Liverpool Lung Project lung cancer risk stratification model: calibration and prospective validation
BackgroundEarly detection of lung cancer saves lives, as demonstrated by the two largest published low-dose CT screening trials. Optimal implementation depends on our ability to identify those most at risk.MethodsVersion 2 of the Liverpool Lung Project risk score (LLPv2) was developed from case-cont...
Saved in:
Published in | Thorax Vol. 76; no. 2; pp. 161 - 168 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
BMJ Publishing Group Ltd and British Thoracic Society
01.02.2021
BMJ Publishing Group LTD |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BackgroundEarly detection of lung cancer saves lives, as demonstrated by the two largest published low-dose CT screening trials. Optimal implementation depends on our ability to identify those most at risk.MethodsVersion 2 of the Liverpool Lung Project risk score (LLPv2) was developed from case-control data in Liverpool and further adapted when applied for selection of subjects for the UK Lung Screening Trial. The objective was to produce version 3 (LLPv3) of the model, by calibration to national figures for 2017. We validated both LLPv2 and LLPv3 using questionnaire data from 75 958 individuals, followed up for lung cancer over 5 years. We validated both discrimination, using receiver operating characteristic (ROC) analysis, and absolute incidence, by comparing deciles of predicted incidence with observed incidence. We calculated proportionate difference as the percentage excess or deficit of observed cancers compared with those predicted. We also carried out Hosmer-Lemeshow tests.ResultsThere were 599 lung cancers diagnosed over 5 years. The discrimination of both LLPv2 and LLPv3 was significant with an area under the ROC curve of 0.81 (95% CI 0.79 to 0.82). However, LLPv2 overestimated absolute risk in the population. The proportionate difference was −58.3% (95% CI −61.6% to −54.8%), that is, the actual number of cancers was only 42% of the number predicted.In LLPv3, calibrated to national 2017 figures, the proportionate difference was −22.0% (95% CI −28.1% to −15.5%).ConclusionsWhile LLPv2 and LLPv3 have the same discriminatory power, LLPv3 improves the absolute lung cancer risk prediction and should be considered for use in further UK implementation studies. |
---|---|
AbstractList | Early detection of lung cancer saves lives, as demonstrated by the two largest published low-dose CT screening trials. Optimal implementation depends on our ability to identify those most at risk.BACKGROUNDEarly detection of lung cancer saves lives, as demonstrated by the two largest published low-dose CT screening trials. Optimal implementation depends on our ability to identify those most at risk.Version 2 of the Liverpool Lung Project risk score (LLPv2) was developed from case-control data in Liverpool and further adapted when applied for selection of subjects for the UK Lung Screening Trial. The objective was to produce version 3 (LLPv3) of the model, by calibration to national figures for 2017. We validated both LLPv2 and LLPv3 using questionnaire data from 75 958 individuals, followed up for lung cancer over 5 years. We validated both discrimination, using receiver operating characteristic (ROC) analysis, and absolute incidence, by comparing deciles of predicted incidence with observed incidence. We calculated proportionate difference as the percentage excess or deficit of observed cancers compared with those predicted. We also carried out Hosmer-Lemeshow tests.METHODSVersion 2 of the Liverpool Lung Project risk score (LLPv2) was developed from case-control data in Liverpool and further adapted when applied for selection of subjects for the UK Lung Screening Trial. The objective was to produce version 3 (LLPv3) of the model, by calibration to national figures for 2017. We validated both LLPv2 and LLPv3 using questionnaire data from 75 958 individuals, followed up for lung cancer over 5 years. We validated both discrimination, using receiver operating characteristic (ROC) analysis, and absolute incidence, by comparing deciles of predicted incidence with observed incidence. We calculated proportionate difference as the percentage excess or deficit of observed cancers compared with those predicted. We also carried out Hosmer-Lemeshow tests.There were 599 lung cancers diagnosed over 5 years. The discrimination of both LLPv2 and LLPv3 was significant with an area under the ROC curve of 0.81 (95% CI 0.79 to 0.82). However, LLPv2 overestimated absolute risk in the population. The proportionate difference was -58.3% (95% CI -61.6% to -54.8%), that is, the actual number of cancers was only 42% of the number predicted.In LLPv3, calibrated to national 2017 figures, the proportionate difference was -22.0% (95% CI -28.1% to -15.5%).RESULTSThere were 599 lung cancers diagnosed over 5 years. The discrimination