Temporal lobe epilepsy lateralisation and surgical outcome prediction using diffusion imaging
ObjectiveWe sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome.Methods151 subjects were included in...
Saved in:
Published in | Journal of neurology, neurosurgery and psychiatry Vol. 93; no. 6; pp. 599 - 608 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Publishing Group Ltd
01.06.2022
BMJ Publishing Group LTD |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ObjectiveWe sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome.Methods151 subjects were included in this analysis: 62 patients (aged 18–68 years, 36 women) and 89 healthy controls (aged 18–71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation.ResultsWe classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome.ConclusionsThis technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder. |
---|---|
AbstractList | ObjectiveWe sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome.Methods151 subjects were included in this analysis: 62 patients (aged 18–68 years, 36 women) and 89 healthy controls (aged 18–71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation.ResultsWe classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome.ConclusionsThis technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder. We sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome. 151 subjects were included in this analysis: 62 patients (aged 18-68 years, 36 women) and 89 healthy controls (aged 18-71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation. We classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome. This technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder. We sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome.OBJECTIVEWe sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome.151 subjects were included in this analysis: 62 patients (aged 18-68 years, 36 women) and 89 healthy controls (aged 18-71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation.METHODS151 subjects were included in this analysis: 62 patients (aged 18-68 years, 36 women) and 89 healthy controls (aged 18-71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation.We classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome.RESULTSWe classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome.This technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder.CONCLUSIONSThis technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder. |
Author | Cai, Leon Y. Johnson, Graham W. Narasimhan, Saramati Morgan, Victoria L. Wills, Kristin E. González, Hernán F. J. Englot, Dario J. |
Author_xml | – sequence: 1 givenname: Graham W. orcidid: 0000-0002-9154-4315 surname: Johnson fullname: Johnson, Graham W. email: grahamwjohnson@gmail.com organization: Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA – sequence: 2 givenname: Leon Y. surname: Cai fullname: Cai, Leon Y. organization: Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA – sequence: 3 givenname: Saramati orcidid: 0000-0002-2965-2200 surname: Narasimhan fullname: Narasimhan, Saramati organization: Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA – sequence: 4 givenname: Hernán F. J. surname: González fullname: González, Hernán F. J. organization: Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA – sequence: 5 givenname: Kristin E. surname: Wills fullname: Wills, Kristin E. organization: Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA – sequence: 6 givenname: Victoria L. surname: Morgan fullname: Morgan, Victoria