TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods

The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the fie...

Full description

Saved in:
Bibliographic Details
Published inBMJ (Online) Vol. 385; p. e078378
Main Authors Collins, Gary S, Moons, Karel G M, Dhiman, Paula, Riley, Richard D, Beam, Andrew L, Van Calster, Ben, Ghassemi, Marzyeh, Liu, Xiaoxuan, Reitsma, Johannes B, van Smeden, Maarten, Boulesteix, Anne-Laure, Camaradou, Jennifer Catherine, Celi, Leo Anthony, Denaxas, Spiros, Denniston, Alastair K, Glocker, Ben, Golub, Robert M, Harvey, Hugh, Heinze, Georg, Hoffman, Michael M, Kengne, André Pascal, Lam, Emily, Lee, Naomi, Loder, Elizabeth W, Maier-Hein, Lena, Mateen, Bilal A, McCradden, Melissa D, Oakden-Rayner, Lauren, Ordish, Johan, Parnell, Richard, Rose, Sherri, Singh, Karandeep, Wynants, Laure, Logullo, Patricia
Format Journal Article
LanguageEnglish
Published England British Medical Journal Publishing Group 16.04.2024
BMJ Publishing Group LTD
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the field of prediction have since included the widespread use of artificial intelligence (AI) powered by machine learning methods to develop prediction models. An update to the TRIPOD statement is thus needed. TRIPOD+AI provides harmonised guidance for reporting prediction model studies, irrespective of whether regression modelling or machine learning methods have been used. The new checklist supersedes the TRIPOD 2015 checklist, which should no longer be used. This article describes the development of TRIPOD+AI and presents the expanded 27 item checklist with more detailed explanation of each reporting recommendation, and the TRIPOD+AI for Abstracts checklist. TRIPOD+AI aims to promote the complete, accurate, and transparent reporting of studies that develop a prediction model or evaluate its performance. Complete reporting will facilitate study appraisal, model evaluation, and model implementation.
AbstractList The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the field of prediction have since included the widespread use of artificial intelligence (AI) powered by machine learning methods to develop prediction models. An update to the TRIPOD statement is thus needed. TRIPOD+AI provides harmonised guidance for reporting prediction model studies, irrespective of whether regression modelling or machine learning methods have been used. The new checklist supersedes the TRIPOD 2015 checklist, which should no longer be used. This article describes the development of TRIPOD+AI and presents the expanded 27 item checklist with more detailed explanation of each reporting recommendation, and the TRIPOD+AI for Abstracts checklist. TRIPOD+AI aims to promote the complete, accurate, and transparent reporting of studies that develop a prediction model or evaluate its performance. Complete reporting will facilitate study appraisal, model evaluation, and model implementation.
Author Boulesteix, Anne-Laure
Denniston, Alastair K
Lam, Emily
Oakden-Rayner, Lauren
Dhiman, Paula
Beam, Andrew L
van Smeden, Maarten
Reitsma, Johannes B
Harvey, Hugh
Collins, Gary S
Moons, Karel G M
Logullo, Patricia
Hoffman, Michael M
Golub, Robert M
McCradden, Melissa D
Heinze, Georg
Maier-Hein, Lena
Parnell, Richard
Kengne, André Pascal
Ghassemi, Marzyeh
Camaradou, Jennifer Catherine
Loder, Elizabeth W
Rose, Sherri
Van Calster, Ben
Wynants, Laure
Celi, Leo Anthony
Lee, Naomi
Liu, Xiaoxuan
Ordish, Johan
Singh, Karandeep
Denaxas, Spiros
Mateen, Bilal A
Riley, Richard D