of both LLPv2 and LLPv3 was significant with an area under the ROC curve of 0.81 (95% CI 0.79 to 0.82). However, LLPv2 overestimated absolute risk in the population. The proportionate difference was -58.3% (95% CI -61.6% to -54.8%), that is, the actual number of cancers was only 42% of the number predicted.In LLPv3, calibrated to national 2017 figures, the proportionate difference was -22.0% (95% CI -28.1% to -15.5%).While LLPv2 and LLPv3 have the same discriminatory power, LLPv3 improves the absolute lung cancer risk prediction and should be considered for use in further UK implementation studies.CONCLUSIONSWhile LLPv2 and LLPv3 have the same discriminatory power, LLPv3 improves the absolute lung cancer risk prediction and should be considered for use in further UK implementation studies. BackgroundEarly detection of lung cancer saves lives, as demonstrated by the two largest published low-dose CT screening trials. Optimal implementation depends on our ability to identify those most at risk.MethodsVersion 2 of the Liverpool Lung Project risk score (LLPv2) was developed from case-control data in Liverpool and further adapted when applied for selection of subjects for the UK Lung Screening Trial. The objective was to produce version 3 (LLPv3) of the model, by calibration to national figures for 2017. We validated both LLPv2 and LLPv3 using questionnaire data from 75 958 individuals, followed up for lung cancer over 5 years. We validated both discrimination, using receiver operating characteristic (ROC) analysis, and absolute incidence, by comparing deciles of predicted incidence with observed incidence. We calculated proportionate difference as the percentage excess or deficit of observed cancers compared with those predicted. We also carried out Hosmer-Lemeshow tests.ResultsThere were 599 lung cancers diagnosed over 5 years. The discrimination of both LLPv2 and LLPv3 was significant with an area under the ROC curve of 0.81 (95% CI 0.79 to 0.82). However, LLPv2 overestimated absolute risk in the population. The proportionate difference was −58.3% (95% CI −61.6% to −54.8%), that is, the actual number of cancers was only 42% of the number predicted.In LLPv3, calibrated to national 2017 figures, the proportionate difference was −22.0% (95% CI −28.1% to −15.5%).ConclusionsWhile LLPv2 and LLPv3 have the same discriminatory power, LLPv3 improves the absolute lung cancer risk prediction and should be considered for use in further UK implementation studies. |
Author | Vulkan, Daniel Davies, Michael P A Duffy, Stephen W Gabe, Rhian Field, John K |
Author_xml | – sequence: 1 givenname: John K orcidid: 0000-0003-3951-6365 surname: Field fullname: Field, John K email: J.K.Field@liverpool.ac.uk organization: Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK – sequence: 2 givenname: Daniel surname: Vulkan fullname: Vulkan, Daniel organization: Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK – sequence: 3 givenname: Michael P A surname: Davies fullname: Davies, Michael P A organization: Molecular and Clinical Cancer Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK – sequence: 4 givenname: Stephen W surname: Duffy fullname: Duffy, Stephen W organization: Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK – sequence: 5 givenname: Rhian surname: Gabe fullname: Gabe, Rhian organization: Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK |
BookMark | eNqNkVtLwzAYhoNM3EF_glDwxptqjk2jVzI8wUAv9LqkbaqpWTKTbui_N1tlwi7Um4Tke5_v9I7BwDqrADhG8Awhkp13r87Lj9aaFEMMU4wYYvkeGCGa5SnBIhuAEYQUphnh2RCMQ2ghhDlC_AAMCYE5Rlk2AvVMr5RfOGeS2dK-JI_etarqErN-VNJWyideh7ckdF52utFVPJ1N5q5W5iIqjC59_yVtnSy8C4vIx6TJKsbqTegQ7DfSBHX0fU_A88310_QunT3c3k-vZmlJBO9SkteCUVFyxgilHGHRUFFz1EBeMlwTrsoGUQlrSiVmohEyyxlmrJRKkAojMgGnfd7YxvtSha6Y61ApY6RVbhkKTBkWeUR5lJ7sSFu39DZ2F1U8R4JiQqOK9aoqzhW8aoqF13PpPwsEi7UNxdaGYm1D0dsQucsdrtLdZhVxi9r8ScOeLuftvwuiH2Q7ye_MFwQ0sds |
CitedBy_id | crossref_primary_10_1371_journal_pmed_1004287 crossref_primary_10_1016_j_jtho_2024_12_016 crossref_primary_10_1055_a_1382_8648 crossref_primary_10_1136_bmjresp_2023_002193 crossref_primary_10_1016_j_jtho_2022_04_011 crossref_primary_10_3390_cancers15041218 crossref_primary_10_1016_j_aprim_2022_102440 crossref_primary_10_1038_s41416_021_01278_0 crossref_primary_10_1186_s41512_024_00166_4 crossref_primary_10_3390_cancers15174344 crossref_primary_10_36416_1806_3756_e20240156 crossref_primary_10_1016_S0140_6736_22_01694_4 crossref_primary_10_1016_j_jtho_2021_11_008 crossref_primary_10_1016_j_lungcan_2024_107956 crossref_primary_10_1136_thoraxjnl_2021_217142 crossref_primary_10_1016_j_chest_2023_08_003 crossref_primary_10_1016_S2589_7500_24_00123_7 crossref_primary_10_1183_13993003_00128_2023 crossref_primary_10_1016_j_lanepe_2021_100179 crossref_primary_10_1016_j_ebiom_2023_104443 crossref_primary_10_1186_s12885_025_13562_w crossref_primary_10_1016_S2213_2600_23_00050_4 crossref_primary_10_1016_j_lanepe_2024_100936 crossref_primary_10_1038_s41416_023_02467_9 crossref_primary_10_1002_ijc_33578 crossref_primary_10_1016_j_jtho_2023_11_002 crossref_primary_10_2139_ssrn_4199217 crossref_primary_10_1016_j_eclinm_2025_103075 crossref_primary_10_1038_s44276_024_00082_6 crossref_primary_10_1371_journal_pone_0305035 crossref_primary_10_1111_1759_7714_14917 crossref_primary_10_1001_jamaoncol_2023_4447 crossref_primary_10_1016_j_lungcan_2022_10_011 crossref_primary_10_1016_j_jtho_2025_01_003 crossref_primary_10_1016_j_jtho_2023_07_019 crossref_primary_10_1136_bmjonc_2024_000560 |
