Very long chain fatty acid–inhibiting herbicides: Current uses, site of action, herbicide-resistant weeds, and future
The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of su...
Saved in:
Published in | Weed technology Vol. 38; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
20.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them. Nomenclature: Acetochlor; α-chloroacetamides; α-oxyacetamides; α-thioacetamides; azolyl-carboxamides; benzofurans; fenoxasulfone; isoxazolines; thiocarbamates; oxiranes; S-metolachlor; pyroxasulfone; Palmer amaranth, Amaranthus palmeri S. Watson; waterhemp, Amaranthus tuberculatus (Moq) J.D. Sauer; barley, Hordeum vulgare L.; corn, Zea mays L.; oat, Avena sativa L.; sorghum, Sorghum bicolor (L.) Moench; soybean, Glycine max L.; sugarcane, Saccharum officinarum L.; wheat, Triticum aestivum L. |
---|---|
AbstractList | The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and
S
-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (
FAE1
)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them. The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them. Nomenclature: Acetochlor; α-chloroacetamides; α-oxyacetamides; α-thioacetamides; azolyl-carboxamides; benzofurans; fenoxasulfone; isoxazolines; thiocarbamates; oxiranes; S-metolachlor; pyroxasulfone; Palmer amaranth, Amaranthus palmeri S. Watson; waterhemp, Amaranthus tuberculatus (Moq) J.D. Sauer; barley, Hordeum vulgare L.; corn, Zea mays L.; oat, Avena sativa L.; sorghum, Sorghum bicolor (L.) Moench; soybean, Glycine max L.; sugarcane, Saccharum officinarum L.; wheat, Triticum aestivum L. The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them. |
ArticleNumber | e1 |
Author | Singh, Rishabh Ganie, Zahoor A. Norsworthy, Jason K. Jhala, Amit J. Selby, Thomas P. Shergill, Lovreet Riechers, Dean E. Singh, Mandeep Jugulam, Mithila Werle, Rodrigo |
Author_xml | – sequence: 1 givenname: Amit J. orcidid: 0000-0001-8599-4996 surname: Jhala fullname: Jhala, Amit J. organization: Professor & Associate Department Head, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA – sequence: 2 givenname: Mandeep surname: Singh fullname: Singh, Mandeep organization: Graduate Research Assistant, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA – sequence: 3 givenname: Lovreet surname: Shergill fullname: Shergill, Lovreet organization: Assistant Professor, Southern Ag Research Center, Montana State University, Huntley, MT, USA – sequence: 4 givenname: Rishabh surname: Singh fullname: Singh, Rishabh organization: Graduate Research Assistant, Department of Agronomy, Kansas State University, Manhattan, KS, USA – sequence: 5 givenname: Mithila surname: Jugulam fullname: Jugulam, Mithila organization: Professor, Department of Agronomy, Kansas State University, Manhattan, KS, USA – sequence: 6 givenname: Dean E. orcidid: 0000-0002-6081-5629 surname: Riechers fullname: Riechers, Dean E. organization: Professor, Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, USA – sequence: 7 givenname: Zahoor A. surname: Ganie fullname: Ganie, Zahoor A. organization: Senior Global R & D Scientist, Stine Research Center, FMC, Newark, DE – sequence: 8 givenname: Thomas P. surname: Selby fullname: Selby, Thomas P. organization: FMC Fellow, Global Research and Development Chemistry, Stine Research Center, FMC, Newark, DE – sequence: 9 givenname: Rodrigo orcidid: 0000-0003-1132-461X surname: Werle fullname: Werle, Rodrigo organization: Associate Professor, Department of Agronomy, University of Wisconsin–Madison, Madison, WI, USA – sequence: 10 givenname: Jason K. surname: Norsworthy fullname: Norsworthy, Jason K. organization: Distinguished Professor and Elms Farming Chair of Weed Science, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA |
BookMark | eNp90c1q3DAQB3ARUugm7akvIMilpfFmJNmW3VtY-hEI9JKW3oRkj7IKjpRKMsve8g59wz5JZbYQCLQnweg30gz_E3Lsg0dC3jBYM2DyYod5zYGLdQ9HZMWaBiouazgmK-h6qEDIHy_JSUp3AKzlHFZk9x3jnk7B39Jhq52nVue8p3pw4-_HX85vnXHZldstRuNKFdMHupljRJ_pnDCd0-Qy0mBLT3bBnz_JKmJyKesid4hjodqP1M55jviKvLB6Svj673lKvn36eLP5Ul1__Xy1ubyujGibXDXQtGY03Grg1gBn1iDKVvZcSNPVEnsQpuNiqJux10Yy2419LXnd1APgAOKUvD28-xDDzxlTVvcuDThN2mOYkxIcQDStaFmhZ8_oXZijL9MpXv7jNdTdothBDTGkFNGqwWW9bJ6jdpNioJYoVIlCLVGofhni_bOeh-juddz_Q787aONCife_9g9W_5uF |
CitedBy_id | crossref_primary_10_1002_agg2_70078 crossref_primary_10_1017_wsc_2024_33 crossref_primary_10_3389_fagro_2024_1401865 crossref_primary_10_3390_agriculture14081378 crossref_primary_10_1002_agg2_70074 crossref_primary_10_1002_ps_8458 |
Cites_doi | 10.1584/jpestics.G10-81 10.1080/09670874.2010.495795 10.1584/jpestics.G10-97 10.1017/wsc.2020.54 10.1017/S004317450008019X 10.1584/jpestics.D13-014 10.1016/0031-9422(92)80251-9 10.1007/s11103-008-9339-z 10.1017/wet.2019.44 10.1016/S0261-2194(98)80011-2 10.1002/jhet.4162 10.1614/0890-037X(2003)017[0605:RCOHBS]2.0.CO;2 10.1105/tpc.11.5.825 10.1146/annurev.arplant.47.1.405 10.1016/B978-0-08-029222-9.50047-0 10.1016/j.plantsci.2013.12.005 10.2134/jeq1999.00472425002800060014x 10.1584/jpestics.D20-201 10.1002/(SICI)1096-9063(199707)50:3<221::AID-PS574>3.0.CO;2-T 10.1046/j.1432-1033.2002.03039.x 10.1515/znc-2004-7-818 10.1016/0048-3575(86)90074-X 10.1017/S0043174500046038 10.1021/es00006a039 10.30843/nzpp.1994.47.11033 10.1017/S0890037X00027482 10.2533/chimia.1997.297 10.1002/(SICI)1526-4998(200006)56:6<497::AID-PS169>3.0.CO;2-W 10.1017/S004317450003825X 10.1017/wet.2019.19 10.1017/S0890037X00029729 10.1002/ps.2780330404 10.1016/B978-0-12-823674-1.00008-0 