Very long chain fatty acid–inhibiting herbicides: Current uses, site of action, herbicide-resistant weeds, and future

The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of su...

Full description

Saved in:
Bibliographic Details
Published inWeed technology Vol. 38; no. 1; pp. 1 - 16
Main Authors Jhala, Amit J., Singh, Mandeep, Shergill, Lovreet, Singh, Rishabh, Jugulam, Mithila, Riechers, Dean E., Ganie, Zahoor A., Selby, Thomas P., Werle, Rodrigo, Norsworthy, Jason K.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 20.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them. Nomenclature: Acetochlor; α-chloroacetamides; α-oxyacetamides; α-thioacetamides; azolyl-carboxamides; benzofurans; fenoxasulfone; isoxazolines; thiocarbamates; oxiranes; S-metolachlor; pyroxasulfone; Palmer amaranth, Amaranthus palmeri S. Watson; waterhemp, Amaranthus tuberculatus (Moq) J.D. Sauer; barley, Hordeum vulgare L.; corn, Zea mays L.; oat, Avena sativa L.; sorghum, Sorghum bicolor (L.) Moench; soybean, Glycine max L.; sugarcane, Saccharum officinarum L.; wheat, Triticum aestivum L.
AbstractList The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S -metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase ( FAE1 )-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them.
The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them. Nomenclature: Acetochlor; α-chloroacetamides; α-oxyacetamides; α-thioacetamides; azolyl-carboxamides; benzofurans; fenoxasulfone; isoxazolines; thiocarbamates; oxiranes; S-metolachlor; pyroxasulfone; Palmer amaranth, Amaranthus palmeri S. Watson; waterhemp, Amaranthus tuberculatus (Moq) J.D. Sauer; barley, Hordeum vulgare L.; corn, Zea mays L.; oat, Avena sativa L.; sorghum, Sorghum bicolor (L.) Moench; soybean, Glycine max L.; sugarcane, Saccharum officinarum L.; wheat, Triticum aestivum L.
The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them.
ArticleNumber e1
Author Singh, Rishabh
Ganie, Zahoor A.
Norsworthy, Jason K.
Jhala, Amit J.
Selby, Thomas P.
Shergill, Lovreet
Riechers, Dean E.
Singh, Mandeep
Jugulam, Mithila
Werle, Rodrigo
Author_xml – sequence: 1
  givenname: Amit J.
  orcidid: 0000-0001-8599-4996
  surname: Jhala
  fullname: Jhala, Amit J.
  organization: Professor & Associate Department Head, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA
– sequence: 2
  givenname: Mandeep
  surname: Singh
  fullname: Singh, Mandeep
  organization: Graduate Research Assistant, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA
– sequence: 3
  givenname: Lovreet
  surname: Shergill
  fullname: Shergill, Lovreet
  organization: Assistant Professor, Southern Ag Research Center, Montana State University, Huntley, MT, USA
– sequence: 4
  givenname: Rishabh
  surname: Singh
  fullname: Singh, Rishabh
  organization: Graduate Research Assistant, Department of Agronomy, Kansas State University, Manhattan, KS, USA
– sequence: 5
  givenname: Mithila
  surname: Jugulam
  fullname: Jugulam, Mithila
  organization: Professor, Department of Agronomy, Kansas State University, Manhattan, KS, USA
– sequence: 6
  givenname: Dean E.
  orcidid: 0000-0002-6081-5629
  surname: Riechers
  fullname: Riechers, Dean E.
  organization: Professor, Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, USA
– sequence: 7
  givenname: Zahoor A.
  surname: Ganie
  fullname: Ganie, Zahoor A.
  organization: Senior Global R & D Scientist, Stine Research Center, FMC, Newark, DE
– sequence: 8
  givenname: Thomas P.
  surname: Selby
  fullname: Selby, Thomas P.
  organization: FMC Fellow, Global Research and Development Chemistry, Stine Research Center, FMC, Newark, DE
– sequence: 9
  givenname: Rodrigo
  orcidid: 0000-0003-1132-461X
  surname: Werle
  fullname: Werle, Rodrigo
  organization: Associate Professor, Department of Agronomy, University of Wisconsin–Madison, Madison, WI, USA
– sequence: 10
  givenname: Jason K.
  surname: Norsworthy
  fullname: Norsworthy, Jason K.
  organization: Distinguished Professor and Elms Farming Chair of Weed Science, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
BookMark eNp90c1q3DAQB3ARUugm7akvIMilpfFmJNmW3VtY-hEI9JKW3oRkj7IKjpRKMsve8g59wz5JZbYQCLQnweg30gz_E3Lsg0dC3jBYM2DyYod5zYGLdQ9HZMWaBiouazgmK-h6qEDIHy_JSUp3AKzlHFZk9x3jnk7B39Jhq52nVue8p3pw4-_HX85vnXHZldstRuNKFdMHupljRJ_pnDCd0-Qy0mBLT3bBnz_JKmJyKesid4hjodqP1M55jviKvLB6Svj673lKvn36eLP5Ul1__Xy1ubyujGibXDXQtGY03Grg1gBn1iDKVvZcSNPVEnsQpuNiqJux10Yy2419LXnd1APgAOKUvD28-xDDzxlTVvcuDThN2mOYkxIcQDStaFmhZ8_oXZijL9MpXv7jNdTdothBDTGkFNGqwWW9bJ6jdpNioJYoVIlCLVGofhni_bOeh-juddz_Q787aONCife_9g9W_5uF
CitedBy_id crossref_primary_10_1002_agg2_70078
crossref_primary_10_1017_wsc_2024_33