Cites_doi | 10.1002/sim.789 10.1097/01.CCM.0000275267.64078.B0 10.1016/S1470-2045(17)30597-1 10.1016/j.lungcan.2020.07.027 10.1136/thoraxjnl-2017-211377 10.1002/sim.8163 10.1016/j.jtho.2017.09.1371 10.1056/NEJMoa1102873 10.7326/M13-2316 10.1016/j.lungcan.2019.05.026 10.1136/thoraxjnl-2020-214626 10.1164/rccm.201805-0986ST 10.1056/NEJMoa1911793 10.1038/sj.bjc.6604158 10.3310/hta20400 10.1002/sim.1421 10.1097/JTO.0000000000000060 10.1164/rccm.201905-0946OC 10.1136/thoraxjnl-2015-207140 10.1371/journal.pone.0121174 10.1177/0272989X06295361 10.1186/s12885-018-5144-5 10.1371/journal.pmed.1002277 10.1093/jnci/djz164 10.7326/M13-2771 10.1016/j.jclinepi.2008.04.008 10.7326/M17-2701 10.7326/0003-4819-157-4-201208210-00004 10.1186/ISRCTN42704678 10.3310/hta20220 10.1002/9781118548387 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ. 2021 Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ. |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2021 Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ. |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR BTHHO CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1136/thoraxjnl-2020-215158 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central BMJ Journals ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) BMJ Journals Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-3296 |
EndPage | 168 |
ExternalDocumentID | 10_1136_thoraxjnl_2020_215158 thoraxjnl |
GeographicLocations | United Kingdom--UK England United States--US |
GeographicLocations_xml | – name: England – name: United Kingdom--UK – name: United States--US |
GrantInformation_xml | – fundername: National Institute for Health Research grantid: Policy Research Unit in Cancer Awareness, Screenin – fundername: National Institute for Health Research, Health Technology Assessment (NIHR HTA) grantid: United Kingdom Lung Cancer Screening Trial (UKLS) – fundername: Roy Castle Lung Cancer Foundation grantid: Liverpool Lung Project funderid: http://dx.doi.org/10.13039/100009855 |
GroupedDBID | --- .55 .GJ .VT 08G 0R~ 123 18M 29Q 2WC 354 39C 3O- 4.4 40O 53G 5RE 5VS 6PF 7X7 7~S 88E 8F7 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAWJN AAWTL AAYEP ABAAH ABJNI ABKDF ABMQD ABOCM ABTFR ABUWG ABVAJ ACGFO ACGFS ACGTL ACHTP ACMFJ ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADZCM AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BAWUL BENPR BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C45 CAG CCPQU COF CS3 CXRWF DIK DU5 E3Z EBS EJD F5P FEDTE FYUFA GX1 H13 HAJ HMCUK HVGLF HYE HZ~ IAO IEA IH2 IHR IOF ITC J5H KQ8 L7B M1P N4W N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UAW UKHRP UYXKK V24 VM9 VVN W8F WH7 X7M YFH YOC YQY ZCG ZGI AAYXX ACQHZ ADGHP AERUA CITATION PHGZM 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-b397t-38d9549b7553447129f49d71f07b52d37ebf14a0d44a259f9a685255bae93c213 |
IEDL.DBID | 7X7 |
ISSN | 0040-6376 1468-3296 |
IngestDate | Fri Jul 11 09:38:59 EDT 2025 Fri Jul 25 22:35:57 EDT 2025 Tue Jul 01 02:00:42 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Thu Apr 24 22:49:52 EDT 2025 Thu Apr 24 22:49:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b397t-38d9549b7553447129f49d71f07b52d37ebf14a0d44a259f9a685255bae93c213 |
Notes | Original research ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-3951-6365 |
PMID | 33082166 |
PQID | 2478194234 |
PQPubID | 2041050 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2452982597 proquest_journals_2478194234 crossref_primary_10_1136_thoraxjnl_2020_215158 crossref_citationtrail_10_1136_thoraxjnl_2020_215158 bmj_primary_10_1136_thoraxjnl_2020_215158 bmj_journals_10_1136_thoraxjnl_2020_215158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Thorax |
PublicationTitleAbbrev | Thorax |
PublicationYear | 2021 |
Publisher | BMJ Publishing Group Ltd and British Thoracic Society BMJ Publishing Group LTD |
Publisher_xml | – name: BMJ Publishing Group Ltd and British Thoracic Society – name: BMJ Publishing Group LTD |