10.1016/0048-3575(87)90027-7 10.1016/j.pestbp.2009.06.003 10.1002/ps.3516 10.1515/znc-1998-11-1211 10.1584/jpestics.J16-05 10.1016/j.pestbp.2005.04.002 10.1002/9783527699261.ch6 10.1515/znc-2002-1-212 10.1002/ps.5425 10.1584/jpestics.D18-057 10.1017/wsc.2018.31 10.2134/jeq2003.0411 10.1016/S0031-9422(03)00516-8 10.1017/S0043174500058926 10.1002/ps.3746 10.3389/fpls.2020.00406 10.1046/j.1365-3180.1998.00115.x 10.1093/pcp/pcaa133 10.1111/j.1365-3180.2012.00948.x 10.1016/j.cropro.2014.12.016 10.1017/S0043174500080267 10.1073/pnas.0404600101 10.4141/P99-110 10.1584/jpestics.J16-06 10.1111/wbm.12086 10.5958/0974-8164.2019.00028.5 10.1017/wsc.2018.93 10.5772/61779 10.1614/WS-D-11-00110.1 10.1016/j.crvi.2010.01.014 10.1002/ps.5414 10.1093/jhered/93.1.48 10.1614/0043-1745(2000)048[0225:HREOAE]2.0.CO;2 10.1584/jpestics.28.324 10.1094/CM-2013-0032-RS 10.1021/jf9042166 10.1016/j.fcr.2010.11.019 10.1016/B978-0-12-374367-1.00082-3 10.3390/cells10061284 10.1007/s00438-015-1142-3 10.1016/j.phytochem.2011.12.023 10.1016/j.jpba.2017.08.011 10.1017/S0043174500094819 10.1584/jpestics.J19-04 10.1002/ps.4253 10.1093/pcp/pcab132 10.1002/ps.1215 10.1614/WT-03-020R1 10.1017/wsc.2022.4 10.1046/j.1365-313X.1997.12010121.x 10.1614/WS-D-15-00147.1 10.1017/wet.2019.72 10.1017/wsc.2022.37 10.3389/fpls.2020.609209 10.1016/j.plantsci.2013.05.008 10.1614/0043-1745(2002)050[0576:SOUATA]2.0.CO;2 10.1614/WT-D-09-00059.1 10.1016/j.pestbp.2018.03.017 10.4141/cjps-2014-422 10.1002/(SICI)1096-9063(199709)51:1<21::AID-PS591>3.0.CO;2-9 10.1614/WT-D-15-00061.1 10.3389/fpls.2021.652581 10.1002/ps.5868 10.1017/wsc.2019.13 |
ContentType | Journal Article |
Copyright | The Author(s), 2023. Published by Cambridge University Press on behalf of Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press on behalf of Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X2 7XB 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M0K M2O M7P MBDVC PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7S9 L.6 |
DOI | 10.1017/wet.2023.90 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Research Library Biological Science Database Research Library (Corporate) Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Research Library Research Library China ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1550-2740 |
EndPage | 16 |
ExternalDocumentID | 10_1017_wet_2023_90 10.1017/wet.2023.90 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -JH 09C 09E 0R~ 123 7X2 8FE 8FH 8G5 AAAZR AABES AABWE AAGFV AAHBH AAHKG AAKTX AAPSS AASVR AAUKB AAXTN ABJNI ABKMT ABPLY ABQTM ABROB ABTLG ABUWG ABVKB ABVZP ABXAU ABXHF ABZCX ACAJB ACDLN ACGFS ACPRK ACUIJ ACYZP ADBBV ADDNB ADHSS ADKIL ADVJH AEBAK AEEJZ AENEX AEPYG AEUYN AFAZZ AFKQG AFKRA AFLVW AFNWH AFRAH AFRIC AFZFC AGABE AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AJCYY AJPFC AKPMI ALMA_UNASSIGNED_HOLDINGS AQJOH ATCPS ATUCA AUXHV AZQEC BBLKV BBNVY BENPR BHPHI BLZWO BMAJL BPHCQ CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 DOHLZ DWQXO EBS ECGQY GNUQQ GUQSH HCIFZ HZ~ IH6 IOEEP IPYYG IS6 JBS JHPGK JLS JQKCU KCGVB KFECR LK8 LW7 M0K M2O M7P NIKVX NVHAQ O9- P2P PADUT PHGZT PQ0 PQQKQ PROAC RBO RCA ROL S6U SAAAG SJN T9M TN5 UT1 WFFJZ WH7 Y6R ZMEZD ZYDXJ ~02 ~EF ~KM 29R 2AX 2~F AAYXX ABBHK ABBZL ABGDZ ABXSQ ACHIC ADOVH ADOVT ADULT AEHGV AENCP AEUPB AFFIJ AGUYK AHXOZ AICQM AKMAY AKZCZ ANHSF AQVQM ARZZG AS~ AYIQA BCGOX BESQT BJBOZ CAG CBGCD CCUQV CFBFF CGQII CITATION COF DATOO DC7 EGQIC EJD GTFYD H13 HGD HTVGU IL9 IOO IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM JST KAFGG LHUNA NEJ NHB NZEOI OVD PHGZM Q5J SA0 TEORI YR5 ZDLDU ZJOSE 3V. 7XB 8FK GROUPED_DOAJ MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7S9 L.6 |
ID | FETCH-LOGICAL-b365t-5056bdb2fa02fb021fbee7679237b847e903b823c45d9ab71f8d9472454c0ec03 |
IEDL.DBID | BENPR |
ISSN | 0890-037X 1550-2740 |
IngestDate | Fri Jul 11 18:26:06 EDT 2025 Wed Aug 13 10:00:44 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Tue Jul 01 00:55:51 EDT 2025 Tue May 06 02:00:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b365t-5056bdb2fa02fb021fbee7679237b847e903b823c45d9ab71f8d9472454c0ec03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1132-461X 0000-0001-8599-4996 0000-0002-6081-5629 |
OpenAccessLink | http://dx.doi.org/10.1017/wet.2023.90 |
PQID | 2923240481 |
PQPubID | 506325 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3200356361 proquest_journals_2923240481 crossref_citationtrail_10_1017_wet_2023_90 crossref_primary_10_1017_wet_2023_90 bioone_primary_10_1017_wet_2023_90 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240220 |
PublicationDateYYYYMMDD | 2024-02-20 |
PublicationDate_xml | – month: 02 year: 2024 text: 20240220 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Lawrence |
PublicationTitle | Weed technology |
PublicationTitleAbbrev | Weed Technol |
