On approximate homomorphisms: a fixed point approach

Consider the functional equation ℑ 1 ( f ) = ℑ 2 ( f ) ( ℑ )in a certain general setting. A function g is an approximate solution of ( ℑ )if ℑ 1 ( g )and ℑ 2 ( g )are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ( ℑ )near g . A functional equation i...

Full description

Saved in:
Bibliographic Details
Published inMathematical sciences (Karaj, Iran) Vol. 6; no. 1; pp. 59 - 8
Main Authors Gordji, Madjid Eshaghi, Alizadeh, Zahra, Khodaei, Hamid, Park, Choonkil
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2012
Springer Nature B.V
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN2008-1359
2251-7456
2251-7456
DOI10.1186/2251-7456-6-59

Cover

Loading…
Abstract Consider the functional equation ℑ 1 ( f ) = ℑ 2 ( f ) ( ℑ )in a certain general setting. A function g is an approximate solution of ( ℑ )if ℑ 1 ( g )and ℑ 2 ( g )are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ( ℑ )near g . A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equation f ( ax + y ) + f ( ax - y ) = a m - 2 [ f ( x + y ) + f ( x - y ) ] + 2 ( a 2 - 1 ) [ a m - 2 f ( x ) + ( m - 2 ) ( 1 - ( m - 2 ) 2 ) 6 f ( y ) ] for any fixed integer a with a ≠ 0, ± 1. Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 2010 Mathematics Subject Classification 39B52, 47H10, 39B82
AbstractList Consider the functional equation ℑ 1 ( f ) = ℑ 2 ( f ) ( ℑ )in a certain general setting. A function g is an approximate solution of ( ℑ )if ℑ 1 ( g )and ℑ 2 ( g )are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ( ℑ )near g . A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equation f ( ax + y ) + f ( ax - y ) = a m - 2 [ f ( x + y ) + f ( x - y ) ] + 2 ( a 2 - 1 ) [ a m - 2 f ( x ) + ( m - 2 ) ( 1 - ( m - 2 ) 2 ) 6 f ( y ) ] for any fixed integer a with a ≠ 0, ± 1. Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 2010 Mathematics Subject Classification 39B52, 47H10, 39B82
Consider the functional equation sub(1)(f) = sub(2)(f) ()in a certain general setting. A function g is an approximate solution of ()if sub(1)(g)and sub(2)(g)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ()near g. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equation [Equation not available: see fulltext.] for any fixed integer a with a [ne] 0, plus or minus 1. Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 2010 Mathematics Subject Classification: 39B52, 47H10, 39B82
Consider the functional equation ^sub 1^(f) = ^sub 2^(f) ()in a certain general setting. A function g is an approximate solution of ()if ^sub 1^(g)and ^sub 2^(g)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ()near g. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equation [Equation not available: see fulltext.] for any fixed integer a with a [not =] 0, ± 1. Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 39B52, 47H10, 39B82
: Consider the functional equation ℑ1(f) = ℑ2(f) (ℑ)in a certain general setting. A function g is an approximate solution of (ℑ)if ℑ1(g)and ℑ2(g)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of (ℑ)near g. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equationf(ax+y)+f(ax−y)=am−2[f(x+y)+f(x−y)]+2(a2−1)[am−2f(x)+(m−2)(1−(m−2)2)6f(y)]for any fixed integer a with a≠0,±1.Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 2010 MATHEMATICS SUBJECT CLASSIFICATION: 39B52, 47H10, 39B82
Author Khodaei, Hamid
Gordji, Madjid Eshaghi
Alizadeh, Zahra
Park, Choonkil
Author_xml – sequence: 1
  givenname: Madjid Eshaghi
  surname: Gordji
  fullname: Gordji, Madjid Eshaghi