References | Quaife, Ruparel, Dickson (R27) 2020; 201 Moyer, Force (R20) 2014; 160 Khadjesari, Newbury-Birch, Murray (R26) 2015; 10 Field, Duffy, Baldwin (R7) 2016; 71 Lebrett, Balata, Evison (R35) 2020; 75 Crosbie, Balata, Evison (R29) 2019; 74 de Koning, van der Aalst, de Jong (R2) 2020; 382 Aberle, Adams (R1) 2011; 365 Katki (R33) 2019; 38 Tammemagi, Schmidt, Martel (R24) 2017; 18 Haws, Haws (R11) 2014; 424 Kuss (R16) 2002; 21 Rivera, Tanner, Silvestri (R36) 2018; 198 Field, Aberle, Altorki (R22) 2014; 9 de Koning, Meza, Plevritis (R19) 2014; 160 Bertolini, D'Amico, Nardi (R17) 2000; 5 Ten Haaf, Bastani, Cao (R23) 2020; 112 Haaf, De Koning, Field (R25) 2017; 12 Vickers, Elkin (R31) 2006; 26 Cassidy, Myles, van Tongeren (R5) 2008; 98 Toll, Janssen, Vergouwe (R3) 2008; 61 Katki, Kovalchik, Petito (R18) 2018; 169 Bartlett, Kemp, Ridge (R34) 2020; 148 Ghimire, Maroni, Vulkan (R30) 2019; 134 Raji, Duffy, Agbaje (R6) 2012; 157 Remen, Pintos, Abrahamowicz (R10) 2018; 18 Kramer, Zimmerman (R15) 2007; 35 Willan, Lin (R32) 2001; 20 Field, Duffy, Baldwin (R8) 2016; 20 Ten Haaf, Jeon, Tammemägi (R4) 2017; 14 Field, Aberle, Altorki 2014; 9 Ghimire, Maroni, Vulkan 2019; 134 Willan, Lin 2001; 20 Raji, Duffy, Agbaje 2012; 157 Vickers, Elkin 2006; 26 Rivera, Tanner, Silvestri 2018; 198 Field, Duffy, Baldwin 2016; 71 Aberle, Adams 2011; 365 Crosbie, Balata, Evison 2019; 74 Bartlett, Kemp, Ridge 2020; 148 Tammemagi, Schmidt, Martel 2017; 18 Katki, Kovalchik, Petito 2018; 169 Ten Haaf, Jeon, Tammemägi 2017; 14 Haaf, De Koning, Field 2017; 12 Toll, Janssen, Vergouwe 2008; 61 Ten Haaf, Bastani, Cao 2020; 112 Bertolini, D'Amico, Nardi 2000; 5 Lebrett, Balata, Evison 2020; 75 Field, Duffy, Baldwin 2016; 20 Khadjesari, Newbury-Birch, Murray 2015; 10 Quaife, Ruparel, Dickson 2020; 201 Cassidy, Myles, van Tongeren 2008; 98 Haws, Haws 2014; 424 Remen, Pintos, Abrahamowicz 2018; 18 Kramer, Zimmerman 2007; 35 Moyer, Force 2014; 160 Katki 2019; 38 de Koning, Meza, Plevritis 2014; 160 de Koning, van der Aalst, de Jong 2020; 382 Kuss 2002; 21 Ten Haaf (2021091621151846000_76.2.161.4) 2017; 14 2021091621151846000_76.2.161.31 Tammemagi (2021091621151846000_76.2.161.24) 2017; 18 2021091621151846000_76.2.161.32 Bertolini (2021091621151846000_76.2.161.17) 2000; 5 Ten Haaf (2021091621151846000_76.2.161.23) 2020; 112 2021091621151846000_76.2.161.16 2021091621151846000_76.2.161.19 2021091621151846000_76.2.161.13 2021091621151846000_76.2.161.35 2021091621151846000_76.2.161.12 2021091621151846000_76.2.161.15 2021091621151846000_76.2.161.37 2021091621151846000_76.2.161.14 Katki (2021091621151846000_76.2.161.33) 2019; 38 Quaife (2021091621151846000_76.2.161.27) 2020; 201 Katki (2021091621151846000_76.2.161.18) 2018; 169 Khadjesari (2021091621151846000_76.2.161.26) 2015; 10 Haaf (2021091621151846000_76.2.161.25) 2017; 12 de Koning (2021091621151846000_76.2.161.2) 2020; 382 Remen (2021091621151846000_76.2.161.10) 2018; 18 2021091621151846000_76.2.161.22 2021091621151846000_76.2.161.21 2021091621151846000_76.2.161.9 2021091621151846000_76.2.161.7 Ghimire (2021091621151846000_76.2.161.30) 2019; 134 2021091621151846000_76.2.161.8 2021091621151846000_76.2.161.28 Haws (2021091621151846000_76.2.161.11) 2014; 424 2021091621151846000_76.2.161.29 Rivera (2021091621151846000_76.2.161.36) 2018; 198 Moyer (2021091621151846000_76.2.161.20) 2014; 160 2021091621151846000_76.2.161.5 2021091621151846000_76.2.161.6 2021091621151846000_76.2.161.3 2021091621151846000_76.2.161.1 Bartlett (2021091621151846000_76.2.161.34) 2020; 148 |
References_xml | – volume: 20 start-page: 1563 year: 2001 ident: R32 article-title: Incremental net benefit in randomized clinical trials publication-title: Stat Med doi: 10.1002/sim.789 – volume: 35 start-page: 2052 year: 2007 ident: R15 article-title: Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited publication-title: Crit Care Med doi: 10.1097/01.CCM.0000275267.64078.B0 – volume: 18 start-page: 1523 year: 2017 ident: R24 article-title: Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(17)30597-1 – volume: 148 start-page: 12 year: 2020 ident: R34 article-title: Baseline Results of the West London lung cancer screening pilot study - Impact of mobile scanners and dual risk model utilisation publication-title: Lung Cancer doi: 10.1016/j.lungcan.2020.07.027 – volume: 74 start-page: 405 year: 2019 ident: R29 article-title: Implementing lung cancer screening: baseline results from a community-based 'Lung Health Check' pilot in deprived areas of Manchester publication-title: Thorax doi: 10.1136/thoraxjnl-2017-211377 – volume: 38 start-page: 2943 year: 2019 ident: R33 article-title: Quantifying risk stratification provided by diagnostic tests and risk predictions: comparison to AUC and decision curve analysis publication-title: Stat Med doi: 10.1002/sim.8163 – volume: 12 start-page: S2174 year: 2017 ident: R25 article-title: P2.13-025 selecting the risk cut off for the LLP model publication-title: Journal of Thoracic Oncology doi: 10.1016/j.jtho.2017.09.1371 – volume: 365 start-page: 395 year: 2011 ident: R1 article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening publication-title: N Engl J Med doi: 10.1056/NEJMoa1102873 – volume: 160 start-page: 311 year: 2014 ident: R19 