PublicationYear | 2024 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Burnet (S0890037X23000908_ref14) 1994; 42 Tanetani (S0890037X23000908_ref107) 2013; 38 Kido (S0890037X23000908_ref63) 2016; 41 Hamm (S0890037X23000908_ref46) 1974; 22 S0890037X23000908_ref86 S0890037X23000908_ref85 Matthes (S0890037X23000908_ref74) 1998; 53c Trenkamp (S0890037X23000908_ref109) 2004; 101 Kern (S0890037X23000908_ref60) 1997; 51 Ma (S0890037X23000908_ref71) 2010; 58 Jhala (S0890037X23000908_ref54) 2015; 95 Weisshaar (S0890037X23000908_ref127) 1987; 28 Dimaano (S0890037X23000908_ref28) 2022; 70 S0890037X23000908_ref104 Busi (S0890037X23000908_ref20) 2013; 69 Capel (S0890037X23000908_ref22) 1995; 29 S0890037X23000908_ref93 Albuquerque (S0890037X23000908_ref2) 2018; 147 S0890037X23000908_ref92 Millar (S0890037X23000908_ref76) 1997; 12 S0890037X23000908_ref97 S0890037X23000908_ref96 Busi (S0890037X23000908_ref15) 2014; 70 Schmalfuβ (S0890037X23000908_ref91) 1998; 53c Rauch (S0890037X23000908_ref89) 2010; 24 S0890037X23000908_ref118 S0890037X23000908_ref119 S0890037X23000908_ref116 Tresch (S0890037X23000908_ref110) 2012; 76 S0890037X23000908_ref117 S0890037X23000908_ref114 S0890037X23000908_ref115 S0890037X23000908_ref112 S0890037X23000908_ref113 Fujinami (S0890037X23000908_ref38) 2019; 44 Gómez-Ramírez (S0890037X23000908_ref41) 2014 Brunton (S0890037X23000908_ref12) 2019; 67 Post-Beittenmiller (S0890037X23000908_ref84) 1996; 47 Strom (S0890037X23000908_ref99) 2021; 62 Busi (S0890037X23000908_ref18) 2018; 148 Fedtke (S0890037X23000908_ref35) 1991; 33 Kohler (S0890037X23000908_ref64) 2002; 50 Shaner (S0890037X23000908_ref94) 2006; 7 Kouame (S0890037X23000908_ref65) 2022; 70 S0890037X23000908_ref67 S0890037X23000908_ref66 Chauhan (S0890037X23000908_ref23) 2011; 121 Székács (S0890037X23000908_ref102) 2021 Lin (S0890037X23000908_ref69) 2021; 58 S0890037X23000908_ref125 Heydens (S0890037X23000908_ref51) 2010 S0890037X23000908_ref126 S0890037X23000908_ref124 Shaner (S0890037X23000908_ref95) 2014 S0890037X23000908_ref121 S0890037X23000908_ref122 S0890037X23000908_ref120 Eckermann (S0890037X23000908_ref32) 2003; 64 Huai (S0890037X23000908_ref52) 2020; 11 Götz (S0890037X23000908_ref42) 2004; 59 Mangin (S0890037X23000908_ref73) 2016; 97 Wilson (S0890037X23000908_ref128) 1984; 32 Brabham (S0890037X23000908_ref10) 2019; 33 Joubès (S0890037X23000908_ref55) 2008; 67 S0890037X23000908_ref77 O’Connell (S0890037X23000908_ref79) 1998; 17 Suzukawa (S0890037X23000908_ref101) 2021; 11 Guo (S0890037X23000908_ref44) 2016; 291 Couderchet (S0890037X23000908_ref27) 1997; 50 Liu (S0890037X23000908_ref70) 2016; 64 Tanetani (S0890037X23000908_ref105) 2011; 36 S0890037X23000908_ref130 Fischer (S0890037X23000908_ref36) 2000; 48 Böger (S0890037X23000908_ref9) 2000; 56 Yun (S0890037X23000908_ref129) 2005; 83 Batsale (S0890037X23000908_ref4) 2021; 10 Kaur (S0890037X23000908_ref58) 2019; 51 Nakatani (S0890037X23000908_ref78) 2016; 41 (S0890037X23000908_ref123) 1988 Pillai (S0890037X23000908_ref83) 1979; 27 S0890037X23000908_ref47 Evans (S0890037X23000908_ref34) 2019; 33 Fuerst (S0890037X23000908_ref37) 1987; 1 Clark (S0890037X23000908_ref25) 1999; 28 S0890037X23000908_ref39 Busi (S0890037X23000908_ref19) 2016; 72 Lamoureux (S0890037X23000908_ref68) 1986; 26 Beckie (S0890037X23000908_ref6) 2012; 60 Hackett (S0890037X23000908_ref45) 2005; 34 Rangani (S0890037X23000908_ref87) 2021; 12 Böger (S0890037X23000908_ref8) 2003; 28 S0890037X23000908_ref50 Strom (S0890037X23000908_ref100) 2020; 76 Busi (S0890037X23000908_ref16) 2014; 217 Ghanevati (S0890037X23000908_ref40) 2002; 269 Tanetani (S0890037X23000908_ref108) 2009; 95 Kern (S0890037X23000908_ref59) 1996; 44 Juliano (S0890037X23000908_ref56) 2010; 56 Hwang (S0890037X23000908_ref53) 2023; 71 Dücker (S0890037X23000908_ref31) 2019; 75 Strom (S0890037X23000908_ref98) 2019; 67 Bach (S0890037X23000908_ref3) 2010; 333 Rashid (S0890037X23000908_ref88) 1998; 38 Cahoon (S0890037X23000908_ref21) 2015; 29 Keshtkar (S0890037X23000908_ref62) 2015; 69 Chen (S0890037X23000908_ref24) 2016; 16 Haslam (S0890037X23000908_ref49) 2020; 61 Grey (S0890037X23000908_ref43) 2013; 12 Pike (S0890037X23000908_ref82) 1991; 3 Mallory-Smith (S0890037X23000908_ref72) 2017; 17 Brunton (S0890037X23000908_ref13) 2020; 34 Millar (S0890037X23000908_ref75) 1999; 11 Dücker (S0890037X23000908_ref30) 2019; 75 Tanetani (S0890037X23000908_ref106) 2011; 36 Busi (S0890037X23000908_ref17) 2012; 52 Kern (S0890037X23000908_ref61) 2002; 93 Takahashi (S0890037X23000908_ref103) 2002; 57 O’Donovan (S0890037X23000908_ref80) 1994; 42 Beckie (S0890037X23000908_ref5) 2000; 80 Parker (S0890037X23000908_ref81) 2005; 19 S0890037X23000908_ref33 Kasahara (S0890037X23000908_ref57) 2019; 44 Abulnaja (S0890037X23000908_ref1) 1992; 31 Riar (S0890037X23000908_ref90) 2011; 602 S0890037X23000908_ref26 Haslam (S0890037X23000908_ref48) 2013; 210 Brunton (S0890037X23000908_ref11) 2018; 66 Dücker (S0890037X23000908_ref29) 2020; 68 Umetsu (S0890037X23000908_ref111) 2020; 45 Blaser (S0890037X23000908_ref7) 1997; 51 |
References_xml | – ident: S0890037X23000908_ref113 – volume: 36 start-page: 221 year: 2011 ident: S0890037X23000908_ref106 article-title: Studies on the inhibition of plant very-long-chain fatty acid elongase by a novel herbicide, pyroxasulfone publication-title: J Pestic Sci doi: 10.1584/jpestics.G10-81 – volume: 56 start-page: 299 year: 2010 ident: S0890037X23000908_ref56 article-title: Multiple herbicide resistance in barnyardgrass (Echinochloa crus-galli) in direct-seeded rice in the Philippines publication-title: Int J Pest Manage doi: 10.1080/09670874.2010.495795 – volume: 36 start-page: 357 year: 2011 ident: S0890037X23000908_ref105 article-title: Action mechanism of a novel herbicide, fenoxasulfone publication-title: J Pestic Sci doi: 10.1584/jpestics.G10-97 – ident: S0890037X23000908_ref39 – volume: 68 start-page: 451 year: 2020 ident: S0890037X23000908_ref29 article-title: Flufenacet activity is affected by GST inhibitors in blackgrass (Alopecurus myosuroides) populations with reduced flufenacet sensitivity and higher expression levels of GSTs. publication-title: Weed Sci doi: 10.1017/wsc.2020.54 – volume: 