Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc–xCT
ObjectiveReciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can be secreted to extracellular compartments and contribute to colorectal cancer (CRC) metastasis. We investigated the cellular source for secr...
Saved in:
Published in | Gut Vol. 71; no. 12; pp. 2489 - 2501 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BMJ Publishing Group Ltd and British Society of Gastroenterology
01.12.2022
BMJ Publishing Group LTD |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ObjectiveReciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can be secreted to extracellular compartments and contribute to colorectal cancer (CRC) metastasis. We investigated the cellular source for secreted AGR2 in the TME and underlying mechanisms mediating secreted AGR2’s effects.DesignTissue microarray, tumour tissues, blood samples and tumour-associated neutrophils (TANs) from patients with CRC were isolated for phenotypical and functional analyses. The role of TAN-secreted AGR2 was determined in neutrophil-specific Agr2 knockout (Agr2f/f;Mrp-Cre) mice. The biological roles and mechanisms of secreted AGR2 in CRC metastasis were determined in vitro and in vivo.ResultsTANs were a predominant cell type for secreting AGR2 in the TME of CRC. TANs-secreted AGR2 promoted CRC cells’ migration. Neutrophils-specific ablation of Agr2 in mice ameliorated CRC liver metastases. The heavy chain of CD98 (CD98hc) served as the functional receptor for secreted AGR2. Mechanistically, secreted AGR2 increased xCT activity in a CD98hc-dependent manner, subsequently activating Ras homologue family member A/Rho-associated protein kinase 2 cascade. CRC cells actively recruited TANs through the C-X-C motif chemokine 2. Moreover, CRC-derived transforming growth factor beta 1 (TGF-β1) educated peripheral blood neutrophils to become AGR2+ TANs that secrete AGR2. Abundant infiltration of AGR2+ TANs and high expression of TGF-β1 and CD98hc–xCT were correlated with poor prognosis of patients with CRC.ConclusionsOur study unveils a novel crosstalk between TANs and CRC cells involving the secreted AGR2–CD98hc–xCT axis that promotes metastasis and impacts the outcomes of patients with CRC. |
---|---|
AbstractList | ObjectiveReciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can be secreted to extracellular compartments and contribute to colorectal cancer (CRC) metastasis. We investigated the cellular source for secreted AGR2 in the TME and underlying mechanisms mediating secreted AGR2’s effects.DesignTissue microarray, tumour tissues, blood samples and tumour-associated neutrophils (TANs) from patients with CRC were isolated for phenotypical and functional analyses. The role of TAN-secreted AGR2 was determined in neutrophil-specific Agr2 knockout (Agr2f/f;Mrp-Cre) mice. The biological roles and mechanisms of secreted AGR2 in CRC metastasis were determined in vitro and in vivo.ResultsTANs were a predominant cell type for secreting AGR2 in the TME of CRC. TANs-secreted AGR2 promoted CRC cells’ migration. Neutrophils-specific ablation of Agr2 in mice ameliorated CRC liver metastases. The heavy chain of CD98 (CD98hc) served as the functional receptor for secreted AGR2. Mechanistically, secreted AGR2 increased xCT activity in a CD98hc-dependent manner, subsequently activating Ras homologue family member A/Rho-associated protein kinase 2 cascade. CRC cells actively recruited TANs through the C-X-C motif chemokine 2. Moreover, CRC-derived transforming growth factor beta 1 (TGF-β1) educated peripheral blood neutrophils to become AGR2+ TANs that secrete AGR2. Abundant infiltration of AGR2+ TANs and high expression of TGF-β1 and CD98hc–xCT were correlated with poor prognosis of patients with CRC.ConclusionsOur study unveils a novel crosstalk between TANs and CRC cells involving the secreted AGR2–CD98hc–xCT axis that promotes metastasis and impacts the outcomes of patients with CRC. Reciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can be secreted to extracellular compartments and contribute to colorectal cancer (CRC) metastasis. We investigated the cellular source for secreted AGR2 in the TME and underlying mechanisms mediating secreted AGR2's effects.OBJECTIVEReciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can be secreted to extracellular compartments and contribute to colorectal cancer (CRC) metastasis. We investigated the cellular source for secreted AGR2 in the TME and underlying mechanisms mediating secreted AGR2's effects.Tissue microarray, tumour tissues, blood samples and tumour-associated neutrophils (TANs) from patients with CRC were isolated for phenotypical and functional analyses. The role of TAN-secreted AGR2 was determined in neutrophil-specific