article-title: Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. preventive services Task force publication-title: Ann Intern Med doi: 10.7326/M13-2316 – volume: 134 start-page: 66 year: 2019 ident: R30 article-title: Evaluation of a health service adopting proactive approach to reduce high risk of lung cancer: the Liverpool healthy lung programme publication-title: Lung Cancer doi: 10.1016/j.lungcan.2019.05.026 – volume: 75 start-page: 661 year: 2020 ident: R35 article-title: Analysis of lung cancer risk model (PLCO M2012 and LLP v2 ) performance in a community-based lung cancer screening programme publication-title: Thorax doi: 10.1136/thoraxjnl-2020-214626 – volume: 198 start-page: e3 year: 2018 ident: R36 article-title: Incorporating coexisting chronic illness into decisions about patient selection for lung cancer screening. An official American thoracic Society research statement publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201805-0986ST – volume: 382 start-page: 503 year: 2020 ident: R2 article-title: Reduced lung-cancer mortality with volume CT screening in a randomized trial publication-title: N Engl J Med doi: 10.1056/NEJMoa1911793 – volume: 98 start-page: 270 year: 2008 ident: R5 article-title: The LLP risk model: an individual risk prediction model for lung cancer publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604158 – volume: 20 start-page: 1 year: 2016 ident: R8 article-title: The UK lung cancer screening trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer publication-title: Health Technol Assess doi: 10.3310/hta20400 – volume: 424 start-page: 32 year: 2014 ident: R11 article-title: Aerodigestive cancers: lung cancer publication-title: FP Essent – volume: 21 start-page: 3789 year: 2002 ident: R16 article-title: Global goodness-of-fit tests in logistic regression with sparse data publication-title: Stat Med doi: 10.1002/sim.1421 – volume: 9 start-page: 141 year: 2014 ident: R22 article-title: The International association study lung cancer (IASLC) strategic screening Advisory Committee (SSAC) response to the USPSTF recommendations publication-title: J Thorac Oncol doi: 10.1097/JTO.0000000000000060 – volume: 201 start-page: 965 year: 2020 ident: R27 article-title: Lung screen uptake trial (LSUT): randomized controlled clinical trial testing targeted invitation materials publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201905-0946OC – volume: 71 start-page: 161 year: 2016 ident: R7 article-title: UK lung cancer RCT pilot screening trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207140 – volume: 10 year: 2015 ident: R26 article-title: Online health check for reducing alcohol intake among employees: a feasibility study in six workplaces across England publication-title: PLoS One doi: 10.1371/journal.pone.0121174 – volume: 5 start-page: 251 year: 2000 ident: R17 article-title: One model, several results: the paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model publication-title: J Epidemiol Biostat – volume: 26 start-page: 565 year: 2006 ident: R31 article-title: Decision curve analysis: a novel method for evaluating prediction models publication-title: Med Decis Making doi: 10.1177/0272989X06295361 – volume: 18 year: 2018 ident: R10 article-title: Risk of lung cancer in relation to various metrics of smoking history: a case-control study in Montreal publication-title: BMC Cancer doi: 10.1186/s12885-018-5144-5 – volume: 14 year: 2017 ident: R4 article-title: Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002277 – volume: 112 start-page: 466 year: 2020 ident: R23 article-title: A comparative modeling analysis of risk-based lung cancer screening strategies publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djz164 – volume: 160 start-page: 330-338 year: 2014 ident: R20 article-title: Screening for lung cancer: U.S. preventive services Task force recommendation statement publication-title: Ann Intern Med doi: 10.7326/M13-2771 – volume: 61 start-page: 1085 year: 2008 ident: R3 article-title: Validation, updating and impact of clinical prediction rules: a review publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2008.04.008 – volume: 169 start-page: 10 year: 2018 ident: R18 article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening publication-title: Ann Intern Med doi: 10.7326/M17-2701 – volume: 157 start-page: 242 year: 2012 ident: R6 article-title: Predictive accuracy of the Liverpool lung project risk model for stratifying patients for computed tomography screening for lung cancer: a case-control and cohort validation study publication-title: Ann Intern Med doi: 10.7326/0003-4819-157-4-201208210-00004 – volume: 10 year: 2015 article-title: Online health check for reducing alcohol intake among employees: a feasibility study in six workplaces across England publication-title: PLoS One doi: 10.1371/journal.pone.0121174 – volume: 20 start-page: 1 year: 2016 article-title: The UK lung cancer