42 start-page: 153 year: 1994 ident: S0890037X23000908_ref14 article-title: Chloroacetamide resistance in rigid ryegrass (Lolium rigidum). publication-title: Weed Sci doi: 10.1017/S004317450008019X – volume: 38 start-page: 152 year: 2013 ident: S0890037X23000908_ref107 article-title: Role of metabolism in the selectivity of a herbicide, pyroxasulfone, between wheat and rigid ryegrass seedlings publication-title: J Pestic Sci doi: 10.1584/jpestics.D13-014 – volume: 31 start-page: 1155 year: 1992 ident: S0890037X23000908_ref1 article-title: Inhibition of fatty acid elongation provides a basis for the action of the herbicide, ethofumesate, on surface wax formation publication-title: Phytochem doi: 10.1016/0031-9422(92)80251-9 – volume: 67 start-page: 547 year: 2008 ident: S0890037X23000908_ref55 article-title: The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling publication-title: Plant Mol Biol doi: 10.1007/s11103-008-9339-z – volume: 33 start-page: 720 year: 2019 ident: S0890037X23000908_ref10 article-title: Confirmation of S-metolachlor resistance in Palmer amaranth (Amaranthus palmeri) publication-title: Weed Technol doi: 10.1017/wet.2019.44 – ident: S0890037X23000908_ref122 – volume: 17 start-page: 207 year: 1998 ident: S0890037X23000908_ref79 article-title: Metolachlor, S-metolachlor and their role within sustainable weed-management publication-title: Crop Prot doi: 10.1016/S0261-2194(98)80011-2 – volume: 58 start-page: 226 year: 2021 ident: S0890037X23000908_ref69 article-title: Discovery of novel 3-{[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonyl]methyl}benzo[d]isoxazole analogs as promising very long chain fatty acids inhibitors publication-title: J Heterocyclic Chem doi: 10.1002/jhet.4162 – volume: 17 start-page: 605 year: 2017 ident: S0890037X23000908_ref72 article-title: Revised classification of herbicides by site of action for weed resistance management strategies publication-title: Weed Technol doi: 10.1614/0890-037X(2003)017[0605:RCOHBS]2.0.CO;2 – volume: 11 start-page: 825 year: 1999 ident: S0890037X23000908_ref75 article-title: CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme publication-title: Plant Cell doi: 10.1105/tpc.11.5.825 – volume: 47 start-page: 405 year: 1996 ident: S0890037X23000908_ref84 article-title: Biochemisty and molecular biology of wax production in plants publication-title: Annu Rev Plant Physiol doi: 10.1146/annurev.arplant.47.1.405 – ident: S0890037X23000908_ref77 doi: 10.1016/B978-0-08-029222-9.50047-0 – ident: S0890037X23000908_ref116 – volume: 217 start-page: 127 year: 2014 ident: S0890037X23000908_ref16 article-title: Inheritance of evolved resistance to a novel herbicide (pyroxasulfone) publication-title: Plant Sci doi: 10.1016/j.plantsci.2013.12.005 – volume: 28 start-page: 1787 year: 1999 ident: S0890037X23000908_ref25 article-title: Occurrence and transport of acetochlor in streams of the Mississippi River basin publication-title: J Environ Qual doi: 10.2134/jeq1999.00472425002800060014x – volume: 45 start-page: 54 year: 2020 ident: S0890037X23000908_ref111 article-title: Development of novel pesticides in the 21st century publication-title: J Pest Sci doi: 10.1584/jpestics.D20-201 – ident: S0890037X23000908_ref92 – volume: 50 start-page: 221 year: 1997 ident: S0890037X23000908_ref27 article-title: Biological activity of two stereoisomers of the N-thienyl chloroacetamide herbicide dimethenamid publication-title: Pestic Sci doi: 10.1002/(SICI)1096-9063(199707)50:3<221::AID-PS574>3.0.CO;2-T – volume: 269 start-page: 3531 year: 2002 ident: S0890037X23000908_ref40 article-title: Engineering and mechanistic studies of the Arabidopsis FAE1 β-ketoacyl-CoA synthase, FAE1 KCS. publication-title: Eur J Biochem doi: 10.1046/j.1432-1033.2002.03039.x – volume: 59 start-page: 549 year: 2004 ident: S0890037X23000908_ref42 article-title: The very-long-chain fatty acid synthesis is inhibited by chloroacetamides publication-title: Z Naturforsch doi: 10.1515/znc-2004-7-818 – volume-title: Thiocarbamate pesticides: a general introduction year: 1988 ident: S0890037X23000908_ref123 – volume: 26 start-page: 323 year: 1986 ident: S0890037X23000908_ref68 article-title: Tridiphane [2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane] an atrazine synergist: enzymatic conversion to a potent glutathione S-transferase inhibitor publication-title: Pestic Biochem Physiol doi: 10.1016/0048-3575(86)90074-X – volume: 27 start-page: 634 year: 1979 ident: S0890037X23000908_ref83 article-title: Effects of metolachlor on germination, growth, leucine uptake, and protein synthesis publication-title: Weed Sci doi: 10.1017/S0043174500046038 – volume: 29 start-page: 1702 year: 1995 ident: S0890037X23000908_ref22 article-title: Analysis and detection of the new corn herbicide acetochlor in river water and rain publication-title: Environ Sci Technol doi: 10.1021/es00006a039 – ident: S0890037X23000908_ref47 doi: 10.30843/nzpp.1994.47.11033 – volume: 3 start-page: 639 year: 1991 ident: S0890037X23000908_ref82 article-title: A case study of herbicide use publication-title: Weed Technol doi: 10.1017/S0890037X00027482 – volume: 51 start-page: 297 year: 1997 ident: S0890037X23000908_ref7 article-title: Enantioselective catalysis for agrochemicals: the case history of the DUAL MAGNUM® herbicide publication-title: Chimia doi: 10.2533/chimia.1997.297 – volume: 56 start-page: 497 year: 2000 ident: S0890037X23000908_ref9 article-title: Towards the primary target of