.1156.42
2020050721404178000_104.14.1156.44
29945950 - Heart. 2018 Jul;104(14):1227
29945951 - Heart. 2018 Jul;104(14):1228
References_xml – volume: 69
  start-page: 2101
  year: 2017
  ident: R31
  article-title: Reply: deep learning with unsupervised feature in echocardiographic imaging
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2017.01.062
– year: 2017
  ident: R47
  article-title: Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome
  publication-title: bioRxiv
– volume: 9
  start-page: 629
  year: 2016
  ident: R42
  article-title: Analysis of machine learning techniques for heart failure readmissions
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.003039
– volume: 18
  start-page: 1010
  year: 2011
  ident: R26
  article-title: 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach
  publication-title: Protein Pept Lett
  doi: 10.2174/092986611796378729
– volume: 14
  start-page: 197
  year: 2017
  ident: R6
  article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2017.1300057
– volume: 68
  start-page: 934
  year: 2016
  ident: R46
  article-title: Cystatin C and cardiovascular disease: a mendelian randomization study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.05.092
– volume: 14
  start-page: 235
  year: 2016
  ident: R21
  article-title: Comparison of cox model methods in a low-dimensional setting with few events
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2016.03.006
– volume: 18
  start-page: 105
  year: 2017
  ident: R48
  article-title: Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv118
– year: 2017
  ident: R14
  article-title: Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw136
– volume: 68
  start-page: 2287
  year: 2016
  ident: R7
  article-title: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.08.062
– volume: 9
  year: 2016
  ident: R8
  article-title: Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.115.004330
– volume: 13
  start-page: 343
  year: 2015
  ident: R29
  article-title: Information maximizing component analysis of left ventricular remodeling due to myocardial infarction
  publication-title: J Transl Med
  doi: 10.1186/s12967-015-0709-4
– volume: 9
  year: 2016
  ident: R4
  article-title: Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.116.005059
– volume: 9
  start-page: 57
  year: 2015
  ident: R22
  article-title: Exploring guidelines for classification of major heart failure subtypes by using machine learning
  publication-title: Clin Med Insights Cardiol
  doi: 10.4137/CMC.S18746
– volume: 22
  start-page: 276
  year: 2016
  ident: R9
  article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort
  publication-title: Pac Symp Biocomput
– volume: 68
  start-page: 2296
  year: 2016
  ident: R3
  article-title: Machine learning for echocardiographic imaging: embarking on another incredible journey
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.09.915
– volume: 17
  start-page: 841
  year: 2016
  ident: R10
  article-title: Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv084
– volume: 133
  start-page: 95
  year: 2014
  ident: R12
  article-title: A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects
  publication-title: Hum Genet
  doi: 10.1007/s00439-013-1355-7
– volume: 117
  start-page: 257
  year: 2014
  ident: R28
  article-title: Cardiovascular risk analysis by means of pulse morphology and clustering methodologies
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.06.010
– volume: 349
  start-page: 255
  year: 2015
  ident: R17
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 24
  start-page: 229
  year: 2011
  ident: R16
  article-title: ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2010.12.008
– volume: 36
  start-page: 539
  year: 2015
  ident: R45
  article-title: Mendelian randomization of blood lipids for coronary heart disease
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht571
– volume: 47
  start-page: 838
  year: 2000
  ident: R30
  article-title: Clustering ECG complexes using hermite functions and self-organizing maps
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.846677
– volume: 7
  start-page: 311ra174