Glocker, Ben
Author_xml – sequence: 1
  givenname: Gary S
  orcidid: 0000-0002-2772-2316
  surname: Collins
  fullname: Collins, Gary S
  email: gary.collins@csm.ox.ac.uk
  organization: Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
– sequence: 2
  givenname: Karel G M
  orcidid: 0000-0003-2118-004X
  surname: Moons
  fullname: Moons, Karel G M
  organization: Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 3
  givenname: Paula
  orcidid: 0000-0002-0989-0623
  surname: Dhiman
  fullname: Dhiman, Paula
  organization: Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
– sequence: 4
  givenname: Richard D
  orcidid: 0000-0001-8699-0735
  surname: Riley
  fullname: Riley, Richard D
  organization: National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK
– sequence: 5
  givenname: Andrew L
  orcidid: 0000-0002-6657-2787
  surname: Beam
  fullname: Beam, Andrew L
  organization: Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA
– sequence: 6
  givenname: Ben
  orcidid: 0000-0003-1613-7450
  surname: Van Calster
  fullname: Van Calster, Ben
  organization: Department of Biomedical Data Science, Leiden University Medical Centre, Leiden, Netherlands
– sequence: 7
  givenname: Marzyeh
  orcidid: 0000-0001-6349-7251
  surname: Ghassemi
  fullname: Ghassemi, Marzyeh
  organization: Department of Electrical Engineering and Computer Science, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 8
  givenname: Xiaoxuan
  orcidid: 0000-0002-1286-0038
  surname: Liu
  fullname: Liu, Xiaoxuan
  organization: University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
– sequence: 9
  givenname: Johannes B
  orcidid: 0000-0003-4026-4345
  surname: Reitsma
  fullname: Reitsma, Johannes B
  organization: Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 10
  givenname: Maarten
  orcidid: 0000-0002-5529-1541
  surname: van Smeden
  fullname: van Smeden, Maarten
  organization: Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 11
  givenname: Anne-Laure
  orcidid: 0000-0002-2729-0947
  surname: Boulesteix
  fullname: Boulesteix, Anne-Laure
  organization: Institute for Medical Information Processing, Biometry and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University of Munich and Munich Centre of Machine Learning, Germany
– sequence: 12
  givenname: Jennifer Catherine
  orcidid: 0000-0002-5742-2840
  surname: Camaradou
  fullname: Camaradou, Jennifer Catherine
  organization: Patient representative, University of East Anglia, Faculty of Health Sciences, Norwich Research Park, Norwich, UK
– sequence: 13
  givenname: Leo Anthony
  orcidid: 0000-0001-6712-6626
  surname: Celi
  fullname: Celi, Leo Anthony
  organization: Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, MA, USA
– sequence: 14
  givenname: Spiros
  orcidid: 0000-0001-9612-7791
  surname: Denaxas
  fullname: Denaxas, Spiros
  organization: British Heart Foundation Data Science Centre, London, UK
– sequence: 15
  givenname: Alastair K
  orcidid: 0000-0001-7849-0087
  surname: Denniston
  fullname: Denniston, Alastair K
  organization: Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
– sequence: 16
  givenname: Ben
  orcidid: 0000-0002-4897-9356
  surname: Glocker
  fullname: Glocker, Ben
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 17
  givenname: Robert M
  orcidid: 0000-0001-7881-1207
  surname: Golub
  fullname: Golub, Robert M
  organization: Northwestern University Feinberg School of Medicine, Chicago, IL, USA
– sequence: 18
  givenname: Hugh