Agr2 knockout (Agr2f/f;Mrp-Cre) mice. The biological roles and mechanisms of secreted AGR2 in CRC metastasis were determined in vitro and in vivo.DESIGNTissue microarray, tumour tissues, blood samples and tumour-associated neutrophils (TANs) from patients with CRC were isolated for phenotypical and functional analyses. The role of TAN-secreted AGR2 was determined in neutrophil-specific Agr2 knockout (Agr2f/f;Mrp-Cre) mice. The biological roles and mechanisms of secreted AGR2 in CRC metastasis were determined in vitro and in vivo.TANs were a predominant cell type for secreting AGR2 in the TME of CRC. TANs-secreted AGR2 promoted CRC cells' migration. Neutrophils-specific ablation of Agr2 in mice ameliorated CRC liver metastases. The heavy chain of CD98 (CD98hc) served as the functional receptor for secreted AGR2. Mechanistically, secreted AGR2 increased xCT activity in a CD98hc-dependent manner, subsequently activating Ras homologue family member A/Rho-associated protein kinase 2 cascade. CRC cells actively recruited TANs through the C-X-C motif chemokine 2. Moreover, CRC-derived transforming growth factor beta 1 (TGF-β1) educated peripheral blood neutrophils to become AGR2+ TANs that secrete AGR2. Abundant infiltration of AGR2+ TANs and high expression of TGF-β1 and CD98hc-xCT were correlated with poor prognosis of patients with CRC.RESULTSTANs were a predominant cell type for secreting AGR2 in the TME of CRC. TANs-secreted AGR2 promoted CRC cells' migration. Neutrophils-specific ablation of Agr2 in mice ameliorated CRC liver metastases. The heavy chain of CD98 (CD98hc) served as the functional receptor for secreted AGR2. Mechanistically, secreted AGR2 increased xCT activity in a CD98hc-dependent manner, subsequently activating Ras homologue family member A/Rho-associated protein kinase 2 cascade. CRC cells actively recruited TANs through the C-X-C motif chemokine 2. Moreover, CRC-derived transforming growth factor beta 1 (TGF-β1) educated peripheral blood neutrophils to become AGR2+ TANs that secrete AGR2. Abundant infiltration of AGR2+ TANs and high expression of TGF-β1 and CD98hc-xCT were correlated with poor prognosis of patients with CRC.Our study unveils a novel crosstalk between TANs and CRC cells involving the secreted AGR2-CD98hc-xCT axis that promotes metastasis and impacts the outcomes of patients with CRC.CONCLUSIONSOur study unveils a novel crosstalk between TANs and CRC cells involving the secreted AGR2-CD98hc-xCT axis that promotes metastasis and impacts the outcomes of patients with CRC. Reciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can be secreted to extracellular compartments and contribute to colorectal cancer (CRC) metastasis. We investigated the cellular source for secreted AGR2 in the TME and underlying mechanisms mediating secreted AGR2's effects. Tissue microarray, tumour tissues, blood samples and tumour-associated neutrophils (TANs) from patients with CRC were isolated for phenotypical and functional analyses. The role of TAN-secreted AGR2 was determined in neutrophil-specific Agr2 knockout ( ) mice. The biological roles and mechanisms of secreted AGR2 in CRC metastasis were determined in vitro and in vivo. TANs were a predominant cell type for secreting AGR2 in the TME of CRC. TANs-secreted AGR2 promoted CRC cells' migration. Neutrophils-specific ablation of Agr2 in mice ameliorated CRC liver metastases. The heavy chain of CD98 (CD98hc) served as the functional receptor for secreted AGR2. Mechanistically, secreted AGR2 increased xCT activity in a CD98hc-dependent manner, subsequently activating Ras homologue family member A/Rho-associated protein kinase 2 cascade. CRC cells actively recruited TANs through the C-X-C motif chemokine 2. Moreover, CRC-derived transforming growth factor beta 1 (TGF-β1) educated peripheral blood neutrophils to become AGR2 TANs that secrete AGR2. Abundant infiltration of AGR2 TANs and high expression of TGF-β1 and CD98hc-xCT were correlated with poor prognosis of patients with CRC. Our study unveils a novel crosstalk between TANs and CRC cells involving the secreted AGR2-CD98hc-xCT axis that promotes metastasis and impacts the outcomes of patients with CRC. |
Author | Tian, Shaobo Hu, Jia Yuan, Ye Wang, Zheng Liu, Zhibo Deng, Yan Wang, Lin Wang, Guobin Ding, Xueliang Fu, Daan Chu, Yanan |