  year: 2015
  ident: R15
  article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa9364
– volume: 2
  start-page: 311
  year: 2017
  ident: R1
  article-title: Enabling precision cardiology through multiscale biology and systems medicine
  publication-title: JACC Basic Transl Sci
  doi: 10.1016/j.jacbts.2016.11.010
– volume: 353
  start-page: i2416
  year: 2016
  ident: R19
  article-title: Prediction models for cardiovascular disease risk in the general population: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.i2416
– volume: 5
  start-page: 11817
  year: 2015
  ident: R37
  article-title: Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs
  publication-title: Sci Rep
  doi: 10.1038/srep11817
– volume: 45
  start-page: 25
  year: 2013
  ident: R11
  article-title: Large-scale association analysis identifies new risk loci for coronary artery disease
  publication-title: Nat Genet
  doi: 10.1038/ng.2480
– volume: 24
  start-page: 198
  year: 2017
  ident: R40
  article-title: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw042
– volume: 69
  start-page: 628
  year: 2017
  ident: R5
  article-title: Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: the YELLOW II study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.10.029
– volume: 4
  start-page: 33
  year: 2010
  ident: R23
  article-title: Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach
  publication-title: Bioinform Biol Insights
  doi: 10.4137/BBI.S4464
– volume: 2
  start-page: 204
  year: 2017
  ident: R41
  article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2016.3956
– volume: 24
  start-page: 77
  year: 2015
  ident: R27
  article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.05.010
– volume: 133
  start-page: 1181
  year: 2016
  ident: R13
  article-title: Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.020109
– volume: 12
  start-page: 242
  year: 2014
  ident: R20
  article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0242-y
– volume: 69
  start-page: 245
  year: 2016
  ident: R24
  article-title: Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.08.015
– volume: 36
  start-page: 103
  year: 2017
  ident: R33
  article-title: A fused deep learning architecture for viewpoint classification of echocardiography
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2016.11.007
– volume: 376
  start-page: 2507
  year: 2017
  ident: R2
  article-title: Machine learning and prediction in medicine - beyond the peak of inflated expectations
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1702071
– volume: 126
  start-page: 118
  year: 2016
  ident: R25
  article-title: Aid decision algorithms to estimate the risk in congenital heart surgery
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.12.021
– volume: 67
  start-page: 1422
  year: 2011
  ident: R39
  article-title: Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01572.x
– volume: 5
  year: 2016
  ident: R18
  article-title: Impact of surgical complexity on health-related quality of life in congenital heart disease surgical survivors
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.114.001234
– volume: 19
  start-page: 221
  year: 2017
  ident: R32
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 349
  start-page: g4164
  year: 2014
  ident: R44
  article-title: Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data
  publication-title: BMJ
  doi: 10.1136/bmj.g4164
– volume: 376
  start-page: 2507
  year: 2017
  article-title: Machine learning and prediction in medicine - beyond the peak of inflated expectations
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1702071
– volume: 14
  start-page: 197
  year: 2017
  article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2017.1300057
– volume: 19
  start-page: 221
  year: 2017
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 12
  start-page: 242
  year: 2014
  article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0242-y
– volume: 349
  start-page: g4164
  year: 2014
  article-title: Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data
  publication-title: BMJ
  doi: 10.1136/bmj.g4164
– volume: 9