  email: madjid.eshaghi@gmail.com
  organization: Department of Mathematics, Semnan University
– sequence: 2
  givenname: Zahra
  surname: Alizadeh
  fullname: Alizadeh, Zahra
  organization: Department of Mathematics, Semnan University
– sequence: 3
  givenname: Hamid
  surname: Khodaei
  fullname: Khodaei, Hamid
  organization: Department of Mathematics, Semnan University
– sequence: 4
  givenname: Choonkil
  surname: Park
  fullname: Park, Choonkil
  organization: Department of Mathematics, Research Institute for Natural Sciences, Hanyang University
BookMark eNp1kc1PwyAYxomZifPj6rmJFy-dQAu03pbFr2TJLnomlL44TFsqdMn872WpGp0KB97A73nyPOEYTTrXAULnBM8IKfgVpYykImc85SkrD9D062ISZ4yLlGSsPEJnIbzguIQocc6mKF91iep777a2VQMka9fG7fu1DW24TlRi7BbqpHe2G0ZQ6fUpOjSqCXD2cZ6gp9ubx8V9ulzdPSzmy7TKymJIweRcmKyoapVnOANGcClEZQzkuGZGYcpyTJQWlJIMoMK8Aq2Y4drUNEqzEzQffSvrWqg1dINXjex9zOrfpFNW_nzRrpW74nJXXHLJyuhxOXrE6K8bCINsbdDQNKoDtwmSCIFpwQqMI3qxh764je9iQ0k4o0XGCOWRykdKexeCByO1HdRg3S6CbSTBcvcjv3PM9mSfNf4VXI2CEMHuGfy3NH8r3gFuL5zU
CitedBy_id crossref_primary_10_3390_axioms12010028
crossref_primary_10_1007_s11784_015_0250_3
crossref_primary_10_1155_2013_954749
crossref_primary_10_1007_s00025_014_0416_0
crossref_primary_10_1007_s10473_020_0416_y
crossref_primary_10_1016_j_jmaa_2019_02_006
crossref_primary_10_1007_s00010_024_01103_y
crossref_primary_10_1016_j_fss_2020_08_004
ContentType Journal Article
Copyright Gordji et al.; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2012
Copyright_xml – notice: Gordji et al.; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: The Author(s) 2012
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1186/2251-7456-6-59
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2251-7456
EndPage 8
ExternalDocumentID oai_biomedcentral_com_2251_7456_6_59
3585423751
10_1186_2251_7456_6_59
Genre Feature
GroupedDBID -A0
0R~
2VQ
406
40G
5VS
8FE
8FG
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABJCF
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACGFS
ACHSB
ACIPV
ACOKC
ACPIV
ACZOJ
ADBBV
ADINQ
ADKNI
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AHBYD
AHSBF
AHYZX
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
DPUIP
EBLON
FIGPU
FNLPD
GGCAI
GROUPED_DOAJ
H13
HCIFZ
HG6
IAO
IKXTQ
IPNFZ
ITC
IWAJR
J9A
JZLTJ
KQ8
L6V
LLZTM
M7S
M~E
NPVJJ
NQJWS
OK1
PIMPY
PROAC
PT4
PTHSS
RIG
ROL
RSV
SJYHP
SMT
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
PUEGO
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AFGXO
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
ID FETCH-LOGICAL-b398t-ef467f38bda4303e510977bffe40d5fa025401ac72213eeb06beca5f6cfd24673
IEDL.DBID 40G
ISSN 2008-1359
2251-7456
IngestDate Tue Apr 16 22:43:43 EDT 2024
Fri Sep 05 07:22:51 EDT 2025
Fri Jul 25 11:08:25 EDT 2025
Thu Jul 10 08:42:11 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Fri Feb 21 02:35:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fixed point approach
Additive
Approximate homomorphism
Banach algebra
Quadratic
Cubic and quartic functional equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b398t-ef467f38bda4303e510977bffe40d5fa025401ac72213eeb06beca5f6cfd24673
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/2251-7456-6-59
PQID 1652835126
PQPubID 2034691
PageCount 8
ParticipantIDs biomedcentral_primary_oai_biomedcentral_com_2251_7456_6_59
proquest_miscellaneous_1770285800
proquest_journals_1652835126
crossref_citationtrail_10_1186_2251_7456_6_59
crossref_primary_10_1186_2251_7456_6_59
springer_journals_10_1186_2251_7456_6_59
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Mathematical sciences (Karaj, Iran)