crossref_primary_10_3389_fagro_2024_1401865
crossref_primary_10_3390_agriculture14081378
crossref_primary_10_1002_agg2_70074
crossref_primary_10_1002_ps_8458
Cites_doi 10.1584/jpestics.G10-81
10.1080/09670874.2010.495795
10.1584/jpestics.G10-97
10.1017/wsc.2020.54
10.1017/S004317450008019X
10.1584/jpestics.D13-014
10.1016/0031-9422(92)80251-9
10.1007/s11103-008-9339-z
10.1017/wet.2019.44
10.1016/S0261-2194(98)80011-2
10.1002/jhet.4162
10.1614/0890-037X(2003)017[0605:RCOHBS]2.0.CO;2
10.1105/tpc.11.5.825
10.1146/annurev.arplant.47.1.405
10.1016/B978-0-08-029222-9.50047-0
10.1016/j.plantsci.2013.12.005
10.2134/jeq1999.00472425002800060014x
10.1584/jpestics.D20-201
10.1002/(SICI)1096-9063(199707)50:3<221::AID-PS574>3.0.CO;2-T
10.1046/j.1432-1033.2002.03039.x
10.1515/znc-2004-7-818
10.1016/0048-3575(86)90074-X
10.1017/S0043174500046038
10.1021/es00006a039
10.30843/nzpp.1994.47.11033
10.1017/S0890037X00027482
10.2533/chimia.1997.297
10.1002/(SICI)1526-4998(200006)56:6<497::AID-PS169>3.0.CO;2-W
10.1017/S004317450003825X
10.1017/wet.2019.19
10.1017/S0890037X00029729
10.1002/ps.2780330404
10.1016/B978-0-12-823674-1.00008-0
10.1016/0048-3575(87)90027-7
10.1016/j.pestbp.2009.06.003
10.1002/ps.3516
10.1515/znc-1998-11-1211
10.1584/jpestics.J16-05
10.1016/j.pestbp.2005.04.002
10.1002/9783527699261.ch6
10.1515/znc-2002-1-212
10.1002/ps.5425
10.1584/jpestics.D18-057
10.1017/wsc.2018.31
10.2134/jeq2003.0411
10.1016/S0031-9422(03)00516-8
10.1017/S0043174500058926
10.1002/ps.3746
10.3389/fpls.2020.00406
10.1046/j.1365-3180.1998.00115.x
10.1093/pcp/pcaa133
10.1111/j.1365-3180.2012.00948.x
10.1016/j.cropro.2014.12.016
10.1017/S0043174500080267
10.1073/pnas.0404600101
10.4141/P99-110
10.1584/jpestics.J16-06
10.1111/wbm.12086
10.5958/0974-8164.2019.00028.5
10.1017/wsc.2018.93
10.5772/61779
10.1614/WS-D-11-00110.1
10.1016/j.crvi.2010.01.014
10.1002/ps.5414
10.1093/jhered/93.1.48
10.1614/0043-1745(2000)048[0225:HREOAE]2.0.CO;2
10.1584/jpestics.28.324
10.1094/CM-2013-0032-RS
10.1021/jf9042166
10.1016/j.fcr.2010.11.019
10.1016/B978-0-12-374367-1.00082-3
10.3390/cells10061284
10.1007/s00438-015-1142-3
10.1016/j.phytochem.2011.12.023
10.1016/j.jpba.2017.08.011
10.1017/S0043174500094819
10.1584/jpestics.J19-04
10.1002/ps.4253
10.1093/pcp/pcab132
10.1002/ps.1215
10.1614/WT-03-020R1
10.1017/wsc.2022.4
10.1046/j.1365-313X.1997.12010121.x
10.1614/WS-D-15-00147.1
10.1017/wet.2019.72
10.1017/wsc.2022.37
10.3389/fpls.2020.609209
10.1016/j.plantsci.2013.05.008
10.1614/0043-1745(2002)050[0576:SOUATA]2.0.CO;2
10.1614/WT-D-09-00059.1
10.1016/j.pestbp.2018.03.017
10.4141/cjps-2014-422
10.1002/(SICI)1096-9063(199709)51:1<21::AID-PS591>3.0.CO;2-9
10.1614/WT-D-15-00061.1
10.3389/fpls.2021.652581
10.1002/ps.5868
10.1017/wsc.2019.13
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press on behalf of Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press on behalf of Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
7XB
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M0K
M2O
M7P
MBDVC
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7S9
L.6
DOI 10.1017/wet.2023.90
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Research Library
Biological Science Database
Research Library (Corporate)
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Research Library
Research Library China
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1550-2740
EndPage 16
ExternalDocumentID 10_1017_wet_2023_90
10.1017/wet.2023.90
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -JH
09C
09E
0R~
123
7X2
8FE
8FH
8G5
AAAZR
AABES
AABWE
AAGFV
AAHBH
AAHKG
AAKTX
AAPSS
AASVR
AAUKB
AAXTN
ABJNI
ABKMT
ABPLY
ABQTM
ABROB
ABTLG
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACAJB
ACDLN
ACGFS
ACPRK
ACUIJ
ACYZP
ADBBV
ADDNB
ADHSS
ADKIL
ADVJH
AEBAK
AEEJZ
AENEX
AEPYG
AEUYN
AFAZZ
AFKQG
AFKRA
AFLVW
AFNWH
AFRAH
AFRIC
AFZFC
AGABE
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AJCYY
AJPFC
AKPMI
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ATCPS
ATUCA
AUXHV
AZQEC
BBLKV
BBNVY
BENPR
BHPHI
BLZWO
BMAJL
BPHCQ
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
DWQXO
EBS
ECGQY
GNUQQ
GUQSH
HCIFZ
HZ~
IH6
IOEEP
IPYYG
IS6
JBS
JHPGK
JLS
JQKCU
KCGVB
KFECR
LK8
LW7
M0K
M2O
M7P
NIKVX
NVHAQ
O9-
P2P
PADUT
PHGZT
PQ0
PQQKQ
PROAC
RBO
RCA
ROL
S6U
SAAAG
SJN
T9M
TN5
UT1
WFFJZ
WH7
Y6R
ZMEZD
ZYDXJ
~02
~EF
~KM
29R
2AX
2~F
AAYXX
ABBHK
ABBZL
ABGDZ
ABXSQ
ACHIC
ADOVH
ADOVT
ADULT
AEHGV
AENCP
AEUPB
AFFIJ
AGUYK
AHXOZ
AICQM
AKMAY
AKZCZ
ANHSF
AQVQM
ARZZG
AS~
AYIQA
BCGOX
BESQT
BJBOZ
CAG
CBGCD
CCUQV
CFBFF
CGQII
CITATION
COF
DATOO
DC7
EGQIC
EJD
GTFYD
H13
HGD
HTVGU
IL9
IOO
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JST
KAFGG
LHUNA
NEJ
NHB
NZEOI
OVD
PHGZM
Q5J
SA0
TEORI
YR5
ZDLDU
ZJOSE
3V.