L. organization: Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA – sequence: 7 givenname: Dario J. surname: Englot fullname: Englot, Dario J. organization: Electrical Engineering and Computer Sciences, Vanderbilt University, Nashville, Tennessee, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35347079$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LJDEQxYO4rKPu3ZM0eNnDtlY-OtN9FNkvELy44EVCOqkMGbqT3qT74H9vxlEEYTeXJJXfK17qHZPDEAMSckbhklIur7YhTDUDRmvOWto2B2RFhWxrzuHhkKwAGKs5NHBEjnPewm613WdyxBsu1rDuVuTxHscpJj1UQ-yxwskPOOWnatAzlqrPevYxVDrYKi9p400h4zKbOGI1JbTevLwv2YdNZb1z5VTuftSbUjkln5weMn553U_Inx_f729-1bd3P3_fXN_WvQA5F_MagCM40xkDyKVktAPbU6odF9oK6YSVljHmACx3hrYO113fWLc2trX8hHzd951S_LtgntXos8Fh0AHjkhWTQnSioY0o6MUHdBuXFIq7QrWy7aDpZKHOX6mlH9GqKZUfpSf1NrgCyD1gUsw5oVPGzy-zmpP2g6KgdgmpXUJql5DaJ1SE8EH41vs_km97ST9u393-E38Go7ajAA |
CitedBy_id | crossref_primary_10_1016_j_nec_2023_09_001 crossref_primary_10_1093_cercor_bhad098 crossref_primary_10_1177_15357597221123459 crossref_primary_10_1016_j_neuroscience_2024_10_037 crossref_primary_10_1093_braincomms_fcad294 crossref_primary_10_3390_healthcare10091648 crossref_primary_10_3389_fpsyt_2022_958294 crossref_primary_10_1111_epi_18366 crossref_primary_10_1177_15357597221101271 crossref_primary_10_1111_epi_18192 crossref_primary_10_3389_fpsyt_2022_976439 crossref_primary_10_1111_epi_18153 crossref_primary_10_1093_brain_awac234 crossref_primary_10_3389_fpsyt_2022_983565 crossref_primary_10_1093_brain_awae189 |
Cites_doi | 10.1002/mrm.28678 10.1097/WCO.0000000000000534 10.1016/j.eplepsyres.2021.106571 10.1016/j.nicl.2015.02.004 10.1016/S1474-4422(14)70325-4 10.14581/jer.20003 10.1212/WNL.0000000000003407 10.1016/j.neuroimage.2006.01.021 10.1016/j.neurol.2015.11.003 10.1097/WCO.0000000000000076 10.1371/journal.pone.0236418 10.1212/WNL.0000000000004035 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2009.10.003 10.1111/epi.13920 10.1016/j.neuroimage.2015.06.092 10.1007/s00330-019-06295-5 10.1111/epi.12400 10.1016/j.clinph.2019.10.011 10.5698/1535-7511-12.5.203 10.1016/j.neuroimage.2014.04.071 10.1111/epi.14528 10.1111/epi.13730 10.3171/2017.3.JNS162821 10.1016/S1474-4422(08)70109-1 10.1212/WNL.43.8.1612 10.1001/jama.2012.220 10.1111/epi.15565 10.1038/s41593-018-0108-2 10.2174/1573405613666170622114920 10.1016/j.neuroimage.2004.07.037 10.1016/j.neuroimage.2019.116137 10.1002/ana.25888 10.1016/J.NEUROIMAGE.2019.116137 10.1109/EMBC.2016.7591978 10.1088/1742-5468/2008/10/P10008 10.1007/978-3-662-38527-2_55 10.1016/j.nicl.2015.10.015 10.1016/B978-012431152-7/50008-2 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 88G 88I 8AF 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR BTHHO CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 M0S M1P M2M M2P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1136/jnnp-2021-328185 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central BMJ Journals ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition BMJ Journals ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-330X |
EndPage | 608 |
ExternalDocumentID | 35347079 10_1136_jnnp_2021_328185 jnnp |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS112252 – fundername: NICHD NIH HHS grantid: P50 HD103537 – fundername: NINDS NIH HHS grantid: R01 NS108445 – fundername: NIGMS NIH HHS grantid: T32 GM007347 – fundername: NINDS NIH HHS grantid: R01 NS075270 – fundername: NINDS NIH HHS grantid: F31 NS120401 – fundername: NINDS NIH HHS grantid: R01 NS110130 |