  start-page: 57
  year: 2015
  article-title: Exploring guidelines for classification of major heart failure subtypes by using machine learning
  publication-title: Clin Med Insights Cardiol
  doi: 10.4137/CMC.S18746
– volume: 24
  start-page: 77
  year: 2015
  article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.05.010
– volume: 36
  start-page: 539
  year: 2015
  article-title: Mendelian randomization of blood lipids for coronary heart disease
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/eht571
– volume: 68
  start-page: 934
  year: 2016
  article-title: Cystatin C and cardiovascular disease: a mendelian randomization study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.05.092
– volume: 69
  start-page: 2101
  year: 2017
  article-title: Reply: deep learning with unsupervised feature in echocardiographic imaging
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2017.01.062
– volume: 9
  start-page: 629
  year: 2016
  article-title: Analysis of machine learning techniques for heart failure readmissions
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.003039
– volume: 9
  year: 2016
  article-title: Cognitive machine-learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.115.004330
– volume: 9
  year: 2016
  article-title: Unleashing the potential of machine-based learning for the diagnosis of cardiac diseases
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.116.005059
– volume: 69
  start-page: 628
  year: 2017
  article-title: Intracoronary imaging, cholesterol efflux, and transcriptomes after intensive statin treatment: the YELLOW II study
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.10.029
– volume: 13
  start-page: 343
  year: 2015
  article-title: Information maximizing component analysis of left ventricular remodeling due to myocardial infarction
  publication-title: J Transl Med
  doi: 10.1186/s12967-015-0709-4
– volume: 133
  start-page: 1181
  year: 2016
  article-title: Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.020109
– volume: 18
  start-page: 1010
  year: 2011
  article-title: 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach
  publication-title: Protein Pept Lett
  doi: 10.2174/092986611796378729
– volume: 17
  start-page: 841
  year: 2016
  article-title: Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv084
– volume: 24
  start-page: 198
  year: 2017
  article-title: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw042
– year: 2017
  article-title: Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw136
– volume: 126
  start-page: 118
  year: 2016
  article-title: Aid decision algorithms to estimate the risk in congenital heart surgery
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.12.021
– volume: 2
  start-page: 204
  year: 2017
  article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2016.3956
– volume: 68
  start-page: 2296
  year: 2016
  article-title: Machine learning for echocardiographic imaging: embarking on another incredible journey
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.09.915
– volume: 7
  start-page: 311ra174
  year: 2015
  article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa9364
– volume: 24
  start-page: 229
  year: 2011
  article-title: ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2010.12.008
– volume: 5
  year: 2016
  article-title: Impact of surgical complexity on health-related quality of life in congenital heart disease surgical survivors
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.114.001234
– volume: 133
  start-page: 95
  year: 2014
  article-title: A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects
  publication-title: Hum Genet
  doi: 10.1007/s00439-013-1355-7
– volume: 67
  start-page: 1422
  year: 2011
  article-title: Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01572.x
– volume: 36
  start-page: 103
  year: 2017
  article-title: A fused deep learning architecture for viewpoint classification of echocardiography
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2016.11.007
– volume: 4
  start-page: 33
  year: 2010
  article-title: Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach
  publication-title: Bioinform Biol Insights
  doi: 10.4137/BBI.S4464
– volume: 18
  start-page: 105
  year: 2017
  article-title: Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv118
– volume: 47
  start-page: 838
  year: 2000
  article-title: Clustering ECG complexes using hermite functions and self-organizing maps
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.846677
– volume: 5
  start-page: 11817
  year: 2015
  article-title: Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs
  publication-title: Sci Rep
  doi: 10.1038/srep11817
– volume: 68
  start-page: 2287
  year: 2016
  article-title: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.08.062
– volume: 69
  start-page: 245
  year: 2016
  article-title: Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.08.015
– volume: 14
  start-page: 235
  year: 2016
  article-title: Comparison of cox model methods in a low-dimensional setting with few events
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2016.03.006
– volume: 117
  start-page: 257
  year: 2014
  article-title: Cardiovascular risk analysis by means of pulse morphology and clustering methodologies
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.06.010
– volume: 2
  start-page: 311
  year: 2017
  article-title: Enabling precision cardiology through multiscale biology and systems medicine
  publication-title: JACC Basic Transl Sci
  doi: 10.1016/j.jacbts.2016.11.010
– volume: 22
  start-page: 276
  year: 2016
  article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort
  publication-title: Pac Symp Biocomput
– volume: 45
  start-page: 25
  year: 2013
  article-title: Large-scale association analysis identifies new risk loci for coronary artery disease
  publication-title: Nat Genet
  doi: 10.1038/ng.2480
– volume: 349
  start-page: 255
  year: 2015
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– year: 2017
  article-title: Automating mendelian randomization through machine learning to construct a putative causal map of the human phenome
  publication-title: bioRxiv
– volume: 353
  start-page: i2416
  year: 2016
  article-title: Prediction models for cardiovascular disease risk in the general population: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.i2416
– ident: 2020050721404178000_104.14.1156.34
– volume: 117
  start-page: 257
  year: 2014
  ident: 2020050721404178000_104.14.1156.28
  article-title: Cardiovascular risk analysis by means of pulse morphology and clustering methodologies
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.06.010
– ident: 2020050721404178000_104.14.1156.46
  doi: 10.1016/j.jacc.2016.05.092
– ident: 2020050721404178000_104.14.1156.11
  doi: 10.1038/ng.2480
– volume: 376
  start-page: 2507
  year: 2017
  ident: 2020050721404178000_104.14.1156.2
  article-title: Machine learning and prediction in medicine - beyond the peak of inflated expectations
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1702071
– ident: 2020050721404178000_104.14.1156.17
  doi: 10.1126/science.aaa8415
– ident: 2020050721404178000_104.14.1156.48
  doi: 10.1093/bib/bbv118
– ident: 2020050721404178000_104.14.1156.45
  doi: 10.1093/eurheartj/eht571
– volume: 36
  start-page: 103
  year: 2017
  ident: 2020050721404178000_104.14.1156.33
  article-title: A fused deep learning architecture for viewpoint classification of echocardiography
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2016.11.007
– volume: 4
  start-page: 33
  year: 2010
  ident: 2020050721404178000_104.14.1156.23
  article-title: Insights into protein sequence and structure-derived features mediating 3d domain swapping mechanism using support vector machine based approach
  publication-title: Bioinform Biol Insights
  doi: 10.4137/BBI.S4464
– ident: 2020050721404178000_104.14.1156.5
  doi: 10.1016/j.jacc.2016.10.029
– volume: 2
  start-page: 311
  year: 2017
  ident: 2020050721404178000_104.14.1156.1
  article-title: Enabling precision cardiology through multiscale biology and systems medicine
  publication-title: JACC Basic Transl Sci
  doi: 10.1016/j.jacbts.2016.11.010
– volume: 2
  start-page: 204
  year: 2017