screening trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer publication-title: Health Technol Assess doi: 10.3310/hta20400 – volume: 169 start-page: 10 year: 2018 article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening publication-title: Ann Intern Med doi: 10.7326/M17-2701 – volume: 26 start-page: 565 year: 2006 article-title: Decision curve analysis: a novel method for evaluating prediction models publication-title: Med Decis Making doi: 10.1177/0272989X06295361 – volume: 61 start-page: 1085 year: 2008 article-title: Validation, updating and impact of clinical prediction rules: a review publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2008.04.008 – volume: 71 start-page: 161 year: 2016 article-title: UK lung cancer RCT pilot screening trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207140 – volume: 112 start-page: 466 year: 2020 article-title: A comparative modeling analysis of risk-based lung cancer screening strategies publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djz164 – volume: 74 start-page: 405 year: 2019 article-title: Implementing lung cancer screening: baseline results from a community-based 'Lung Health Check' pilot in deprived areas of Manchester publication-title: Thorax doi: 10.1136/thoraxjnl-2017-211377 – volume: 18 year: 2018 article-title: Risk of lung cancer in relation to various metrics of smoking history: a case-control study in Montreal publication-title: BMC Cancer doi: 10.1186/s12885-018-5144-5 – volume: 198 start-page: e3 year: 2018 article-title: Incorporating coexisting chronic illness into decisions about patient selection for lung cancer screening. An official American thoracic Society research statement publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201805-0986ST – volume: 14 year: 2017 article-title: Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002277 – volume: 160 start-page: 311 year: 2014 article-title: Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. preventive services Task force publication-title: Ann Intern Med doi: 10.7326/M13-2316 – volume: 365 start-page: 395 year: 2011 article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening publication-title: N Engl J Med doi: 10.1056/NEJMoa1102873 – volume: 35 start-page: 2052 year: 2007 article-title: Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited publication-title: Crit Care Med doi: 10.1097/01.CCM.0000275267.64078.B0 – volume: 148 start-page: 12 year: 2020 article-title: Baseline Results of the West London lung cancer screening pilot study - Impact of mobile scanners and dual risk model utilisation publication-title: Lung Cancer doi: 10.1016/j.lungcan.2020.07.027 – volume: 424 start-page: 32 year: 2014 article-title: Aerodigestive cancers: lung cancer publication-title: FP Essent – volume: 5 start-page: 251 year: 2000 article-title: One model, several results: the paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model publication-title: J Epidemiol Biostat – volume: 18 start-page: 1523 year: 2017 article-title: Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(17)30597-1 – volume: 12 start-page: S2174 year: 2017 article-title: P2.13-025 selecting the risk cut off for the LLP model publication-title: Journal of Thoracic Oncology doi: 10.1016/j.jtho.2017.09.1371 – volume: 20 start-page: 1563 year: 2001 article-title: Incremental net benefit in randomized clinical trials publication-title: Stat Med doi: 10.1002/sim.789 – volume: 157 start-page: 242 year: 2012 article-title: Predictive accuracy of the Liverpool lung project risk model for stratifying patients for computed tomography screening for lung cancer: a case-control and cohort validation study publication-title: Ann Intern Med doi: 10.7326/0003-4819-157-4-201208210-00004 – volume: 75 start-page: 661 year: 2020 article-title: Analysis of lung cancer risk model (PLCO M2012 and LLP v2 ) performance in a community-based lung cancer screening programme publication-title: Thorax doi: 10.1136/thoraxjnl-2020-214626 – volume: 21 start-page: 3789 year: 2002 article-title: Global goodness-of-fit tests in logistic regression with sparse data publication-title: Stat Med doi: 10.1002/sim.1421 – volume: 160 start-page: 330-338 year: 2014 article-title: Screening for lung cancer: U.S. preventive services Task force recommendation statement publication-title: Ann Intern Med doi: 10.7326/M13-2771 – volume: 201 start-page: 965 year: 2020 article-title: Lung screen uptake trial (LSUT): randomized controlled clinical trial testing targeted invitation materials publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201905-0946OC – volume: 98 start-page: 270 year: 2008 article-title: The LLP risk model: an individual risk prediction model for lung cancer publication-title: Br J Cancer doi: 10.1038/sj.bjc.6604158 – volume: 134 start-page: 66 year: 2019 article-title: Evaluation of a health service adopting proactive approach to