On approximate homomorphisms: a fixed point approach
Consider the functional equation ℑ 1 ( f ) = ℑ 2 ( f ) ( ℑ )in a certain general setting. A function g is an approximate solution of ( ℑ )if ℑ 1 ( g )and ℑ 2 ( g )are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ( ℑ )near g . A functional equation i...
Saved in:
Published in | Mathematical sciences (Karaj, Iran) Vol. 6; no. 1; pp. 59 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2012
Springer Nature B.V BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2008-1359 2251-7456 2251-7456 |
DOI | 10.1186/2251-7456-6-59 |
Cover
Loading…
Abstract | Consider the functional equation
ℑ
1
(
f
) =
ℑ
2
(
f
) (
ℑ
)in a certain general setting. A function
g
is an approximate solution of (
ℑ
)if
ℑ
1
(
g
)and
ℑ
2
(
g
)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of (
ℑ
)near
g
. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each
m
= 1,2,3,4, we will find out the general solution of the functional equation
f
(
ax
+
y
)
+
f
(
ax
-
y
)
=
a
m
-
2
[
f
(
x
+
y
)
+
f
(
x
-
y
)
]
+
2
(
a
2
-
1
)
[
a
m
-
2
f
(
x
)
+
(
m
-
2
)
(
1
-
(
m
-
2
)
2
)
6
f
(
y
)
]
for any fixed integer
a
with
a
≠ 0, ± 1.
Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions.
2010 Mathematics Subject Classification
39B52, 47H10, 39B82 |
---|---|
AbstractList | Consider the functional equation
ℑ
1
(
f
) =
ℑ
2
(
f
) (
ℑ
)in a certain general setting. A function
g
is an approximate solution of (
ℑ
)if
ℑ
1
(
g
)and
ℑ
2
(
g
)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of (
ℑ
)near
g
. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each
m
= 1,2,3,4, we will find out the general solution of the functional equation
f
(
ax
+
y
)
+
f
(
ax
-
y
)
=
a
m
-
2
[
f
(
x
+
y
)
+
f
(
x
-
y
)
]
+
2
(
a
2
-
1
)
[
a
m
-
2
f
(
x
)
+
(
m
-
2
)
(
1
-
(
m
-
2
)
2
)
6
f
(
y
)
]
for any fixed integer
a
with
a
≠ 0, ± 1.
Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions.
2010 Mathematics Subject Classification
39B52, 47H10, 39B82 Consider the functional equation sub(1)(f) = sub(2)(f) ()in a certain general setting. A function g is an approximate solution of ()if sub(1)(g)and sub(2)(g)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ()near g. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equation [Equation not available: see fulltext.] for any fixed integer a with a [ne] 0, plus or minus 1. Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 2010 Mathematics Subject Classification: 39B52, 47H10, 39B82 Consider the functional equation ^sub 1^(f) = ^sub 2^(f) ()in a certain general setting. A function g is an approximate solution of ()if ^sub 1^(g)and ^sub 2^(g)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ()near g. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equation [Equation not available: see fulltext.] for any fixed integer a with a [not =] 0, ± 1. Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 39B52, 47H10, 39B82 : Consider the functional equation ℑ1(f) = ℑ2(f) (ℑ)in a certain general setting. A function g is an approximate solution of (ℑ)if ℑ1(g)and ℑ2(g)are close in some sense. The Ulam stability problem asks whether or not there is a true solution of (ℑ)near g. A functional equation is superstable if every approximate solution of the functional equation is an exact solution of it. In this paper, for each m = 1,2,3,4, we will find out the general solution of the functional equationf(ax+y)+f(ax−y)=am−2[f(x+y)+f(x−y)]+2(a2−1)[am−2f(x)+(m−2)(1−(m−2)2)6f(y)]for any fixed integer a with a≠0,±1.Using a fixed point method, we prove the generalized Hyers-Ulam stability of homomorphisms in real Banach algebras for this functional equation. Moreover, we establish the superstability of this functional equation by suitable control functions. 2010 MATHEMATICS SUBJECT CLASSIFICATION: 39B52, 47H10, 39B82 |
Author | Khodaei, Hamid Gordji, Madjid Eshaghi Alizadeh, Zahra Park, Choonkil |
Author_xml | – sequence: 1 givenname: Madjid Eshaghi surname: Gordji fullname: Gordji, Madjid Eshaghi email: madjid.eshaghi@gmail.com organization: Department of Mathematics, Semnan University – sequence: 2 givenname: Zahra surname: Alizadeh fullname: Alizadeh, Zahra organization: Department of Mathematics, Semnan University – sequence: 3 givenname: Hamid surname: Khodaei fullname: Khodaei, Hamid organization: Department of Mathematics, Semnan University – sequence: 4 givenname: Choonkil surname: Park fullname: Park, Choonkil organization: Department of Mathematics, Research Institute for Natural Sciences, Hanyang University |
BookMark | eNp1kc1PwyAYxomZifPj6rmJFy-dQAu03pbFr2TJLnomlL44TFsqdMn872WpGp0KB97A73nyPOEYTTrXAULnBM8IKfgVpYykImc85SkrD9D062ISZ4yLlGSsPEJnIbzguIQocc6mKF91iep777a2VQMka9fG7fu1DW24TlRi7BbqpHe2G0ZQ6fUpOjSqCXD2cZ6gp9ubx8V9ulzdPSzmy7TKymJIweRcmKyoapVnOANGcClEZQzkuGZGYcpyTJQWlJIMoMK8Aq2Y4drUNEqzEzQffSvrWqg1dINXjex9zOrfpFNW_nzRrpW74nJXXHLJyuhxOXrE6K8bCINsbdDQNKoDtwmSCIFpwQqMI3qxh764je9iQ0k4o0XGCOWRykdKexeCByO1HdRg3S6CbSTBcvcjv3PM9mSfNf4VXI2CEMHuGfy3NH8r3gFuL5zU |
CitedBy_id | crossref_primary_10_3390_axioms12010028 crossref_primary_10_1007_s11784_015_0250_3 crossref_primary_10_1155_2013_954749 crossref_primary_10_1007_s00025_014_0416_0 crossref_primary_10_1007_s10473_020_0416_y crossref_primary_10_1016_j_jmaa_2019_02_006 crossref_primary_10_1007_s00010_024_01103_y crossref_primary_10_1016_j_fss_2020_08_004 |
ContentType | Journal Article |
Copyright | Gordji et al.; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Author(s) 2012 |
Copyright_xml | – notice: Gordji et al.; licensee Springer. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: The Author(s) 2012 |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1186/2251-7456-6-59 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2251-7456 |
EndPage | 8 |
ExternalDocumentID | oai_biomedcentral_com_2251_7456_6_59 3585423751 10_1186_2251_7456_6_59 |
Genre | Feature |
GroupedDBID | -A0 0R~ 2VQ 406 40G 5VS 8FE 8FG AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABJCF ABJNI ABMQK ABSXP ABTEG ABTKH ABTMW ACAOD ACDTI ACGFS ACHSB ACIPV ACOKC ACPIV ACZOJ ADBBV ADINQ ADKNI ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AHBYD AHSBF AHYZX AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF BCNDV BENPR BGLVJ C24 C6C CCPQU DPUIP EBLON FIGPU FNLPD GGCAI GROUPED_DOAJ H13 HCIFZ HG6 IAO IKXTQ IPNFZ ITC IWAJR J9A JZLTJ KQ8 L6V LLZTM M7S M~E NPVJJ NQJWS OK1 PIMPY PROAC PT4 PTHSS RIG ROL RSV SJYHP SMT SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D PUEGO ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AFGXO AFNRJ AGGBP AIMYW AJDOV AKQUC |