7XB
8FK
GROUPED_DOAJ
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7S9
L.6
ID FETCH-LOGICAL-b365t-5056bdb2fa02fb021fbee7679237b847e903b823c45d9ab71f8d9472454c0ec03
IEDL.DBID BENPR
ISSN 0890-037X
1550-2740
IngestDate Fri Jul 11 18:26:06 EDT 2025
Wed Aug 13 10:00:44 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Tue Jul 01 00:55:51 EDT 2025
Tue May 06 02:00:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b365t-5056bdb2fa02fb021fbee7679237b847e903b823c45d9ab71f8d9472454c0ec03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1132-461X
0000-0001-8599-4996
0000-0002-6081-5629
OpenAccessLink http://dx.doi.org/10.1017/wet.2023.90
PQID 2923240481
PQPubID 506325
PageCount 16
ParticipantIDs proquest_miscellaneous_3200356361
proquest_journals_2923240481
crossref_citationtrail_10_1017_wet_2023_90
crossref_primary_10_1017_wet_2023_90
bioone_primary_10_1017_wet_2023_90
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240220
PublicationDateYYYYMMDD 2024-02-20
PublicationDate_xml – month: 02
  year: 2024
  text: 20240220
  day: 20
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Lawrence
PublicationTitle Weed technology
PublicationTitleAbbrev Weed Technol
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Burnet (S0890037X23000908_ref14) 1994; 42
Tanetani (S0890037X23000908_ref107) 2013; 38
Kido (S0890037X23000908_ref63) 2016; 41
Hamm (S0890037X23000908_ref46) 1974; 22
S0890037X23000908_ref86
S0890037X23000908_ref85
Matthes (S0890037X23000908_ref74) 1998; 53c
Trenkamp (S0890037X23000908_ref109) 2004; 101
Kern (S0890037X23000908_ref60) 1997; 51
Ma (S0890037X23000908_ref71) 2010; 58
Jhala (S0890037X23000908_ref54) 2015; 95
Weisshaar (S0890037X23000908_ref127) 1987; 28
Dimaano (S0890037X23000908_ref28) 2022; 70
S0890037X23000908_ref104
Busi (S0890037X23000908_ref20) 2013; 69
Capel (S0890037X23000908_ref22) 1995; 29
S0890037X23000908_ref93
Albuquerque (S0890037X23000908_ref2) 2018; 147
S0890037X23000908_ref92
Millar (S0890037X23000908_ref76) 1997; 12
S0890037X23000908_ref97
S0890037X23000908_ref96
Busi (S0890037X23000908_ref15) 2014; 70
Schmalfuβ (S0890037X23000908_ref91) 1998; 53c
Rauch (S0890037X23000908_ref89) 2010; 24
S0890037X23000908_ref118
S0890037X23000908_ref119
S0890037X23000908_ref116
Tresch (S0890037X23000908_ref110) 2012; 76
S0890037X23000908_ref117
S0890037X23000908_ref114
S0890037X23000908_ref115
S0890037X23000908_ref112
S0890037X23000908_ref113
Fujinami (S0890037X23000908_ref38) 2019; 44
Gómez-Ramírez (S0890037X23000908_ref41) 2014
Brunton (S0890037X23000908_ref12) 2019; 67
Post-Beittenmiller (S0890037X23000908_ref84) 1996; 47
Strom (S0890037X23000908_ref99) 2021; 62
Busi (S0890037X23000908_ref18) 2018; 148
Fedtke (S0890037X23000908_ref35) 1991; 33
Kohler (S0890037X23000908_ref64) 2002; 50
Shaner (S0890037X23000908_ref94) 2006; 7
Kouame (S0890037X23000908_ref65) 2022; 70
S0890037X23000908_ref67
S0890037X23000908_ref66
Chauhan (S0890037X23000908_ref23) 2011; 121
Székács (S0890037X23000908_ref102) 2021
Lin (S0890037X23000908_ref69) 2021; 58
S0890037X23000908_ref125
Heydens (S0890037X23000908_ref51) 2010
S0890037X23000908_ref126
S0890037X23000908_ref124
Shaner (S0890037X23000908_ref95) 2014
S0890037X23000908_ref121
S0890037X23000908_ref122
S0890037X23000908_ref120
Eckermann (S0890037X23000908_ref32) 2003; 64
Huai (S0890037X23000908_ref52) 2020; 11
Götz (S0890037X23000908_ref42) 2004; 59
Mangin (S0890037X23000908_ref73) 2016; 97
Wilson (S0890037X23000908_ref128) 1984; 32
Brabham (S0890037X23000908_ref10) 2019; 33
Joubès (S0890037X23000908_ref55) 2008; 67
S0890037X23000908_ref77
O’Connell (S0890037X23000908_ref79) 1998; 17
Suzukawa (S0890037X23000908_ref101) 2021; 11
Guo (S0890037X23000908_ref44) 2016; 291
Couderchet (S0890037X23000908_ref27) 1997; 50
Liu (S0890037X23000908_ref70) 2016; 64
Tanetani (S0890037X23000908_ref105) 2011; 36
S0890037X23000908_ref130
Fischer (S0890037X23000908_ref36) 2000; 48
Böger (S0890037X23000908_ref9) 2000; 56
Yun (S0890037X23000908_ref129) 2005; 83
Batsale (S0890037X23000908_ref4) 2021; 10
Kaur (S0890037X23000908_ref58) 2019; 51
Nakatani (S0890037X23000908_ref78) 2016; 41
(S0890037X23000908_ref123) 1988
Pillai (S0890037X23000908_ref83) 1979; 27
S0890037X23000908_ref47
Evans (S0890037X23000908_ref34) 2019; 33
Fuerst (S0890037X23000908_ref37) 1987; 1
Clark (S0890037X23000908_ref25) 1999; 28
S0890037X23000908_ref39
Busi (S0890037X23000908_ref19) 2016; 72
Lamoureux (S0890037X23000908_ref68) 1986; 26
Beckie (S0890037X23000908_ref6) 2012; 60
Hackett (S0890037X23000908_ref45) 2005; 34
Rangani (S0890037X23000908_ref87) 2021; 12
Böger (S0890037X23000908_ref8) 2003; 28
S0890037X23000908_ref50
Strom (S0890037X23000908_ref100) 2020; 76
Busi (S0890037X23000908_ref16) 2014; 217
Ghanevati (S0890037X23000908_ref40) 2002; 269
Tanetani (S0890037X23000908_ref108) 2009; 95
Kern (S0890037X23000908_ref59) 1996; 44
Juliano (S0890037X23000908_ref56) 2010; 56
Hwang (S0890037X23000908_ref53) 2023; 71
Dücker (S0890037X23000908_ref31) 2019; 75
Strom (S0890037X23000908_ref98) 2019; 67
Bach (S0890037X23000908_ref3) 2010; 333
Rashid (S0890037X23000908_ref88) 1998; 38
Cahoon (S0890037X23000908_ref21) 2015; 29
Keshtkar (S0890037X23000908_ref62) 2015; 69
Chen (S0890037X23000908_ref24) 2016; 16
Haslam (S0890037X23000908_ref49) 2020; 61
Grey (S0890037X23000908_ref43) 2013; 12
Pike (S0890037X23000908_ref82) 1991; 3
Mallory-Smith (S0890037X23000908_ref72) 2017; 17
Brunton (S0890037X23000908_ref13) 2020; 34
Millar (S0890037X23000908_ref75) 1999; 11
Dücker (S0890037X23000908_ref30) 2019; 75
Tanetani (S0890037X23000908_ref106) 2011; 36
Busi (S0890037X23000908_ref17) 2012; 52
Kern (S0890037X23000908_ref61) 2002; 93
Takahashi (S0890037X23000908_ref103) 2002; 57
O’Donovan (S0890037X23000908_ref80) 1994; 42
Beckie (S0890037X23000908_ref5) 2000; 80
Parker (S0890037X23000908_ref81) 2005; 19
S0890037X23000908_ref33
Kasahara (S0890037X23000908_ref57) 2019; 44
Abulnaja (S0890037X23000908_ref1) 1992; 31
Riar (S0890037X23000908_ref90) 2011; 602
S0890037X23000908_ref26
Haslam (S0890037X23000908_ref48) 2013; 210
Brunton (S0890037X23000908_ref11) 2018; 66
Dücker (S0890037X23000908_ref29) 2020; 68
Umetsu (S0890037X23000908_ref111) 2020; 45
Blaser (S0890037X23000908_ref7) 1997; 51
References_xml – ident: S0890037X23000908_ref113
– volume: 36
  start-page: 221
  year: 2011
  ident: S0890037X23000908_ref106
  article-title: Studies on the inhibition of plant very-long-chain fatty acid elongase by a novel herbicide, pyroxasulfone
  publication-title: J Pestic Sci
  doi: 10.1584/jpestics.G10-81
– volume: 56
  start-page: 299
  year: 2010
  ident: S0890037X23000908_ref56
  article-title: Multiple herbicide resistance in barnyardgrass (Echinochloa crus-galli) in direct-seeded rice in the Philippines
  publication-title: Int J Pest Manage
  doi: 10.1080/09670874.2010.495795
– volume: 36
  start-page: 357
  year: 2011
  ident: S0890037X23000908_ref105
  article-title: Action mechanism of a novel herbicide, fenoxasulfone
  publication-title: J Pestic Sci
  doi: 10.1584/jpestics.G10-97
– ident: S0890037X23000908_ref39
– volume: 68
  start-page: 451
  year: 2020
  ident: S0890037X23000908_ref29
  article-title: Flufenacet activity is affected by GST inhibitors in blackgrass (Alopecurus myosuroides) populations with reduced flufenacet sensitivity and higher expression levels of GSTs.