  ident: 2020050721404178000_104.14.1156.41
  article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2016.3956
– ident: 2020050721404178000_104.14.1156.35
– ident: 2020050721404178000_104.14.1156.8
  doi: 10.1161/CIRCIMAGING.115.004330
– ident: 2020050721404178000_104.14.1156.19
  doi: 10.1136/bmj.i2416
– ident: 2020050721404178000_104.14.1156.13
  doi: 10.1161/CIRCULATIONAHA.115.020109
– ident: 2020050721404178000_104.14.1156.16
  doi: 10.1016/j.echo.2010.12.008
– ident: 2020050721404178000_104.14.1156.3
  doi: 10.1016/j.jacc.2016.09.915
– volume: 24
  start-page: 77
  year: 2015
  ident: 2020050721404178000_104.14.1156.27
  article-title: Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.05.010
– ident: 2020050721404178000_104.14.1156.7
  doi: 10.1016/j.jacc.2016.08.062
– ident: 2020050721404178000_104.14.1156.14
  doi: 10.1093/bib/bbw136
– volume: 69
  start-page: 245
  year: 2016
  ident: 2020050721404178000_104.14.1156.24
  article-title: Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.08.015
– ident: 2020050721404178000_104.14.1156.18
  doi: 10.1161/JAHA.114.001234
– ident: 2020050721404178000_104.14.1156.20
  doi: 10.1186/s12916-014-0242-y
– volume: 126
  start-page: 118
  year: 2016
  ident: 2020050721404178000_104.14.1156.25
  article-title: Aid decision algorithms to estimate the risk in congenital heart surgery
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.12.021
– ident: 2020050721404178000_104.14.1156.47
  doi: 10.1101/173682
– ident: 2020050721404178000_104.14.1156.38
– ident: 2020050721404178000_104.14.1156.44
  doi: 10.1136/bmj.g4164
– ident: 2020050721404178000_104.14.1156.15
  doi: 10.1126/scitranslmed.aaa9364
– ident: 2020050721404178000_104.14.1156.32
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 18
  start-page: 1010
  year: 2011
  ident: 2020050721404178000_104.14.1156.26
  article-title: 3dswap-pred: prediction of 3D domain swapping from protein sequence using Random Forest approach
  publication-title: Protein Pept Lett
  doi: 10.2174/092986611796378729
– ident: 2020050721404178000_104.14.1156.39
  doi: 10.1111/j.1541-0420.2011.01572.x
– volume: 71
  start-page: 791
  volume-title: Science and statistics
  year: 1976
  ident: 2020050721404178000_104.14.1156.49
– volume: 47
  start-page: 838
  year: 2000
  ident: 2020050721404178000_104.14.1156.30
  article-title: Clustering ECG complexes using hermite functions and self-organizing maps
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.846677
– volume: 13
  start-page: 343
  year: 2015
  ident: 2020050721404178000_104.14.1156.29
  article-title: Information maximizing component analysis of left ventricular remodeling due to myocardial infarction
  publication-title: J Transl Med
  doi: 10.1186/s12967-015-0709-4
– volume: 9
  start-page: 57
  year: 2015
  ident: 2020050721404178000_104.14.1156.22
  article-title: Exploring guidelines for classification of major heart failure subtypes by using machine learning
  publication-title: Clin Med Insights Cardiol
– volume: 22
  start-page: 276
  year: 2016
  ident: 2020050721404178000_104.14.1156.9
  article-title: Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort
  publication-title: Pac Symp Biocomput
– volume: 14
  start-page: 197
  year: 2017
  ident: 2020050721404178000_104.14.1156.6
  article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2017.1300057
– ident: 2020050721404178000_104.14.1156.12
  doi: 10.1007/s00439-013-1355-7
– volume: 5
  start-page: 11817
  year: 2015
  ident: 2020050721404178000_104.14.1156.37
  article-title: Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs
  publication-title: Sci Rep
  doi: 10.1038/srep11817
– ident: 2020050721404178000_104.14.1156.42
  doi: 10.1161/CIRCOUTCOMES.116.003039
– volume: 14
  start-page: 235
  year: 2016
  ident: 2020050721404178000_104.14.1156.21
  article-title: Comparison of cox model methods in a low-dimensional setting with few events
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2016.03.006
– ident: 2020050721404178000_104.14.1156.31
  doi: 10.1016/j.jacc.2017.01.062
– ident: 2020050721404178000_104.14.1156.36
– ident: 2020050721404178000_104.14.1156.10