ID | FETCH-LOGICAL-b398t-ef467f38bda4303e510977bffe40d5fa025401ac72213eeb06beca5f6cfd24673 |
IEDL.DBID | 40G |
ISSN | 2008-1359 2251-7456 |
IngestDate | Tue Apr 16 22:43:43 EDT 2024 Fri Sep 05 07:22:51 EDT 2025 Fri Jul 25 11:08:25 EDT 2025 Thu Jul 10 08:42:11 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Fri Feb 21 02:35:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fixed point approach Additive Approximate homomorphism Banach algebra Quadratic Cubic and quartic functional equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b398t-ef467f38bda4303e510977bffe40d5fa025401ac72213eeb06beca5f6cfd24673 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1186/2251-7456-6-59 |
PQID | 1652835126 |
PQPubID | 2034691 |
PageCount | 8 |
ParticipantIDs | biomedcentral_primary_oai_biomedcentral_com_2251_7456_6_59 proquest_miscellaneous_1770285800 proquest_journals_1652835126 crossref_citationtrail_10_1186_2251_7456_6_59 crossref_primary_10_1186_2251_7456_6_59 springer_journals_10_1186_2251_7456_6_59 |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Mathematical sciences (Karaj, Iran) |
PublicationTitleAbbrev | Math Sci |
PublicationYear | 2012 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V BioMed Central Ltd |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: BioMed Central Ltd |
References | Eshaghi GordjiMKhodaeiHOn the generalized Hyers-Ulam-Rassias stability of quadratic functional equationsAbstract and Appl. Anal20092009112516012 GordgiMEGhobadipourNHyers-Ulam-Aoki-Rassias Stability and Ulam-Gǎvruta-Rassias Stability of the Quadratic Homomorphisms and Quadratic Derivations on Banach Algebras2010Nova Science Publishers Inc IsacGRassiasThMOn the Hyers-Ulam stability of ψ-additive mappingsJ. Approx. Theory19937213113710.1006/jath.1993.101012041350770.41018 FortiGLAn existence and stability theorem for a class of functional equationsStochastica19804233010.1080/174425080088331555737230442.39005 CădariuLRaduVFixed points and the stability of Jensen functional equationJ. Ineq. Pure Appl. Math200347 RassiasJMSolution of a problem of UlamJ. Approx. Theory19895726827310.1016/0021-9045(89)90041-59998610672.41027 ParkCLie ∗-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebrasJ. Math. Anal. Appl200429341943410.1016/j.jmaa.2003.10.05120538881051.46052 BakerJLawrenceJZorzittoFThe stability of the equation f(x+y) = f(x)f(y)Proc. Amer. Math. Soc1979742422465242940397.39010 Eshaghi GordjiMKarimiTKaboli GharetapehSApproximately n-Jordan homomorphisms on Banach algebrasJ. Ineq. Appl. Appl2009 MargolisBDiazJBA fixed point theorem of the alternative for contractions on the generalized complete metric spaceBull. Amer. Math. Soc1968126305309220267 UlamSMProblems in Modern Mathematics, Chapter VI, science Editions1964New YorkWiley Eshaghi GordjiMNajatiAApproximately J∗-homomorphisms: A fixed point approachJ. Geometry and Phys20106080981410.1016/j.geomphys.2010.01.01226085301192.39020 GordjiMESavadkouhiMBApproximation of generalized homomorphisms in quasi–Banach algebrasAnalele Univ. Ovidius Constata, Math Ser20091722032141199.39061 NajatiAThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationTurk. J. Math20073139540823649091140.39014 RassiasJMOn Approximation of approximately linear mappings by linear mappingsJ. Funct. Anal19824612613010.1016/0022-1236(82)90048-96544690482.47033 