  publication-title: Weed Sci
  doi: 10.1017/wsc.2020.54
– volume: 42
  start-page: 153
  year: 1994
  ident: S0890037X23000908_ref14
  article-title: Chloroacetamide resistance in rigid ryegrass (Lolium rigidum).
  publication-title: Weed Sci
  doi: 10.1017/S004317450008019X
– volume: 38
  start-page: 152
  year: 2013
  ident: S0890037X23000908_ref107
  article-title: Role of metabolism in the selectivity of a herbicide, pyroxasulfone, between wheat and rigid ryegrass seedlings
  publication-title: J Pestic Sci
  doi: 10.1584/jpestics.D13-014
– volume: 31
  start-page: 1155
  year: 1992
  ident: S0890037X23000908_ref1
  article-title: Inhibition of fatty acid elongation provides a basis for the action of the herbicide, ethofumesate, on surface wax formation
  publication-title: Phytochem
  doi: 10.1016/0031-9422(92)80251-9
– volume: 67
  start-page: 547
  year: 2008
  ident: S0890037X23000908_ref55
  article-title: The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-008-9339-z
– volume: 33
  start-page: 720
  year: 2019
  ident: S0890037X23000908_ref10
  article-title: Confirmation of S-metolachlor resistance in Palmer amaranth (Amaranthus palmeri)
  publication-title: Weed Technol
  doi: 10.1017/wet.2019.44
– ident: S0890037X23000908_ref122
– volume: 17
  start-page: 207
  year: 1998
  ident: S0890037X23000908_ref79
  article-title: Metolachlor, S-metolachlor and their role within sustainable weed-management
  publication-title: Crop Prot
  doi: 10.1016/S0261-2194(98)80011-2
– volume: 58
  start-page: 226
  year: 2021
  ident: S0890037X23000908_ref69
  article-title: Discovery of novel 3-{[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonyl]methyl}benzo[d]isoxazole analogs as promising very long chain fatty acids inhibitors
  publication-title: J Heterocyclic Chem
  doi: 10.1002/jhet.4162
– volume: 17
  start-page: 605
  year: 2017
  ident: S0890037X23000908_ref72
  article-title: Revised classification of herbicides by site of action for weed resistance management strategies
  publication-title: Weed Technol
  doi: 10.1614/0890-037X(2003)017[0605:RCOHBS]2.0.CO;2
– volume: 11
  start-page: 825
  year: 1999
  ident: S0890037X23000908_ref75
  article-title: CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.5.825
– volume: 47
  start-page: 405
  year: 1996
  ident: S0890037X23000908_ref84
  article-title: Biochemisty and molecular biology of wax production in plants
  publication-title: Annu Rev Plant Physiol
  doi: 10.1146/annurev.arplant.47.1.405
– ident: S0890037X23000908_ref77
  doi: 10.1016/B978-0-08-029222-9.50047-0
– ident: S0890037X23000908_ref116
– volume: 217
  start-page: 127
  year: 2014
  ident: S0890037X23000908_ref16
  article-title: Inheritance of evolved resistance to a novel herbicide (pyroxasulfone)
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2013.12.005
– volume: 28
  start-page: 1787
  year: 1999
  ident: S0890037X23000908_ref25
  article-title: Occurrence and transport of acetochlor in streams of the Mississippi River basin
  publication-title: J Environ Qual
  doi: 10.2134/jeq1999.00472425002800060014x
– volume: 45
  start-page: 54
  year: 2020
  ident: S0890037X23000908_ref111
  article-title: Development of novel pesticides in the 21st century
  publication-title: J Pest Sci
  doi: 10.1584/jpestics.D20-201
– ident: S0890037X23000908_ref92
– volume: 50
  start-page: 221
  year: 1997
  ident: S0890037X23000908_ref27
  article-title: Biological activity of two stereoisomers of the N-thienyl chloroacetamide herbicide dimethenamid
  publication-title: Pestic Sci
  doi: 10.1002/(SICI)1096-9063(199707)50:3<221::AID-PS574>3.0.CO;2-T
– volume: 269
  start-page: 3531
  year: 2002
  ident: S0890037X23000908_ref40
  article-title: Engineering and mechanistic studies of the Arabidopsis FAE1 β-ketoacyl-CoA synthase, FAE1 KCS.