Author_xml | – sequence: 1 givenname: Shaobo surname: Tian fullname: Tian, Shaobo organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Yanan surname: Chu fullname: Chu, Yanan organization: Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Jia surname: Hu fullname: Hu, Jia organization: Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Xueliang surname: Ding fullname: Ding, Xueliang organization: Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Zhibo surname: Liu fullname: Liu, Zhibo organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 6 givenname: Daan surname: Fu fullname: Fu, Daan organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 7 givenname: Ye surname: Yuan fullname: Yuan, Ye organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 8 givenname: Yan surname: Deng fullname: Deng, Yan organization: Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 9 givenname: Guobin surname: Wang fullname: Wang, Guobin email: wgb@hust.edu.cn organization: Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 10 givenname: Lin surname: Wang fullname: Wang, Lin email: wgb@hust.edu.cn organization: Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 11 givenname: Zheng orcidid: 0000-0002-9330-0728 surname: Wang fullname: Wang, Zheng email: wgb@hust.edu.cn organization: Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35086885$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1qFjEUhoNU7NfqDbiQgBs3U_Mzk59l-dQqFAT5XIdMcsbmY2YyJhnRnffgHXolpkyL0EUhEA48z-HlvGfoZI4zIPSSkgtKuXj7bS3HeWwYYbThrKNcPkE72gpVJ6VO0I4QKptOtvoUneV8JIQopekzdMo7ooRS3Q4th3WKa2psztEFW8DjGdaS4nITxowzuAQF8OXVF4ZLxEuKU6yzi2NM4IodsbOzg4QnKDbXFzL-ESwOJeMKwFJiwvt3Wt24v7___NwfnqOngx0zvLj7z9HXD-8P-4_N9eerT_vL66bnkpRGy77XQD0hWpFe9kCk9YMSQgrtVSc0KC86CmygxIMjnhKleU9bP3guiOfn6M22t0b-vkIuZgrZwTjaGeKaDROMK80koxV9_QA91pPMNZ1hkvOWtlqQSr26o9Z-Am-WFCabfpn7W1ZAbYBLMecEg3Gh2BLiXJINo6HE3NZmttrMbW1mq62q7IF6v_1R6WKT-un4P_Ejwj_a16xv |
CitedBy_id | crossref_primary_10_3389_fcell_2022_938289 crossref_primary_10_1016_j_ajpath_2024_01_011 crossref_primary_10_1016_j_biopha_2023_116040 crossref_primary_10_1016_j_envres_2023_115721 crossref_primary_10_3389_fcell_2024_1413882 crossref_primary_10_1007_s10555_023_10107_0 crossref_primary_10_1016_j_bbamcr_2023_119493 crossref_primary_10_1186_s12876_023_02722_6 crossref_primary_10_3389_fimmu_2025_1478092 crossref_primary_10_1002_mog2_70012 crossref_primary_10_3389_fimmu_2025_1538635 crossref_primary_10_1186_s12943_025_02249_2 crossref_primary_10_18632_aging_204813 crossref_primary_10_1016_j_nantod_2023_102112 crossref_primary_10_1371_journal_pgen_1011176 crossref_primary_10_1371_journal_pone_0311212 crossref_primary_10_1186_s13046_023_02627_y crossref_primary_10_1186_s13046_023_02784_0 crossref_primary_10_3390_cancers14194755 crossref_primary_10_3390_cells13040342 crossref_primary_10_3389_fimmu_2024_1332279 crossref_primary_10_1038_s41392_024_01885_2 crossref_primary_10_3892_ijo_2025_5734 crossref_primary_10_1016_j_bbcan_2024_189231 crossref_primary_10_1016_j_redox_2025_103581 crossref_primary_10_1186_s11658_024_00601_w crossref_primary_10_1016_j_celrep_2024_115226 crossref_primary_10_3389_fonc_2022_975981 crossref_primary_10_3390_cancers15245795 crossref_primary_10_1186_s12920_023_01592_x crossref_primary_10_1038_s41392_024_01955_5 crossref_primary_10_1007_s12094_023_03100_0 crossref_primary_10_1021_acsnano_4c16894 crossref_primary_10_1016_j_lfs_2023_121576 crossref_primary_10_1007_s00384_024_04672_1 crossref_primary_10_3389_fimmu_2024_1407449 crossref_primary_10_1186_s12943_024_02183_9 crossref_primary_10_3389_fimmu_2022_927233 crossref_primary_10_1016_j_intimp_2024_111771 crossref_primary_10_1002_cbf_3969 crossref_primary_10_1186_s12943_024_02182_w crossref_primary_10_1186_s13046_023_02729_7 crossref_primary_10_3390_biom14070743 crossref_primary_10_3390_cells13191666 crossref_primary_10_1016_j_canlet_2024_217288 crossref_primary_10_1038_s42003_025_07674_z crossref_primary_10_18632_aging_205448 crossref_primary_10_1016_j_cytogfr_2024_10_007 crossref_primary_10_1002_mnfr_202400750 crossref_primary_10_1186_s12935_022_02814_5 crossref_primary_10_1038_s41392_023_01332_8 crossref_primary_10_1186_s12943_023_01843_6 crossref_primary_10_1186_s13045_024_01634_6 crossref_primary_10_1016_j_ajpath_2025_01_004 crossref_primary_10_1038_s41575_024_00934_z crossref_primary_10_1016_j_cyto_2024_156675 crossref_primary_10_1016_j_canlet_2022_215925 crossref_primary_10_1038_s41598_024_73168_3 crossref_primary_10_1038_s41419_024_06806_3 crossref_primary_10_1158_0008_5472_CAN_23_0193 crossref_primary_10_3389_fonc_2023_1251100 crossref_primary_10_1016_j_bbrc_2025_151491 crossref_primary_10_1016_j_critrevonc_2024_104543 crossref_primary_10_1016_j_ejpb_2024_114510 crossref_primary_10_20517_2394_4722_2023_177 crossref_primary_10_1002_mco2_70119 crossref_primary_10_3389_fimmu_2023_1135086 crossref_primary_10_1186_s13578_023_00977_w crossref_primary_10_1007_s10549_024_07401_y crossref_primary_10_1016_j_cca_2024_117773 crossref_primary_10_1002_mc_23523 crossref_primary_10_3892_ol_2024_14326 |