GroupedDBID | --- .55 .GJ .VT 0R~ 18M 29L 2WC 354 39C 3O- 4.4 40O 41~ 53G 5GY 5RE 5VS 7RV 7X7 7~S 88E 88I 8AF 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAUVZ AAWJN AAWTL ABAAH ABIVO ABJNI ABKDF ABMQD ABOCM ABUWG ABVAJ ACGFO ACGFS ACGOD ACGTL ACHTP ACMFJ ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADFRT ADUGQ ADZCM AEKJL AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AI. AJYBZ AKKEP ALIPV ALMA_UNASSIGNED_HOLDINGS AZFZN AZQEC BAWUL BENPR BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C45 CAG CCPQU COF CS3 CXRWF DIK DU5 DWQXO E3Z EBS EJD EX3 F5P FEDTE FYUFA GNUQQ GX1 H13 HAJ HCIFZ HMCUK HVGLF HYE HZ~ IAO IEA IHR INH INR IOF IPO IPY ITC J5H KQ8 L7B M1P M2M M2P N9A NAPCQ NTWIH NXWIF O9- OK1 OMB OMG OVD P2P PCD PHGZT PQQKQ PROAC PSQYO PSYQQ Q2X R53 RHI RMJ RPM RV8 SJN TEORI TR2 UKHRP UPT UYXKK V24 VH1 VM9 VVN W8F WH7 WOW X7M YFH YQT YQY ZGI AAYXX ACQHZ ADGHP AERUA CITATION PHGZM CGR CUY CVF ECM EIF NPM YCJ 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-b406t-32a003e0fc9cc0e3662190db11af34ad46f4d6d222f00d3fc18fe79b5df7cd8d3 |
IEDL.DBID | 7X7 |
ISSN | 0022-3050 1468-330X |
IngestDate | Tue Aug 05 09:15:52 EDT 2025 Fri Jul 25 20:59:27 EDT 2025 Thu Apr 03 07:01:06 EDT 2025 Tue Jul 01 01:21:55 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 Thu Apr 24 22:50:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | neurosurgery image analysis epilepsy, surgery |
Language | English |
License | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b406t-32a003e0fc9cc0e3662190db11af34ad46f4d6d222f00d3fc18fe79b5df7cd8d3 |
Notes | Original research ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2965-2200 0000-0002-9154-4315 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9149039 |
PMID | 35347079 |
PQID | 2686890596 |
PQPubID | 2041879 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2644945154 proquest_journals_2686890596 pubmed_primary_35347079 crossref_citationtrail_10_1136_jnnp_2021_328185 crossref_primary_10_1136_jnnp_2021_328185 bmj_journals_10_1136_jnnp_2021_328185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of neurology, neurosurgery and psychiatry |
PublicationTitleAbbrev | J Neurol Neurosurg Psychiatry |
PublicationTitleAlternate | J Neurol Neurosurg Psychiatry |
PublicationYear | 2022 |
Publisher | BMJ Publishing Group Ltd BMJ Publishing Group LTD |
Publisher_xml | – name: BMJ Publishing Group Ltd – name: BMJ Publishing Group LTD |
References | Engel, McDermott, Wiebe (R3) 2012; 307 Gleichgerrcht, Munsell, Bhatia (R18) 2018; 59 Besson, Dinkelacker, Valabregue (R15) 2014; 100 Taylor, Han, Schoene-Bake (R14) 2015; 8 Tsougos, Kousi, Georgoulias (R8) 2019; 15 Yu, Chu, Liu (R16) 2019; 29 Blondel, Guillaume, Lambiotte (R33) 2008 Desikan, Ségonne, Fischl (R27) 2006; 31 Cai, Yang, Hansen (R23) 2021; 86 An, Kang, Lee (R12) 2020; 10 Tournier, Smith, Raffelt (R26) 2019; 202 Schilling, Blaber, Hansen (R24) 2020; 15 Smith, Tournier, Calamante (R30) 2015; 119 Parvizi, Kastner (R9) 2018; 21 Spencer, Huh (R6) 2008; 7 Rheims, Ryvlin (R10) 2014; 27 He, Doucet, Pustina (R41) 2017; 88 Rubinov, Sporns (R34) 2010; 52 Dugan, Carlson, Jetté (R20) 2017; 58 Boon, De Cock, Mertens (R5) 2018; 31 Wu, Jermakowicz, Chakravorti (R4) 2019; 60 Gleichgerrcht, Greenblatt, Kellermann (R35) 2021; 171 Jehi (R36) 2012; 12 Smith, Jenkinson, Woolrich (R25) 2004; 23 Suppl 1 Abel, Woodroffe, Nourski (R38) 2018; 129 Jehi, Yardi, Chagin (R21) 2015; 14 Engel (R2) 2016; 87 Krucoff, Chan, Harward (R7) 2017; 58 Engel (R22) 1993; 43 Tournier, Calamante, Gadian (R28) 2004; 23 Cataldi, Avoli, de Villers-Sidani (R39) 2013; 54 Gleichgerrcht, Keller, Drane (R17) 