  publication-title: Eur J Biochem
  doi: 10.1046/j.1432-1033.2002.03039.x
– volume: 59
  start-page: 549
  year: 2004
  ident: S0890037X23000908_ref42
  article-title: The very-long-chain fatty acid synthesis is inhibited by chloroacetamides
  publication-title: Z Naturforsch
  doi: 10.1515/znc-2004-7-818
– volume-title: Thiocarbamate pesticides: a general introduction
  year: 1988
  ident: S0890037X23000908_ref123
– volume: 26
  start-page: 323
  year: 1986
  ident: S0890037X23000908_ref68
  article-title: Tridiphane [2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane] an atrazine synergist: enzymatic conversion to a potent glutathione S-transferase inhibitor
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/0048-3575(86)90074-X
– volume: 27
  start-page: 634
  year: 1979
  ident: S0890037X23000908_ref83
  article-title: Effects of metolachlor on germination, growth, leucine uptake, and protein synthesis
  publication-title: Weed Sci
  doi: 10.1017/S0043174500046038
– volume: 29
  start-page: 1702
  year: 1995
  ident: S0890037X23000908_ref22
  article-title: Analysis and detection of the new corn herbicide acetochlor in river water and rain
  publication-title: Environ Sci Technol
  doi: 10.1021/es00006a039
– ident: S0890037X23000908_ref47
  doi: 10.30843/nzpp.1994.47.11033
– volume: 3
  start-page: 639
  year: 1991
  ident: S0890037X23000908_ref82
  article-title: A case study of herbicide use
  publication-title: Weed Technol
  doi: 10.1017/S0890037X00027482
– volume: 51
  start-page: 297
  year: 1997
  ident: S0890037X23000908_ref7
  article-title: Enantioselective catalysis for agrochemicals: the case history of the DUAL MAGNUM® herbicide
  publication-title: Chimia
  doi: 10.2533/chimia.1997.297
– volume: 56
  start-page: 497
  year: 2000
  ident: S0890037X23000908_ref9
  article-title: Towards the primary target of chloroacetamides–new findings pave the way
  publication-title: Pest Manag Sci
  doi: 10.1002/(SICI)1526-4998(200006)56:6<497::AID-PS169>3.0.CO;2-W
– ident: S0890037X23000908_ref119
– volume: 71
  start-page: 6014
  year: 2023
  ident: S0890037X23000908_ref53
  article-title: Exploratory analysis on herbicide metabolism and very-long-chain fatty acid production in metolachlor-resistant Palmer amaranth (Amaranthus palmeri S. Wats.)
  publication-title: J Agric Food Chem
– volume: 22
  start-page: 541
  year: 1974
  ident: S0890037X23000908_ref46
  article-title: Discovery, development, and current status of the chloroacetamide herbicides
  publication-title: Weed Sci
  doi: 10.1017/S004317450003825X
– volume: 33
  start-page: 400
  year: 2019
  ident: S0890037X23000908_ref34
  article-title: Characterization of a waterhemp (Amaranthus tuberculatus) population from Illinois resistant to herbicides from five site-of-action groups
  publication-title: Weed Technol
  doi: 10.1017/wet.2019.19
– volume: 1
  start-page: 270
  year: 1987
  ident: S0890037X23000908_ref37
  article-title: Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides
  publication-title: Weed Technol
  doi: 10.1017/S0890037X00029729
– ident: S0890037X23000908_ref33
– volume: 33
  start-page: 421
  year: 1991
  ident: S0890037X23000908_ref35
  article-title: Mode of action studies with mefenacet
  publication-title: Pestic Sci
  doi: 10.1002/ps.2780330404
– volume: 53c
  start-page: 995
  year: 1998
  ident: S0890037X23000908_ref91
  article-title: Chloroacetamide mode of action. I: Inhibition of very-long-chain fatty acid synthesis in Scenedesmus acutus
  publication-title: Z Naturforsch
– start-page: 41
  volume-title: Herbicides
  year: 2021
  ident: S0890037X23000908_ref102
  doi: 10.1016/B978-0-12-823674-1.00008-0
– volume: 28
  start-page: 286
  year: 1987
  ident: S0890037X23000908_ref127
  article-title: Primary effects of chloroacetamides
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/0048-3575(87)90027-7
– volume: 95
  start-page: 47
  year: 2009
  ident: S0890037X23000908_ref108
  article-title: Action mechanism of a novel herbicide, pyroxasulfone
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/j.pestbp.2009.06.003
– ident: S0890037X23000908_ref120
– volume: 69
  start-page: 1379
  year: 2013
  ident: S0890037X23000908_ref20
  article-title: Cross-resistance to prosulfocarb and triallate in pyroxasulfone-resistant Lolium rigidum
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.3516
– volume: 53c
  start-page: 1004
  year: 1998
  ident: S0890037X23000908_ref74
  article-title: Chloroacetamide mode of action. II: Inhibition of very-long-chain fatty acid synthesis in higher plants
  publication-title: Z Naturforsch
  doi: 10.1515/znc-1998-11-1211
– volume: 41
  start-page: 107
  year: 2016
  ident: S0890037X23000908_ref78
  article-title: Development of the novel pre-emergence herbicide pyroxasulfone
  publication-title: J Pest Sci
  doi: 10.1584/jpestics.J16-05
– volume: 83
  start-page: 107
  year: 2005
  ident: S0890037X23000908_ref129
  article-title: Cytochrome P-450 monooxygenase activity in herbicide-resistant and-susceptible late watergrass (Echinochloa phyllopogon).
  publication-title: Pestic Biochem Phys
  doi: 10.1016/j.pestbp.2005.04.002
– ident: S0890037X23000908_ref114
– ident: S0890037X23000908_ref66
  doi: 10.1002/9783527699261.ch6
– ident: S0890037X23000908_ref86
– volume: 57
  start-page: 72
  year: 2002
  ident: S0890037X23000908_ref103
  article-title: Inhibition of very long chain fatty acid formation by indanofan, 2-[2-(3-Chlorophenyl)oxiran-2-ylmethyl]-2-ethylindan-1,3-dione, and its relatives
  publication-title: Z Naturforsch C
  doi: 10.1515/znc-2002-1-212
– volume: 75
  start-page: 3084
  year: 2019
  ident: S0890037X23000908_ref30
  article-title: Glutathione transferase plays a major role in flufenacet resistance of ryegrass (Lolium spp.) field populations
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.5425
– volume: 44
  start-page: 20
  year: 2019
  ident: S0890037X23000908_ref57
  article-title: Characterization of very long chain fatty acid synthesis inhibition by ipfencarbazone
  publication-title: J Pestic Sci
  doi: 10.1584/jpestics.D18-057
– volume: 66
  start-page: 581
  year: 2018
  ident: S0890037X23000908_ref11
  article-title: Resistance to multiple PRE herbicides in a field-evolved rigid ryegrass (Lolium rigidum) population
  publication-title: Weed Sci
  doi: 10.1017/wsc.2018.31
– volume: 34
  start-page: 877
  year: 2005
  ident: S0890037X23000908_ref45
  article-title: The acetochlor registration partnership surface water monitoring program for four corn herbicides
  publication-title: J Environ Qual
  doi: 10.2134/jeq2003.0411
– volume: 64
  start-page: 1045
  year: 2003
  ident: S0890037X23000908_ref32