PublicationTitleAbbrev Math Sci
PublicationYear 2012
Publisher Springer Berlin Heidelberg
Springer Nature B.V
BioMed Central Ltd
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: BioMed Central Ltd
References Eshaghi GordjiMKhodaeiHOn the generalized Hyers-Ulam-Rassias stability of quadratic functional equationsAbstract and Appl. Anal20092009112516012
GordgiMEGhobadipourNHyers-Ulam-Aoki-Rassias Stability and Ulam-Gǎvruta-Rassias Stability of the Quadratic Homomorphisms and Quadratic Derivations on Banach Algebras2010Nova Science Publishers Inc
IsacGRassiasThMOn the Hyers-Ulam stability of ψ-additive mappingsJ. Approx. Theory19937213113710.1006/jath.1993.101012041350770.41018
FortiGLAn existence and stability theorem for a class of functional equationsStochastica19804233010.1080/174425080088331555737230442.39005
CădariuLRaduVFixed points and the stability of Jensen functional equationJ. Ineq. Pure Appl. Math200347
RassiasJMSolution of a problem of UlamJ. Approx. Theory19895726827310.1016/0021-9045(89)90041-59998610672.41027
ParkCLie ∗-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebrasJ. Math. Anal. Appl200429341943410.1016/j.jmaa.2003.10.05120538881051.46052
BakerJLawrenceJZorzittoFThe stability of the equation f(x+y) = f(x)f(y)Proc. Amer. Math. Soc1979742422465242940397.39010
Eshaghi GordjiMKarimiTKaboli GharetapehSApproximately n-Jordan homomorphisms on Banach algebrasJ. Ineq. Appl. Appl2009
MargolisBDiazJBA fixed point theorem of the alternative for contractions on the generalized complete metric spaceBull. Amer. Math. Soc1968126305309220267
UlamSMProblems in Modern Mathematics, Chapter VI, science Editions1964New YorkWiley
Eshaghi GordjiMNajatiAApproximately J∗-homomorphisms: A fixed point approachJ. Geometry and Phys20106080981410.1016/j.geomphys.2010.01.01226085301192.39020
GordjiMESavadkouhiMBApproximation of generalized homomorphisms in quasi–Banach algebrasAnalele Univ. Ovidius Constata, Math Ser20091722032141199.39061
NajatiAThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationTurk. J. Math20073139540823649091140.39014
RassiasJMOn Approximation of approximately linear mappings by linear mappingsJ. Funct. Anal19824612613010.1016/0022-1236(82)90048-96544690482.47033
LeeYChungSStability of quartic functional equation in the spaces of generalized functionsAdv. Difference Equations200920091610.1155/2009/8383472491087
BourginDGClasses of transformations and bordering transformationsBull. Amer. Math. Soc19515722323710.1090/S0002-9904-1951-09511-7426130043.32902
RassiasThMOn the stability of the linear mapping in Banach spacesProc. Amer. Math. Soc19787229730010.1090/S0002-9939-1978-0507327-15073270398.47040
LeeYJunKOn the stability of approximately additive mappingsProc. Amer. Math. Soc20001281361136910.1090/S0002-9939-99-05156-416411280961.47039
RassiasThMOn the stability of functional equations and a problem of UlamActa Appl. Math2000622313010.1023/A:100649922357217780160981.39014
RaduVThe fixed point alternative and the stability of functional equationsFixed Point Theory20034919620318241051.39031
CzerwikSOn the stability of the quadratic mapping in normed spacesAbh. Math. Sem. Univ. Hamburg199262596410.1007/BF0294161811828410779.39003
RassiasThMNew characterization of inner product spacesBull. Sci. Math198410895997516630544.46016
GajdaZOn stability of additive mappingsInt. J. Math. Math. Sci19911443143410.1155/S016117129100056X11100360739.39013
AczelJDhombresJFunctional Equations in Several Variables1989CambridgeCambridge University Press10.1017/CBO97811390865780685.39006