chloroacetamides–new findings pave the way publication-title: Pest Manag Sci doi: 10.1002/(SICI)1526-4998(200006)56:6<497::AID-PS169>3.0.CO;2-W – ident: S0890037X23000908_ref119 – volume: 71 start-page: 6014 year: 2023 ident: S0890037X23000908_ref53 article-title: Exploratory analysis on herbicide metabolism and very-long-chain fatty acid production in metolachlor-resistant Palmer amaranth (Amaranthus palmeri S. Wats.) publication-title: J Agric Food Chem – volume: 22 start-page: 541 year: 1974 ident: S0890037X23000908_ref46 article-title: Discovery, development, and current status of the chloroacetamide herbicides publication-title: Weed Sci doi: 10.1017/S004317450003825X – volume: 33 start-page: 400 year: 2019 ident: S0890037X23000908_ref34 article-title: Characterization of a waterhemp (Amaranthus tuberculatus) population from Illinois resistant to herbicides from five site-of-action groups publication-title: Weed Technol doi: 10.1017/wet.2019.19 – volume: 1 start-page: 270 year: 1987 ident: S0890037X23000908_ref37 article-title: Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides publication-title: Weed Technol doi: 10.1017/S0890037X00029729 – ident: S0890037X23000908_ref33 – volume: 33 start-page: 421 year: 1991 ident: S0890037X23000908_ref35 article-title: Mode of action studies with mefenacet publication-title: Pestic Sci doi: 10.1002/ps.2780330404 – volume: 53c start-page: 995 year: 1998 ident: S0890037X23000908_ref91 article-title: Chloroacetamide mode of action. I: Inhibition of very-long-chain fatty acid synthesis in Scenedesmus acutus publication-title: Z Naturforsch – start-page: 41 volume-title: Herbicides year: 2021 ident: S0890037X23000908_ref102 doi: 10.1016/B978-0-12-823674-1.00008-0 – volume: 28 start-page: 286 year: 1987 ident: S0890037X23000908_ref127 article-title: Primary effects of chloroacetamides publication-title: Pestic Biochem Physiol doi: 10.1016/0048-3575(87)90027-7 – volume: 95 start-page: 47 year: 2009 ident: S0890037X23000908_ref108 article-title: Action mechanism of a novel herbicide, pyroxasulfone publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2009.06.003 – ident: S0890037X23000908_ref120 – volume: 69 start-page: 1379 year: 2013 ident: S0890037X23000908_ref20 article-title: Cross-resistance to prosulfocarb and triallate in pyroxasulfone-resistant Lolium rigidum publication-title: Pest Manag Sci doi: 10.1002/ps.3516 – volume: 53c start-page: 1004 year: 1998 ident: S0890037X23000908_ref74 article-title: Chloroacetamide mode of action. II: Inhibition of very-long-chain fatty acid synthesis in higher plants publication-title: Z Naturforsch doi: 10.1515/znc-1998-11-1211 – volume: 41 start-page: 107 year: 2016 ident: S0890037X23000908_ref78 article-title: Development of the novel pre-emergence herbicide pyroxasulfone publication-title: J Pest Sci doi: 10.1584/jpestics.J16-05 – volume: 83 start-page: 107 year: 2005 ident: S0890037X23000908_ref129 article-title: Cytochrome P-450 monooxygenase activity in herbicide-resistant and-susceptible late watergrass (Echinochloa phyllopogon). publication-title: Pestic Biochem Phys doi: 10.1016/j.pestbp.2005.04.002 – ident: S0890037X23000908_ref114 – ident: S0890037X23000908_ref66 doi: 10.1002/9783527699261.ch6 – ident: S0890037X23000908_ref86 – volume: 57 start-page: 72 year: 2002 ident: S0890037X23000908_ref103 article-title: Inhibition of very long chain fatty acid formation by indanofan, 2-[2-(3-Chlorophenyl)oxiran-2-ylmethyl]-2-ethylindan-1,3-dione, and its relatives publication-title: Z Naturforsch C doi: 10.1515/znc-2002-1-212 – volume: 75 start-page: 3084 year: 2019 ident: S0890037X23000908_ref30 article-title: Glutathione transferase plays a major role in flufenacet resistance of ryegrass (Lolium spp.) field populations publication-title: Pest Manag Sci doi: 10.1002/ps.5425 – volume: 44 start-page: 20 year: 2019 ident: S0890037X23000908_ref57 article-title: Characterization of very long chain fatty acid synthesis inhibition by ipfencarbazone publication-title: J Pestic Sci doi: 10.1584/jpestics.D18-057 – volume: 66 start-page: 581 year: 2018 ident: S0890037X23000908_ref11 article-title: Resistance to multiple PRE herbicides in a field-evolved rigid ryegrass (Lolium rigidum) population publication-title: Weed Sci doi: 10.1017/wsc.2018.31 – volume: 34 start-page: 877 year: 2005 ident: S0890037X23000908_ref45 article-title: The acetochlor registration partnership surface water monitoring program for four corn herbicides publication-title: J Environ Qual doi: 10.2134/jeq2003.0411 – volume: 64 start-page: 1045 year: 2003 ident: S0890037X23000908_ref32 article-title: Covalent binding of chloroacetamide herbicides to the active site cysteine of plant type III polyketide synthases publication-title: Phytochemistry doi: 10.1016/S0031-9422(03)00516-8 – volume: 32 start-page: 264 year: 1984 ident: S0890037X23000908_ref128 article-title: Accelerated degradation of thiocarbamate herbicides in soil with prior thiocarbamate herbicide exposure publication-title: Weed Sci doi: 10.1017/S0043174500058926 – volume: 70 start-page: 1378 year: 2014 ident: S0890037X23000908_ref15 article-title: Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids publication-title: Pest Manag Sci doi: 10.1002/ps.3746 – ident: S0890037X23000908_ref125 – ident: S0890037X23000908_ref97 – volume: 11 start-page: 406 year: 2020 ident: S0890037X23000908_ref52 article-title: Genome-wide identification of peanut KCS genes reveals that AhKCS1 and AhKCS28 