  article-title: Covalent binding of chloroacetamide herbicides to the active site cysteine of plant type III polyketide synthases
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(03)00516-8
– volume: 32
  start-page: 264
  year: 1984
  ident: S0890037X23000908_ref128
  article-title: Accelerated degradation of thiocarbamate herbicides in soil with prior thiocarbamate herbicide exposure
  publication-title: Weed Sci
  doi: 10.1017/S0043174500058926
– volume: 70
  start-page: 1378
  year: 2014
  ident: S0890037X23000908_ref15
  article-title: Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.3746
– ident: S0890037X23000908_ref125
– ident: S0890037X23000908_ref97
– volume: 11
  start-page: 406
  year: 2020
  ident: S0890037X23000908_ref52
  article-title: Genome-wide identification of peanut KCS genes reveals that AhKCS1 and AhKCS28 are involved in regulating VLCFA contents in seeds
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00406
– volume: 38
  start-page: 461
  year: 1998
  ident: S0890037X23000908_ref88
  article-title: A possible involvement of gibberellin in the mechanism of Avena fatua resistance to triallate and cross-resistance to difenzoquat
  publication-title: Weed Res
  doi: 10.1046/j.1365-3180.1998.00115.x
– start-page: 513
  volume-title: Herbicide Handbook
  year: 2014
  ident: S0890037X23000908_ref95
– volume: 61
  start-page: 2126
  year: 2020
  ident: S0890037X23000908_ref49
  article-title: Arabidopsis ECERIFERUM2-LIKEs are mediators of condensing enzyme function
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcaa133
– volume: 52
  start-page: 489
  year: 2012
  ident: S0890037X23000908_ref17
  article-title: Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: field selection at high doses versus recurrent selection at low doses
  publication-title: Weed Res
  doi: 10.1111/j.1365-3180.2012.00948.x
– volume: 69
  start-page: 83
  year: 2015
  ident: S0890037X23000908_ref62
  article-title: Resistance profile of herbicide-resistant Alopecurus myosuroides (black-grass) populations in Denmark
  publication-title: Crop Prot
  doi: 10.1016/j.cropro.2014.12.016
– ident: S0890037X23000908_ref117
– volume: 42
  start-page: 195
  year: 1994
  ident: S0890037X23000908_ref80
  article-title: Wild oat (Avena fatua) populations resistant to triallate are also resistant to difenzoquat
  publication-title: Weed Sci
  doi: 10.1017/S0043174500080267
– start-page: 1028
  volume-title: Encyclopedia of Toxicology
  year: 2014
  ident: S0890037X23000908_ref41
– volume: 97
  start-page: 20
  year: 2016
  ident: S0890037X23000908_ref73
  article-title: Triallate-resistant wild oat (Avena fatua L.): unexpected resistance to pyroxasulfone and sulfentrazone
  publication-title: Can J Plant Sci
– volume: 101
  start-page: 11903
  year: 2004
  ident: S0890037X23000908_ref109
  article-title: Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404600101
– volume: 80
  start-page: 665
  year: 2000
  ident: S0890037X23000908_ref5
  article-title: Selecting for triallate resistance in wild oat
  publication-title: Can J Plant Sci
  doi: 10.4141/P99-110
– ident: S0890037X23000908_ref126
– ident: S0890037X23000908_ref50
– volume: 41
  start-page: 113
  year: 2016
  ident: S0890037X23000908_ref63
  article-title: Development of a rice herbicide, ipfencarbazone
  publication-title: J Pestic Sci
  doi: 10.1584/jpestics.J16-06
– volume: 16
  start-page: 16
  year: 2016
  ident: S0890037X23000908_ref24
  article-title: Penoxsulam-resistant barnyardgrass (Echinochlocrus-galli) in rice fields in China
  publication-title: Weed Biol Manag
  doi: 10.1111/wbm.12086
– ident: S0890037X23000908_ref67
– ident: S0890037X23000908_ref112
– volume: 51
  start-page: 123
  year: 2019
  ident: S0890037X23000908_ref58
  article-title: Control of herbicide resistant Phalaris minor by pyroxasulfone in wheat
  publication-title: Indian J Weed Sci
  doi: 10.5958/0974-8164.2019.00028.5
– volume: 67
  start-page: 267
  year: 2019
  ident: S0890037X23000908_ref12
  article-title: Resistance to very-long-chain fatty-acid (VLCFA)-inhibiting herbicides in multiple field-selected rigid ryegrass (Lolium rigidum) populations
  publication-title: Weed Sci
  doi: 10.1017/wsc.2018.93
– ident: S0890037X23000908_ref96
  doi: 10.5772/61779
– volume: 60
  start-page: 10
  year: 2012
  ident: S0890037X23000908_ref6
  article-title: Basis for herbicide resistance in Canadian populations of wild oat (Avena fatua).
  publication-title: Weed Sci
  doi: 10.1614/WS-D-11-00110.1
– volume: 333
  start-page: 361
  year: 2010
  ident: S0890037X23000908_ref3
  article-title: Role of very-long-chain fatty acids in plant development, when chain length does matter
  publication-title: C R Biol
  doi: 10.1016/j.crvi.2010.01.014
– volume: 75
  start-page: 2996
  year: 2019
  ident: S0890037X23000908_ref31
  article-title: Enhanced metabolism causes reduced flufenacet sensitivity in black-grass (Alopecurus myosuroides Huds.) field populations
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.5414
– volume: 93
  start-page: 48
  year: 2002
  ident: S0890037X23000908_ref61
  article-title: Two recessive gene inheritance for triallate resistance in Avena fatua L
  publication-title: J Hered
  doi: 10.1093/jhered/93.1.48
– volume: 48
  start-page: 225
  year: 2000
  ident: S0890037X23000908_ref36
  article-title: Herbicide-resistant Echinochloa oryzoides and E. phyllopogon in California Oryza sativa fields
  publication-title: Weed Sci
  doi: 10.1614/0043-1745(2000)048[0225:HREOAE]2.0.CO;2
– volume: 28
  start-page: 324
  year: 2003
  ident: S0890037X23000908_ref8
  article-title: Mode of action for choroacetamides and functionally related compounds
  publication-title: J Pestic Sci
  doi: 10.1584/jpestics.28.324
– volume: 12
  start-page: 1
  year: 2013
  ident: S0890037X23000908_ref43
  article-title: Comparison of pyroxasulfone to soil residual herbicides for glyphosate resistant Palmer amaranth control in glyphosate resistant soybean
  publication-title: Crop Manag
  doi: 10.1094/CM-2013-0032-RS
– volume: 58
  start-page: 4356
  year: 2010
  ident: S0890037X23000908_ref71
  article-title: Synthesis and herbicidal activity of novel N-(2,2,2)-trifluoroethylpyrazole derivatives
  publication-title: J Agric Food Chem
  doi: 10.1021/jf9042166
– volume: 121
  start-page: 105
  year: 2011
  ident: S0890037X23000908_ref23
  article-title: Relations of rice seeding rates to crop and weed growth in aerobic rice
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2010.11.019
– ident: S0890037X23000908_ref26
– start-page: 1753
  volume-title: Hayes’ Handbook of Pesticide Toxicology
  year: 2010
  ident: S0890037X23000908_ref51
  doi: 10.1016/B978-0-12-374367-1.00082-3
– volume: 10
  start-page: 1284
  year: 2021