KannappanPQuadratic functional equation and inner product spacesResults Math19952736837210.1007/BF0332284113311100836.39006
Gordji EshaghiMKhodaeiHSolution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spacesNonlinear Analysis.–TMA2009715629564310.1016/j.na.2009.04.0521179.39034
KhodaeiHRassiasThMApproximately generalized additive functions in several variablesInt. J. Nonlinear Anal. Appl2010122411281.39041
AokiTOn the stability of the linear transformation in Banach spacesJ. Math. Soc. Japan19502646610.2969/jmsj/00210064405800040.35501
LeeSImSHawngIQuartic functional equationJ. Math. Anal. Appl200530738739410.1016/j.jmaa.2004.12.06221424321072.39024
JungSHyers-Ulam-Rassias stability of Jensen’s equation and its applicationProc. Amer. Math. Soc19981263137314310.1090/S0002-9939-98-04680-214761420909.39014
BaeJParkWA functional equation having monomials as solutionsAppl. Mathematics and Comput2010216879410.1016/j.amc.2010.01.00625961351191.39026
BadoraROn approximate ring homomorphismsJ. Math. Anal. Appl200227658959710.1016/S0022-247X(02)00293-719447771014.39020
JungSHyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis2001Palm Harbor, FloridaHadronic Press Inc.0980.39024
ParkCHomomorphisms between Lie JC∗-algebras and Cauchy-Rassias stability of Lie JC∗-algebra derivationsJ. Lie Theory20051539341421474351091.39006
GávrutaPA generalization of the Hyers-Ulam-Rassias stability of approximately additive mappingsJ. Math. Anal. Appl199418443143610.1006/jmaa.1994.121112815180818.46043
JunKKimHThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationJ. Math. Anal. Appl200227486787810.1016/S0022-247X(02)00415-819367351021.39014
Că dariuLRaduVFixed point methods for the generalized stability of functional equations in a single variableFixed Point Theory and App2008200815
LeeYChungSStability for quadratic functional equation in the spaces of generalized functionsJ. Math. Anal. Appl200733610111010.1016/j.jmaa.2007.02.05323484941125.39026
RassiasThMSemrlPOn the behavior of mappings which do not satisfy Hyers-Ulam stabilityProc. Amer. Math. Soc199211498999310.1090/S0002-9939-1992-1059634-110596340761.47004
FortiGLElementary remarks on Ulam-Hyers stability of linear functional equationsJ. Math. Anal. Appl200732810911810.1016/j.jmaa.2006.04.07922855361111.39026
BourginDGApproximately isometric and multiplicative transformations on continuous function ringsDuke Math. J19491638539710.1215/S0012-7094-49-01639-7311940033.37702
CădariuLRaduVOn the stability of the Cauchy functional equation: a fixed point approachGrazer Math. Ber200434643521060.39028
HyersDHOn the stability of the linear functional equationProc. Nat. Acad. Sci. USA19412722222410.1073/pnas.27.4.2224076
GordgiMEBavand SavadkouhiMOn approximate cubic homomorphismsAdv. Difference Equations2009200911
HyersDHIsacGRassiasThMStability of Functional Equations in Several Variables199810.1007/978-1-4612-1790-9
ParkCOn an approximate automorphism on a C∗-algebraProc. Amer. Math. Soc20041321739174510.1090/S0002-9939-03-07252-620511351055.47032
ParkCJangS-YCauchy–Rassias stability of sesquilinear n-quadratic mappings in Banach modulesRocky Mountain J. Math20093962015202710.1216/RMJ-2009-39-6-201525758911195.39009
References_xml – reference: Eshaghi GordjiMKhodaeiHOn the generalized Hyers-Ulam-Rassias stability of quadratic functional equationsAbstract and Appl. Anal20092009112516012
– reference: LeeSImSHawngIQuartic functional equationJ. Math. Anal. Appl200530738739410.1016/j.jmaa.2004.12.06221424321072.39024