are involved in regulating VLCFA contents in seeds publication-title: Front Plant Sci doi: 10.3389/fpls.2020.00406 – volume: 38 start-page: 461 year: 1998 ident: S0890037X23000908_ref88 article-title: A possible involvement of gibberellin in the mechanism of Avena fatua resistance to triallate and cross-resistance to difenzoquat publication-title: Weed Res doi: 10.1046/j.1365-3180.1998.00115.x – start-page: 513 volume-title: Herbicide Handbook year: 2014 ident: S0890037X23000908_ref95 – volume: 61 start-page: 2126 year: 2020 ident: S0890037X23000908_ref49 article-title: Arabidopsis ECERIFERUM2-LIKEs are mediators of condensing enzyme function publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcaa133 – volume: 52 start-page: 489 year: 2012 ident: S0890037X23000908_ref17 article-title: Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: field selection at high doses versus recurrent selection at low doses publication-title: Weed Res doi: 10.1111/j.1365-3180.2012.00948.x – volume: 69 start-page: 83 year: 2015 ident: S0890037X23000908_ref62 article-title: Resistance profile of herbicide-resistant Alopecurus myosuroides (black-grass) populations in Denmark publication-title: Crop Prot doi: 10.1016/j.cropro.2014.12.016 – ident: S0890037X23000908_ref117 – volume: 42 start-page: 195 year: 1994 ident: S0890037X23000908_ref80 article-title: Wild oat (Avena fatua) populations resistant to triallate are also resistant to difenzoquat publication-title: Weed Sci doi: 10.1017/S0043174500080267 – start-page: 1028 volume-title: Encyclopedia of Toxicology year: 2014 ident: S0890037X23000908_ref41 – volume: 97 start-page: 20 year: 2016 ident: S0890037X23000908_ref73 article-title: Triallate-resistant wild oat (Avena fatua L.): unexpected resistance to pyroxasulfone and sulfentrazone publication-title: Can J Plant Sci – volume: 101 start-page: 11903 year: 2004 ident: S0890037X23000908_ref109 article-title: Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404600101 – volume: 80 start-page: 665 year: 2000 ident: S0890037X23000908_ref5 article-title: Selecting for triallate resistance in wild oat publication-title: Can J Plant Sci doi: 10.4141/P99-110 – ident: S0890037X23000908_ref126 – ident: S0890037X23000908_ref50 – volume: 41 start-page: 113 year: 2016 ident: S0890037X23000908_ref63 article-title: Development of a rice herbicide, ipfencarbazone publication-title: J Pestic Sci doi: 10.1584/jpestics.J16-06 – volume: 16 start-page: 16 year: 2016 ident: S0890037X23000908_ref24 article-title: Penoxsulam-resistant barnyardgrass (Echinochlocrus-galli) in rice fields in China publication-title: Weed Biol Manag doi: 10.1111/wbm.12086 – ident: S0890037X23000908_ref67 – ident: S0890037X23000908_ref112 – volume: 51 start-page: 123 year: 2019 ident: S0890037X23000908_ref58 article-title: Control of herbicide resistant Phalaris minor by pyroxasulfone in wheat publication-title: Indian J Weed Sci doi: 10.5958/0974-8164.2019.00028.5 – volume: 67 start-page: 267 year: 2019 ident: S0890037X23000908_ref12 article-title: Resistance to very-long-chain fatty-acid (VLCFA)-inhibiting herbicides in multiple field-selected rigid ryegrass (Lolium rigidum) populations publication-title: Weed Sci doi: 10.1017/wsc.2018.93 – ident: S0890037X23000908_ref96 doi: 10.5772/61779 – volume: 60 start-page: 10 year: 2012 ident: S0890037X23000908_ref6 article-title: Basis for herbicide resistance in Canadian populations of wild oat (Avena fatua). publication-title: Weed Sci doi: 10.1614/WS-D-11-00110.1 – volume: 333 start-page: 361 year: 2010 ident: S0890037X23000908_ref3 article-title: Role of very-long-chain fatty acids in plant development, when chain length does matter publication-title: C R Biol doi: 10.1016/j.crvi.2010.01.014 – volume: 75 start-page: 2996 year: 2019 ident: S0890037X23000908_ref31 article-title: Enhanced metabolism causes reduced flufenacet sensitivity in black-grass (Alopecurus myosuroides Huds.) field populations publication-title: Pest Manag Sci doi: 10.1002/ps.5414 – volume: 93 start-page: 48 year: 2002 ident: S0890037X23000908_ref61 article-title: Two recessive gene inheritance for triallate resistance in Avena fatua L publication-title: J Hered doi: 10.1093/jhered/93.1.48 – volume: 48 start-page: 225 year: 2000 ident: S0890037X23000908_ref36 article-title: Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields publication-title: Weed Sci doi: 10.1614/0043-1745(2000)048[0225:HREOAE]2.0.CO;2 – volume: 28 start-page: 324 year: 2003 ident: S0890037X23000908_ref8 article-title: Mode of action for choroacetamides and functionally related compounds publication-title: J Pestic Sci doi: 10.1584/jpestics.28.324 – volume: 12 start-page: 1 year: 2013 ident: S0890037X23000908_ref43 article-title: Comparison of pyroxasulfone to soil residual herbicides for glyphosate resistant Palmer amaranth control in glyphosate resistant soybean publication-title: Crop Manag doi: 10.1094/CM-2013-0032-RS – volume: 58 start-page: 4356 year: 2010 ident: S0890037X23000908_ref71 article-title: Synthesis and herbicidal activity of novel N-(2,2,2)-trifluoroethylpyrazole derivatives publication-title: J Agric Food Chem doi: 10.1021/jf9042166 – volume: 121 start-page: 105 year: 2011 ident: S0890037X23000908_ref23 article-title: Relations of rice seeding rates to crop and weed growth in aerobic rice publication-title: Field Crops Res doi: 10.1016/j.fcr.2010.11.019 – ident: S0890037X23000908_ref26 – start-page: 1753 volume-title: Hayes’ Handbook