LeeYChungSStability of quartic functional equation in the spaces of generalized functionsAdv. Difference Equations200920091610.1155/2009/8383472491087 BourginDGClasses of transformations and bordering transformationsBull. Amer. Math. Soc19515722323710.1090/S0002-9904-1951-09511-7426130043.32902 RassiasThMOn the stability of the linear mapping in Banach spacesProc. Amer. Math. Soc19787229730010.1090/S0002-9939-1978-0507327-15073270398.47040 LeeYJunKOn the stability of approximately additive mappingsProc. Amer. Math. Soc20001281361136910.1090/S0002-9939-99-05156-416411280961.47039 RassiasThMOn the stability of functional equations and a problem of UlamActa Appl. Math2000622313010.1023/A:100649922357217780160981.39014 RaduVThe fixed point alternative and the stability of functional equationsFixed Point Theory20034919620318241051.39031 CzerwikSOn the stability of the quadratic mapping in normed spacesAbh. Math. Sem. Univ. Hamburg199262596410.1007/BF0294161811828410779.39003 RassiasThMNew characterization of inner product spacesBull. Sci. Math198410895997516630544.46016 GajdaZOn stability of additive mappingsInt. J. Math. Math. Sci19911443143410.1155/S016117129100056X11100360739.39013 AczelJDhombresJFunctional Equations in Several Variables1989CambridgeCambridge University Press10.1017/CBO97811390865780685.39006 KannappanPQuadratic functional equation and inner product spacesResults Math19952736837210.1007/BF0332284113311100836.39006 Gordji EshaghiMKhodaeiHSolution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spacesNonlinear Analysis.–TMA2009715629564310.1016/j.na.2009.04.0521179.39034 KhodaeiHRassiasThMApproximately generalized additive functions in several variablesInt. J. Nonlinear Anal. Appl2010122411281.39041 AokiTOn the stability of the linear transformation in Banach spacesJ. Math. Soc. Japan19502646610.2969/jmsj/00210064405800040.35501 LeeSImSHawngIQuartic functional equationJ. Math. Anal. Appl200530738739410.1016/j.jmaa.2004.12.06221424321072.39024 JungSHyers-Ulam-Rassias stability of Jensen’s equation and its applicationProc. Amer. Math. Soc19981263137314310.1090/S0002-9939-98-04680-214761420909.39014 BaeJParkWA functional equation having monomials as solutionsAppl. Mathematics and Comput2010216879410.1016/j.amc.2010.01.00625961351191.39026 BadoraROn approximate ring homomorphismsJ. Math. Anal. Appl200227658959710.1016/S0022-247X(02)00293-719447771014.39020 JungSHyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis2001Palm Harbor, FloridaHadronic Press Inc.0980.39024 ParkCHomomorphisms between Lie JC∗-algebras and Cauchy-Rassias stability of Lie JC∗-algebra derivationsJ. Lie Theory20051539341421474351091.39006 GávrutaPA generalization of the Hyers-Ulam-Rassias stability of approximately additive mappingsJ. Math. Anal. Appl199418443143610.1006/jmaa.1994.121112815180818.46043 JunKKimHThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationJ. Math. Anal. Appl200227486787810.1016/S0022-247X(02)00415-819367351021.39014 Că dariuLRaduVFixed point methods for the generalized stability of functional equations in a single variableFixed Point Theory and App2008200815 LeeYChungSStability for quadratic functional equation in the spaces of generalized functionsJ. Math. Anal. Appl200733610111010.1016/j.jmaa.2007.02.05323484941125.39026 