– reference: RaduVThe fixed point alternative and the stability of functional equationsFixed Point Theory20034919620318241051.39031
– reference: CădariuLRaduVOn the stability of the Cauchy functional equation: a fixed point approachGrazer Math. Ber200434643521060.39028
– reference: NajatiAThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationTurk. J. Math20073139540823649091140.39014
– reference: JunKKimHThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationJ. Math. Anal. Appl200227486787810.1016/S0022-247X(02)00415-819367351021.39014
– reference: MargolisBDiazJBA fixed point theorem of the alternative for contractions on the generalized complete metric spaceBull. Amer. Math. Soc1968126305309220267
– reference: GajdaZOn stability of additive mappingsInt. J. Math. Math. Sci19911443143410.1155/S016117129100056X11100360739.39013
– reference: Eshaghi GordjiMNajatiAApproximately J∗-homomorphisms: A fixed point approachJ. Geometry and Phys20106080981410.1016/j.geomphys.2010.01.01226085301192.39020
– reference: AokiTOn the stability of the linear transformation in Banach spacesJ. Math. Soc. Japan19502646610.2969/jmsj/00210064405800040.35501
– reference: GordgiMEGhobadipourNHyers-Ulam-Aoki-Rassias Stability and Ulam-Gǎvruta-Rassias Stability of the Quadratic Homomorphisms and Quadratic Derivations on Banach Algebras2010Nova Science Publishers Inc
– reference: BourginDGClasses of transformations and bordering transformationsBull. Amer. Math. Soc19515722323710.1090/S0002-9904-1951-09511-7426130043.32902
– reference: KannappanPQuadratic functional equation and inner product spacesResults Math19952736837210.1007/BF0332284113311100836.39006
– reference: Eshaghi GordjiMKarimiTKaboli GharetapehSApproximately n-Jordan homomorphisms on Banach algebrasJ. Ineq. Appl. Appl2009
– reference: CădariuLRaduVFixed points and the stability of Jensen functional equationJ. Ineq. Pure Appl. Math200347
– reference: JungSHyers-Ulam-Rassias stability of Jensen’s equation and its applicationProc. Amer. Math. Soc19981263137314310.1090/S0002-9939-98-04680-214761420909.39014
– reference: Că dariuLRaduVFixed point methods for the generalized stability of functional equations in a single variableFixed Point Theory and App2008200815
– reference: JungSHyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis2001Palm Harbor, FloridaHadronic Press Inc.0980.39024
– reference: Gordji EshaghiMKhodaeiHSolution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spacesNonlinear Analysis.–TMA2009715629564310.1016/j.na.2009.04.0521179.39034
– reference: HyersDHIsacGRassiasThMStability of Functional Equations in Several Variables199810.1007/978-1-4612-1790-9
– reference: RassiasThMOn the stability of functional equations and a problem of UlamActa Appl. Math2000622313010.1023/A:100649922357217780160981.39014
– reference: UlamSMProblems in Modern Mathematics, Chapter VI, science Editions1964New YorkWiley
– reference: BakerJLawrenceJZorzittoFThe stability of the equation f(x+y) = f(x)f(y)Proc. Amer. Math. Soc1979742422465242940397.39010
– reference: GávrutaPA generalization of the Hyers-Ulam-Rassias stability of approximately additive mappingsJ. Math. Anal. Appl199418443143610.1006/jmaa.1994.121112815180818.46043
– reference: FortiGLElementary remarks on Ulam-Hyers stability of linear functional equationsJ. Math. Anal. Appl200732810911810.1016/j.jmaa.2006.04.07922855361111.39026
– reference: LeeYChungSStability for quadratic functional equation in the spaces of generalized functionsJ. Math. Anal. Appl200733610111010.1016/j.jmaa.2007.02.05323484941125.39026