Cites_doi | 10.1158/1078-0432.CCR-18-2544 10.1016/j.cellsig.2018.11.004 10.1038/bjc.2011.100 10.1007/s004240100537 10.1016/j.canlet.2010.12.023 10.1136/gutjnl-2016-313075 10.1038/nature17038 10.1016/j.cell.2016.04.009 10.1038/onc.2017.132 10.1016/j.ceb.2015.06.004 10.1158/0008-5472.CAN-08-1921 10.1016/j.yexcr.2018.02.004 10.1038/s41590-020-0783-5 10.1038/s41571-019-0222-4 10.1073/pnas.0712185105 10.7554/eLife.13887 10.1158/1535-7163.MCT-14-0470 10.1038/s41467-018-07505-2 10.1053/j.gastro.2016.02.040 10.1053/j.gastro.2013.07.033 10.1038/s41568-020-00300-6 10.1016/j.canlet.2016.04.003 10.1038/s41586-019-1118-2 10.1016/j.cell.2011.02.013 10.1016/j.ccell.2016.06.001 10.1007/s00432-009-0634-0 10.1002/hep.30630 10.1038/s41568-018-0006-7 10.1016/j.jhep.2010.08.041 10.1038/nature14344 10.1074/jbc.M011239200 10.1158/0008-5472.CAN-18-3855 10.1083/jcb.201804161 10.1172/JCI61067 10.1016/j.molcel.2017.05.030 10.1038/s41568-020-0281-y 10.1016/j.ccr.2009.06.017 10.1080/15548627.2019.1639302 10.1016/j.ymthe.2020.08.021 10.1158/2159-8290.CD-19-0338 10.1126/scitranslmed.aad3740 10.1158/1078-0432.CCR-16-0520 10.1016/j.ccr.2013.08.012 10.1111/febs.14155 10.1172/JCI124049 10.1038/s41392-020-0134-x 10.1016/j.molcel.2020.09.006 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 88I 8AF 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI BTHHO CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1136/gutjnl-2021-325137 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection BMJ Journals ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition BMJ Journals ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1468-3288 |
EndPage | 2501 |
ExternalDocumentID | 35086885 10_1136_gutjnl_2021_325137 gutjnl |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Frontier grantid: 2015TS153 – fundername: China Postdoctoral Science Foundation grantid: 2019M652654 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: Natural Science Foundation grantid: 31701202; 81572866; 81773104; 81974382 – fundername: Human Diseases Program of Tongji Medical College of HUST, and the Academic Medical Doctor Supporting Program of Tongji Medical College of HUST grantid: N/A |
GroupedDBID | --- .55 .GJ .VT 08G 0R~ 18M 29I 2WC 354 39C 3O- 4.4 40O 53G 5GY 5VS 7X7 7~S 88E 88I 8AF 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAUVZ AAWJN AAYEP ABAAH ABKDF ABMQD ABOCM ABTFR ABUWG ABVAJ ACGFO ACGFS ACGOD ACGTL ACHTP ACMFJ ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADFRT ADUGQ ADZCM AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AI. AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZQEC BAWUL BBNVY BENPR BHPHI BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C1A C45 CAG CCPQU COF CS3 CXRWF DIK DU5 DWQXO E3Z EBS EJD F5P FD8 FEDTE FYUFA GNUQQ GX1 H13 HAJ HCIFZ HMCUK HVGLF HYE HZ~ IAO IEA IH2 IHR INH INR IOF ITC J5H KQ8 L7B LK8 M1P M2P M7P N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UKHRP UYXKK V24 VH1 VM9 VVN W8F WH7 WOQ X7M YFH YOC YQY ZGI ZXP ZY1 AAYXX ACQHZ ADGHP AERUA CITATION PHGZM NPM RHF 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-b370t-97bb9e1d00980b7be07adf866769d8569e8d651e2f10dec0d10893b14dfd360d3 |
IEDL.DBID | 7X7 |
ISSN | 0017-5749 1468-3288 |
IngestDate | Fri Jul 11 00:38:07 EDT 2025 Fri Jul 25 11:55:35 EDT 2025 Wed Feb 19 02:27:00 EST 2025 Thu Apr 24 23:00:42 EDT 2025 Tue Jul 01 02:49:14 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | liver metastases colorectal cancer |
Language | English |
License | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b370t-97bb9e1d00980b7be07adf866769d8569e8d651e2f10dec0d10893b14dfd360d3 |
Notes | Original research ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9330-0728 |
PMID | 35086885 |
PQID | 2733414960 |
PQPubID | 2041069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2623892721 proquest_journals_2733414960 pubmed_primary_35086885 crossref_citationtrail_10_1136_gutjnl_2021_325137 crossref_primary_10_1136_gutjnl_2021_325137 bmj_journals_10_1136_gutjnl_2021_325137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Gut |
PublicationTitleAbbrev | Gut |
PublicationTitleAlternate | Gut |
PublicationYear | 2022 |
Publisher | BMJ Publishing Group Ltd and British Society of Gastroenterology BMJ Publishing Group LTD |
Publisher_xml | – name: BMJ Publishing Group Ltd and British Society of Gastroenterology – name: BMJ Publishing Group LTD |