RassiasThMSemrlPOn the behavior of mappings which do not satisfy Hyers-Ulam stabilityProc. Amer. Math. Soc199211498999310.1090/S0002-9939-1992-1059634-110596340761.47004 FortiGLElementary remarks on Ulam-Hyers stability of linear functional equationsJ. Math. Anal. Appl200732810911810.1016/j.jmaa.2006.04.07922855361111.39026 BourginDGApproximately isometric and multiplicative transformations on continuous function ringsDuke Math. J19491638539710.1215/S0012-7094-49-01639-7311940033.37702 CădariuLRaduVOn the stability of the Cauchy functional equation: a fixed point approachGrazer Math. Ber200434643521060.39028 HyersDHOn the stability of the linear functional equationProc. Nat. Acad. Sci. USA19412722222410.1073/pnas.27.4.2224076 GordgiMEBavand SavadkouhiMOn approximate cubic homomorphismsAdv. Difference Equations2009200911 HyersDHIsacGRassiasThMStability of Functional Equations in Several Variables199810.1007/978-1-4612-1790-9 ParkCOn an approximate automorphism on a C∗-algebraProc. Amer. Math. Soc20041321739174510.1090/S0002-9939-03-07252-620511351055.47032 ParkCJangS-YCauchy–Rassias stability of sesquilinear n-quadratic mappings in Banach modulesRocky Mountain J. Math20093962015202710.1216/RMJ-2009-39-6-201525758911195.39009 |
References_xml | – reference: Eshaghi GordjiMKhodaeiHOn the generalized Hyers-Ulam-Rassias stability of quadratic functional equationsAbstract and Appl. Anal20092009112516012 – reference: LeeSImSHawngIQuartic functional equationJ. Math. Anal. Appl200530738739410.1016/j.jmaa.2004.12.06221424321072.39024 – reference: RaduVThe fixed point alternative and the stability of functional equationsFixed Point Theory20034919620318241051.39031 – reference: CădariuLRaduVOn the stability of the Cauchy functional equation: a fixed point approachGrazer Math. Ber200434643521060.39028 – reference: NajatiAThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationTurk. J. Math20073139540823649091140.39014 – reference: JunKKimHThe generalized Hyers-Ulam-Rassias stability of a cubic functional equationJ. Math. Anal. Appl200227486787810.1016/S0022-247X(02)00415-819367351021.39014 – reference: MargolisBDiazJBA fixed point theorem of the alternative for contractions on the generalized complete metric spaceBull. Amer. Math. Soc1968126305309220267 – reference: GajdaZOn stability of additive mappingsInt. J. Math. Math. Sci19911443143410.1155/S016117129100056X11100360739.39013 – reference: Eshaghi GordjiMNajatiAApproximately J∗-homomorphisms: A fixed point approachJ. Geometry and Phys20106080981410.1016/j.geomphys.2010.01.01226085301192.39020 – reference: AokiTOn the stability of the linear transformation in Banach spacesJ. Math. Soc. Japan19502646610.2969/jmsj/00210064405800040.35501 – reference: GordgiMEGhobadipourNHyers-Ulam-Aoki-Rassias Stability and Ulam-Gǎvruta-Rassias Stability of the Quadratic Homomorphisms and Quadratic Derivations on Banach Algebras2010Nova Science Publishers Inc – reference: BourginDGClasses of transformations and bordering transformationsBull. Amer. Math. Soc19515722323710.1090/S0002-9904-1951-09511-7426130043.32902 – reference: KannappanPQuadratic functional equation and inner product spacesResults Math19952736837210.1007/BF0332284113311100836.39006 – reference: Eshaghi