– reference: LeeYChungSStability of quartic functional equation in the spaces of generalized functionsAdv. Difference Equations200920091610.1155/2009/8383472491087
– reference: ParkCOn an approximate automorphism on a C∗-algebraProc. Amer. Math. Soc20041321739174510.1090/S0002-9939-03-07252-620511351055.47032
– reference: GordgiMEBavand SavadkouhiMOn approximate cubic homomorphismsAdv. Difference Equations2009200911
– reference: ParkCJangS-YCauchy–Rassias stability of sesquilinear n-quadratic mappings in Banach modulesRocky Mountain J. Math20093962015202710.1216/RMJ-2009-39-6-201525758911195.39009
– reference: LeeYJunKOn the stability of approximately additive mappingsProc. Amer. Math. Soc20001281361136910.1090/S0002-9939-99-05156-416411280961.47039
– reference: HyersDHOn the stability of the linear functional equationProc. Nat. Acad. Sci. USA19412722222410.1073/pnas.27.4.2224076
– reference: RassiasJMSolution of a problem of UlamJ. Approx. Theory19895726827310.1016/0021-9045(89)90041-59998610672.41027
– reference: IsacGRassiasThMOn the Hyers-Ulam stability of ψ-additive mappingsJ. Approx. Theory19937213113710.1006/jath.1993.101012041350770.41018
– reference: KhodaeiHRassiasThMApproximately generalized additive functions in several variablesInt. J. Nonlinear Anal. Appl2010122411281.39041
– reference: GordjiMESavadkouhiMBApproximation of generalized homomorphisms in quasi–Banach algebrasAnalele Univ. Ovidius Constata, Math Ser20091722032141199.39061
– reference: BadoraROn approximate ring homomorphismsJ. Math. Anal. Appl200227658959710.1016/S0022-247X(02)00293-719447771014.39020
– reference: BaeJParkWA functional equation having monomials as solutionsAppl. Mathematics and Comput2010216879410.1016/j.amc.2010.01.00625961351191.39026
– reference: RassiasThMOn the stability of the linear mapping in Banach spacesProc. Amer. Math. Soc19787229730010.1090/S0002-9939-1978-0507327-15073270398.47040
– reference: ParkCLie ∗-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebrasJ. Math. Anal. Appl200429341943410.1016/j.jmaa.2003.10.05120538881051.46052
– reference: RassiasThMSemrlPOn the behavior of mappings which do not satisfy Hyers-Ulam stabilityProc. Amer. Math. Soc199211498999310.1090/S0002-9939-1992-1059634-110596340761.47004
– reference: AczelJDhombresJFunctional Equations in Several Variables1989CambridgeCambridge University Press10.1017/CBO97811390865780685.39006
– reference: ParkCHomomorphisms between Lie JC∗-algebras and Cauchy-Rassias stability of Lie JC∗-algebra derivationsJ. Lie Theory20051539341421474351091.39006
– reference: RassiasJMOn Approximation of approximately linear mappings by linear mappingsJ. Funct. Anal19824612613010.1016/0022-1236(82)90048-96544690482.47033
– reference: RassiasThMNew characterization of inner product spacesBull. Sci. Math198410895997516630544.46016
– reference: BourginDGApproximately isometric and multiplicative transformations on continuous function ringsDuke Math. J19491638539710.1215/S0012-7094-49-01639-7311940033.37702
– reference: FortiGLAn existence and stability theorem for a class of functional equationsStochastica19804233010.1080/174425080088331555737230442.39005
– reference: CzerwikSOn the stability of the quadratic mapping in normed spacesAbh. Math. Sem. Univ. Hamburg199262596410.1007/BF0294161811828410779.39003
SSID ssj0000779045
Score 1.9014405
Snippet Consider the functional equation ℑ 1 ( f ) = ℑ 2 ( f ) ( ℑ )in a certain general setting. A function g is an approximate solution of ( ℑ )if ℑ 1 ( g )and ℑ 2 (...