2020; 88 Karthick, Tanaka, Khoo (R11) 2020; 131 Behr, Goltzene, Kosmalski (R1) 2016; 172 Tsougos (2023052906053228000_93.6.599.8) 2019; 15 Gleichgerrcht (2023052906053228000_93.6.599.35) 2021; 171 2023052906053228000_93.6.599.27 2023052906053228000_93.6.599.28 2023052906053228000_93.6.599.29 An (2023052906053228000_93.6.599.12) 2020; 10 Abel (2023052906053228000_93.6.599.38) 2018; 129 Taylor (2023052906053228000_93.6.599.14) 2015; 8 2023052906053228000_93.6.599.34 Rheims (2023052906053228000_93.6.599.10) 2014; 27 2023052906053228000_93.6.599.13 Gleichgerrcht (2023052906053228000_93.6.599.17) 2020; 88 2023052906053228000_93.6.599.37 2023052906053228000_93.6.599.31 Jehi (2023052906053228000_93.6.599.36) 2012; 12 Besson (2023052906053228000_93.6.599.15) 2014; 100 2023052906053228000_93.6.599.32 Yu (2023052906053228000_93.6.599.16) 2019; 29 2023052906053228000_93.6.599.33 Behr (2023052906053228000_93.6.599.1) 2016; 172 Karthick (2023052906053228000_93.6.599.11) 2020; 131 2023052906053228000_93.6.599.39 2023052906053228000_93.6.599.2 2023052906053228000_93.6.599.19 2023052906053228000_93.6.599.4 Smith (2023052906053228000_93.6.599.30) 2015; 119 2023052906053228000_93.6.599.3 Krucoff (2023052906053228000_93.6.599.7) 2017; 58 Gleichgerrcht (2023052906053228000_93.6.599.18) 2018; 59 2023052906053228000_93.6.599.6 2023052906053228000_93.6.599.5 2023052906053228000_93.6.599.9 Dugan (2023052906053228000_93.6.599.20) 2017; 58 2023052906053228000_93.6.599.40 2023052906053228000_93.6.599.24 2023052906053228000_93.6.599.25 Jehi (2023052906053228000_93.6.599.21) 2015; 14 2023052906053228000_93.6.599.26 He (2023052906053228000_93.6.599.41) 2017; 88 Cai (2023052906053228000_93.6.599.23) 2021; 86 2023052906053228000_93.6.599.22 |
References_xml | – volume: 86 start-page: 456 year: 2021 ident: R23 article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images publication-title: Magn Reson Med doi: 10.1002/mrm.28678 – volume: 31 start-page: 198 year: 2018 ident: R5 article-title: Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000534 – volume: 171 year: 2021 ident: R35 article-title: Patterns of seizure spread in temporal lobe epilepsy are associated with distinct white matter tracts publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2021.106571 – volume: 8 start-page: 322 year: 2015 ident: R14 article-title: Structural connectivity changes in temporal lobe epilepsy: spatial features contribute more than topological measures publication-title: Neuroimage doi: 10.1016/j.nicl.2015.02.004 – volume: 14 start-page: 283 year: 2015 ident: R21 article-title: Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: a retrospective analysis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70325-4 – volume: 10 start-page: 8 year: 2020 ident: R12 article-title: Artificial intelligence and computational approaches for epilepsy publication-title: J Epilepsy Res doi: 10.14581/jer.20003 – volume: 87 start-page: 2483 year: 2016 ident: R2 article-title: What can we do for people with drug-resistant epilepsy? the 2016 Wartenberg lecture publication-title: Neurology doi: 10.1212/WNL.0000000000003407 – volume: 31 start-page: 968 year: 2006 ident: R27 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 172 start-page: 27 year: 2016 ident: R1 article-title: Epidemiology of epilepsy publication-title: Rev Neurol doi: 10.1016/j.neurol.2015.11.003 – volume: 27 start-page: 213 year: 2014 ident: R10 article-title: Patients' safety in the epilepsy monitoring unit: time for revising practices publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000076 – volume: 15 year: 2020 ident: R24 article-title: Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps publication-title: PLoS One doi: 10.1371/journal.pone.0236418 – volume: 88 start-page: 2285 year: 2017 ident: R41 article-title: Presurgical thalamic "hubness" predicts surgical outcome in temporal lobe epilepsy publication-title: Neurology doi: 10.1212/WNL.0000000000004035 – volume: 23 Suppl 1 start-page: S208 year: 2004 ident: R25 article-title: Advances in functional and structural Mr image analysis and implementation as fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 52 start-page: 1059 year: 2010 ident: R34 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 58 start-page: 2133 year: 2017 ident: R7 article-title: Rates and predictors of success and failure in repeat epilepsy surgery: a meta-analysis and systematic review publication-title: Epilepsia doi: 10.1111/epi.13920 – volume: 119 start-page: 338 year: 2015 ident: R30 article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.092 – volume: 29 start-page: 6750 year: 2019 ident: R16 article-title: Alterations of white matter network in patients with left and right non-lesional temporal lobe epilepsy publication-title: Eur Radiol doi: 10.1007/s00330-019-06295-5 – volume: 54 start-page: 2048 year: 2013 ident: R39 article-title: Resting state networks in temporal lobe epilepsy publication-title: Epilepsia doi: 10.1111/epi.12400 – volume: 131 start-page: 114 year: 2020 ident: R11 article-title: Could we have missed out the seizure onset: a study based on intracranial EEG publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2019.10.011 – year: 2008 ident: R33 article-title: Fast unfolding of communities in large networks publication-title: Journal of Statistical Mechanics – volume: 12 start-page: 203 year: 2012 ident: R36 article-title: Cortico-thalamic connections and temporal lobe epilepsy: an evolving story publication-title: Epilepsy Curr doi: 10.5698/1535-7511-12.5.203 – volume: 100 start-page: 135 year: 2014 ident: R15 article-title: Structural connectivity differences in left and right temporal lobe epilepsy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.071 – volume: 59 start-page: 1643 year: 2018 ident: R18 article-title: Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery publication-title: Epilepsia doi: 10.1111/epi.14528 – volume: 58 start-page: 792 year: 2017 ident: R20 article-title: Derivation and initial validation of a surgical grading scale for the preliminary evaluation of adult patients with drug-resistant focal epilepsy publication-title: Epilepsia doi: 10.1111/epi.13730 – volume: 129 start-page: 165 year: 2018 ident: R38 article-title: Role of the temporal pole in temporal lobe epilepsy seizure networks: an intracranial electrode investigation publication-title: J Neurosurg doi: 10.3171/2017.3.JNS162821 – volume: 7 start-page: 525 year: 2008 ident: R6 article-title: Outcomes of epilepsy surgery in adults and children publication-title: Lancet Neurol doi: 10.1016/S1474-4422(08)70109-1 – volume: 43 year: 1993 ident: R22 article-title: Update on surgical treatment of the epilepsies: summary of the second International palm desert conference on the surgical treatment of the epilepsies (1992) publication-title: Neurology doi: 10.1212/WNL.43.8.1612 – volume: 307 start-page: 922 year: 2012 ident: R3 article-title: Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial publication-title: JAMA doi: 10.1001/jama.2012.220 – volume: 60 start-page: 1171 year: 