GordjiMKarimiTKaboli GharetapehSApproximately n-Jordan homomorphisms on Banach algebrasJ. Ineq. Appl. Appl2009 – reference: CădariuLRaduVFixed points and the stability of Jensen functional equationJ. Ineq. Pure Appl. Math200347 – reference: JungSHyers-Ulam-Rassias stability of Jensen’s equation and its applicationProc. Amer. Math. Soc19981263137314310.1090/S0002-9939-98-04680-214761420909.39014 – reference: Că dariuLRaduVFixed point methods for the generalized stability of functional equations in a single variableFixed Point Theory and App2008200815 – reference: JungSHyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis2001Palm Harbor, FloridaHadronic Press Inc.0980.39024 – reference: Gordji EshaghiMKhodaeiHSolution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spacesNonlinear Analysis.–TMA2009715629564310.1016/j.na.2009.04.0521179.39034 – reference: HyersDHIsacGRassiasThMStability of Functional Equations in Several Variables199810.1007/978-1-4612-1790-9 – reference: RassiasThMOn the stability of functional equations and a problem of UlamActa Appl. Math2000622313010.1023/A:100649922357217780160981.39014 – reference: UlamSMProblems in Modern Mathematics, Chapter VI, science Editions1964New YorkWiley – reference: BakerJLawrenceJZorzittoFThe stability of the equation f(x+y) = f(x)f(y)Proc. Amer. Math. Soc1979742422465242940397.39010 – reference: GávrutaPA generalization of the Hyers-Ulam-Rassias stability of approximately additive mappingsJ. Math. Anal. Appl199418443143610.1006/jmaa.1994.121112815180818.46043 – reference: FortiGLElementary remarks on Ulam-Hyers stability of linear functional equationsJ. Math. Anal. Appl200732810911810.1016/j.jmaa.2006.04.07922855361111.39026 – reference: LeeYChungSStability for quadratic functional equation in the spaces of generalized functionsJ. Math. Anal. Appl200733610111010.1016/j.jmaa.2007.02.05323484941125.39026 – reference: LeeYChungSStability of quartic functional equation in the spaces of generalized functionsAdv. Difference Equations200920091610.1155/2009/8383472491087 – reference: ParkCOn an approximate automorphism on a C∗-algebraProc. Amer. Math. Soc20041321739174510.1090/S0002-9939-03-07252-620511351055.47032 – reference: GordgiMEBavand SavadkouhiMOn approximate cubic homomorphismsAdv. Difference Equations2009200911 – reference: ParkCJangS-YCauchy–Rassias stability of sesquilinear n-quadratic mappings in Banach modulesRocky Mountain J. Math20093962015202710.1216/RMJ-2009-39-6-201525758911195.39009 – reference: LeeYJunKOn the stability of approximately additive mappingsProc. Amer. Math. Soc20001281361136910.1090/S0002-9939-99-05156-416411280961.47039 – reference: HyersDHOn the stability of the linear functional equationProc. Nat. Acad. Sci. USA19412722222410.1073/pnas.27.4.2224076 – reference: RassiasJMSolution of a problem of UlamJ. Approx. Theory19895726827310.1016/0021-9045(89)90041-59998610672.41027 – reference: IsacGRassiasThMOn the Hyers-Ulam stability of ψ-additive mappingsJ. Approx. Theory19937213113710.1006/jath.1993.101012041350770.41018 – reference: KhodaeiHRassiasThMApproximately generalized additive functions in several variablesInt. J. Nonlinear Anal. Appl2010122411281.39041 – reference: GordjiMESavadkouhiMBApproximation of generalized homomorphisms in quasi–Banach