4-Hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides: past, present, and future
The herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) are primarily used for weed control in corn, barley, oat, rice, sorghum, sugarcane, and wheat production fields in the United States. The objectives of this review were to summarize 1) the history of HPPD-inhibitor herbicides and...
Saved in:
Published in | Weed technology Vol. 37; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, USA
Cambridge University Press
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-037X 1550-2740 |
DOI | 10.1017/wet.2022.79 |
Cover
Loading…
Abstract | The herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) are primarily used for weed control in corn, barley, oat, rice, sorghum, sugarcane, and wheat production fields in the United States. The objectives of this review were to summarize 1) the history of HPPD-inhibitor herbicides and their use in the United States; 2) HPPD-inhibitor resistant weeds, their mechanism of resistance, and management; 3) interaction of HPPD-inhibitor herbicides with other herbicides; and 4) the future of HPPD-inhibitor-resistant crops. As of 2022, three broadleaf weeds (Palmer amaranth, waterhemp, and wild radish) have evolved resistance to the HPPD inhibitor. The predominance of metabolic resistance to HPPD inhibitor was found in aforementioned three weed species. Management of HPPD-inhibitor-resistant weeds can be accomplished using alternate herbicides such as glyphosate, glufosinate, 2,4-D, or dicamba; however, metabolic resistance poses a serious challenge, because the weeds may be cross-resistant to other herbicide sites of action, leading to limited herbicide options. An HPPD-inhibitor herbicide is commonly applied with a photosystem II (PS II) inhibitor to increase efficacy and weed control spectrum. The synergism with an HPPD inhibitor arises from depletion of plastoquinones, which allows increased binding of a PS II inhibitor to the D1 protein. New HPPD inhibitors from the azole carboxamides class are in development and expected to be available in the near future. HPPD-inhibitor-resistant crops have been developed through overexpression of a resistant bacterial HPPD enzyme in plants and the overexpression of transgenes for HPPD and a microbial gene that enhances the production of the HPPD substrate. Isoxaflutole-resistant soybean is commercially available, and it is expected that soybean resistant to other HPPD inhibitor herbicides such as mesotrione, stacked with resistance to other herbicides, will be available in the near future. Nomenclature: Bicyclopyrone; bipyrazone; isoxaflutole; mesotrione; pyroxasulfotole; tembotrione; tolpyralate; topramezone; Palmer amaranth, Amaranthus palmeri L.; waterhemp, Amaranthus tuberculatus L.; wild radish, Raphanus raphanistrum L.; barley, Hordeum vulgare L.; corn, Zea mays L.; oat, Avena sativa L.; rice, Oryza sativa L.; sorghum, Sorghum bicolor (L.) Moench; sugarcane, Saccharum officinarum L.; wheat, Triticum aestivum L. |
---|---|
AbstractList | The herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) are primarily used for weed control in corn, barley, oat, rice, sorghum, sugarcane, and wheat production fields in the United States. The objectives of this review were to summarize 1) the history of HPPD-inhibitor herbicides and their use in the United States; 2) HPPD-inhibitor resistant weeds, their mechanism of resistance, and management; 3) interaction of HPPD-inhibitor herbicides with other herbicides; and 4) the future of HPPD-inhibitor-resistant crops. As of 2022, three broadleaf weeds (Palmer amaranth, waterhemp, and wild radish) have evolved resistance to the HPPD inhibitor. The predominance of metabolic resistance to HPPD inhibitor was found in aforementioned three weed species. Management of HPPD-inhibitor-resistant weeds can be accomplished using alternate herbicides such as glyphosate, glufosinate, 2,4-D, or dicamba; however, metabolic resistance poses a serious challenge, because the weeds may be cross-resistant to other herbicide sites of action, leading to limited herbicide options. An HPPD-inhibitor herbicide is commonly applied with a photosystem II (PS II) inhibitor to increase efficacy and weed control spectrum. The synergism with an HPPD inhibitor arises from depletion of plastoquinones, which allows increased binding of a PS II inhibitor to the D1 protein. New HPPD inhibitors from the azole carboxamides class are in development and expected to be available in the near future. HPPD-inhibitor-resistant crops have been developed through overexpression of a resistant bacterial HPPD enzyme in plants and the overexpression of transgenes for HPPD and a microbial gene that enhances the production of the HPPD substrate. Isoxaflutole-resistant soybean is commercially available, and it is expected that soybean resistant to other HPPD inhibitor herbicides such as mesotrione, stacked with resistance to other herbicides, will be available in the near future. Nomenclature: Bicyclopyrone; bipyrazone; isoxaflutole; mesotrione; pyroxasulfotole; tembotrione; tolpyralate; topramezone; Palmer amaranth, Amaranthus palmeri L.; waterhemp, Amaranthus tuberculatus L.; wild radish, Raphanus raphanistrum L.; barley, Hordeum vulgare L.; corn, Zea mays L.; oat, Avena sativa L.; rice, Oryza sativa L.; sorghum, Sorghum bicolor (L.) Moench; sugarcane, Saccharum officinarum L.; wheat, Triticum aestivum L. The herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) are primarily used for weed control in corn, barley, oat, rice, sorghum, sugarcane, and wheat production fields in the United States. The objectives of this review were to summarize 1) the history of HPPD-inhibitor herbicides and their use in the United States; 2) HPPD-inhibitor resistant weeds, their mechanism of resistance, and management; 3) interaction of HPPD-inhibitor herbicides with other herbicides; and 4) the future of HPPD-inhibitor-resistant crops. As of 2022, three broadleaf weeds (Palmer amaranth, waterhemp, and wild radish) have evolved resistance to the HPPD inhibitor. The predominance of metabolic resistance to HPPD inhibitor was found in aforementioned three weed species. Management of HPPD-inhibitor-resistant weeds can be accomplished using alternate herbicides such as glyphosate, glufosinate, 2,4-D, or dicamba; however, metabolic resistance poses a serious challenge, because the weeds may be cross-resistant to other herbicide sites of action, leading to limited herbicide options. An HPPD-inhibitor herbicide is commonly applied with a photosystem II (PS II) inhibitor to increase efficacy and weed control spectrum. The synergism with an HPPD inhibitor arises from depletion of plastoquinones, which allows increased binding of a PS II inhibitor to the D1 protein. New HPPD inhibitors from the azole carboxamides class are in development and expected to be available in the near future. HPPD-inhibitor-resistant crops have been developed through overexpression of a resistant bacterial HPPD enzyme in plants and the overexpression of transgenes for HPPD and a microbial gene that enhances the production of the HPPD substrate. Isoxaflutole-resistant soybean is commercially available, and it is expected that soybean resistant to other HPPD inhibitor herbicides such as mesotrione, stacked with resistance to other herbicides, will be available in the near future. |
Author | Norsworthy, Jason K. Jhala, Amit J. Burton, Paul M. Dale, Richard P. Williams, Martin M. Dayan, Franck E. Yadav, Ramawatar Jha, Prashant Kumar, Vipan Jugulam, Mithila Hausman, Nicholas E. |
Author_xml | – sequence: 1 givenname: Amit J. orcidid: 0000-0001-8599-4996 surname: Jhala fullname: Jhala, Amit J. organization: Associate Professor, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA – sequence: 2 givenname: Vipan orcidid: 0000-0002-8301-5878 surname: Kumar fullname: Kumar, Vipan organization: Assistant Professor, Agricultural Research Center at Hays, Kansas State University, Hays, KS, USA – sequence: 3 givenname: Ramawatar orcidid: 0000-0001-7561-1277 surname: Yadav fullname: Yadav, Ramawatar organization: Postdoctoral Research Associate, Department of Agronomy, Iowa State University, Ames, IA, USA – sequence: 4 givenname: Prashant orcidid: 0000-0003-2994-2782 surname: Jha fullname: Jha, Prashant organization: Professor, Department of Agronomy, Iowa State University, Ames, IA, USA – sequence: 5 givenname: Mithila orcidid: 0000-0003-2065-9067 surname: Jugulam fullname: Jugulam, Mithila organization: Professor, Department of Agronomy, Kansas State University, Manhattan, KS, USA – sequence: 6 givenname: Martin M. orcidid: 0000-0002-6302-7724 surname: Williams fullname: Williams, Martin M. organization: Ecologist, Global Change and Photosynthesis Research, U.S. Department of Agriculture–Agricultural Research Service, Urbana, IL, USA – sequence: 7 givenname: Nicholas E. orcidid: 0000-0002-4033-6591 surname: Hausman fullname: Hausman, Nicholas E. organization: Agricultural Science Technician, Global Change and Photosynthesis Research, U.S. Department of Agriculture–Agricultural Research Service, Urbana, IL, USA – sequence: 8 givenname: Franck E. orcidid: 0000-0001-6964-2499 surname: Dayan fullname: Dayan, Franck E. organization: Professor, Department of Soil and Crop Sciences, Department of Biological Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA – sequence: 9 givenname: Paul M. orcidid: 0000-0002-1600-6154 surname: Burton fullname: Burton, Paul M. organization: Herbicide Chemistry and Senior Leader, Syngenta Crop Protection, Syngenta Jealott's Hill International Research Center, Warfield, Bracknell, United Kingdom – sequence: 10 givenname: Richard P. orcidid: 0000-0002-7741-8785 surname: Dale fullname: Dale, Richard P. organization: Herbicide Molecular Sciences Team Leader, Syngenta Jealott's Hill International Research Center, Warfield, Bracknell, United Kingdom – sequence: 11 givenname: Jason K. orcidid: 0000-0002-7379-6201 surname: Norsworthy fullname: Norsworthy, Jason K. organization: Distinguished Professor and Elms Farming Chair of Weed Science, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA |
BookMark | eNp9kU1LAzEQQIMoWKsn_8CCF0W3JtltsutN6keFgj0oCB5Ckp1tU2p2TbLq_ntT6knQ0wzDmxnmzQHatY0FhI4JHhFM-OUnhBHFlI54uYMGZDzGKeU53kUDXJQ4xRl_2UcH3q8wJoxSPECveTrtK9d89e0SbL9ue9d9yABJZWJtAVZ6SE6n8_nNWWrs0igTjF0kS3DKaFOBv0pa6cNF0jrwYGMibZXUXegcHKK9Wq49HP3EIXq-u32aTNPZ4_3D5HqWqiyjIaXjKqugAJ2XRY5rKGpdYihLXnBWAteKKcmU1oTFe2qZZYSrjGmomVS6ykk2RCfbua1r3jvwQayaztm4UtAi2mAYMx4psqW0a7x3UAttggymscFJsxYEi41DER2KjUPBy9hz_qundeZNuv4P-mxLK9PEv_zLfgOVv4PB |
CitedBy_id | crossref_primary_10_1021_acs_jafc_4c07783 crossref_primary_10_1093_jxb_erae445 crossref_primary_10_1021_acs_jafc_4c08544 crossref_primary_10_1021_acs_jafc_3c07166 crossref_primary_10_1079_cabireviews_2024_0029 crossref_primary_10_1002_agg2_70074 crossref_primary_10_1021_acs_jafc_3c06312 crossref_primary_10_3390_toxics12040238 crossref_primary_10_1021_acs_jafc_3c06798 crossref_primary_10_1021_acs_jafc_3c04323 crossref_primary_10_1093_jxb_erae330 crossref_primary_10_1017_wsc_2024_64 crossref_primary_10_1186_s12870_025_06379_z crossref_primary_10_1017_wsc_2024_33 crossref_primary_10_1016_j_pestbp_2025_106380 crossref_primary_10_1002_ps_7896 crossref_primary_10_1016_j_aac_2024_09_004 crossref_primary_10_1016_j_saa_2024_124818 crossref_primary_10_1002_csc2_21322 crossref_primary_10_1016_j_envres_2024_118839 |
Cites_doi | 10.1614/WT-06-133.1 10.1002/1526-4998(200102)57:2<133::AID-PS276>3.0.CO;2-0 10.1017/wet.2021.90 10.1614/WS-08-175.1 10.1614/WT-08-188.1 10.1614/WT-D-14-00026.1 10.1614/WT-D-09-00017.1 10.1614/WT-04-304.1 10.3389/fpls.2017.00555 10.1017/wsc.2022.13 10.1614/WT-D-13-00115.1 10.1002/ps.6072 10.1017/wsc.2017.28 10.1614/WS-D-14-00102.1 10.1017/wsc.2019.25 10.1002/ps.6048 10.1038/s41598-020-62116-6 10.3389/fpls.2020.614618 10.1002/ps.4009 10.4236/ajps.2014.51020 10.1126/science.aax0379 10.1016/j.pestbp.2019.01.006 10.1614/WS-08-061.1 10.2134/agronj13.0570 10.1017/wet.2019.95 10.1007/978-1-4939-1019-9_8 10.1017/wet.2021.49 10.1104/pp.114.242750 10.3389/fpls.2020.596581 10.1111/nph.17708 10.1371/journal.pone.0180095 10.1017/wsc.2017.68 10.3389/fpls.2016.01898 10.1016/j.cropro.2011.03.023 10.1614/WS-D-09-00058.1 10.1017/wsc.2021.34 10.1584/jpestics.D20-031 10.1017/wet.2020.13 10.1614/WS-07-128.1 10.1104/pp.113.223156 10.1017/wet.2019.21 10.1614/WT-D-11-00053.1 10.1002/agj2.21042 10.1104/pp.114.247205 10.1139/cjps-2015-0121 10.1614/WT-D-13-00090.1 10.1614/WT-D-13-00005.1 10.1006/pest.1998.2378 10.1016/j.bmc.2009.03.015 10.2307/4041058 10.1139/cjps-2020-0303 10.1017/wsc.2021.3 10.1017/wet.2020.101 10.1139/cjps-2018-0320 10.1614/0890-037X(2003)017[0605:RCOHBS]2.0.CO;2 10.1614/WS-04-039R 10.1002/ps.5725 10.1017/S0043174500079054 10.2134/agronj2019.01.0037 10.1614/WS-D-11-00155.1 10.1016/j.still.2017.12.018 10.1614/WT-05-020R.1 10.1111/j.1399-3054.1985.tb01222.x 10.1614/WT-09-067.1 10.1017/S0043174500093218 10.1002/ps.1341 10.1614/WT-D-14-00104.1 10.1155/2016/2607671 10.1614/WT-D-10-00140.1 10.1614/WT-07-131.1 10.1614/WT-03-260R1 10.1002/ps.2100 10.3389/fpls.2018.01644 10.1614/WT-D-11-00132.1 10.1017/wet.2017.111 10.1016/j.fcr.2010.11.020 10.1614/WS-06-217.1 10.1017/wsc.2020.31 10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2 10.1002/anie.201302365 10.1002/ps.3894 10.1614/WS-D-14-00113.1 10.1584/jpestics.D21-019 10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E 10.1046/j.1365-3180.2003.00355.x 10.1017/wet.2016.4 10.4141/cjps-2014-429 10.1017/wet.2016.26 10.1017/wet.2019.19 10.1007/s10886-013-0237-8 10.1614/WT-08-055.1 10.2134/agronj2017.12.0703 10.1002/ps.924 10.1017/wsc.2019.29 10.1614/0890-037X(2003)017[0111:MCINTC]2.0.CO;2 10.1614/WT-D-13-00032.1 10.1002/agj2.20770 10.1016/j.phytochem.2007.01.026 10.3390/plants8100417 10.21273/HORTSCI.40.6.1801 10.1614/WT-D-15-00189.1 10.1017/wsc.2018.36 10.1002/ps.997 10.3389/fpls.2017.02231 10.1614/0890-037X(2002)016[0414:EOPARA]2.0.CO;2 10.1614/WT-05-042R1.1 10.1002/ps.4786 10.1614/WT-D-12-00119.1 10.1002/ps.554 10.4148/2378-5977.7640 10.2134/agronj2017.12.0704 10.1017/wet.2021.82 10.1017/wet.2018.82 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X2 7XB 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M0K M2O M7P MBDVC PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1017/wet.2022.79 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Biological Sciences Agriculture Science Database Research Library Biological Science Database Research Library (Corporate) Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Research Library Research Library China ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1550-2740 |
EndPage | 14 |
ExternalDocumentID | 10_1017_wet_2022_79 10.1017/wet.2022.79 |
GeographicLocations | United States--US China Nebraska |
GeographicLocations_xml | – name: Nebraska – name: China – name: United States--US |