  orcidid: 0000-0003-4528-1312
  surname: Harvey
  fullname: Harvey, Hugh
  organization: Hardian Health, Haywards Heath, UK
– sequence: 19
  givenname: Georg
  orcidid: 0000-0003-1147-8491
  surname: Heinze
  fullname: Heinze, Georg
  organization: Section for Clinical Biometrics, Centre for Medical Data Science, Medical University of Vienna, Vienna, Austria
– sequence: 20
  givenname: Michael M
  orcidid: 0000-0002-4517-1562
  surname: Hoffman
  fullname: Hoffman, Michael M
  organization: Vector Institute for Artificial Intelligence, Toronto, ON, Canada
– sequence: 21
  givenname: André Pascal
  orcidid: 0000-0002-5183-131X
  surname: Kengne
  fullname: Kengne, André Pascal
  organization: Department of Medicine, University of Cape Town, Cape Town, South Africa
– sequence: 22
  givenname: Emily
  surname: Lam
  fullname: Lam, Emily
  organization: Patient representative, Health Data Research UK patient and public involvement and engagement group
– sequence: 23
  givenname: Naomi
  orcidid: 0000-0003-0100-9659
  surname: Lee
  fullname: Lee, Naomi
  organization: National Institute for Health and Care Excellence, London, UK
– sequence: 24
  givenname: Elizabeth W
  orcidid: 0000-0003-1501-2947
  surname: Loder
  fullname: Loder, Elizabeth W
  organization: Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 25
  givenname: Lena
  orcidid: 0000-0003-4910-9368
  surname: Maier-Hein
  fullname: Maier-Hein, Lena
  organization: Department of Intelligent Medical Systems, German Cancer Research Centre, Heidelberg, Germany
– sequence: 26
  givenname: Bilal A
  orcidid: 0000-0003-4423-6472
  surname: Mateen
  fullname: Mateen, Bilal A
  organization: Alan Turing Institute, London, UK
– sequence: 27
  givenname: Melissa D
  orcidid: 0000-0002-6476-2165
  surname: McCradden
  fullname: McCradden, Melissa D
  organization: Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
– sequence: 28
  givenname: Lauren
  orcidid: 0000-0001-5471-5202
  surname: Oakden-Rayner
  fullname: Oakden-Rayner, Lauren
  organization: Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia
– sequence: 29
  givenname: Johan
  orcidid: 0000-0001-6911-2367
  surname: Ordish
  fullname: Ordish, Johan
  organization: Medicines and Healthcare products Regulatory Agency, London, UK
– sequence: 30
  givenname: Richard
  orcidid: 0000-0003-0044-3496
  surname: Parnell
  fullname: Parnell, Richard
  organization: Patient representative, Health Data Research UK patient and public involvement and engagement group
– sequence: 31
  givenname: Sherri
  orcidid: 0000-0002-9076-8472
  surname: Rose
  fullname: Rose, Sherri
  organization: Department of Health Policy and Center for Health Policy, Stanford University, Stanford, CA, USA
– sequence: 32
  givenname: Karandeep
  orcidid: 0000-0001-8980-2330
  surname: Singh
  fullname: Singh, Karandeep
  organization: Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
– sequence: 33
  givenname: Laure
  orcidid: 0000-0002-3037-122X
  surname: Wynants
  fullname: Wynants, Laure
  organization: Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
– sequence: 34
  givenname: Patricia
  orcidid: 0000-0001-8708-7003
  surname: Logullo
  fullname: Logullo, Patricia