2019 ident: R4 article-title: Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: a multicenter study of 234 patients publication-title: Epilepsia doi: 10.1111/epi.15565 – volume: 21 start-page: 474 year: 2018 ident: R9 article-title: Promises and limitations of human intracranial electroencephalography publication-title: Nat Neurosci doi: 10.1038/s41593-018-0108-2 – volume: 15 start-page: 39 year: 2019 ident: R8 article-title: Neuroimaging methods in epilepsy of temporal origin publication-title: Curr Med Imaging Rev doi: 10.2174/1573405613666170622114920 – volume: 23 start-page: 1176 year: 2004 ident: R28 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.037 – volume: 202 year: 2019 ident: R26 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116137 – volume: 88 start-page: 970 year: 2020 ident: R17 article-title: Temporal lobe epilepsy surgical outcomes can be inferred based on structural connectome hubs: a machine learning study publication-title: Ann Neurol doi: 10.1002/ana.25888 – ident: 2023052906053228000_93.6.599.39 doi: 10.1111/epi.12400 – ident: 2023052906053228000_93.6.599.22 doi: 10.1212/WNL.43.8.1612 – volume: 119 start-page: 338 year: 2015 ident: 2023052906053228000_93.6.599.30 article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.092 – ident: 2023052906053228000_93.6.599.24 doi: 10.1371/journal.pone.0236418 – ident: 2023052906053228000_93.6.599.26 doi: 10.1016/J.NEUROIMAGE.2019.116137 – volume: 8 start-page: 322 year: 2015 ident: 2023052906053228000_93.6.599.14 article-title: Structural connectivity changes in temporal lobe epilepsy: spatial features contribute more than topological measures publication-title: Neuroimage doi: 10.1016/j.nicl.2015.02.004 – volume: 58 start-page: 2133 year: 2017 ident: 2023052906053228000_93.6.599.7 article-title: Rates and predictors of success and failure in repeat epilepsy surgery: a meta-analysis and systematic review publication-title: Epilepsia doi: 10.1111/epi.13920 – ident: 2023052906053228000_93.6.599.2 doi: 10.1212/WNL.0000000000003407 – volume: 10 start-page: 8 year: 2020 ident: 2023052906053228000_93.6.599.12 article-title: Artificial intelligence and computational approaches for epilepsy publication-title: J Epilepsy Res doi: 10.14581/jer.20003 – volume: 88 start-page: 970 year: 2020 ident: 2023052906053228000_93.6.599.17 article-title: Temporal lobe epilepsy surgical outcomes can be inferred based on structural connectome hubs: a machine learning study publication-title: Ann Neurol doi: 10.1002/ana.25888 – volume: 58 start-page: 792 year: 2017 ident: 2023052906053228000_93.6.599.20 article-title: Derivation and initial validation of a surgical grading scale for the preliminary evaluation of adult patients with drug-resistant focal epilepsy publication-title: Epilepsia doi: 10.1111/epi.13730 – ident: 2023052906053228000_93.6.599.25 doi: 10.1016/j.neuroimage.2004.07.051 – volume: 88 start-page: 2285 year: 2017 ident: 2023052906053228000_93.6.599.41 article-title: Presurgical thalamic "hubness" predicts surgical outcome in temporal lobe epilepsy publication-title: Neurology doi: 10.1212/WNL.0000000000004035 – ident: 2023052906053228000_93.6.599.34 doi: 10.1016/j.neuroimage.2009.10.003 – volume: 12 start-page: 203 year: 2012 ident: 2023052906053228000_93.6.599.36 article-title: Cortico-thalamic connections and temporal lobe epilepsy: an evolving story publication-title: Epilepsy Curr doi: 10.5698/1535-7511-12.5.203 – volume: 29 start-page: 6750 year: 2019 ident: 2023052906053228000_93.6.599.16 article-title: Alterations of white matter network in patients with left and right non-lesional temporal lobe epilepsy publication-title: Eur Radiol doi: 10.1007/s00330-019-06295-5 – ident: 2023052906053228000_93.6.599.3 doi: 10.1001/jama.2012.220 – ident: 2023052906053228000_93.6.599.40 doi: 10.1109/EMBC.2016.7591978 – ident: 2023052906053228000_93.6.599.5 doi: 10.1097/WCO.0000000000000534 – volume: 86 start-page: 456 year: 2021 ident: 2023052906053228000_93.6.599.23 article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images publication-title: Magn Reson Med doi: 10.1002/mrm.28678 – volume: 129 start-page: 165 year: 2018 ident: 2023052906053228000_93.6.599.38 article-title: Role of the temporal pole in temporal lobe epilepsy seizure networks: an intracranial electrode investigation publication-title: J Neurosurg doi: 10.3171/2017.3.JNS162821 – volume: 59 start-page: 1643 year: 2018 ident: 2023052906053228000_93.6.599.18 article-title: Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery publication-title: Epilepsia doi: 10.1111/epi.14528 – volume: 14 start-page: 283 year: 2015 ident: 2023052906053228000_93.6.599.21 article-title: Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: a retrospective analysis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70325-4 – volume: 27 start-page: 213 year: 2014 ident: 2023052906053228000_93.6.599.10 article-title: Patients' safety in the epilepsy monitoring unit: time for revising practices publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000076 – ident: 2023052906053228000_93.6.599.29 – volume: 131 start-page: 114 year: 2020 ident: 2023052906053228000_93.6.599.11 article-title: Could we have missed out the seizure onset: a study based on intracranial EEG publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2019.10.011 – ident: 2023052906053228000_93.6.599.33 doi: 10.1088/1742-5468/2008/10/P10008 – ident: 2023052906053228000_93.6.599.31 doi: 10.1007/978-3-662-38527-2_55 – ident: 2023052906053228000_93.6.599.9 doi: 10.1038/s41593-018-0108-2 – ident: 2023052906053228000_93.6.599.32 – ident: 2023052906053228000_93.6.599.27 doi: 10.1016/j.neuroimage.2006.01.021 – volume: 172 start-page: 27 year: 2016 ident: 2023052906053228000_93.6.599.1 article-title: Epidemiology of epilepsy publication-title: Rev Neurol doi: 10.1016/j.neurol.2015.11.003 – ident: 2023052906053228000_93.6.599.4 doi: 10.1111/epi.15565 – ident: 2023052906053228000_93.6.599.13 doi: 10.1016/j.nicl.2015.10.015 – ident: 2023052906053228000_93.6.599.28 doi: 10.1016/j.neuroimage.2004.07.037 – ident: 2023052906053228000_93.6.599.19 – volume: 171 year: 2021 ident: 2023052906053228000_93.6.599.35 article-title: Patterns of seizure spread in temporal lobe epilepsy are associated with distinct white matter tracts publication-title: Epilepsy Res doi: 10.1016/j.eplepsyres.2021.106571 – ident: 2023052906053228000_93.6.599.6 doi: 10.1016/S1474-4422(08)70109-1 – volume: 15 start-page: 39 year: 2019 ident: 2023052906053228000_93.6.599.8 article-title: Neuroimaging methods in epilepsy of temporal origin publication-title: Curr Med Imaging Rev doi: 10.2174/1573405613666170622114920 – volume: 100 start-page: 135 year: 2014 ident: 2023052906053228000_93.6.599.15 article-title: Structural connectivity differences in left and right temporal lobe epilepsy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.071 – ident: 2023052906053228000_93.6.599.37 doi: 10.1016/B978-012431152-7/50008-2 |
SSID | ssj0000089 |
Score | 2.4700322 |