GroupedDBID | -JH 09C 09E 0R~ 123 8G5 AAAZR AABES AABWE AACFU AAEED AAGFV AAHKG AAKTX AAUKB AAXTN ABKMT ABPLY ABQTM ABROB ABTLG ABZCX ACCHT ACGFS ACPRK ACQFJ ACUIJ ACUYZ ACWGA ACYZP ADBBV ADDNB ADGEJ ADHSS ADKIL ADOCW ADOYD ADVJH AEBAK AEDJY AEEJZ AENEX AEPYG AEYYC AFAZZ AFKQG AFLVW AFNWH AFRAH AFRIC AGABE AGJUD AGOOT AHQXX AIGNW AIHIV AIOIP AJCYY AJPFC AKPMI ALMA_UNASSIGNED_HOLDINGS AQJOH ATCPS ATUCA AUXHV BBLKV BBNVY BENPR BHPHI BLZWO BMAJL CBIIA CFAFE CJCSC CS3 DOHLZ EBS HCIFZ HZ~ IH6 IS6 JBS JHPGK JLS JQKCU KCGVB KFECR M0K M2O M7P NIKVX NVHAQ O9- P2P PQ0 RBO RCA ROL S6U SAAAG SJN T9M TN5 UT1 WFFJZ WH7 Y6R ZMEZD ZYDXJ ~02 ~EF ~KM 29R 2AX 2~F 7X2 8FE 8FH AAHBH AAPSS AASVR AAYXX ABBHK ABBZL ABGDZ ABJNI ABUWG ABVKB ABVZP ABXAU ABXHF ABXSQ ACAJB ACDLN ACHIC ADOVH ADOVT ADULT AEHGV AENCP AEUPB AEUYN AFFIJ AFKRA AFZFC AGUYK AHRGI AHXOZ AICQM AKMAY AKZCZ ANHSF AQVQM ARZZG AS~ AYIQA AZQEC BCGOX BESQT BJBOZ BPHCQ CAG CBGCD CCPQU CCQAD CCUQV CFBFF CGQII CHEAL CITATION COF DATOO DC7 DWQXO ECGQY EGQIC EJD GNUQQ GTFYD GUQSH H13 HGD HTVGU IL9 IOEEP IOO IPSME IPYYG JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM JST KAFGG LHUNA LK8 LW7 NEJ NHB NZEOI OVD PADUT PHGZM PHGZT PQQKQ PROAC Q5J SA0 TEORI YR5 ZDLDU ZJOSE 3V. 7XB 8FK MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-b332t-25d3de8ec49840fe8fc90e9978769e7cb6ba6bcc16550fa3317b36cef6abcd413 |
IEDL.DBID | BENPR |
ISSN | 0890-037X |
IngestDate | Fri Jul 25 10:39:56 EDT 2025 Tue Jul 01 00:55:50 EDT 2025 Thu Apr 24 22:56:23 EDT 2025 Tue Apr 25 15:45:09 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b332t-25d3de8ec49840fe8fc90e9978769e7cb6ba6bcc16550fa3317b36cef6abcd413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2065-9067 0000-0001-7561-1277 0000-0002-7379-6201 0000-0002-6302-7724 0000-0002-4033-6591 0000-0002-1600-6154 0000-0002-8301-5878 0000-0001-8599-4996 0000-0003-2994-2782 0000-0001-6964-2499 0000-0002-7741-8785 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/9EC3940A8BEBF397501D8705381CF2FD/S0890037X22000793a.pdf/div-class-title-4-hydroxyphenylpyruvate-dioxygenase-hppd-inhibiting-herbicides-past-present-and-future-div.pdf |
PQID | 2802260067 |
PQPubID | 506325 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2802260067 crossref_citationtrail_10_1017_wet_2022_79 crossref_primary_10_1017_wet_2022_79 bioone_primary_10_1017_wet_2022_79 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Lawrence |
PublicationTitle | Weed technology |
PublicationTitleAbbrev | Weed Technol |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Chahal (S0890037X22000793_ref12) 2015 S0890037X22000793_ref28 Chahal (S0890037X22000793_ref17) 2019; 111 Pallett (S0890037X22000793_ref87) 1998; 62 Janak (S0890037X22000793_ref43) 2016 S0890037X22000793_ref20 S0890037X22000793_ref25 Creech (S0890037X22000793_ref21) 2004; 60 S0890037X22000793_ref23 S0890037X22000793_ref24 S0890037X22000793_ref19 S0890037X22000793_ref16 Smith (S0890037X22000793_ref102) 2019; 33 Osipitan (S0890037X22000793_ref84) 2018; 10 Currie (S0890037X22000793_ref22) 2016; 2 Johnson (S0890037X22000793_ref49) 2002; 16 Tranel (S0890037X22000793_ref114) 2021; 77 S0890037X22000793_ref90 S0890037X22000793_ref91 Oliveira (S0890037X22000793_ref82) 2017; 31 S0890037X22000793_ref95 S0890037X22000793_ref92 S0890037X22000793_ref93 S0890037X22000793_ref98 S0890037X22000793_ref10 S0890037X22000793_ref11 S0890037X22000793_ref15 S0890037X22000793_ref13 Wuerffel (S0890037X22000793_ref133) 2015; 63 Beaudegnies (S0890037X22000793_ref7) 2009; 17 S0890037X22000793_ref40 S0890037X22000793_ref44 Sarangi (S0890037X22000793_ref94) 2019; 67 S0890037X22000793_ref42 S0890037X22000793_ref47 S0890037X22000793_ref45 S0890037X22000793_ref46 Evans (S0890037X22000793_ref27) 2019; 33 S0890037X22000793_ref38 S0890037X22000793_ref39 Mitchell (S0890037X22000793_ref74) 2001; 57 Norris (S0890037X22000793_ref79) 1995; 7 Pallett (S0890037X22000793_ref86) 2001; 57 Hatzios (S0890037X22000793_ref34) 1985; 1 S0890037X22000793_ref109 S0890037X22000793_ref108 S0890037X22000793_ref107 S0890037X22000793_ref106 S0890037X22000793_ref105 S0890037X22000793_ref104 S0890037X22000793_ref103 S0890037X22000793_ref101 Chahal (S0890037X22000793_ref14) 2018; 32 S0890037X22000793_ref32 Willemse (S0890037X22000793_ref123) 2021; 13 S0890037X22000793_ref100 S0890037X22000793_ref30 S0890037X22000793_ref31 Mallory-Smith (S0890037X22000793_ref70) 2017; 17 S0890037X22000793_ref36 S0890037X22000793_ref37 S0890037X22000793_ref35 S0890037X22000793_ref1 S0890037X22000793_ref2 Fluttert (S0890037X22000793_ref29) 2022; 70 S0890037X22000793_ref8 S0890037X22000793_ref4 S0890037X22000793_ref5 S0890037X22000793_ref6 S0890037X22000793_ref119 S0890037X22000793_ref118 Metzger (S0890037X22000793_ref73) 2018; 32 S0890037X22000793_ref117 S0890037X22000793_ref116 S0890037X22000793_ref61 S0890037X22000793_ref62 S0890037X22000793_ref115 S0890037X22000793_ref60 S0890037X22000793_ref113 Schuster (S0890037X22000793_ref97) 2008; 22 S0890037X22000793_ref112 S0890037X22000793_ref65 S0890037X22000793_ref66 S0890037X22000793_ref110 S0890037X22000793_ref63 S0890037X22000793_ref64 S0890037X22000793_ref69 Ma (S0890037X22000793_ref68) 2013; 163 Ahrens (S0890037X22000793_ref3) 2013; 52 Kaundun (S0890037X22000793_ref53) 2017; 12 Jhala (S0890037X22000793_ref48) 2014; 28 Willemse (S0890037X22000793_ref125) 2021; 12 S0890037X22000793_ref129 S0890037X22000793_ref128 S0890037X22000793_ref50 S0890037X22000793_ref126 S0890037X22000793_ref51 Besançon (S0890037X22000793_ref9) 2016; 1 S0890037X22000793_ref124 Lygin (S0890037X22000793_ref67) 2018; 9 S0890037X22000793_ref54 S0890037X22000793_ref55 S0890037X22000793_ref122 S0890037X22000793_ref52 S0890037X22000793_ref120 S0890037X22000793_ref58 S0890037X22000793_ref59 S0890037X22000793_ref56 Kohrt (S0890037X22000793_ref57) 2017; 65 Negrisoli (S0890037X22000793_ref78) 2020; 34 Ditschun (S0890037X22000793_ref26) 2016; 96 Hugie (S0890037X22000793_ref41) 2008; 56 cr-split#-S0890037X22000793_ref99.2 cr-split#-S0890037X22000793_ref99.1 S0890037X22000793_ref80 S0890037X22000793_ref83 Williams (S0890037X22000793_ref127) 2010; 58 S0890037X22000793_ref81 S0890037X22000793_ref136 S0890037X22000793_ref135 S0890037X22000793_ref134 S0890037X22000793_ref88 Hager (S0890037X22000793_ref33) 1997 S0890037X22000793_ref132 S0890037X22000793_ref85 S0890037X22000793_ref131 Choe (S0890037X22000793_ref18) 2014; 106 S0890037X22000793_ref130 S0890037X22000793_ref89 Sutton (S0890037X22000793_ref111) 2002; 58 Schuster (S0890037X22000793_ref96) 2007; 55 Wang (S0890037X22000793_ref121) 2020; 10 S0890037X22000793_ref72 S0890037X22000793_ref71 S0890037X22000793_ref76 S0890037X22000793_ref77 S0890037X22000793_ref75 |
References_xml | – ident: S0890037X22000793_ref6 doi: 10.1614/WT-06-133.1 – volume: 57 start-page: 133 year: 2001 ident: S0890037X22000793_ref86 article-title: Isoxaflutole: the background to its discovery and the basis of its herbicidal properties publication-title: Pest Manag Sci doi: 10.1002/1526-4998(200102)57:2<133::AID-PS276>3.0.CO;2-0 – ident: S0890037X22000793_ref119 doi: 10.1017/wet.2021.90 – volume: 13 start-page: 21 year: 2021 ident: S0890037X22000793_ref123 article-title: Is there a benefit of adding atrazine to HPPD-inhibiting herbicides for control of multiple-herbicide-resistant, including group 5-resistant, waterhemp in corn? publication-title: J Agr Sci – ident: S0890037X22000793_ref130 doi: 10.1614/WS-08-175.1 – ident: S0890037X22000793_ref131 doi: 10.1614/WT-08-188.1 – ident: S0890037X22000793_ref59 doi: 10.1614/WT-D-14-00026.1 – ident: S0890037X22000793_ref56 doi: 10.1614/WT-D-09-00017.1 – ident: S0890037X22000793_ref10 doi: 10.1614/WT-04-304.1 – ident: S0890037X22000793_ref77 doi: 10.3389/fpls.2017.00555 – volume: 70 start-page: 319 year: 2022 ident: S0890037X22000793_ref29 article-title: Additive and synergistic interactions of 4-hydroxyphenylpyruvate dioxygenase (HPPD)- and photosystem II (PSII)-inhibitors for the control of glyphosate-resistant horseweed (Conyza canadensis) in corn publication-title: Weed Sci doi: 10.1017/wsc.2022.13 – ident: S0890037X22000793_ref58 doi: 10.1614/WT-D-13-00115.1 – ident: S0890037X22000793_ref52 doi: 10.1002/ps.6072 – volume: 65 start-page: 534 year: 2017 ident: S0890037X22000793_ref57 article-title: Response of a multiple-resistant Palmer amaranth (Amaranthus palmeri) population to four HPPD-inhibiting herbicides applied alone and with atrazine publication-title: Weed Sci doi: 10.1017/wsc.2017.28 – ident: S0890037X22000793_ref95 doi: 10.1614/WS-D-14-00102.1 – ident: S0890037X22000793_ref103 doi: 10.1017/wsc.2019.25 – ident: S0890037X22000793_ref39 – volume: 77 start-page: 43 year: 2021 ident: S0890037X22000793_ref114 article-title: Herbicide resistance in Amaranthus tuberculatus publication-title: Pest Manag Sci doi: 10.1002/ps.6048 – ident: S0890037X22000793_ref132 doi: 10.1614/WS-08-175.1 – volume: 10 start-page: 5521 year: 2020 ident: S0890037X22000793_ref121 article-title: Bipyrazone: a new HPPD inhibiting herbicide in wheat publication-title: Sci Rep doi: 10.1038/s41598-020-62116-6 – ident: S0890037X22000793_ref100 doi: 10.3389/fpls.2020.614618 – ident: S0890037X22000793_ref28 doi: 10.1002/ps.4009 – ident: S0890037X22000793_ref105 doi: 10.4236/ajps.2014.51020 – ident: S0890037X22000793_ref69 doi: 10.1126/science.aax0379 – ident: S0890037X22000793_ref37 doi: 10.1016/j.pestbp.2019.01.006 – ident: S0890037X22000793_ref51 doi: 10.1614/WS-08-061.1 – volume: 106 start-page: 1317 year: 2014 ident: S0890037X22000793_ref18 article-title: Photosystem II-inhibitors play a limited role in sweet corn response to 4-hydroxyphenyl pyruvate dioxygenase-inhibiting herbicides publication-title: Agron J doi: 10.2134/agronj13.0570 – ident: S0890037X22000793_ref83 – volume: 34 start-page: 241 year: 2020 ident: S0890037X22000793_ref78 article-title: Sugarcane response and fall panicum (Panicum dichotomiflorum) control with topramezone and triazine herbicides publication-title: Weed Technol doi: 10.1017/wet.2019.95 – ident: S0890037X22000793_ref46 doi: 10.1007/978-1-4939-1019-9_8 – ident: S0890037X22000793_ref72 doi: 10.1017/wet.2021.49 – ident: S0890037X22000793_ref136 doi: 10.1104/pp.114.242750 – ident: S0890037X22000793_ref88 doi: 10.3389/fpls.2020.596581 – ident: S0890037X22000793_ref20 doi: 10.1111/nph.17708 – volume: 12 start-page: e0180095 year: 2017 ident: S0890037X22000793_ref53 article-title: Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA publication-title: PLOS ONE doi: 10.1371/journal.pone.0180095 – ident: S0890037X22000793_ref117 doi: 10.1017/wsc.2017.68 – ident: S0890037X22000793_ref64 doi: 10.3389/fpls.2016.01898 – ident: S0890037X22000793_ref104 doi: 10.1016/j.cropro.2011.03.023 – volume: 58 start-page: 289 year: 2010 ident: S0890037X22000793_ref127 article-title: Factors affecting differential sensitivity of sweet corn to HPPD-inhibiting herbicides publication-title: Weed Sci doi: 10.1614/WS-D-09-00058.1 – ident: S0890037X22000793_ref124 doi: 10.1017/wsc.2021.34 – ident: S0890037X22000793_ref115 doi: 10.1584/jpestics.D20-031 – ident: S0890037X22000793_ref63 doi: 10.1017/wet.2020.13 – volume: 56 start-page: 265 year: 2008 ident: S0890037X22000793_ref41 article-title: Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus) publication-title: Weed Sci doi: 10.1614/WS-07-128.1 – volume: 163 start-page: 363 year: 2013 ident: S0890037X22000793_ref68 article-title: Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp publication-title: Plant Physiol doi: 10.1104/pp.113.223156 – volume: 33 start-page: 411 year: 2019 ident: S0890037X22000793_ref102 article-title: Annual weed management in isoxaflutole-resistant soybean using a two-pass weed control strategy publication-title: Weed Technol doi: 10.1017/wet.2019.21 – ident: S0890037X22000793_ref108 doi: 10.1614/WT-D-11-00053.1 – ident: S0890037X22000793_ref110 doi: 10.1002/agj2.21042 – ident: S0890037X22000793_ref106 – volume-title: Herbicides, agronomic crops, and weed biology year: 2015 ident: S0890037X22000793_ref12 – ident: #cr-split#-S0890037X22000793_ref99.1 – ident: S0890037X22000793_ref101 doi: 10.1104/pp.114.247205 – volume: 96 start-page: 72 year: 2016 ident: S0890037X22000793_ref26 article-title: Control of glyphosate-resistant Canada fleabane (Conyza canadensis L. Cronq.) with isoxaflutole and metribuzin tank mix publication-title: Can J Plant Sci doi: 10.1139/cjps-2015-0121 – volume: 12 start-page: 424 year: 2021 ident: S0890037X22000793_ref125 article-title: Biologically-effective-dose of tolpyralate and tolpyralate plus atrazine for control of multiple-herbicide-resistant waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] in corn publication-title: Agr Sci – volume: 28 start-page: 28 year: 2014 ident: S0890037X22000793_ref48 article-title: Confirmation and control of triazine and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska publication-title: Weed Technol doi: 10.1614/WT-D-13-00090.1 – ident: S0890037X22000793_ref90 doi: 10.1614/WT-D-13-00005.1 – ident: S0890037X22000793_ref112 – volume: 62 start-page: 113 year: 1998 ident: S0890037X22000793_ref87 article-title: The mode of action of isoxaflutole: I. physiological effects, metabolism, and selectivity publication-title: Pest Biochem Physiol doi: 10.1006/pest.1998.2378 – volume: 17 start-page: 4134 year: 2009 ident: S0890037X22000793_ref7 article-title: Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2009.03.015 – ident: S0890037X22000793_ref19 doi: 10.2307/4041058 – ident: S0890037X22000793_ref60 – ident: S0890037X22000793_ref113 doi: 10.1139/cjps-2020-0303 – ident: S0890037X22000793_ref45 doi: 10.1017/wsc.2021.3 – ident: S0890037X22000793_ref47 doi: 10.1017/wet.2020.101 – ident: S0890037X22000793_ref8 doi: 10.1139/cjps-2018-0320 – volume: 17 start-page: 605 year: 2017 ident: S0890037X22000793_ref70 article-title: Revised classification of herbicides by site of action for weed resistance management strategies publication-title: Weed Technol doi: 10.1614/0890-037X(2003)017[0605:RCOHBS]2.0.CO;2 – ident: S0890037X22000793_ref5 doi: 10.1614/WS-04-039R – volume: 7 start-page: 2139 year: 1995 ident: S0890037X22000793_ref79 article-title: Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation publication-title: Plant Cell – ident: S0890037X22000793_ref91 – ident: S0890037X22000793_ref66 doi: 10.1002/ps.5725 – ident: S0890037X22000793_ref54 doi: 10.1017/S0043174500079054 – volume: 111 start-page: 3265 year: 2019 ident: S0890037X22000793_ref17 article-title: Basis of atrazine and mesotrione synergism for controlling atrazine- and HPPD inhibitor-resistant Palmer amaranth publication-title: Agron J doi: 10.2134/agronj2019.01.0037 – ident: S0890037X22000793_ref80 doi: 10.1614/WS-D-11-00155.1 – ident: S0890037X22000793_ref93 doi: 10.1016/j.still.2017.12.018 – ident: S0890037X22000793_ref1 doi: 10.1614/WT-05-020R.1 – ident: S0890037X22000793_ref98 doi: 10.1111/j.1399-3054.1985.tb01222.x – ident: S0890037X22000793_ref2 doi: 10.1614/WT-09-067.1 – ident: S0890037X22000793_ref62 doi: 10.1017/S0043174500093218 – ident: S0890037X22000793_ref32 doi: 10.1002/ps.1341 – ident: S0890037X22000793_ref109 doi: 10.1614/WT-D-14-00104.1 – year: 2016 ident: S0890037X22000793_ref43 article-title: Weed control in corn (Zea mays L.) as influenced by preemergence herbicides publication-title: Int J Agron doi: 10.1155/2016/2607671 – ident: S0890037X22000793_ref129 doi: 10.1614/WT-D-10-00140.1 – volume: 22 start-page: 222 year: 2008 ident: S0890037X22000793_ref97 article-title: Efficacy of sulfonylurea herbicides when tank mixed with mesotrione publication-title: Weed Technol doi: 10.1614/WT-07-131.1 – ident: S0890037X22000793_ref107 doi: 10.1614/WT-03-260R1 – ident: S0890037X22000793_ref35 doi: 10.1002/ps.2100 – volume: 9 start-page: 1644 year: 2018 ident: S0890037X22000793_ref67 article-title: Metabolic pathway of topramezone in multiple-resistant waterhemp (Amaranthus tuberculatus) differs from naturally tolerant maize publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01644 – ident: S0890037X22000793_ref118 doi: 10.1614/WT-D-11-00132.1 – volume: 32 start-page: 326 year: 2018 ident: S0890037X22000793_ref14 article-title: Control of photosystem II–and 4-hydroxyphenylpyruvate dioxygenase inhibitor–resistant Palmer amaranth (Amaranthus palmeri) in conventional corn publication-title: Weed Technol doi: 10.1017/wet.2017.111 – ident: S0890037X22000793_ref128 doi: 10.1016/j.fcr.2010.11.020 – volume: 1 start-page: 1 year: 1985 ident: S0890037X22000793_ref34 article-title: Interactions of herbicides with other agrochemicals in higher plants publication-title: Rev Weed Sci – volume: 55 start-page: 429 year: 2007 ident: S0890037X22000793_ref96 article-title: Mechanism of antagonism of mesotrione on sulfonylurea herbicides publication-title: Weed Sci doi: 10.1614/WS-06-217.1 – ident: S0890037X22000793_ref42 doi: 10.1017/wsc.2020.31 – ident: S0890037X22000793_ref40 doi: 10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2 – volume: 52 start-page: 9388 year: 2013 ident: S0890037X22000793_ref3 article-title: 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: Solutions for modern and sustainable agriculture publication-title: Angew Chem Int Ed doi: 10.1002/anie.201302365 – ident: S0890037X22000793_ref120 doi: 10.1002/ps.3894 – volume: 63 start-page: 529 year: 2015 ident: S0890037X22000793_ref133 article-title: Soil-residual protoporphyrinogen oxidase-inhibiting herbicides influence the frequency of associated resistance in waterhemp (Amaranthus tuberculatus) publication-title: Weed Sci doi: 10.1614/WS-D-14-00113.1 – ident: S0890037X22000793_ref134 doi: 10.1584/jpestics.D21-019 – volume: 57 start-page: 120 year: 2001 ident: S0890037X22000793_ref74 article-title: Mesotrione: a new selective herbicide for use in maize publication-title: Pest Manag Sci doi: 10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E – volume: 1 start-page: 14 year: 2016 ident: S0890037X22000793_ref9 article-title: Weed control and crop tolerance with pyrasulfotole plus bromoxynil combinations in grain sorghum publication-title: Int J Agron Crop Sci – ident: S0890037X22000793_ref25 doi: 10.1046/j.1365-3180.2003.00355.x – volume: 31 start-page: 67 year: 2017 ident: S0890037X22000793_ref82 article-title: Confirmation and control of HPPD-inhibiting herbicide–resistant waterhemp (Amaranthus tuberculatus) in Nebraska publication-title: Weed Technol doi: 10.1017/wet.2016.4 – ident: S0890037X22000793_ref31 doi: 10.4141/cjps-2014-429 – ident: S0890037X22000793_ref76 – ident: S0890037X22000793_ref38 – ident: S0890037X22000793_ref30 doi: 10.1017/wet.2016.26 – ident: S0890037X22000793_ref55 – volume: 33 start-page: 400 year: 2019 ident: S0890037X22000793_ref27 article-title: Characterization of a waterhemp (Amaranthus tuberculatus) population from Illinois resistant to herbicides from five site-of-action groups publication-title: Weed Technol doi: 10.1017/wet.2019.19 – ident: S0890037X22000793_ref85 doi: 10.1007/s10886-013-0237-8 – ident: S0890037X22000793_ref92 doi: 10.1614/WT-08-055.1 – ident: S0890037X22000793_ref16 doi: 10.2134/agronj2017.12.0703 – volume: 60 start-page: 1079 year: 2004 ident: S0890037X22000793_ref21 article-title: Photosynthetic and growth responses of Zea mays L and four weed species following post-emergence treatments with mesotrione and atrazine publication-title: Pest Manag Sci doi: 10.1002/ps.924 – volume: 67 start-page: 510 year: 2019 ident: S0890037X22000793_ref94 article-title: Protoporphyrinogen oxidase (PPO) inhibitor–resistant waterhemp (Amaranthus tuberculatus) from Nebraska is multiple herbicide resistant: confirmation, mechanism of resistance, and management publication-title: Weed Sci doi: 10.1017/wsc.2019.29 – ident: S0890037X22000793_ref4 doi: 10.1614/0890-037X(2003)017[0111:MCINTC]2.0.CO;2 – ident: #cr-split#-S0890037X22000793_ref99.2 – ident: S0890037X22000793_ref36 doi: 10.1614/WT-D-13-00032.1 – ident: S0890037X22000793_ref65 doi: 10.1002/agj2.20770 – ident: S0890037X22000793_ref24 doi: 10.1016/j.phytochem.2007.01.026 – ident: S0890037X22000793_ref50 doi: 10.3390/plants8100417 – volume: 10 start-page: 32 year: 2018 ident: S0890037X22000793_ref84 article-title: Tolpyralate applied alone and with atrazine for weed control in corn publication-title: J Agric Sci – ident: S0890037X22000793_ref126 doi: 10.21273/HORTSCI.40.6.1801 – ident: S0890037X22000793_ref135 doi: 10.1614/WT-D-15-00189.1 – ident: S0890037X22000793_ref81 doi: 10.1017/wsc.2018.36 – volume: 2 year: 2016 ident: S0890037X22000793_ref22 article-title: Fallow weed control with preemergence applications of Balance Pro, Corvus, Banvel, Atrazine, and Authority MTZ publication-title: Kansas Agricultural Experiment Station Research Reports – ident: S0890037X22000793_ref75 – ident: S0890037X22000793_ref71 doi: 