  organization: Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38626948$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVJaT6ac29F0EshuJEsW5J7C2naLgRSSnoWsjTe1WJLriQfcunfXplNSgnkpIH5vdHMe6foyAcPCL2j5BOljF_2076qSc0qIiQT8hU6oaLlFZWMHf1XH6PzlPaEFFLIjrdv0DGTvOZdI0_Qn_ufmx93Xy6uNjhlnWECnz_jZbaltni7OKu9ATyEiCPMIWbnt9iMzjujRzxHsM5kFzyegoUx4bzTGS8JCr2NkNLaKtpJm53zgEfQ0a8jJsi7YNNb9HrQY4Lzx_cM_fp6c3_9vbq9-7a5vrqtekaFrGotBHS81xYENNZQwxht2pY2HdFdXeuemnIalx0dGG85o4O1nYGetUQXjJ2hj4e5cwy_F0hZTS4ZGEftISxJMdIQVlPCZUE_PEP3YYm-bLdSlJd_BSvU-0dq6Sewao5u0vFBPTlbgPYAmBhSijAo44rBxY8ctRsVJWoNUZUQ1RqiOoRYdJfPdE-jX1ZcHBRr49-uL9F_AYjfq4g
CitedBy_id crossref_primary_10_3390_diagnostics14171847
crossref_primary_10_1080_07357907_2024_2354991
crossref_primary_10_1177_19322968241267779
crossref_primary_10_1186_s42466_024_00338_z
crossref_primary_10_20517_ais_2024_29
crossref_primary_10_1136_bmjhci_2024_101088
crossref_primary_10_1007_s10916_025_02140_z
crossref_primary_10_1007_s11886_025_02219_6
crossref_primary_10_7717_peerj_18741
crossref_primary_10_1056_AIoa2400948
crossref_primary_10_1016_j_compag_2024_109892
crossref_primary_10_1093_jamia_ocae286
crossref_primary_10_1093_jamia_ocae321
crossref_primary_10_1097_PEC_0000000000003314
crossref_primary_10_2196_66612
crossref_primary_10_3346_jkms_2024_39_e291
crossref_primary_10_1136_bmjopen_2024_098476
crossref_primary_10_3390_jcm13123583
crossref_primary_10_1001_jamanetworkopen_2024_37871
crossref_primary_10_3389_froh_2025_1569567
crossref_primary_10_1038_s41598_024_83781_x
crossref_primary_10_2340_17453674_2024_42700
crossref_primary_10_7759_cureus_76095
crossref_primary_10_1007_s00259_024_06922_4
crossref_primary_10_1093_jrsssc_qlae070
crossref_primary_10_1088_1361_6560_ad8290
crossref_primary_10_1161_CIRCOUTCOMES_124_011504
crossref_primary_10_3390_cancers16173000
crossref_primary_10_1016_j_lungcan_2024_108075
crossref_primary_10_3389_fdgth_2025_1550731
crossref_primary_10_3390_biomedicines12122842
crossref_primary_10_2196_59916
crossref_primary_10_1038_s41746_024_01255_w
crossref_primary_10_1093_eurheartj_ehae595
crossref_primary_10_1186_s12882_025_03972_0
crossref_primary_10_1007_s00784_025_06158_y
crossref_primary_10_1200_GO_24_00318
crossref_primary_10_1136_rmdopen_2024_004309
crossref_primary_10_1093_postmj_qgae080
crossref_primary_10_2196_65994
crossref_primary_10_1038_s41598_024_84607_6
crossref_primary_10_1093_rheumatology_keae681
crossref_primary_10_1136_bmj_2023_078276
crossref_primary_10_1055_s_0044_1789218
crossref_primary_10_1089_aipo_2024_0025
crossref_primary_10_1089_dia_2024_0484
crossref_primary_10_1161_STROKEAHA_124_047449
crossref_primary_10_1007_s00330_024_11188_3
crossref_primary_10_1136_bmjopen_2024_086231
crossref_primary_10_1038_s41467_025_58283_7
crossref_primary_10_1186_s12916_025_03994_3
crossref_primary_10_2196_58779
crossref_primary_10_1038_s41746_025_01470_z
crossref_primary_10_1038_s41430_024_01529_2
crossref_primary_10_2196_53768
crossref_primary_10_1186_s13054_024_05248_9
crossref_primary_10_1007_s40266_024_01160_7
crossref_primary_10_3348_kjr_2024_0598
crossref_primary_10_1136_bmj_q832
crossref_primary_10_1016_j_radonc_2025_110764
crossref_primary_10_1038_s41598_024_77535_y
crossref_primary_10_1136_bmj_2023_076703
crossref_primary_10_1167_iovs_65_10_10
crossref_primary_10_3390_cancers16223817
crossref_primary_10_1136_bmjopen_2024_092594
crossref_primary_10_1002_jmri_29708
crossref_primary_10_1097_MEJ_0000000000001228
crossref_primary_10_12688_wellcomeopenres_23471_1
crossref_primary_10_1007_s40279_024_02131_z
crossref_primary_10_1002_acn3_52185
crossref_primary_10_1038_s41746_024_01254_x
crossref_primary_10_3389_fonc_2024_1449235
crossref_primary_10_1017_S0033291724002642
crossref_primary_10_1093_eurheartj_ehae651
crossref_primary_10_1186_s13014_024_02512_8