reduce high risk of lung cancer: the Liverpool healthy lung programme publication-title: Lung Cancer doi: 10.1016/j.lungcan.2019.05.026 – volume: 382 start-page: 503 year: 2020 article-title: Reduced lung-cancer mortality with volume CT screening in a randomized trial publication-title: N Engl J Med doi: 10.1056/NEJMoa1911793 – volume: 9 start-page: 141 year: 2014 article-title: The International association study lung cancer (IASLC) strategic screening Advisory Committee (SSAC) response to the USPSTF recommendations publication-title: J Thorac Oncol doi: 10.1097/JTO.0000000000000060 – volume: 38 start-page: 2943 year: 2019 article-title: Quantifying risk stratification provided by diagnostic tests and risk predictions: comparison to AUC and decision curve analysis publication-title: Stat Med doi: 10.1002/sim.8163 – volume: 382 start-page: 503 year: 2020 ident: 2021091621151846000_76.2.161.2 article-title: Reduced lung-cancer mortality with volume CT screening in a randomized trial publication-title: N Engl J Med doi: 10.1056/NEJMoa1911793 – volume: 160 start-page: 330-338 year: 2014 ident: 2021091621151846000_76.2.161.20 article-title: Screening for lung cancer: U.S. preventive services Task force recommendation statement publication-title: Ann Intern Med doi: 10.7326/M13-2771 – volume: 10 year: 2015 ident: 2021091621151846000_76.2.161.26 article-title: Online health check for reducing alcohol intake among employees: a feasibility study in six workplaces across England publication-title: PLoS One doi: 10.1371/journal.pone.0121174 – volume: 38 start-page: 2943 year: 2019 ident: 2021091621151846000_76.2.161.33 article-title: Quantifying risk stratification provided by diagnostic tests and risk predictions: comparison to AUC and decision curve analysis publication-title: Stat Med doi: 10.1002/sim.8163 – volume: 18 year: 2018 ident: 2021091621151846000_76.2.161.10 article-title: Risk of lung cancer in relation to various metrics of smoking history: a case-control study in Montreal publication-title: BMC Cancer doi: 10.1186/s12885-018-5144-5 – ident: 2021091621151846000_76.2.161.13 – ident: 2021091621151846000_76.2.161.3 doi: 10.1016/j.jclinepi.2008.04.008 – ident: 2021091621151846000_76.2.161.5 doi: 10.1038/sj.bjc.6604158 – volume: 12 start-page: S2174 year: 2017 ident: 2021091621151846000_76.2.161.25 article-title: P2.13-025 selecting the risk cut off for the LLP model publication-title: Journal of Thoracic Oncology doi: 10.1016/j.jtho.2017.09.1371 – volume: 198 start-page: e3 year: 2018 ident: 2021091621151846000_76.2.161.36 article-title: Incorporating coexisting chronic illness into decisions about patient selection for lung cancer screening. An official American thoracic Society research statement publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201805-0986ST – ident: 2021091621151846000_76.2.161.6 doi: 10.7326/0003-4819-157-4-201208210-00004 – ident: 2021091621151846000_76.2.161.1 doi: 10.1056/NEJMoa1102873 – ident: 2021091621151846000_76.2.161.31 doi: 10.1177/0272989X06295361 – volume: 424 start-page: 32 year: 2014 ident: 2021091621151846000_76.2.161.11 article-title: Aerodigestive cancers: lung cancer publication-title: FP Essent – ident: 2021091621151846000_76.2.161.15 doi: 10.1097/01.CCM.0000275267.64078.B0 – volume: 14 year: 2017 ident: 2021091621151846000_76.2.161.4 article-title: Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002277 – ident: 2021091621151846000_76.2.161.32 doi: 10.1002/sim.789 – ident: 2021091621151846000_76.2.161.21 – ident: 2021091621151846000_76.2.161.22 doi: 10.1097/JTO.0000000000000060 – ident: 2021091621151846000_76.2.161.12 – ident: 2021091621151846000_76.2.161.37 – ident: 2021091621151846000_76.2.161.7 doi: 10.1136/thoraxjnl-2015-207140 – ident: 2021091621151846000_76.2.161.9 – volume: 18 start-page: 1523 year: 2017 ident: 2021091621151846000_76.2.161.24 article-title: Participant selection for lung cancer screening by risk modelling (the Pan-Canadian Early Detection of Lung Cancer [PanCan] study): a single-arm, prospective study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(17)30597-1 – ident: 2021091621151846000_76.2.161.35 doi: 10.1136/thoraxjnl-2020-214626 – volume: 5 start-page: 251 year: 2000 ident: 2021091621151846000_76.2.161.17 article-title: One model, several results: the paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model publication-title: J Epidemiol Biostat – volume: 148 start-page: 12 year: 2020 ident: 2021091621151846000_76.2.161.34 article-title: Baseline Results of the West London lung cancer screening pilot study - Impact of mobile scanners and dual risk model utilisation publication-title: Lung Cancer doi: 10.1016/j.lungcan.2020.07.027 – ident: 2021091621151846000_76.2.161.29 doi: 10.1136/thoraxjnl-2017-211377 – ident: 2021091621151846000_76.2.161.19 doi: 10.7326/M13-2316 – ident: 2021091621151846000_76.2.161.28 doi: 10.1186/ISRCTN42704678 – ident: 