10.1002/ps.997 – ident: S0890037X22000793_ref13 doi: 10.3389/fpls.2017.02231 – volume: 16 start-page: 414 year: 2002 ident: S0890037X22000793_ref49 article-title: Effect of postemergence application rate and timing of mesotrione on corn (Zea mays) response and weed control publication-title: Weed Technol doi: 10.1614/0890-037X(2002)016[0414:EOPARA]2.0.CO;2 – ident: S0890037X22000793_ref122 doi: 10.1614/WT-05-042R1.1 – ident: S0890037X22000793_ref61 doi: 10.1002/ps.4786 – ident: S0890037X22000793_ref89 – ident: S0890037X22000793_ref116 – ident: S0890037X22000793_ref11 doi: 10.1614/WT-D-12-00119.1 – volume: 58 start-page: 981 year: 2002 ident: S0890037X22000793_ref111 article-title: Activity of mesotrione on resistant weeds in maize publication-title: Pest Manag Sci doi: 10.1002/ps.554 – ident: S0890037X22000793_ref23 doi: 10.4148/2378-5977.7640 – ident: S0890037X22000793_ref15 doi: 10.2134/agronj2017.12.0704 – ident: S0890037X22000793_ref44 doi: 10.1017/wet.2021.82 – volume: 32 start-page: 698 year: 2018 ident: S0890037X22000793_ref73 article-title: Tolpyralate efficacy: Part 1. Biologically effective dose of tolpyralate for control of annual grass and broadleaf weeds in corn publication-title: Weed Technol doi: 10.1017/wet.2018.82 – start-page: 12 volume-title: Waterhemp management in agronomic crops year: 1997 ident: S0890037X22000793_ref33 |
SSID | ssj0016220 |
Score | 2.4723413 |
SecondaryResourceType | review_article |
Snippet | The herbicides that inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) are primarily used for weed control in corn, barley, oat, rice, sorghum, sugarcane, and... |
SourceID | proquest crossref bioone |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 2,4-D 4-Hydroxyphenylpyruvate dioxygenase Amaranth Azole carboxamides Carotenoids Crop production Crop science Crops D1 protein Depletion Glufosinate Glyphosate herbicide interaction Herbicide resistance Herbicides integrated weed management Metabolism Microorganisms Photosystem II Plastoquinones pyrazolone Registration resistant crops resistant weeds REVIEW Rice Sorghum Soybeans Substrates Sugarcane Synergism Transgenes triketone Weed control Weeds Wheat |
Title | 4-Hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides: past, present, and future |
URI | http://www.bioone.org/doi/abs/10.1017/wet.2022.79 https://www.proquest.com/docview/2802260067 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5qPehBfGJ9EaQHlUbbfWR3vUjVliJYilgoeFjymNWFsl3bqvTfO3HTSkG87oYcvknmkflmhpCKE4hEO4lkJmfEPKF8JoFrlnBPcoAQOJgC58cOb_e8h77ftw9uY0urnOnEH0Wth8q8kV85piaUG-V6k78zMzXKZFftCI1lUkIVHGLwVbptdrpP8zwCd4rGjGFUYzU36NsKPdM0-gsMldJxLg2La1Wmw2EGi8ZpUTf_GJzWJtmwniJtFKLdIkuQbZP1xuvIdsuAHfLisfZUGyKKYWpNB_l09PGJziPVKX7Do4Emip61u937c5Zmb6lMDcmZophkqlIN42uai_GkSvOiCKlKRaZp0WZkl_Razee7NrPTEph0XWfCHF-7GsFVXoRBWwJhoqIaRBglBjyCQEkuBZdK1TkGJYlw0XGQLleQcCGVRlu2R1YyxGCfUF-DFwm8m3XwPaFB1hL0epSO_FBpoetlclrgFedFS4y44IoFMYIaG1DjICqTixmWsbL9xs3Yi8Hfiyvzxf_ueTQTSmzv2jj-PRkH__8-JGtmWHzBuT4iK5PRBxyjSzGRJ_bcfAOg5s2G |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7qVVA_FF9pbdVFKqh027tNsrkIItW2pLY9DmnhwA_bfZlooOTi3dVyf8rf6Gw3qRSk3_o1WZYw--y8ZJ6ZAVgXqS6cKAz3OSMea5twg9LxQsZGIvZRoi9wPhrI_CT-OkpGC_CnrYXxtMpWJ14qaje2_h_5lvA1odIr10_1L-6nRvnsajtCI8DiAOcXFLJNP-7v0Pm-EWJv9_hLzpupAtxEkZhxkbjI0UfYOKPgpsB-YbMuZhRNpTLD1BpptDTW9iQ574WOyMCaSFospDbWkc6nfe_AYhxRKNOBxc-7g-G3q7yFFKERZD_r8m6UjpqKQN-k-gI9dVOITc8au2vK8bjC68bwui24NHB7D2Gp8UzZdoDSI1jA6jE82P4xabpz4BP4HvN87jzxxTPD5mf1fHL-m5xV5kp6RlAkk8je5sPhzjteVj9LU3pSNSNYmNKWDqcfWK2nsw1Wh6KnDaYrx0Jbk6dwcityfAadimSwDCxxGGeadEEPk1g7NN2CvCzrsqRvnXa9FXgd5KXq0IJDBW5aqkioygtVpdkKvG9lqWzT39yP2Tj7_-L1q8U37rnWHopq7vZU_UPi85tfv4J7-fHRoTrcHxyswn0_qD7wvdegM5uc4wtyZ2bmZYMhBqe3Ddu_W0gL3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7qVcR-KL5ibdVFKqh0bW6TbC6CSPV6XK0eh1g48EPcl1kNlFx6d7XcX_PXOdtNKgXpt35NliXMPjsvmWdmALZFppwVTnOfM-KJMinXKC13MtESsYcSfYHzl5EcHiWfJulkBf60tTCeVtnqxHNFbafG_yPfFb4mVHrluusaWsS4P3hfn3A_QcpnWttxGgEih7g8o_Bt_u6gT2f9QojB_rePQ95MGOA6jsWCi9TGlj7IJDkFOg57zuQR5hRZZTLHzGipldTGdCU58k7FZGx1LA06qbSxpP9p3xuwmlFUFHVg9cP-aPz1IochRWgK2csjHsXZpKkO9A2rz9DTOIV44xlkN3U5nVZ42TBetgvnxm5wB9YbL5XtBVjdhRWs7sHa3s9Z06kD78P3hA-X1pNgPEtseVwvZ6e_yXFltqRnBEsyj-zlcDzuv-Jl9avUpSdYM4KILk1pcf6W1Wq-2GF1KIDaYaqyLLQ4eQBH1yLHh9CpSAaPgKUWk1yRXuhimiiLOnLkcRmbpz1jle1uwPMgr6IO7TiKwFPLChJq4YVaZPkGvG5lWZim17kfuXH8_8XbF4uv3HOrPZSiuefz4h8qH1_9-hncIrgWnw9Gh5tw28-sD9TvLegsZqf4hDybhX7aQIjBj-tG7V9w3xAT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4-Hydroxyphenylpyruvate+dioxygenase+%28HPPD%29-inhibiting+herbicides%3A+past%2C+present%2C+and+future&rft.jtitle=Weed+technology&rft.au=Jhala%2C+Amit+J.&rft.au=Kumar%2C+Vipan&rft.au=Yadav%2C+Ramawatar&rft.au=Jha%2C+Prashant&rft.date=2023-02-01&rft.issn=0890-037X&rft.eissn=1550-2740&rft.volume=37&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1017%2Fwet.2022.79&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_wet_2022_79 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-037X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-037X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-037X&client=summon |