crossref_primary_10_1136_bmj_q824
crossref_primary_10_1007_s40746_024_00301_9
crossref_primary_10_1186_s12912_025_02723_8
crossref_primary_10_1093_jamiaopen_ooae155
crossref_primary_10_1136_bmjopen_2023_082941
crossref_primary_10_1002_phar_4605
crossref_primary_10_1002_jso_27766
crossref_primary_10_1093_jamiaopen_ooae158
crossref_primary_10_1080_07357907_2024_2370692
crossref_primary_10_3389_fmed_2024_1454057
crossref_primary_10_3390_app15010146
crossref_primary_10_1038_s41598_024_81625_2
crossref_primary_10_1093_clinchem_hvae168
crossref_primary_10_1001_jamanetworkopen_2024_55475
crossref_primary_10_1186_s41512_024_00182_4
crossref_primary_10_1136_bmjno_2024_000878
crossref_primary_10_3390_jcdd11120402
crossref_primary_10_1111_jgs_19440
crossref_primary_10_2196_64354
crossref_primary_10_1038_s41591_024_03425_5
crossref_primary_10_1111_head_14806
crossref_primary_10_1016_j_radonc_2024_110428
crossref_primary_10_1136_tsaco_2024_001567
crossref_primary_10_1186_s12877_025_05721_2
crossref_primary_10_3390_cancers17030407
crossref_primary_10_1186_s12916_025_03978_3
crossref_primary_10_1038_s41598_025_85559_1
crossref_primary_10_1210_clinem_dgae863
crossref_primary_10_1038_s41598_024_80968_0
crossref_primary_10_2147_JIR_S496559
crossref_primary_10_1097_MCA_0000000000001490
crossref_primary_10_1136_bmjsem_2024_002090
crossref_primary_10_12688_f1000research_161046_1
crossref_primary_10_1001_jamasurg_2024_6028
crossref_primary_10_1017_S0266462324000394
crossref_primary_10_1136_bmj_2024_082505
crossref_primary_10_1136_gutjnl_2024_334324
crossref_primary_10_1002_ksa_12443
crossref_primary_10_1177_10732748241272713
crossref_primary_10_1371_journal_pmed_1004390
crossref_primary_10_1161_JAHA_124_039221
crossref_primary_10_7759_cureus_80734
crossref_primary_10_1186_s12888_025_06514_y
crossref_primary_10_1093_oncolo_oyae337
crossref_primary_10_1007_s00431_024_05925_5
crossref_primary_10_1001_jamapsychiatry_2024_4702
crossref_primary_10_1007_s43678_024_00826_w
crossref_primary_10_1186_s12876_025_03697_2
crossref_primary_10_1001_jamanetworkopen_2024_53190
crossref_primary_10_1080_24733938_2025_2476478
crossref_primary_10_3390_proteomes12030024
crossref_primary_10_1007_s00592_024_02404_z
crossref_primary_10_1111_acem_15099
crossref_primary_10_1186_s13018_024_05170_4
crossref_primary_10_1007_s00264_024_06326_x
crossref_primary_10_1093_bjro_tzae039
crossref_primary_10_1111_iju_15585
crossref_primary_10_1007_s11908_024_00854_8
crossref_primary_10_3390_bioengineering12020125
crossref_primary_10_34133_bmef_0054
crossref_primary_10_1093_ehjdh_ztae080
crossref_primary_10_1161_JAHA_124_036447
crossref_primary_10_1161_JAHA_124_038504
crossref_primary_10_1371_journal_pone_0316526
crossref_primary_10_2196_63809
crossref_primary_10_3390_ecm2010011
crossref_primary_10_1080_07853890_2025_2474172
crossref_primary_10_1093_ejendo_lvae166
crossref_primary_10_1038_s41746_024_01361_9
crossref_primary_10_1097_ALN_0000000000005099
crossref_primary_10_1136_bmjdrc_2024_004595
crossref_primary_10_3390_children11121512
crossref_primary_10_1007_s11604_024_01608_1
crossref_primary_10_1093_jamia_ocae301
crossref_primary_10_1136_jitc_2024_011126
crossref_primary_10_1186_s12890_025_03488_1
crossref_primary_10_1111_apt_18274
crossref_primary_10_1136_bmjhci_2024_101180
crossref_primary_10_1136_bmjonc_2024_000430
crossref_primary_10_1371_journal_pmed_1004432
crossref_primary_10_1212_WNL_0000000000209861
crossref_primary_10_1186_s12904_025_01696_4
crossref_primary_10_2196_63875
crossref_primary_10_1001_jamanetworkopen_2024_50260