Consider the functional equation ^sub 1^(f) = ^sub 2^(f) ()in a certain general setting. A function g is an approximate solution of ()if ^sub 1^(g)and ^sub...
Consider the functional equation sub(1)(f) = sub(2)(f) ()in a certain general setting. A function g is an approximate solution of ()if sub(1)(g)and...
: Consider the functional equation ℑ1(f) = ℑ2(f) (ℑ)in a certain general setting. A function g is an approximate solution of (ℑ)if ℑ1(g)and ℑ2(g)are close in...
SourceID biomedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Algebra
Applications of Mathematics
Approximation
Classification
Exact solutions
Fixed points (mathematics)
Functions (mathematics)
Homomorphisms
Mathematical analysis
Mathematics
Mathematics and Statistics
Original Research
Stability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50fdEH8cT1ooKgL8EeOdp9ERVlETwQBd9C0ya4sNuudhf8-U666ep60bdm2sBMMvMlk3wDcBhojMmaGZKKOCfUCG2nVEKUT1UkklyJ3N4dvrnl3Sd6_cye3YZb5Y5VNj6xdtR5mdk98pOAWxoSDE_8dPhKbNUom111JTTmYQFdcMxasHB-eXv_MN1l8S2dXl2puM7zBxFLHHNjEPMTHMsBEQghCCeWrHTmynt_NlJ9ws9vGdM6EF2twLJDkN7ZxOSrMKeLNVi6mdKvVutA7wqvJgt_7-Er7b2UA3xQo71qUHW81DO9d517w7JXjLyGVXwDnq4uHy-6xJVHICpK4hHRBp2ciWKVpxQDkWY2mSyUMZr6OTOpvefuB2kmwjCItFY-R3ulzPDM5CF-Gm1CqygLvQWeMjb7l2YGl19UUxXTxDdhxjLUkOFx1obOjGrkcEKFIS059WwL2kxavUqrV8klS9pAGj3KzBGP2_oXfVkvQGL-Q_5oKt_085fkbmMW6aZeJT8HShsOps04aWwmJC10OUYZIRBXMQTLbThuzPnlF7_2tv1_bzuwiGAqnBx12YXW6G2s9xCwjNS-G5UfujfoDg
  priority: 102
  providerName: ProQuest
Title On approximate homomorphisms: a fixed point approach
URI https://link.springer.com/article/10.1186/2251-7456-6-59
https://www.proquest.com/docview/1652835126
https://www.proquest.com/docview/1770285800
http://dx.doi.org/10.1186/2251-7456-6-59
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90vuiD-InTKRUEfQn2Ix_t3nRsDsEPxIFvoWkTHGyduAn7871k7XROQQqBNtcE7nK5Sy73C8BZoNEma2ZIKuKcUCO0VamEKJ-qSCS5ErnNHb67590evX1hLyvgV7kw7rR7FZJ0M7VT65hf4sALiEB7TzhhySqsWSgxO6apfzPfVfEtfJ67mdjF9YOIJSVS43ITP1LcB4uW6cvd_BEhdYanswWbpcfoXc1EvA0rutiBjbs53Op4F-hD4Tlw8GkfP2nvdTTEBznYHw_HTS_1TH-qc-9t1C8mXoUivge9Tvu51SXldQhERUk8IdrgpGaiWOUpRcOjmQ0eC2WMpn7OTGrz2v0gzUQYBpHWyucon5QZnpk8xF-jfagVo0IfgKeMjfalmcHlFtVUxTTxTZixDDlkeJzVobnAGvk2g76QFox6sQZFJC1fpeWr5JIldSAVH2VWAo3b-y4G0i04Yr5Efz6nr_r5i7JRiUWWqjaWAbf4NOi38DqczqtRSWzkIy306ANphEA_iqFzXIeLSpzfmvi1t8P_kx7BOjpS4eyYSwNqk_cPfYzOykSduPGJZdzBcu26ff_4hG8t3voEavbk2g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPiLZUXR6tK7WiF4s8HDtBQoi2oKWwS1WBxM2NE1tdCZKlWVT6p_obmckmS7eU3lBu8cRW5mGPPZ5vAN76FtdkGzmeqjjnwilLJpVw4wkTqiQ3Kqfc4V5fds_E5_PofAZ-t7kwdK2ynRPriTovMzoj3_IlwZDg8iR3h1ecqkZRdLUtoTFWiyP76ydu2aqdw08o33dBcLB_-rHLm6oC3IRJPOLW4dzgwtjkqcD520YUg1XGOSu8PHIppYd7fpqpIPBDa40n8TfTyMnM5QF-GmK_szCPbkaCVjT_Yb__5evkVMcj-L66MnJ9r8BHogYp0o_lFtqOzxW6LFxyAkedSrG_mF4Z79zdvyK09cJ3sAxLjcfK9sYq9hRmbPEMnvQmcK_VcxAnBavByW8G-Mqy7-UlPijBQXVZbbOUucGNzdmwHBQj1qKYr8DZozDuBcwVZWFfAjOOoo1p5nC7J6wwsUg8F2RRhhxyMs46sD3FGj0cQ29oAsOebkEd0cRXTXzVUkdJB3jLR501QOdUb-NC1xueWN6j35zQt-M8RLneikU3pl7pO8XswJtJMxopRV7SwpbXSKMU-nEROucdeN-K848u_jna6v9Hew0L3dPesT4-7B-twSI6csH4ms06zI1-XNsNdJZG5lWjoQy-PbZR3ALdRyXe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYTgAVEOsaW0RgLBi9UcPpJKCNFj1VK6VIhKfTNxYouV2mRLtqL9a_11zGSTbZfrrcpb7NjKXB57PN8AvAodrslOep7ppODCa0cqlXIbCBvrtLC6oNzhg6HaPRIfj-XxAlx1uTB0rbKziY2hLqqczsjXQ0UwJJISXnx7LeJwe_B-fMapghRFWrtyGlMR2XeXP3H7Vr_b20Zev46iwc7XrV3eVhjgNk6TCXce7YSPE1tkAm25kxSP1dZ7J4JC-oxSxYMwy3UUhbFzNlD4y5n0KvdFhJ_GOO4dWNS4KiY9WNzcGR5-mZ3wBATl11RJbu4YhLFMW9TIMFHrqEch1-i-cMUJKHUu3f5kfpW8dn1_i9Y2i-DgITxovVf2YSpuS7Dgykdw_2AG_Vo_BvG5ZA1Q-cUIXzn2vTrFB7k5qk_rDZYxP7pwBRtXo3LCOkTzJ3B0K4R7Cr2yKt0zYNZT5DHLPW79hBM2EWngo1zmSCGvkrwPG3OkMeMpDIchYOz5FpQXQ3Q1RFejjEz7wDs6mrwFPafaGyem2fwk6o_-b2b9u3n-1XOlY4tp1b4210Lah5ezZlRYisJkpavOsY_W6NNJdNT78LZj540h_jrb8v9nW4O7qAzm095w_zncQ58umt64WYHe5Me5e4F-08SutgLK4Ntt68QvYPcqCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+approximate+homomorphisms%3A+a+fixed+point+approach&rft.jtitle=Mathematical+sciences+%28Karaj%2C+Iran%29&rft.au=Gordji%2C+Madjid+Eshaghi&rft.au=Alizadeh%2C+Zahra&rft.au=Khodaei%2C+Hamid&rft.au=Park%2C+Choonkil&rft.date=2012-12-01&rft.issn=2008-1359&rft.eissn=2251-7456&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1186%2F2251-7456-6-59&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2008-1359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2008-1359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2008-1359&client=summon