algebrasAnalele Univ. Ovidius Constata, Math Ser20091722032141199.39061 – reference: BadoraROn approximate ring homomorphismsJ. Math. Anal. Appl200227658959710.1016/S0022-247X(02)00293-719447771014.39020 – reference: BaeJParkWA functional equation having monomials as solutionsAppl. Mathematics and Comput2010216879410.1016/j.amc.2010.01.00625961351191.39026 – reference: RassiasThMOn the stability of the linear mapping in Banach spacesProc. Amer. Math. Soc19787229730010.1090/S0002-9939-1978-0507327-15073270398.47040 – reference: ParkCLie ∗-homomorphisms between Lie C∗-algebras and Lie ∗-derivations on Lie C∗-algebrasJ. Math. Anal. Appl200429341943410.1016/j.jmaa.2003.10.05120538881051.46052 – reference: RassiasThMSemrlPOn the behavior of mappings which do not satisfy Hyers-Ulam stabilityProc. Amer. Math. Soc199211498999310.1090/S0002-9939-1992-1059634-110596340761.47004 – reference: AczelJDhombresJFunctional Equations in Several Variables1989CambridgeCambridge University Press10.1017/CBO97811390865780685.39006 – reference: ParkCHomomorphisms between Lie JC∗-algebras and Cauchy-Rassias stability of Lie JC∗-algebra derivationsJ. Lie Theory20051539341421474351091.39006 – reference: RassiasJMOn Approximation of approximately linear mappings by linear mappingsJ. Funct. Anal19824612613010.1016/0022-1236(82)90048-96544690482.47033 – reference: RassiasThMNew characterization of inner product spacesBull. Sci. Math198410895997516630544.46016 – reference: BourginDGApproximately isometric and multiplicative transformations on continuous function ringsDuke Math. J19491638539710.1215/S0012-7094-49-01639-7311940033.37702 – reference: FortiGLAn existence and stability theorem for a class of functional equationsStochastica19804233010.1080/174425080088331555737230442.39005 – reference: CzerwikSOn the stability of the quadratic mapping in normed spacesAbh. Math. Sem. Univ. Hamburg199262596410.1007/BF0294161811828410779.39003 |
SSID | ssj0000779045 |
Score | 1.9014405 |
Snippet | Consider the functional equation
ℑ
1
(
f
) =
ℑ
2
(
f
) (
ℑ
)in a certain general setting. A function
g
is an approximate solution of (
ℑ
)if
ℑ
1
(
g
)and
ℑ
2
(... Consider the functional equation ^sub 1^(f) = ^sub 2^(f) ()in a certain general setting. A function g is an approximate solution of ()if ^sub 1^(g)and ^sub... Consider the functional equation sub(1)(f) = sub(2)(f) ()in a certain general setting. A function g is an approximate solution of ()if sub(1)(g)and... : Consider the functional equation ℑ1(f) = ℑ2(f) (ℑ)in a certain general setting. A function g is an approximate solution of (ℑ)if ℑ1(g)and ℑ2(g)are close in... |
SourceID | biomedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 59 |
SubjectTerms | Algebra Applications of Mathematics Approximation Classification Exact solutions Fixed points (mathematics) Functions (mathematics) Homomorphisms Mathematical analysis Mathematics Mathematics and Statistics Original Research Stability |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB50fdEH8cT1ooKgL8EeOdp9ERVlETwQBd9C0ya4sNuudhf8-U666ep60bdm2sBMMvMlk3wDcBhojMmaGZKKOCfUCG2nVEKUT1UkklyJ3N4dvrnl3Sd6_cye3YZb5Y5VNj6xdtR5mdk98pOAWxoSDE_8dPhKbNUom111JTTmYQFdcMxasHB-eXv_MN1l8S2dXl2puM7zBxFLHHNjEPMTHMsBEQghCCeWrHTmynt_NlJ9ws9vGdM6EF2twLJDkN7ZxOSrMKeLNVi6mdKvVutA7wqvJgt_7-Er7b2UA3xQo71qUHW81DO9d517w7JXjLyGVXwDnq4uHy-6xJVHICpK4hHRBp2ciWKVpxQDkWY2mSyUMZr6OTOpvefuB2kmwjCItFY-R3ulzPDM5CF-Gm1CqygLvQWeMjb7l2YGl19UUxXTxDdhxjLUkOFx1obOjGrkcEKFIS059WwL2kxavUqrV8klS9pAGj3KzBGP2_oXfVkvQGL-Q_5oKt_085fkbmMW6aZeJT8HShsOps04aWwmJC10OUYZIRBXMQTLbThuzPnlF7_2tv1_bzuwiGAqnBx12YXW6G2s9xCwjNS-G5UfujfoDg priority: 102 providerName: ProQuest |