crossref_primary_10_1111_acem_15103
crossref_primary_10_1186_s12882_025_04053_y
crossref_primary_10_1371_journal_pone_0312968
crossref_primary_10_1097_ALN_0000000000005370
crossref_primary_10_2196_57750
crossref_primary_10_3389_fimmu_2025_1529812
crossref_primary_10_1136_bmj_2024_081554
crossref_primary_10_1097_ACO_0000000000001445
crossref_primary_10_1136_openhrt_2024_002779
crossref_primary_10_1080_0142159X_2024_2429614
crossref_primary_10_3390_jfb15120367
crossref_primary_10_1038_s41523_025_00727_w
crossref_primary_10_1186_s12884_025_07180_4
crossref_primary_10_1002_phar_4642
crossref_primary_10_1038_s41598_025_89037_6
crossref_primary_10_3348_kjr_2024_1254
crossref_primary_10_1038_s41746_024_01237_y
crossref_primary_10_1038_s41746_024_01372_6
crossref_primary_10_1093_noajnl_vdae132
crossref_primary_10_3389_fendo_2025_1495306
crossref_primary_10_1093_ehjdh_ztae074
crossref_primary_10_1186_s12873_025_01175_2
crossref_primary_10_3390_life14091130
crossref_primary_10_1038_s41591_024_03310_1
crossref_primary_10_1056_AIp2401088
Cites_doi 10.1148/RYAI.2020200029
10.3390/brainsci13030495
10.1161/CIRCULATIONAHA.107.699579
10.7326/M18-1377
10.1016/j.jclinepi.2021.02.011
10.1056/NEJMp2034518
10.1371/journal.pbio.3002362
10.1186/s12874-022-01577-x
10.1016/J.JCLINEPI.2021.01.009
10.1038/s41746-020-0253-3
10.1126/scitranslmed.abb1655
10.1093/jamia/ocaa088
10.1111/jep.13765
10.1093/jnci/81.24.1879
10.1186/s12933-023-01741-7
10.1016/j.jdent.2021.103610
10.1186/s41512-022-00126-w
10.1186/1741-7015-9-103
10.1136/bmj.j3453
10.1016/j.jclinepi.2019.02.004
10.1136/bmj-2023-074819
10.1016/j.oraloncology.2023.106386
10.1080/17453674.2021.1918389
10.1136/bmj-2023-074820
10.1136/bmj.m441
10.1136/bmj-2022-073538
10.1038/s42256-023-00705-6
10.1093/ejcts/ezs043
10.7326/M14-0698
10.1161/CIRCOUTCOMES.121.007858
10.1007/s00198-007-0343-y
10.1186/s12874-021-01469-6
10.1161/CIRCOUTCOMES.120.006556
10.1016/j.jclinepi.2023.03.012
10.1016/S2589-7500(20)30065-0
10.1002/sim.8766
10.1016/j.jclinepi.2023.10.015
10.1038/s41746-021-00549-7
10.1136/bmj.m1328
10.1016/S2589-7500(20)30317-4
10.1038/s41591-022-01772-9
10.1186/s12874-016-0267-3
10.1136/bmj.m3164
10.1016/j.artmed.2023.102536
10.1186/s12916-023-02779-w
10.7326/M14-0697
10.1080/17453674.2021.1910448
10.1177/962280218784726
10.1002/9781119333784
10.1145/3593013.3594096
10.1371/journal.pone.0234722
10.1136/bmjopen-2020-048008
10.1101/2023.05.31.23290788
10.1016/S0140-6736(13)62228-X
10.1038/s41591-020-1041-y
10.1111/aogs.14475
10.1136/bmj.m3210
10.1016/j.jclinepi.2021.06.024
10.1146/annurev-biodatasci-092820-114757
10.1002/sim.9275
10.1136/bmjopen-2019-034568
10.1038/s41591-022-02139-w
10.1371/journal.pmed.0050165
10.1016/S0140-6736(19)30037-6
10.1136/bmjhci-2020-100251
10.1016/j.jclinepi.2022.11.015
10.1371/journal.pmed.1000217
10.1186/1471-2288-14-40
10.7326/M20-0193
10.1002/sim.9025
10.7326/M18-1376
10.1136/bmj-2023-074821
10.1038/s41591-022-01987-w
10.1136/bmjopen-2020-047709
10.1186/s41512-020-00084-1
10.1016/j.euf.2021.07.004
10.3389/fcvm.2022.951881
10.1371/journal.pmed.1001221
10.1186/1741-7015-8-20
10.1136/bmjhci-2020-100289
10.1016/j.autrev.2023.103294
10.1136/bmj.l5358
10.1371/journal.pmed.1004326
10.1136/bmj-2022-071018
10.1007/s12325-023-02511-3
10.1002/sim.7992
10.1002/jor.25036
10.1136/bmj-2022-071058
10.1038/s41746-021-00552-y
10.1136/bmj.i2416
10.1001/jamapediatrics.2023.0034
10.1016/j.jclinepi.2023.03.024
10.1136/bmj.n2281
10.1002/sim.7993
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.