  doi: 10.1093/bib/bbv084
– volume: 4
  start-page: 90
  volume-title: On the relationship between feature selection and classification accuracy
  year: 2008
  ident: 2020050721404178000_104.14.1156.43
– ident: 2020050721404178000_104.14.1156.40
  doi: 10.1093/jamia/ocw042
– ident: 2020050721404178000_104.14.1156.4
  doi: 10.1161/CIRCIMAGING.116.005059
– reference: 29945950 - Heart. 2018 Jul;104(14):1227
– reference: 29945951 - Heart. 2018 Jul;104(14):1228
SSID ssj0004986
Score 2.6536527
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) broadly refers to analytical algorithms that iteratively learn from data, allowing computers to find hidden insights without being...
SourceID proquest
pubmed
crossref
bmj
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1156
SubjectTerms Algorithms
Artificial intelligence
Automation
Big Data
Cardiology
Cardiovascular disease
Causality
Clinical trials
Clinical Trials as Topic
Datasets
Datasets as Topic
Diagnostic Imaging
Electronic health records
Genetic Predisposition to Disease
Genomics
heart disease
Heart failure
Humans
Hypotheses
Machine Learning
Medical imaging
Medicine
Patients
Phenotype
Registries
Review
System theory
Title Machine learning in cardiovascular medicine: are we there yet?
URI https://heart.bmj.com/content/104/14/1156.full
https://www.ncbi.nlm.nih.gov/pubmed/29352006
https://www.proquest.com/docview/2067705380
https://www.proquest.com/docview/1989596672
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8UwEB5cQLyIu8-NCB70EOxr0qT1oKgoIjwRUXi30myiaJ9LRfz3Ztr0PTy4nJs0zcw0882SGYBtpb2WV4rTgheCcpVGNGXM0Dh2zqGNoQy6BnqX4vyWX_STfnC4vYW0yvZMrA9qM9DoI9_DMuPSS0waHT6_UOwahdHV0EJjHCaxdBmmdMm-HN2LzOpOj12vU6mImAxX57pM7GG76OqhfPRS0kVHnZ-ON1TU08N3BfUD6qy1z9kszATYSI4aPs_BmC3nYaoXAuMLcNCrkyItCV0g7sh9SfS3XFPShtH3SfFqyYcliP0s-bTV4SLcnp3enJzT0BqBKk_bimoRGbR9mDTCskKIJEk1y5QrrFU6YTYTqXERU0ZoaZQHGdawzDnLnUlMrNkSTJSD0q4A4VJLZ7RIuMm4irvKAzyuJVfKa3OmeQd2PVXyINpveW01MJG3FMyRgnlDwQ7s4NjnplDGH0NZS-Zch3Lk2BXj8Y9ZdDjrf6ustxwc7WAkSh3YGj72vxXGSorSDt79LrM0S7wpKOMOLDecHy7oERIWqxKrv798Dab9l6RNbu86TFSv73bDI5hKbdZiugmTx6eXV9dfLVztKA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRaJ9QRwtLKeRQKIPFknsOAkSIE4tx66qCiTeQnxVRTTLEYT4U_2NHefYFQ8UXnj2PR575vOMZwBWpUIpLyWnGc8E5TL2aMyYpkFgrXUYQ2r3NNDtic4FP7kML0fgb_MXxrlVNndieVHrvnJv5BsuzHiEHBN7O7d31GWNctbVJoVGxRan5vkJIdvD1vEB7u9aEBwdnu93aJ1VgEqcVkGV8LSDDSzSwrBMiDCMFUukzYyRKmQmEbG2HpNaqEhLlM9Gs8Raw60OdaAY9vsJRjlDKNOC0b3D3o-fw5-YSZlb0kcpToXHovqzns_EhktQXVznN8iXvnsa9BHuo0CTf65fisRX9NxS3h1NwHitqJLdirMmYcTkUzDWrU3x07DdLd0wDanzTvwiv3OiXni3ksZwv0mye0OeDHHapiHPptj5ChcfQrZv0Mr7uZkFwiMVWa1EyHXCZeBLVCm5iriUqD8wxdvwHamS1ofpIS1xChNpQ8HUUTCtKNiGdVf3tgrN8UZV1pA5VXUAdJeH4-aNVnTQ6n2jLDQ7OFzBkHnbsDIoxoPsrDNZbvqPuMokTkIEn1HQhplq5wcDok7mwmOJuf93vgyfO-fds_TsuHc6D19wVnHlWbwAreL-0Syi_lTIpZppCVx99Dn5B2mMLBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKqFeUN9doMWVWqk9WJvEjp1UalEFXUHpoh6KtLc0flUgyPIIQvy1_rrO5LErDgUunOP4MZ7xzHjG8wG8Mxa1vDGSl7JUXJos4pkQjidJCIF8DOPoamC8p7b35fdJOlmAv_1bGEqr7M_E5qB2U0t35EMqM66RY7JoGLq0iJ9bo42TU04IUhRp7eE0WhbZ9VeX6L6df97Zwr1-nySjb782t3mHMMANTrHmVkWOXAihnfKiVCpNMytyE0rvjU2Fz1XmQiSMU1Y7g7raO5GH4GVwqUuswH4fwEMt0phkTE_0_E1m3qBMxqjPuYqE7p7txUINCaq6PqyOkENjuiSM0fFH1WaOD68rx_9YvI3mGz2G5c5kZV9bHnsCC756CkvjLij_DL6Mm4RMzzoEij_soGL2Wp4r60P4n1h55tmlZ2R3enbl643nsH8vRHsBi9W08q-ASW11cFal0uXSJLFB41JaLY1BS0JYOYCPSJWiE6vzovFYhCp6ChZEwaKl4AA-UNuTtkjHLU1FT-bCdqXQCZHj6Ja_-Oyvu42y1u_gfAVzNh7A29lnFGmK05SVn17gKvMsT9EN1ckAXrY7PxsQrTMqlKVWbu58HZZQOoofO3u7q_AIJ5W1KcZrsFifXfjXaEjV5k3DsQx-37eI_AMt0S7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+cardiovascular+medicine%3A+are+we+there+yet%3F&rft.jtitle=Heart+%28British+Cardiac+Society%29&rft.au=Shameer%2C+Khader&rft.au=Johnson%2C+Kipp+W&rft.au=Glicksberg%2C+Benjamin+S&rft.au=Dudley%2C+Joel+T&rft.date=2018-07-01&rft.eissn=1468-201X&rft.volume=104&rft.issue=14&rft.spage=1156&rft_id=info:doi/10.1136%2Fheartjnl-2017-311198&rft_id=info%3Apmid%2F29352006&rft.externalDocID=29352006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-6037&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-6037&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-6037&client=summon