of Pesticide Toxicology year: 2010 ident: S0890037X23000908_ref51 doi: 10.1016/B978-0-12-374367-1.00082-3 – volume: 10 start-page: 1284 year: 2021 ident: S0890037X23000908_ref4 article-title: Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses publication-title: Cells doi: 10.3390/cells10061284 – volume: 291 start-page: 739 year: 2016 ident: S0890037X23000908_ref44 article-title: Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy publication-title: Mol Genet Genom doi: 10.1007/s00438-015-1142-3 – volume: 76 start-page: 162 year: 2012 ident: S0890037X23000908_ref110 article-title: Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases publication-title: Phytochemistry doi: 10.1016/j.phytochem.2011.12.023 – volume: 147 start-page: 89 year: 2018 ident: S0890037X23000908_ref2 article-title: Metabolism studies of chiral pesticides: A critical review publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2017.08.011 – volume: 44 start-page: 847 year: 1996 ident: S0890037X23000908_ref59 article-title: Characterization of wild oat (Avena fatua L.) populations and an inbred line with multiple herbicide resistance publication-title: Weed Sci doi: 10.1017/S0043174500094819 – volume: 44 start-page: 282 year: 2019 ident: S0890037X23000908_ref38 article-title: Development of a rice herbicide, fenoxasulfone publication-title: J Pestic Sci doi: 10.1584/jpestics.J19-04 – volume: 72 start-page: 1664 year: 2016 ident: S0890037X23000908_ref19 article-title: Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum publication-title: Pest Manag Sci doi: 10.1002/ps.4253 – ident: S0890037X23000908_ref115 – ident: S0890037X23000908_ref85 – ident: S0890037X23000908_ref130 – volume: 62 start-page: 1770 year: 2021 ident: S0890037X23000908_ref99 article-title: Metabolic pathways for S-metolachlor detoxification differ between tolerant corn and multiple-resistant waterhemp publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcab132 – volume: 7 start-page: 617 year: 2006 ident: S0890037X23000908_ref94 article-title: Soil dissipation and biological activity of metolachlor and S-metolachlor in five soils publication-title: Pest Manag Sci doi: 10.1002/ps.1215 – ident: S0890037X23000908_ref124 – volume: 19 start-page: 6 year: 2005 ident: S0890037X23000908_ref81 article-title: Fall and early preplant application timing effects on persistence and efficacy of acetamide herbicides publication-title: Weed Technol doi: 10.1614/WT-03-020R1 – volume: 70 start-page: 160 year: 2022 ident: S0890037X23000908_ref28 article-title: Thiobencarb resistance mechanism is distinct from CYP81A-based cross-resistance in late watergrass (Echinochloa phyllopogon). publication-title: Weed Sci doi: 10.1017/wsc.2022.4 – volume: 12 start-page: 121 year: 1997 ident: S0890037X23000908_ref76 article-title: Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme publication-title: Plant J doi: 10.1046/j.1365-313X.1997.12010121.x – volume: 64 start-page: 331 year: 2016 ident: S0890037X23000908_ref70 article-title: Characterization of multiple herbicide-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) populations from winter wheat fields in Oregon publication-title: Weed Sci doi: 10.1614/WS-D-15-00147.1 – volume: 34 start-page: 19 year: 2020 ident: S0890037X23000908_ref13 article-title: Control of thiocarbamate-resistant rigid ryegrass (Lolium rigidum) in wheat in southern Australia publication-title: Weed Technol doi: 10.1017/wet.2019.72 – volume: 70 start-page: 380 year: 2022 ident: S0890037X23000908_ref65 article-title: Resistance of Palmer amaranth (Amaranthus palmeri) to S-metolachlor in the midsouthern United States. publication-title: Weed Sci doi: 10.1017/wsc.2022.37 – volume: 11 start-page: 609209 year: 2021 ident: S0890037X23000908_ref101 article-title: Non-target-site resistance in Lolium spp. globally: a review publication-title: Front Plant Sci doi: 10.3389/fpls.2020.609209 – volume: 210 start-page: 93 year: 2013 ident: S0890037X23000908_ref48 article-title: Extending the story of very-long-chain fatty acid elongation publication-title: Plant Sci doi: 10.1016/j.plantsci.2013.05.008 – volume: 50 start-page: 576 year: 2002 ident: S0890037X23000908_ref64 article-title: Site of uptake, absorption, translocation, and metabolism of ethofumesate in three turfgrass species publication-title: Weed Sci doi: 10.1614/0043-1745(2002)050[0576:SOUATA]2.0.CO;2 – volume: 602 start-page: 30 year: 2011 ident: S0890037X23000908_ref90 article-title: Efficacy and cotton tolerance to Warrant herbicide. Fayetteville: Arkansas Agricultural Experiment Station publication-title: Research Series – volume: 24 start-page: 281 year: 2010 ident: S0890037X23000908_ref89 article-title: Widespread occurrence of herbicide-resistant Italian ryegrass (Lolium multiflorum) in Northern Idaho and Eastern Washington publication-title: Weed Technol doi: 10.1614/WT-D-09-00059.1 – ident: S0890037X23000908_ref118 – volume: 148 start-page: 74 year: 2018 ident: S0890037X23000908_ref18 article-title: Pyroxasulfone resistance in Lolium rigidum is metabolism-based publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2018.03.017 – volume: 95 start-page: 973 year: 2015 ident: S0890037X23000908_ref54 article-title: Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean publication-title: Can J Plant Sci doi: 10.4141/cjps-2014-422 – ident: S0890037X23000908_ref93 – volume: 51 start-page: 21 year: 1997 ident: S0890037X23000908_ref60 article-title: Fatty acid and wax biosynthesis