Title | On approximate homomorphisms: a fixed point approach |
URI | https://link.springer.com/article/10.1186/2251-7456-6-59 https://www.proquest.com/docview/1652835126 https://www.proquest.com/docview/1770285800 http://dx.doi.org/10.1186/2251-7456-6-59 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90vuiD-InTKRUEfQn2Ix_t3nRsDsEPxIFvoWkTHGyduAn7871k7XROQQqBNtcE7nK5Sy73C8BZoNEma2ZIKuKcUCO0VamEKJ-qSCS5ErnNHb67590evX1hLyvgV7kw7rR7FZJ0M7VT65hf4sALiEB7TzhhySqsWSgxO6apfzPfVfEtfJ67mdjF9YOIJSVS43ITP1LcB4uW6cvd_BEhdYanswWbpcfoXc1EvA0rutiBjbs53Op4F-hD4Tlw8GkfP2nvdTTEBznYHw_HTS_1TH-qc-9t1C8mXoUivge9Tvu51SXldQhERUk8IdrgpGaiWOUpRcOjmQ0eC2WMpn7OTGrz2v0gzUQYBpHWyucon5QZnpk8xF-jfagVo0IfgKeMjfalmcHlFtVUxTTxTZixDDlkeJzVobnAGvk2g76QFox6sQZFJC1fpeWr5JIldSAVH2VWAo3b-y4G0i04Yr5Efz6nr_r5i7JRiUWWqjaWAbf4NOi38DqczqtRSWzkIy306ANphEA_iqFzXIeLSpzfmvi1t8P_kx7BOjpS4eyYSwNqk_cPfYzOykSduPGJZdzBcu26ff_4hG8t3voEavbk2g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOEAPiLZUXR6tK7WiF4s8HDtBQoi2oKWwS1WBxM2NE1tdCZKlWVT6p_obmckmS7eU3lBu8cRW5mGPPZ5vAN76FtdkGzmeqjjnwilLJpVw4wkTqiQ3Kqfc4V5fds_E5_PofAZ-t7kwdK2ynRPriTovMzoj3_IlwZDg8iR3h1ecqkZRdLUtoTFWiyP76ydu2aqdw08o33dBcLB_-rHLm6oC3IRJPOLW4dzgwtjkqcD520YUg1XGOSu8PHIppYd7fpqpIPBDa40n8TfTyMnM5QF-GmK_szCPbkaCVjT_Yb__5evkVMcj-L66MnJ9r8BHogYp0o_lFtqOzxW6LFxyAkedSrG_mF4Z79zdvyK09cJ3sAxLjcfK9sYq9hRmbPEMnvQmcK_VcxAnBavByW8G-Mqy7-UlPijBQXVZbbOUucGNzdmwHBQj1qKYr8DZozDuBcwVZWFfAjOOoo1p5nC7J6wwsUg8F2RRhhxyMs46sD3FGj0cQ29oAsOebkEd0cRXTXzVUkdJB3jLR501QOdUb-NC1xueWN6j35zQt-M8RLneikU3pl7pO8XswJtJMxopRV7SwpbXSKMU-nEROucdeN-K848u_jna6v9Hew0L3dPesT4-7B-twSI6csH4ms06zI1-XNsNdJZG5lWjoQy-PbZR3ALdRyXe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYTgAVEOsaW0RgLBi9UcPpJKCNFj1VK6VIhKfTNxYouV2mRLtqL9a_11zGSTbZfrrcpb7NjKXB57PN8AvAodrslOep7ppODCa0cqlXIbCBvrtLC6oNzhg6HaPRIfj-XxAlx1uTB0rbKziY2hLqqczsjXQ0UwJJISXnx7LeJwe_B-fMapghRFWrtyGlMR2XeXP3H7Vr_b20Zev46iwc7XrV3eVhjgNk6TCXce7YSPE1tkAm25kxSP1dZ7J4JC-oxSxYMwy3UUhbFzNlD4y5n0KvdFhJ_GOO4dWNS4KiY9WNzcGR5-mZ3wBATl11RJbu4YhLFMW9TIMFHrqEch1-i-cMUJKHUu3f5kfpW8dn1_i9Y2i-DgITxovVf2YSpuS7Dgykdw_2AG_Vo_BvG5ZA1Q-cUIXzn2vTrFB7k5qk_rDZYxP7pwBRtXo3LCOkTzJ3B0K4R7Cr2yKt0zYNZT5DHLPW79hBM2EWngo1zmSCGvkrwPG3OkMeMpDIchYOz5FpQXQ3Q1RFejjEz7wDs6mrwFPafaGyem2fwk6o_-b2b9u3n-1XOlY4tp1b4210Lah5ezZlRYisJkpavOsY_W6NNJdNT78LZj540h_jrb8v9nW4O7qAzm095w_zncQ58umt64WYHe5Me5e4F-08SutgLK4Ntt68QvYPcqCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+approximate+homomorphisms%3A+a+fixed+point+approach&rft.jtitle=Mathematical+sciences+%28Karaj%2C+Iran%29&rft.au=Gordji%2C+Madjid+Eshaghi&rft.au=Alizadeh%2C+Zahra&rft.au=Khodaei%2C+Hamid&rft.au=Park%2C+Choonkil&rft.date=2012-12-01&rft.issn=2008-1359&rft.eissn=2251-7456&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1186%2F2251-7456-6-59&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2008-1359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2008-1359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2008-1359&client=summon |