References | Brychtova, Vojtesek, Hrstka (R8) 2011; 304 Shojaei, Singh, Thompson (R41) 2008; 105 Massagué, Obenauf (R3) 2016; 529 Li, Lu, Shi (R5) 2020; 21 Bassi, Gasol, Manzoni (R21) 2001; 442 Le Gal, Ibrahim, Wiel (R24) 2015; 7 Bansal, Simon (R25) 2018; 217 Zhou, Yin, Hu (R6) 2019; 70 Lang, Green, Wang (R19) 2019; 9 Liu, Wang, Wang (R37) 2010; 136 Fessart, Domblides, Avril (R10) 2016; 5 Hanahan, Weinberg (R29) 2011; 144 Yamamoto, Kawada, Itatani (R43) 2017; 23 Jamieson, Clarke, Steele (R27) 2012; 122 Itatani, Kawada, Fujishita (R42) 2013; 145 Maman, Witz (R7) 2018; 18 Li, Zhu, Chen (R12) 2016; 377 Singhal, Bhojnagarwala, O'Brien (R44) 2016; 30 Klein (R1) 2020; 20 Wang, Kryczek, Dostál (R47) 2016; 165 Guo, Zhu, Yu (R9) 2017; 36 Veglia, Tyurin, Blasi (R38) 2019; 569 Clark, Vignjevic (R4) 2015; 36 Tian, Hu, Tao (R11) 2018; 364 Zhu, Mangukiya, Mashausi (R16) 2017; 284 Daher, Parks, Durivault (R20) 2019; 79 Jiang, Kon, Li (R46) 2015; 520 Liu, Xia, Huang (R22) 2020; 28 Digomann, Linge, Dubrovska (R23) 2019; 15 Fares, Fares, Khachfe (R2) 2020; 5 Shibue, Brooks, Weinberg (R13) 2013; 24 Rodriguez, Ernstoff, Hernandez (R39) 2009; 69 Wang, Chen, Yang (R30) 2019; 25 Kuang, Zhao, Wu (R40) 2011; 54 Zhou, Zhou, Hu (R31) 2016; 150 Gu, Albuquerque, Braas (R17) 2017; 67 Fenczik, Zent, Dellos (R15) 2001; 276 Fridlender, Sun, Kim (R28) 2009; 16 Wang, Zou (R18) 2020; 80 Rajarathnam, Schnoor, Richardson (R26) 2019; 54 Wang, Zhao, Peng (R32) 2017; 66 Rice, Davies, Subleski (R36) 2018; 9 Chua, Charles, Baracos (R33) 2011; 104 Shaul, Fridlender (R34) 2019; 16 Arumugam, Deng, Bover (R14) 2015; 14 Jaillon, Ponzetta, Di Mitri (R35) 2020; 20 Hu, Li, Lv (R45) 2020; 130 2023051121150724000_71.12.2489.17 2023051121150724000_71.12.2489.39 2023051121150724000_71.12.2489.16 2023051121150724000_71.12.2489.38 2023051121150724000_71.12.2489.19 2023051121150724000_71.12.2489.18 2023051121150724000_71.12.2489.1 2023051121150724000_71.12.2489.31 2023051121150724000_71.12.2489.30 2023051121150724000_71.12.2489.11 2023051121150724000_71.12.2489.33 2023051121150724000_71.12.2489.10 2023051121150724000_71.12.2489.32 2023051121150724000_71.12.2489.13 2023051121150724000_71.12.2489.35 2023051121150724000_71.12.2489.12 2023051121150724000_71.12.2489.34 2023051121150724000_71.12.2489.15 2023051121150724000_71.12.2489.37 2023051121150724000_71.12.2489.14 2023051121150724000_71.12.2489.36 2023051121150724000_71.12.2489.28 2023051121150724000_71.12.2489.27 2023051121150724000_71.12.2489.29 2023051121150724000_71.12.2489.20 2023051121150724000_71.12.2489.42 2023051121150724000_71.12.2489.41 2023051121150724000_71.12.2489.22 2023051121150724000_71.12.2489.44 Zhou (2023051121150724000_71.12.2489.6) 2019; 70 2023051121150724000_71.12.2489.21 2023051121150724000_71.12.2489.43 2023051121150724000_71.12.2489.24 2023051121150724000_71.12.2489.46 2023051121150724000_71.12.2489.23 2023051121150724000_71.12.2489.45 2023051121150724000_71.12.2489.26 2023051121150724000_71.12.2489.25 2023051121150724000_71.12.2489.47 2023051121150724000_71.12.2489.40 2023051121150724000_71.12.2489.5 2023051121150724000_71.12.2489.4 2023051121150724000_71.12.2489.3 Fares (2023051121150724000_71.12.2489.2) 2020; 5 2023051121150724000_71.12.2489.9 2023051121150724000_71.12.2489.8 2023051121150724000_71.12.2489.7 |
References_xml | – volume: 25 start-page: 1957 year: 2019 ident: R30 article-title: Tumor-Contacted neutrophils promote metastasis by a CD90-TIMP-1 Juxtacrine-Paracrine loop publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-2544 – volume: 54 start-page: 69 year: 2019 ident: R26 article-title: How do chemokines navigate neutrophils to the target site: dissecting the structural mechanisms and signaling pathways publication-title: Cell Signal doi: 10.1016/j.cellsig.2018.11.004 – volume: 104 start-page: 1288 year: 2011 ident: R33 article-title: Neutrophil/Lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer publication-title: Br J Cancer doi: 10.1038/bjc.2011.100 – volume: 442 start-page: 286 year: 2001 ident: R21 article-title: Identification and characterisation of human xCT that Co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc- publication-title: Pflugers Arch doi: 10.1007/s004240100537 – volume: 304 start-page: 1 year: 2011 ident: R8 article-title: Anterior gradient 2: a novel player in tumor cell biology publication-title: Cancer Lett doi: 10.1016/j.canlet.2010.12.023 – volume: 66 start-page: 1900 year: 2017 ident: R32 article-title: Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway publication-title: Gut doi: 10.1136/gutjnl-2016-313075 – volume: 529 start-page: 298 year: 2016 ident: R3 article-title: Metastatic colonization by circulating tumour cells publication-title: Nature doi: 10.1038/nature17038 – volume: 165 start-page: 1092 year: 2016 ident: R47 article-title: Effector T cells abrogate Stroma-Mediated chemoresistance in ovarian cancer publication-title: Cell doi: 10.1016/j.cell.2016.04.009 – volume: 36 start-page: 5098 year: 2017 ident: R9 article-title: Tumor-secreted anterior gradient-2 binds to VEGF and FGF2 and enhances their activities by promoting their homodimerization publication-title: Oncogene doi: 10.1038/onc.2017.132 – volume: 36 start-page: 13 year: 2015 ident: R4 article-title: Modes of cancer cell