in susceptible and triallate-resistant Avena fatua L. publication-title: Pestic Sci doi: 10.1002/(SICI)1096-9063(199709)51:1<21::AID-PS591>3.0.CO;2-9 – volume: 29 start-page: 740 year: 2015 ident: S0890037X23000908_ref21 article-title: Weed control in cotton by combinations of microencapsulated acetochlor and various residual herbicides applied preemergence publication-title: Weed Technol doi: 10.1614/WT-D-15-00061.1 – volume: 12 start-page: 652581 year: 2021 ident: S0890037X23000908_ref87 article-title: Mechanism of resistance to S-metolachlor in Palmer amaranth publication-title: Front Plant Sci doi: 10.3389/fpls.2021.652581 – ident: S0890037X23000908_ref121 – volume: 76 start-page: 3139 year: 2020 ident: S0890037X23000908_ref100 article-title: Metabolic resistance to S-metolachlor in two waterhemp (Amaranthus tuberculatus) populations from Illinois, USA publication-title: Pest Manag Sci doi: 10.1002/ps.5868 – volume: 67 start-page: 369 year: 2019 ident: S0890037X23000908_ref98 article-title: Characterization of multiple herbicide-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois to VLCFA-inhibiting herbicides publication-title: Weed Sci doi: 10.1017/wsc.2019.13 – ident: S0890037X23000908_ref104 |
SSID | ssj0016220 |
Score | 2.4261725 |
SecondaryResourceType | review_article |
Snippet | The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean,... |
SourceID | proquest crossref bioone |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Acetochlor active sites acyl coenzyme A Amaranth Amaranthus palmeri Amaranthus tuberculatus Avena sativa barley benzofurans biochemical pathways Biosynthesis Cell division Cereal crops Chemical industry Chemical research Corn Crop production Crops Endoplasmic reticulum epoxy compounds family fatty acid elongase Fatty acids Glycine max Grasses Group 15 herbicides herbicide resistance Herbicides Hordeum vulgare Inhibitors isoxazolines Leaves Lewis bases Metolachlor oats Pesticides Plant growth pyroxasulfone Reclassification residual herbicides resistant weeds Saccharum officinarum shoot and root tissue Sorghum Sorghum bicolor Soybeans species Substrates Sugarcane Sulfur taxonomic revisions technology Thiocarbamates Triticum aestivum vegetables very long chain fatty acids Weed control weed management Weeds wheat Zea mays α-chloroacetamides |
Title | Very long chain fatty acid–inhibiting herbicides: Current uses, site of action, herbicide-resistant weeds, and future |
URI | http://www.bioone.org/doi/abs/10.1017/wet.2023.90 https://www.proquest.com/docview/2923240481 https://www.proquest.com/docview/3200356361 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZa6KE9IPoS2wIyFacKtyZ2HuaCAIEQUlFVlWpvll-BSCihm6xW3PgP_Yf9Jcwk3kVIiGsycpSxPTOfPfMNIduGFyazUjJTqISBlRTMKCeZKrxILRaG9FWuP86z0wt5Nk7H8cCtjWmVc5vYG2rfODwj_54o9P3IbrJ_85dh1yi8XY0tNF6SZTDBBYCv5cPj85-_FvcIWTIQMxaKMy7ycazQQ9LoWcBUykR8Q3P8ylZNU4fHzumxbe4dzskqWYmRIj0YpvYteRHqd-TNweUksmWE92T2J0xu6XVTX1J3BRCflqbrbqlxlf9_96-qrypbYVozhYmxFTwN7R6NjEx02oZ2h-Lv0aakQ33DzoMkAxyOsSVIzsDDgaipPR0oSD6Qi5Pj30enLHZSYFZkaccwzLHeJqXhSWnBrZc2hDxD7sDcgn8KigtbJMLJ1Ctj892y8ErmiUyl48Fx8ZEs1aCfNUIlDAAwwwhnguQe0FoqfcjTIAFcGp-OyJdBl_pmoMvQQx5ZrkHhGhWuFR-Rr3M9axe5yLElxvXTwtsL4WfHXJ9PmI77sNUPq2ZEthavYQfhtYipQzNttehJYTOR7X56fojP5DV8S_YF7XydLHWTadiAkKSzm3HdbfaQ_h48_uIh |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VLRJwQPyKhQIGlQuqwbWdPySECrTa0naFUIv2ZuzYaSNVSdlktdob78B78FA8CeP8bFUJ9dZrMppI4_F8nnjmG4B1zWIdGimpjhNOMUoKqpNU0iS2IjC-MaTpcj0Yh6Mj-WUSTFbgT98L48sq-5jYBGpbpv4f-VueeOz37CYfzn5SPzXK3672IzRat9hzizmmbNX73c-4vq8439k-_DSi3VQBakQY1NRDvrGGZ5rxzCDEZca5KPQ8epHBWO0SJkzMRSoDm2gTbWaxTWTEZSBT5lImUO81WJUCU5kBrH7cHn_9try3CHlLBBknjDIRTbqOQE9SPXe-dJOLNz78Xzd5WRbuIhhexIIG4HbuwO3uZEq2Wle6CyuuuAe3to6nHTuHuw_z7266IKdlcUzSE50XJNN1vSA6ze3fX7_z4iQ3uS-jJugIJsenrnpHOgYoMqtctUG8OUmZkbafYuNckmLe78-yKDlHREVRXVjSUp48gKMrsfFDGBRon0dAJCrAtEaLVDvJLGaHgbQuCpzEZFbbYAgvW1uqs5aeQ7V1a5FCgytvcJWwIbzu7azSjvvcj-A4_b_w-lL4Up1r_YKpbt9X6txLh_Bi-Rp3rL-G0YUrZ5USDQltKMLNx5ereA43RocH-2p_d7z3BG7id2XTTM_WYFBPZ-4pHodq86zzQQI_rtrt_wFmMR16 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VLUJwQPyKhQIGlQuqqWs7f0gIFdpVS2FVIYr2ZuzYaSNVSdlktdob78Db8Dg8CeP8bFUJ9dZrMppI4_F8nnjmG4B1zWIdGimpjhNOMUoKqpNU0iS2IjC-MaTpcv0yDveO5KdJMFmBP30vjC-r7GNiE6htmfp_5Js88djv2U02s64s4nBn9P7sJ_UTpPxNaz9Oo3WRA7eYY_pWvdvfwbV-xflo99vHPdpNGKBGhEFNPfwba3imGc8Mwl1mnItCz6kXGYzbLmHCxFykMrCJNtFWFttERlwGMmUuZQL1XoPVCLMiNoDVD7vjw6_LO4yQt6SQccIoE9Gk6w70hNVz58s4uXjjoeC6ycuycBeB8SIuNGA3ugO3u1Mq2W7d6i6suOIe3No-nnZMHe4-zL-76YKclsUxSU90XpBM1_WC6DS3f3_9zouT3OS-pJqgU5gcn7rqLenYoMisctUG8eYkZUba3oqNc0k6dZU_16LkHNEVRXVhSUt_8gCOrsTGD2FQoH0eAZGoAFMcLVLtJLOYKQbSuihwEhNbbYMhvGxtqc5aqg7V1rBFCg2uvMFVwobwurezSjsedD-O4_T_wutL4Ut1rvULproYUKlzjx3Ci-Vr3L3-SkYXrpxVSjSEtKEItx5fruI53EB3V5_3xwdP4CZ-VjZ99WwNBvV05p7iyag2zzoXJPDjqr3-H3gkIa8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+long+chain+fatty+acid%E2%80%93inhibiting+herbicides%3A+Current+uses%2C+site+of+action%2C+herbicide-resistant+weeds%2C+and+future&rft.jtitle=Weed+technology&rft.au=Jhala%2C+Amit+J.&rft.au=Singh%2C+Mandeep&rft.au=Shergill%2C+Lovreet&rft.au=Singh%2C+Rishabh&rft.date=2024-02-20&rft.pub=Cambridge+University+Press&rft.eissn=1550-2740&rft.volume=38&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1017%2Fwet.2023.90&rft.externalDocID=10.1017%2Fwet.2023.90 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-037X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-037X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-037X&client=summon |