  ident: S0890037X23000908_ref4
  article-title: Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses
  publication-title: Cells
  doi: 10.3390/cells10061284
– volume: 291
  start-page: 739
  year: 2016
  ident: S0890037X23000908_ref44
  article-title: Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-015-1142-3
– volume: 76
  start-page: 162
  year: 2012
  ident: S0890037X23000908_ref110
  article-title: Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.12.023
– volume: 147
  start-page: 89
  year: 2018
  ident: S0890037X23000908_ref2
  article-title: Metabolism studies of chiral pesticides: A critical review
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2017.08.011
– volume: 44
  start-page: 847
  year: 1996
  ident: S0890037X23000908_ref59
  article-title: Characterization of wild oat (Avena fatua L.) populations and an inbred line with multiple herbicide resistance
  publication-title: Weed Sci
  doi: 10.1017/S0043174500094819
– volume: 44
  start-page: 282
  year: 2019
  ident: S0890037X23000908_ref38
  article-title: Development of a rice herbicide, fenoxasulfone
  publication-title: J Pestic Sci
  doi: 10.1584/jpestics.J19-04
– volume: 72
  start-page: 1664
  year: 2016
  ident: S0890037X23000908_ref19
  article-title: Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.4253
– ident: S0890037X23000908_ref115
– ident: S0890037X23000908_ref85
– ident: S0890037X23000908_ref130
– volume: 62
  start-page: 1770
  year: 2021
  ident: S0890037X23000908_ref99
  article-title: Metabolic pathways for S-metolachlor detoxification differ between tolerant corn and multiple-resistant waterhemp
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcab132
– volume: 7
  start-page: 617
  year: 2006
  ident: S0890037X23000908_ref94
  article-title: Soil dissipation and biological activity of metolachlor and S-metolachlor in five soils
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.1215
– ident: S0890037X23000908_ref124
– volume: 19
  start-page: 6
  year: 2005
  ident: S0890037X23000908_ref81
  article-title: Fall and early preplant application timing effects on persistence and efficacy of acetamide herbicides
  publication-title: Weed Technol
  doi: 10.1614/WT-03-020R1
– volume: 70
  start-page: 160
  year: 2022
  ident: S0890037X23000908_ref28
  article-title: Thiobencarb resistance mechanism is distinct from CYP81A-based cross-resistance in late watergrass (Echinochloa phyllopogon).
  publication-title: Weed Sci
  doi: 10.1017/wsc.2022.4
– volume: 12
  start-page: 121
  year: 1997
  ident: S0890037X23000908_ref76
  article-title: Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1997.12010121.x
– volume: 64
  start-page: 331
  year: 2016
  ident: S0890037X23000908_ref70
  article-title: Characterization of multiple herbicide-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) populations from winter wheat fields in Oregon
  publication-title: Weed Sci
  doi: 10.1614/WS-D-15-00147.1
– volume: 34
  start-page: 19
  year: 2020
  ident: S0890037X23000908_ref13
  article-title: Control of thiocarbamate-resistant rigid ryegrass (Lolium rigidum) in wheat in southern Australia
  publication-title: Weed Technol
  doi: 10.1017/wet.2019.72
– volume: 70
  start-page: 380
  year: 2022
  ident: S0890037X23000908_ref65
  article-title: Resistance of Palmer amaranth (Amaranthus palmeri) to S-metolachlor in the midsouthern United States.
  publication-title: Weed Sci
  doi: 10.1017/wsc.2022.37
– volume: 11
  start-page: 609209
  year: 2021
  ident: S0890037X23000908_ref101
  article-title: Non-target-site resistance in Lolium spp. globally: a review
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.609209
– volume: 210
  start-page: 93
  year: 2013
  ident: S0890037X23000908_ref48
  article-title: Extending the story of very-long-chain fatty acid elongation
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2013.05.008
– volume: 50
  start-page: 576
  year: 2002
  ident: S0890037X23000908_ref64
  article-title: Site of uptake, absorption, translocation, and metabolism of ethofumesate in three turfgrass species
  publication-title: Weed Sci
  doi: 10.1614/0043-1745(2002)050[0576:SOUATA]2.0.CO;2
– volume: 602
  start-page: 30
  year: 2011
  ident: S0890037X23000908_ref90
  article-title: Efficacy and cotton tolerance to Warrant herbicide. Fayetteville: Arkansas Agricultural Experiment Station
  publication-title: Research Series
– volume: 24
  start-page: 281
  year: 2010
  ident: S0890037X23000908_ref89
  article-title: Widespread occurrence of herbicide-resistant Italian ryegrass (Lolium multiflorum) in Northern Idaho and Eastern Washington
  publication-title: Weed Technol
  doi: 10.1614/WT-D-09-00059.1
– ident: S0890037X23000908_ref118
– volume: 148
  start-page: 74
  year: 2018
  ident: S0890037X23000908_ref18
  article-title: Pyroxasulfone resistance in Lolium rigidum is metabolism-based
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/j.pestbp.2018.03.017
– volume: 95
  start-page: 973
  year: 2015
  ident: S0890037X23000908_ref54
  article-title: Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean
  publication-title: Can J Plant Sci
  doi: 10.4141/cjps-2014-422
– ident: S0890037X23000908_ref93
– volume: 51
  start-page: 21
  year: 1997
  ident: S0890037X23000908_ref60
  article-title: Fatty acid and wax biosynthesis in susceptible and triallate-resistant Avena fatua L.
  publication-title: Pestic Sci
  doi: 10.1002/(SICI)1096-9063(199709)51:1<21::AID-PS591>3.0.CO;2-9
– volume: 29
  start-page: 740
  year: 2015
  ident: S0890037X23000908_ref21
  article-title: Weed control in cotton by combinations of microencapsulated acetochlor and various residual herbicides applied preemergence
  publication-title: Weed Technol
  doi: 10.1614/WT-D-15-00061.1
– volume: 12
  start-page: 652581
  year: 2021
  ident: S0890037X23000908_ref87
  article-title: Mechanism of resistance to S-metolachlor in Palmer amaranth
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.652581
– ident: S0890037X23000908_ref121
– volume: 76
  start-page: 3139
  year: 2020
  ident: S0890037X23000908_ref100
  article-title: Metabolic resistance to S-metolachlor in two waterhemp (Amaranthus tuberculatus) populations from Illinois, USA
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.5868
– volume: 67
  start-page: 369
  year: 2019
  ident: S0890037X23000908_ref98
  article-title: Characterization of multiple herbicide-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois to VLCFA-inhibiting herbicides
  publication-title: Weed Sci
  doi: 10.1017/wsc.2019.13
– ident: S0890037X23000908_ref104
SSID ssj0016220
Score 2.4261725
SecondaryResourceType review_article
Snippet The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean,...