invasion and the role of the microenvironment publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2015.06.004 – volume: 69 start-page: 1553 year: 2009 ident: R39 article-title: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-1921 – volume: 364 start-page: 198 year: 2018 ident: R11 article-title: Secreted AGR2 promotes invasion of colorectal cancer cells via Wnt11-mediated non-canonical Wnt signaling publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2018.02.004 – volume: 21 start-page: 1444 year: 2020 ident: R5 article-title: Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis publication-title: Nat Immunol doi: 10.1038/s41590-020-0783-5 – volume: 16 start-page: 601 year: 2019 ident: R34 article-title: Tumour-Associated neutrophils in patients with cancer publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-019-0222-4 – volume: 105 start-page: 2640 year: 2008 ident: R41 article-title: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0712185105 – volume: 5 year: 2016 ident: R10 article-title: Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties publication-title: Elife doi: 10.7554/eLife.13887 – volume: 14 start-page: 941 year: 2015 ident: R14 article-title: New blocking antibodies against novel AGR2-C4.4A pathway reduce growth and metastasis of pancreatic tumors and increase survival in mice publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-14-0470 – volume: 9 year: 2018 ident: R36 article-title: Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression publication-title: Nat Commun doi: 10.1038/s41467-018-07505-2 – volume: 150 start-page: 1646 year: 2016 ident: R31 article-title: Tumor-Associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.02.040 – volume: 145 start-page: 1064 year: 2013 ident: R42 article-title: Loss of Smad4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.07.033 – volume: 20 start-page: 681 year: 2020 ident: R1 article-title: Cancer progression and the invisible phase of metastatic colonization publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-00300-6 – volume: 377 start-page: 32 year: 2016 ident: R12 article-title: Binding of anterior gradient 2 and estrogen receptor-α: dual critical roles in enhancing fulvestrant resistance and IGF-1-induced tumorigenesis of breast cancer publication-title: Cancer Lett doi: 10.1016/j.canlet.2016.04.003 – volume: 569 start-page: 73 year: 2019 ident: R38 article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer publication-title: Nature doi: 10.1038/s41586-019-1118-2 – volume: 144 start-page: 646 year: 2011 ident: R29 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 30 start-page: 120 year: 2016 ident: R44 article-title: Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.001 – volume: 136 start-page: 35 year: 2010 ident: R37 article-title: Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14⁻/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-009-0634-0 – volume: 70 start-page: 1214 year: 2019 ident: R6 article-title: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression publication-title: Hepatology doi: 10.1002/hep.30630 – volume: 18 start-page: 359 year: 2018 ident: R7 article-title: A history of exploring cancer in context publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0006-7 – volume: 54 start-page: 948 year: 2011 ident: R40 article-title: Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma publication-title: J Hepatol doi: 10.1016/j.jhep.2010.08.041 – volume: 520 start-page: 57 year: 2015 ident: R46 article-title: Ferroptosis as a p53-mediated activity during tumour suppression publication-title: Nature doi: 10.1038/nature14344 – volume: 276 start-page: 8746 year: 2001 ident: R15 article-title: Distinct domains of CD98hc regulate integrins and amino acid transport publication-title: J Biol Chem doi: 10.1074/jbc.M011239200 – volume: 79 start-page: 3877 year: 2019 ident: R20 article-title: Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-3855 – volume: 217 start-page: 2291 year: 2018 ident: R25 article-title: Glutathione metabolism in cancer progression and treatment resistance publication-title: J Cell Biol doi: 10.1083/jcb.201804161 – volume: 122 start-page: 3127 year: 2012 ident: R27 article-title: Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis publication-title: J Clin Invest doi: 10.1172/JCI61067 – volume: 67 start-page: 128 year: 2017 ident: R17 article-title: Mtorc2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT publication-title: Mol Cell doi: 10.1016/j.molcel.2017.05.030 – volume: 20 start-page: 485 year: 2020 ident: R35 article-title: Neutrophil diversity and plasticity in tumour progression and therapy publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-0281-y – volume: 16 start-page: 183 