2024 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2024 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88I
8AF
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ASE
AZQEC
BBNVY
BENPR
BHPHI
BTHHO
CCPQU
DWQXO
FPQ
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K6X
K9.
KB0
LK8
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1136/bmj-2023-078378
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Index
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
BMJ Journals
ProQuest One Community College
ProQuest Central
British Nursing Index (BNI) (1985 to Present)
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
British Nursing Index
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
British Nursing Index
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1756-1833
ExternalDocumentID 38626948
10_1136_bmj_2023_078378
bmj
Genre Journal Article
GrantInformation_xml – fundername: Health Data Research UK
  funderid: http://dx.doi.org/10.13039/501100023699
– fundername: Cancer Research UK
  funderid: http://dx.doi.org/10.13039/501100000289
– fundername: Cancer Research UK
  grantid: 27294
– fundername: Wellcome Trust
GroupedDBID 23N
39C
4.4
40O
53G
5GY
7RV
7X7
88I
8AF
8F7
8FE
8FH
8FI
8FJ
8G5
9YT
AACGO
AANCE
AAWJN
ABIVO
ABJNI
ABPLY
ABTLG
ABUWG
ABVAJ
ACGFS
ACGOD
ACMFJ
ACMMV
ACPRK
AFKRA
AGFXO
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BTHHO
C45
CCPQU
CS3
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
GUQSH
H13
HAJ
HCIFZ
HMCUK
HZ~
JLS
JSG
L7B
LK8
M2O
M2P
M7P
NAPCQ
NXWIF
O9-
OVD
PHGZT
PQQKQ
PROAC
R53
RHI
RMJ
RV8
TEORI
UKHRP
VVN
WOQ
YFH
YQY
AAYXX
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
ASE
FPQ
K6X
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-b3178-2a77e96bade7e4dc1c3314551490a922ab1c8966891f365631fdd9ceb350a5513
IEDL.DBID 9YT
ISSN 1756-1833
IngestDate Fri Jul 11 11:34:27 EDT 2025
Fri Jul 25 11:41:01 EDT 2025
Sat May 31 02:13:21 EDT 2025
Tue Jul 01 02:24:34 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Thu Apr 24 22:50:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b3178-2a77e96bade7e4dc1c3314551490a922ab1c8966891f365631fdd9ceb350a5513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6712-6626
0000-0002-2772-2316
0000-0003-1613-7450
0000-0003-0044-3496
0000-0003-4528-1312
0000-0001-7881-1207
0000-0001-5471-5202
0000-0002-1286-0038
0000-0001-8699-0735
0000-0003-4910-9368
0000-0002-3037-122X
0000-0003-1501-2947
0000-0003-4026-4345
0000-0002-5183-131X
0000-0003-1147-8491
0000-0002-6476-2165
0000-0001-8708-7003
0000-0002-5742-2840
0000-0002-4897-9356
0000-0002-6657-2787
0000-0001-8980-2330
0000-0001-6349-7251
0000-0002-5529-1541
0000-0001-7849-0087
0000-0002-4517-1562
0000-0001-6911-2367
0000-0001-9612-7791
0000-0002-2729-0947
0000-0003-2118-004X
0000-0003-0100-9659
0000-0003-4423-6472
0000-0002-0989-0623
0000-0002-9076-8472
OpenAccessLink https://bmj.com/content/385/bmj-2023-078378.full
PMID 38626948
PQID 3041614573
PQPubID 2043523
ParticipantIDs proquest_miscellaneous_3040321068