Snippet | ObjectiveWe sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that... We sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses... |
SourceID | proquest pubmed crossref bmj |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 599 |
SubjectTerms | Artificial intelligence Clinical decision making Convulsions & seizures Drug resistance Electroencephalography Epilepsy epilepsy, surgery Epilepsy, Temporal Lobe - diagnostic imaging Epilepsy, Temporal Lobe - surgery Female Humans image analysis Localization Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods neurosurgery Seizures Surgery Surgical outcomes Tomography Treatment Outcome White Matter - pathology |
Title | Temporal lobe epilepsy lateralisation and surgical outcome prediction using diffusion imaging |
URI | https://jnnp.bmj.com/content/93/6/599.full https://www.ncbi.nlm.nih.gov/pubmed/35347079 https://www.proquest.com/docview/2686890596 https://www.proquest.com/docview/2644945154 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RkFAviEdbtgVkJHroIdokdpz4hACBEBKoqkDaSxX5WYGWbNjdHPrv63G8Cz2wZ3ucZDyemcyMvwE4oZoLKblNCiyhYVTZRDiXJVVOlVCuNEbjReHbO379wG5GxSgG3GaxrHKhE4OiNhONMfJhziteCWwWc9q-JNg1CrOrsYXGB9hA6DIs6SpH5Rv3txJLtPC0SBdpSsqHT03TegnJs4QGPCRvWtTz0__G6R2PM1ieq23Yii4jOev3eAfWbLMLm7cxKb4Hv-97eKkxwcoJYlt_0NvZXzKWeLt4HOt1iGwMmXXToOnIpJv7z7akneIyYRwr4P8QbJjSYQSNPD6HBkaf4OHq8v7iOoldExLljfPcf4_0J9WmTgutU0s590opNSrLpKNMGsYdM9x4v8ClqaFOZ5WzpVCFcaU2laGfYb2ZNHYfSKVk6WmZ5J7GKlNpnitWIsSaypXgA_jumVZHqZ_V4YeC8hqZWyNz6565Axgu2FrrCD2OHTDGKyh-LCnaHnZjxdyDxU69vsqruAzgeDnsjw7mQ2RjJx3OYUww79CxAXzpd3j5MFpQhuCBX1cv_g0-5ihdISxzAOvzaWcPvZcyV0dBFI9g4_zy7uevfyoC5pU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeBAotEDxys2N7N2j4gxKNVSpsIoVTqBbn7RK1Sx01iof4pfiMzfqRwILeed2dtzc5rd2bnA3jLjcyUki4YUgmN4NoFmfdRkMZcZ9on1hp6KDyeyNGx-HoyPNmC391bGCqr7Gxibajt3NAd-SCWqUwzAov5UF4GhBpF2dUOQqMRi0N39QuPbMv3B19wf3fjeH9v-nkUtKgCgUbntQp4rFCSXehNZkzouJSotKHVUaQ8F8oK6YWVFv2mD0PLvYlS75JMD61PjE0tx3VvwbbgeJTpwfanvcm3738F3Gm27k8eDsMuMcrl4LwoSpTJOMI_IC-JzkxfnP_rDv8T49a-bv8-3GuDVPaxkaoHsOWKh3B73KbhH8GPadPQasaoVoO5Ek1LubxiM0XvmWdthRBThWXLalHbVjavVshox8oFLVOPU839T0YQLRXd2bGzixoy6TEc3whHn0CvmBfuGbBUqwRphZJI47RNjYy1SKipm451Jvuwi0zLWz1b5vURhsucmJsTc_OGuX0YdGzNTdvsnDA3Zhso3q0pyqbRx4a5O91OXf_KtYD24c16GJWVMjCqcPOK5giRCQwhRR-eNju8_hgfckHtCp9vXvw13BlNx0f50cHk8AXcjUnS6kuhHeitFpV7iTHSSr9qBZPB6U3rwh9jqSRb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFDASPXCINrEdJzkghCirltKKQyvtBQU_EdU2G3Y3Qv1r_Dpm8tjCgb31HI8djedlz3g-gNfCqkJr5aOUSmikMD4qQkiinAtTmJA5Z-mh8MmpOjyXn6bpdAt-D29hqKxysImtoXZzS3fkY65ylRcEFjMOfVnEl4PJu_pnRAhSlGkd4DQ6ETn2V7_w-LZ8e3SAe73P-eTj2YfDqEcYiAw6slUkuEap9nGwhbWxF0qhAsfOJIkOQmonVZBOOfShIY6dCDbJg88Kk7qQWZc7gfPegtuZSBPSsWya_RV658W6U3mcxkOKVKjxRVXVKJ08wfXJX6JbM5cX_zrG_0S7rdeb3IO7fbjK3nfydR-2fPUAdk76hPxD-HrWtbaaMaraYL5GI1Mvr9hM08vmWV8rxHTl2LJZtFaWzZsVstyzekHTtN-p-v47I7CWhm7v2I_LFjzpEZzfCD8fw3Y1r_wusNzoDGmlVkjjjcut4kZm1N7NcFOoEewj08pe45Zle5gRqiTmlsTcsmPuCMYDW0vbtz0n9I3ZBoo3a4q6a_mxYezesFPXv3ItqiN4tf6Maku5GF35eUNjpCwkBpNyBE-6HV4vJlIhqXHh082Tv4Qd1IDy89Hp8TO4w0nQ2tuhPdheLRr_HIOllXnRSiWDbzetBn8A2LsnKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+lobe+epilepsy+lateralisation+and+surgical+outcome+prediction+using+diffusion+imaging&rft.jtitle=Journal+of+neurology%2C+neurosurgery+and+psychiatry&rft.au=Johnson%2C+Graham+W&rft.au=Cai%2C+Leon+Y&rft.au=Narasimhan%2C+Saramati&rft.au=Gonz%C3%A1lez%2C+Hern%C3%A1n+F+J&rft.date=2022-06-01&rft.issn=1468-330X&rft.eissn=1468-330X&rft.volume=93&rft.issue=6&rft.spage=599&rft_id=info:doi/10.1136%2Fjnnp-2021-328185&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3050&client=summon |