year: 2009 ident: R28 article-title: Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.06.017 – volume: 15 start-page: 1850 year: 2019 ident: R23 article-title: SLC3A2/CD98hc, autophagy and tumor radioresistance: a link confirmed publication-title: Autophagy doi: 10.1080/15548627.2019.1639302 – volume: 28 start-page: 2358 year: 2020 ident: R22 article-title: xCT: a critical molecule that links cancer metabolism to redox signaling publication-title: Mol Ther doi: 10.1016/j.ymthe.2020.08.021 – volume: 9 start-page: 1673 year: 2019 ident: R19 article-title: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of Slc7a11 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0338 – volume: 7 year: 2015 ident: R24 article-title: Antioxidants can increase melanoma metastasis in mice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aad3740 – volume: 23 start-page: 833 year: 2017 ident: R43 article-title: Loss of Smad4 promotes lung metastasis of colorectal cancer by accumulation of CCR1+ tumor-associated neutrophils through CCL15-CCR1 axis publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-0520 – volume: 24 start-page: 481 year: 2013 ident: R13 article-title: An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.08.012 – volume: 284 start-page: 2856 year: 2017 ident: R16 article-title: Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain publication-title: Febs J doi: 10.1111/febs.14155 – volume: 130 start-page: 1752 year: 2020 ident: R45 article-title: Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma publication-title: J Clin Invest doi: 10.1172/JCI124049 – volume: 5 start-page: 28 year: 2020 ident: R2 article-title: Molecular principles of metastasis: a hallmark of cancer revisited publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-0134-x – volume: 80 start-page: 384 year: 2020 ident: R18 article-title: Amino acids and their transporters in T cell immunity and cancer therapy publication-title: Mol Cell doi: 10.1016/j.molcel.2020.09.006 – ident: 2023051121150724000_71.12.2489.3 doi: 10.1038/nature17038 – ident: 2023051121150724000_71.12.2489.12 doi: 10.1016/j.canlet.2016.04.003 – ident: 2023051121150724000_71.12.2489.45 doi: 10.1172/JCI124049 – ident: 2023051121150724000_71.12.2489.15 doi: 10.1074/jbc.M011239200 – ident: 2023051121150724000_71.12.2489.16 doi: 10.1111/febs.14155 – ident: 2023051121150724000_71.12.2489.33 doi: 10.1038/bjc.2011.100 – ident: 2023051121150724000_71.12.2489.32 doi: 10.1136/gutjnl-2016-313075 – ident: 2023051121150724000_71.12.2489.41 doi: 10.1073/pnas.0712185105 – ident: 2023051121150724000_71.12.2489.17 doi: 10.1016/j.molcel.2017.05.030 – ident: 2023051121150724000_71.12.2489.23 doi: 10.1080/15548627.2019.1639302 – ident: 2023051121150724000_71.12.2489.38 doi: 10.1038/s41586-019-1118-2 – ident: 2023051121150724000_71.12.2489.4 doi: 10.1016/j.ceb.2015.06.004 – ident: 2023051121150724000_71.12.2489.8 doi: 10.1016/j.canlet.2010.12.023 – ident: 2023051121150724000_71.12.2489.14 doi: 10.1158/1535-7163.MCT-14-0470 – ident: 2023051121150724000_71.12.2489.9 doi: 10.1038/onc.2017.132 – ident: 2023051121150724000_71.12.2489.20 doi: 10.1158/0008-5472.CAN-18-3855 – ident: 2023051121150724000_71.12.2489.27 doi: 10.1172/JCI61067 – ident: 2023051121150724000_71.12.2489.10 doi: 10.7554/eLife.13887 – ident: 2023051121150724000_71.12.2489.42 doi: 10.1053/j.gastro.2013.07.033 – ident: 2023051121150724000_71.12.2489.46 doi: 10.1038/nature14344 – ident: 2023051121150724000_71.12.2489.7 doi: 10.1038/s41568-018-0006-7 – volume: 70 start-page: 1214 year: 2019 ident: 2023051121150724000_71.12.2489.6 article-title: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression publication-title: Hepatology doi: 10.1002/hep.30630 – ident: 2023051121150724000_71.12.2489.35 doi: 10.1038/s41568-020-0281-y – ident: 2023051121150724000_71.12.2489.19 doi: 10.1158/2159-8290.CD-19-0338 – ident: 2023051121150724000_71.12.2489.34 doi: 10.1038/s41571-019-0222-4 – ident: 2023051121150724000_71.12.2489.21 doi: 10.1007/s004240100537 – ident: 2023051121150724000_71.12.2489.40 doi: 10.1016/j.jhep.2010.08.041 – ident: 2023051121150724000_71.12.2489.1 doi: 10.1038/s41568-020-00300-6 – ident: 2023051121150724000_71.12.2489.25 doi: 10.1083/jcb.201804161 – ident: 2023051121150724000_71.12.2489.26 doi: 10.1016/j.cellsig.2018.11.004 – ident: 2023051121150724000_71.12.2489.36 doi: 10.1038/s41467-018-07505-2 – ident: 2023051121150724000_71.12.2489.28 doi: 10.1016/j.ccr.2009.06.017 – ident: 2023051121150724000_71.12.2489.47 doi: 10.1016/j.cell.2016.04.009 – ident: 2023051121150724000_71.12.2489.39 doi: 10.1158/0008-5472.CAN-08-1921 – ident: 2023051121150724000_71.12.2489.18 doi: 10.1016/j.molcel.2020.09.006 – ident: 2023051121150724000_71.12.2489.30 doi: 10.1158/1078-0432.CCR-18-2544 – ident: 2023051121150724000_71.12.2489.29 doi: 10.1016/j.cell.2011.02.013 – ident: 2023051121150724000_71.12.2489.11 doi: 10.1016/j.yexcr.2018.02.004 – volume: 5 start-page: 28 year: 2020 ident: 2023051121150724000_71.12.2489.2 article-title: Molecular principles of metastasis: a hallmark of cancer revisited publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-0134-x – ident: 2023051121150724000_71.12.2489.22 doi: 10.1016/j.ymthe.2020.08.021 – ident: 2023051121150724000_71.12.2489.43 doi: 10.1158/1078-0432.CCR-16-0520 – ident: 2023051121150724000_71.12.2489.5 doi: 10.1038/s41590-020-0783-5 – ident: 2023051121150724000_71.12.2489.37 doi: 10.1007/s00432-009-0634-0 – ident: 2023051121150724000_71.12.2489.44 doi: 10.1016/j.ccell.2016.06.001 – ident: 2023051121150724000_71.12.2489.24 doi: 10.1126/scitranslmed.aad3740 – ident: 2023051121150724000_71.12.2489.13 doi: 10.1016/j.ccr.2013.08.012 – ident: 2023051121150724000_71.12.2489.31 doi: 10.1053/j.gastro.2016.02.040 |
SSID | ssj0008891 |
Score | 2.6301296 |
Snippet | ObjectiveReciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can... Reciprocal cellular crosstalk within the tumour microenvironment (TME) actively participates in tumour progression. The anterior gradient-2 (AGR2) can be... |
SourceID | proquest pubmed crossref bmj |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2489 |
SubjectTerms | Chemokines Colon Colorectal cancer Colorectal carcinoma Kinases Leukocyte migration Leukocytes (neutrophilic) liver metastases Metastases Metastasis Microenvironments Neutrophils Peripheral blood Protein kinase Transforming growth factor-b1 Tumor microenvironment Tumors |
Title | Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc–xCT |
URI | https://gut.bmj.com/content/71/12/2489.full https://www.ncbi.nlm.nih.gov/pubmed/35086885 https://www.proquest.com/docview/2733414960 https://www.proquest.com/docview/2623892721 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNAqWX0vS5SRpUKPRQRGxLtuRTSTdJQ6GhhA3szUjWuNmwsd21HHLsf-g_7C_pyI8NPXTP1sPMjGa-0YxmCHkvuQ1A5QWLRQRMhCCY0WnMCjRPIkWXwtguy_ciOb8SX-fxfLhwa4a0ylEndoraVrm_Iz9CM4sKVyDg_lT_ZL5rlI-uDi00tsiOL13mpVrO1w6Xz-AJR00cS5GOj2Z4cvSjdTflEmUkChlHG-_7oG-Z25t_zdN_MGdne86ekacDaKTHPZd3ySMon5PH34aw-AtSz1r04FdMD7QGS0to3aqqrxfLhjYeGjqgx18uI-oqWncpeEB9wWqv8HDp3DN_RW_BaYSLzaKhdwtNF66hOABqdMzp9CRV1_mfX7_vp7OX5OrsdDY9Z0MrBWa4DBxLpTEphNaXDw2MNBBIbQvVJbhaFScpKJvEIURFGFjIAxsGCGRMKGxheRJY_opsl1UJbwiVwHNZWN8vgwtjtNaJ5rni3HLJ0bpNyAekYzYchSbrvAyeZD3FM0_xrKf4hIQjrbN8qEjuG2MsN875uJ5T9_U4No4-GFn48EMPkjQh79af8VT5UIkuoWpxDKJClUboHk_I65716-04YtpEqXhv8-L75Enkn0p0qS8HZNutWniLAMaZw05KD8nO59OL75d_AQAv7zk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIgEXVF5loYCRQByQ1SRO4uSAqmpL2dLHAW2lvQU7ntCtdpOwcXjc-h_6P_hR_BLGeWzFgb31nLETzYxnvsmMZwh5Lbh2IEozFvgeMN8FnykZByxD9-THGFIo3VT5noajM__TJJiskd_9XRhbVtnbxMZQ6yK1_8h30M2iwfURcO-W35idGmWzq_0IjVYtjuDXDwzZqveH-yjfN5538GE8HLFuqgBTXDiGxUKpGFxtO2k6SihwhNRZ1NR66igIY4h0GLjgZa6jIXW066BPV66vM81DR3Pcd53cQsfr2GBPTJYBnq0YcnvLHwg_7i_p8HDna20u8hnqpOcyjpjCzl1fV_OLf93hfzBu4-sONsm9DqTSvVar7pM1yB-Q2yddGv4hKcf1HGmY7GQLmuZQm0VRnk9nFa0sFDVA9z5-9qgpaNmU_AG1DbKtgcWtU6tsCzoHIxGeVtOKfp9KOjUVRQIoTbGgw_04Ok__XF79HI4fkbMbYfJjspEXOTwhVABPRabtfA7uKyWlDCVPI841Fxy96YC8RT4m3dGrkiaq4WHScjyxHE9ajg-I2_M6SbsO6HYQx2zlmnfLNWXb_2Ml9XYvwusPutbcAXm1fIyn2KZmZA5FjTSIQqPYw3B8QLZa0S9fxxFDh1EUPF29-UtyZzQ-OU6OD0-PnpG7nr2m0ZTdbJMNs6jhOYIno140GkvJl5s-In8B4RoqaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbarVRxQeW9tICRQByQtUmcxM4BobLbpaWwqqqt1Ftqxw7dajcJG4fHjf_Av-Hn8EsY57EVB_bWc8ZONM9v4vEMQi8YVY7mSUoC39PEd7VPpIgCkkJ48iNIKaSqq3wn4eGZ_-E8ON9Av7u7MLassvOJtaNWeWL_kQ8gzILD9QFwD9K2LOJkNH5bfCF2gpQ9ae3GaTQqcqx_fIP0rXxzNAJZv_S88cF0eEjaCQNEUuYYEjEpI-0q21XTkUxqhwmV8rruU_EgjDRXYeBqL3UdpRNHuQ7Ed-n6KlU0dBSFfTfRFrNZUQ9tvTuYnJyu4gDv5vVBHAiYH3VXdmg4-FyZq2wOGuq5hALCsFPYN-Xi6t_g-B_EW0e-8Q663UJWvN_o2B20obO7aPtTeyh_DxXTagE0RLSS1gpnujLLvLiczUtcWmBqNN5_f-phk-OiLgDU2LbLtu4Wtk6s6i3xQhsBYLWclfjrTOCZKTEQ6MLkSzwcRfwy-fPz1_fh9D46uxE2P0C9LM_0I4SZpglLlZ3WQX0phRChoAmnVFFGIbb20SvgY9waYhnXOQ4N44bjseV43HC8j9yO13HS9kO3Yznma9e8Xq0pmm4ga6n3OhFef9C1HvfR89VjsGl7UCMynVdAA5iURx4k5330sBH96nUUEHXIefB4_ebP0DaYR_zxaHK8i2559s5GXYOzh3pmWekngKSMfNqqLEYXN20lfwHiyjAE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumour-associated+neutrophils+secrete+AGR2+to+promote+colorectal+cancer+metastasis+via+its+receptor+CD98hc-xCT&rft.jtitle=Gut&rft.au=Tian%2C+Shaobo&rft.au=Chu%2C+Yanan&rft.au=Hu%2C+Jia&rft.au=Ding%2C+Xueliang&rft.date=2022-12-01&rft.issn=1468-3288&rft.eissn=1468-3288&rft.volume=71&rft.issue=12&rft.spage=2489&rft_id=info:doi/10.1136%2Fgutjnl-2021-325137&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-5749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-5749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-5749&client=summon |