2021091621151846000_76.2.161.16 doi: 10.1002/sim.1421 – volume: 112 start-page: 466 year: 2020 ident: 2021091621151846000_76.2.161.23 article-title: A comparative modeling analysis of risk-based lung cancer screening strategies publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djz164 – ident: 2021091621151846000_76.2.161.8 doi: 10.3310/hta20220 – ident: 2021091621151846000_76.2.161.14 doi: 10.1002/9781118548387 – volume: 169 start-page: 10 year: 2018 ident: 2021091621151846000_76.2.161.18 article-title: Implications of nine risk prediction models for selecting Ever-Smokers for computed tomography lung cancer screening publication-title: Ann Intern Med doi: 10.7326/M17-2701 – volume: 201 start-page: 965 year: 2020 ident: 2021091621151846000_76.2.161.27 article-title: Lung screen uptake trial (LSUT): randomized controlled clinical trial testing targeted invitation materials publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201905-0946OC – volume: 134 start-page: 66 year: 2019 ident: 2021091621151846000_76.2.161.30 article-title: Evaluation of a health service adopting proactive approach to reduce high risk of lung cancer: the Liverpool healthy lung programme publication-title: Lung Cancer doi: 10.1016/j.lungcan.2019.05.026 |
SSID | ssj0008117 |
Score | 2.5134041 |
Snippet | BackgroundEarly detection of lung cancer saves lives, as demonstrated by the two largest published low-dose CT screening trials. Optimal implementation depends... Early detection of lung cancer saves lives, as demonstrated by the two largest published low-dose CT screening trials. Optimal implementation depends on our... |
SourceID | proquest crossref bmj |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 161 |
SubjectTerms | Age Calibration Family medical history imaging/CT MRI etc Lung cancer Lung diseases Medical screening Pneumonia Population Questionnaires Smoking |
Title | Liverpool Lung Project lung cancer risk stratification model: calibration and prospective validation |
URI | https://thorax.bmj.com/content/76/2/161.full https://www.proquest.com/docview/2478194234 https://www.proquest.com/docview/2452982597 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dS8MwMOgG4ov4idMpEXxRqPYjaRdfRMUxRMcQB3srSdOgY3ZzTvDne5emG744H9tev-4uue87Qk619JVpSeHF0tcei2LpSdBMPaNy4wsjssBWvT91406fPQz4wDncPl1aZbUn2o1ajzP0kV-GWBMpQPiz68mHh1OjMLrqRmiskjq2LsOUrmQwN7h8LKKssuZiWEmugieI4svZK2D4e1iMgE3AgELBh1PfV9X78LeE-r1BW6nT3iQbTl2kNyV9t8hKXmyTtScXEN8h-hHzKnBOFn2EZUt7pWOFjvAgQ4pOKWaP07I9rnEeOmoH4FwBhDWX7SlZaAqfUZVeUmDBt3Lg0i7pt-9f7jqeG5zgKVAvZl7U0hi9Uwnn2NAPRLphQieB8RPFQx0luTIBA-IwJsH8MULGLQ62hZK5iLIwiPZIrRgX-T6hSgeJBp1G8cCAvONSxDwzGraFjEW-kA1yDihLHeN_ptamiOJ0jt8U8ZuW-G2QMwSelH00lsGyigpp5tqV49SM0bLbLua3_fM9zYrEi79YMFuDnMwvw8LDaIos8vEXwvBQgH0tkoO_H3FI1kNMhLGp3k1Sm02_8iPQZGbq2LLrManf3nd7zz-oT_Kz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZTuMwcFSotMsLAnZXlNNI7MOulCWHndRICAFLVaCt0Aok3oIdxwJUUo5WwE_xjczkKOIF9oXHJLZjz4znsOcAWDfK1bappBMq1zg8CJWjUDN1rE6tK61MvDzqvdsL26f88Eyc1eC5ioUht8qKJ-aM2gwSOiPf8CkmUqLw59s3tw5VjaLb1aqERkEWR-nTA5ps91sHfxG_P32_tX-y13bKqgKORtk7dIKmoastHQlB2e5Q3lkuTeRZN9LCN0GUautxnDnnCm0DK1XYFKh4a5XKIPG9AMedgDouy0VGUN_d7x3_G_N-Ctus_PRC3LtlzJAXhBvDC8Tp41XWR8JEk41ELdWZn9DXV29l4luRkMu51gxMlwoq2ykoahZqaTYHX7rlFfw3MB3y5KDKXKyDjIIdF0c5rE8PCdHQHSN_dVYk5LXlmSDLS-5sYovcQM9fqcwwnEYV7MmQ6C-LEk_f4fRTgPoDJrNBls4D08aLDGpRWngWJaxQMhSJNciIEh64UjXgN4IsLrfafZxbMUEYj-EbE3zjAr4N-EWNb4rMHR-15RUW4qRMkE51Ovofdfsz7vaf_1mqUPy6ilfybsDa-DNudbq_UVk6GFEb4Uu06GW08P4Qq_C1fdLtxJ2D3tEiTPnkhpM7mi_B5PBulC6jHjXUKyXxMjj_7P3yAlS7LX0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcARUQr0gKFRdHq2R4ECldJPYTtZIFapKVzwWxKFIe0vtOBasliyPRcCv8XXMOMkiLoULxyTjJJ732DMegA2rQ-M6WgWJDm0geKIDjZ5p4EzhQuVUHvmq96PjZO9UHPRlfwoem1oYSqtsdKJX1HaU0xp5O6aaSIXGX7RdnRZxstvdubwKqIMU7bQ27TQqFjksHu4wfLv5ub-LtN6M4-6fv7_3grrDQGDQDo8D3rG0zWVSKenkO7R9TiibRi5MjYwtTwvjIoGzEEJjnOCUTjoSnXCjC8XzOOL43mn4kHIZkYyl_UmwF1IBZ5Oxl6AU19VDEU_a4zOk7v2gHCKLYvBGRpc6zk-bi8FL6_jSOHiL152HudpVZb8q3lqAqaL8BLNH9Wb8Itge5XRQjy7WQ5XBTqpFHTaki5y46ZpR5jqrjuZ19eog8813thHCh-r-li4tw99oyj4Zsv951expCU7fBaWfYaYclcUXYMZGqUV_ysjIoa2VWiUydxZVUi54qHQLviPKslrobjIfz_Akm-A3I_xmFX5bsEXAl9UZHq_BioYKWV4flU4dO4avDfsxGfbG76w2JH6exTOjt2B98hiFnnZydFmMbglGxgpje5Uu__8V32AWpSTr7R8frsDHmPJxfMb5KsyMr2-LNXSoxuar51wG_95bVJ4ANo0wTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liverpool+Lung+Project+lung+cancer+risk+stratification+model%3A+calibration+and+prospective+validation&rft.jtitle=Thorax&rft.au=Field%2C+John+K&rft.au=Vulkan%2C+Daniel&rft.au=Davies%2C+Michael+P+A&rft.au=Duffy%2C+Stephen+W&rft.date=2021-02-01&rft.pub=BMJ+Publishing+Group+LTD&rft.issn=0040-6376&rft.eissn=1468-3296&rft.volume=76&rft.issue=2&rft.spage=161&rft.epage=168&rft_id=info:doi/10.1136%2Fthoraxjnl-2020-215158&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6376&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6376&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6376&client=summon |