SourceID proquest
crossref
bioone
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Acetochlor
active sites
acyl coenzyme A
Amaranth
Amaranthus palmeri
Amaranthus tuberculatus
Avena sativa
barley
benzofurans
biochemical pathways
Biosynthesis
Cell division
Cereal crops
Chemical industry
Chemical research
Corn
Crop production
Crops
Endoplasmic reticulum
epoxy compounds
family
fatty acid elongase
Fatty acids
Glycine max
Grasses
Group 15 herbicides
herbicide resistance
Herbicides
Hordeum vulgare
Inhibitors
isoxazolines
Leaves
Lewis bases
Metolachlor
oats
Pesticides
Plant growth
pyroxasulfone
Reclassification
residual herbicides
resistant weeds
Saccharum officinarum
shoot and root tissue
Sorghum
Sorghum bicolor
Soybeans
species
Substrates
Sugarcane
Sulfur
taxonomic revisions
technology
Thiocarbamates
Triticum aestivum
vegetables
very long chain fatty acids
Weed control
weed management
Weeds
wheat
Zea mays
α-chloroacetamides
Title Very long chain fatty acid–inhibiting herbicides: Current uses, site of action, herbicide-resistant weeds, and future
URI http://www.bioone.org/doi/abs/10.1017/wet.2023.90
https://www.proquest.com/docview/2923240481
https://www.proquest.com/docview/3200356361
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZa6KE9IPoS2wIyFacKtyZ2HuaCAIEQUlFVlWpvll-BSCihm6xW3PgP_Yf9Jcwk3kVIiGsycpSxPTOfPfMNIduGFyazUjJTqISBlRTMKCeZKrxILRaG9FWuP86z0wt5Nk7H8cCtjWmVc5vYG2rfODwj_54o9P3IbrJ_85dh1yi8XY0tNF6SZTDBBYCv5cPj85-_FvcIWTIQMxaKMy7ycazQQ9LoWcBUykR8Q3P8ylZNU4fHzumxbe4dzskqWYmRIj0YpvYteRHqd-TNweUksmWE92T2J0xu6XVTX1J3BRCflqbrbqlxlf9_96-qrypbYVozhYmxFTwN7R6NjEx02oZ2h-Lv0aakQ33DzoMkAxyOsSVIzsDDgaipPR0oSD6Qi5Pj30enLHZSYFZkaccwzLHeJqXhSWnBrZc2hDxD7sDcgn8KigtbJMLJ1Ctj892y8ErmiUyl48Fx8ZEs1aCfNUIlDAAwwwhnguQe0FoqfcjTIAFcGp-OyJdBl_pmoMvQQx5ZrkHhGhWuFR-Rr3M9axe5yLElxvXTwtsL4WfHXJ9PmI77sNUPq2ZEthavYQfhtYipQzNttehJYTOR7X56fojP5DV8S_YF7XydLHWTadiAkKSzm3HdbfaQ_h48_uIh
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VLRJwQPyKhQIGlQuqwbWdPySECrTa0naFUIv2ZuzYaSNVSdlktdob78B78FA8CeP8bFUJ9dZrMppI4_F8nnjmG4B1zWIdGimpjhNOMUoKqpNU0iS2IjC-MaTpcj0Yh6Mj-WUSTFbgT98L48sq-5jYBGpbpv4f-VueeOz37CYfzn5SPzXK3672IzRat9hzizmmbNX73c-4vq8439k-_DSi3VQBakQY1NRDvrGGZ5rxzCDEZca5KPQ8epHBWO0SJkzMRSoDm2gTbWaxTWTEZSBT5lImUO81WJUCU5kBrH7cHn_9try3CHlLBBknjDIRTbqOQE9SPXe-dJOLNz78Xzd5WRbuIhhexIIG4HbuwO3uZEq2Wle6CyuuuAe3to6nHTuHuw_z7266IKdlcUzSE50XJNN1vSA6ze3fX7_z4iQ3uS-jJugIJsenrnpHOgYoMqtctUG8OUmZkbafYuNckmLe78-yKDlHREVRXVjSUp48gKMrsfFDGBRon0dAJCrAtEaLVDvJLGaHgbQuCpzEZFbbYAgvW1uqs5aeQ7V1a5FCgytvcJWwIbzu7azSjvvcj-A4_b_w-lL4Up1r_YKpbt9X6txLh_Bi-Rp3rL-G0YUrZ5USDQltKMLNx5ereA43RocH-2p_d7z3BG7id2XTTM_WYFBPZ-4pHodq86zzQQI_rtrt_wFmMR16
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VLUJwQPyKhQIGlQuqqWs7f0gIFdpVS2FVIYr2ZuzYaSNVSdlktdob78Db8Dg8CeP8bFUJ9dZrMppI4_F8nnjmG4B1zWIdGimpjhNOMUoKqpNU0iS2IjC-MaTpcv0yDveO5KdJMFmBP30vjC-r7GNiE6htmfp_5Js88djv2U02s64s4nBn9P7sJ_UTpPxNaz9Oo3WRA7eYY_pWvdvfwbV-xflo99vHPdpNGKBGhEFNPfwba3imGc8Mwl1mnItCz6kXGYzbLmHCxFykMrCJNtFWFttERlwGMmUuZQL1XoPVCLMiNoDVD7vjw6_LO4yQt6SQccIoE9Gk6w70hNVz58s4uXjjoeC6ycuycBeB8SIuNGA3ugO3u1Mq2W7d6i6suOIe3No-nnZMHe4-zL-76YKclsUxSU90XpBM1_WC6DS3f3_9zouT3OS-pJqgU5gcn7rqLenYoMisctUG8eYkZUba3oqNc0k6dZU_16LkHNEVRXVhSUt_8gCOrsTGD2FQoH0eAZGoAFMcLVLtJLOYKQbSuihwEhNbbYMhvGxtqc5aqg7V1rBFCg2uvMFVwobwurezSjsedD-O4_T_wutL4Ut1rvULproYUKlzjx3Ci-Vr3L3-SkYXrpxVSjSEtKEItx5fruI53EB3V5_3xwdP4CZ-VjZ99WwNBvV05p7iyag2zzoXJPDjqr3-H3gkIa8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+long+chain+fatty+acid%E2%80%93inhibiting+herbicides%3A+Current+uses%2C+site+of+action%2C+herbicide-resistant+weeds%2C+and+future&rft.jtitle=Weed+technology&rft.au=Jhala%2C+Amit+J.&rft.au=Singh%2C+Mandeep&rft.au=Shergill%2C+Lovreet&rft.au=Singh%2C+Rishabh&rft.date=2024-02-20&rft.pub=Cambridge+University+Press&rft.eissn=1550-2740&rft.volume=38&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1017%2Fwet.2023.90&rft.externalDocID=10.1017%2Fwet.2023.90
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-037X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-037X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-037X&client=summon