proquest_journals_3041614573
pubmed_primary_38626948
crossref_citationtrail_10_1136_bmj_2023_078378
crossref_primary_10_1136_bmj_2023_078378
bmj_journals_10_1136_bmj_2023_078378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-16
PublicationDateYYYYMMDD 2024-04-16
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMJ (Online)
PublicationTitleAbbrev BMJ
PublicationTitleAlternate BMJ
PublicationYear 2024
Publisher British Medical Journal Publishing Group
BMJ Publishing Group LTD
Publisher_xml – name: British Medical Journal Publishing Group
– name: BMJ Publishing Group LTD
References Collins, Mallett, Omar, Yu (ref11) 2011; 9
Groot, Ogink, Lans (ref45) 2022; 40
Dhiman, Ma, Andaur Navarro (ref37) 2022; 22
Ganapathi, Palmer, Alderman (ref62) 2022; 28
Riley, Snell, Ensor (ref23) 2019; 38
D’Agostino, Vasan, Pencina (ref4) 2008; 117
Collins, Dhiman, Ma (ref74) 2024; 384
Mallett, Royston, Dutton, Waters, Altman (ref10) 2010; 8
Groot, Bindels, Ogink (ref48) 2021; 92
Rech, de Macedo Filho, White (ref40) 2023; 13
Rivera, Liu, Chan, Denniston, Calvert (ref71) 2020; 370
Lans, Kanbier, Bernstein (ref46) 2023; 29
Moons, Wolff, Riley (ref91) 2019; 170
Munguía-Realpozo, Etchegaray-Morales, Mendoza-Pinto (ref41) 2023; 22
Damen, Hooft, Schuit (ref7) 2016; 353
Scott, Carter, Coiera (ref84) 2021; 28
Song, Yang, Hou, Shi (ref43) 2022; 9
van Smeden, de Groot, Moons (ref26) 2016; 16
Dhiman, Ma, Andaur Navarro (ref55) 2022; 6
Andaur Navarro, Damen, Takada (ref60) 2023; 158
Sheehy, Rutledge, Acharya (ref57) 2023; 139
Wynants, Van Calster, Collins (ref9) 2020; 369
Glasziou, Altman, Bossuyt (ref13) 2014; 383
Steyerberg, Mushkudiani, Perel (ref5) 2008; 5
Mongan, Moy, Kahn (ref68) 2020; 2
de Hond, Leeuwenberg, Hooft (ref89) 2022; 5
Camaradou, Hogg (ref65) 2023; 40
Riley, Collins, Ensor (ref31) 2022; 41
Chen, Pierson, Rose, Joshi, Ferryman, Ghassemi (ref61) 2021; 4
Sounderajah, Ashrafian, Golub (ref67) 2021; 11
Kwong, McLoughlin, Haider (ref88) 2021; 7
Altman, Simera, Hoey, Moher, Schulz (ref12) 2008; 2
van Smeden, Moons, de Groot (ref27) 2019; 28
Collins, Moons (ref78) 2019; 393
Riley, Ensor, Snell (ref25) 2020; 368
Moher, Schulz, Simera, Altman (ref77) 2010; 7
Araújo, Moraes, Pérez-de-Oliveira (ref56) 2023; 140
van Smeden, Reitsma, Riley, Collins, Moons (ref1) 2021; 132
Nashef, Roques, Sharples (ref2) 2012; 41
Archer, Snell, Ensor, Hudda, Collins, Riley (ref29) 2021; 40
Riley, Snell, Archer (ref32) 2024; 384
Debray, Collins, Riley (ref19) 2023; 380
Wawira Gichoya, McCoy, Celi, Ghassemi (ref33) 2021; 28
Yusuf, Atal, Li (ref51) 2020; 10
Van Calster, Steyerberg, Wynants, van Smeden (ref76) 2023; 21
Snell, Archer, Ensor (ref28) 2021; 135
Andaur Navarro, Damen, van Smeden (ref38) 2023; 154
Collins, Whittle, Bullock (ref58) 2024; 165
McDermott, Wang, Marinsek, Ranganath, Foschini, Ghassemi (ref34) 2021; 13
Yang, Fan, Cao (ref44) 2023; 102
Collins, de Groot, Dutton (ref14) 2014; 14
Riley, Debray, Collins (ref30) 2021; 40
Vasey, Nagendran, Campbell (ref69) 2022; 28
Dhiman, Ma, Andaur Navarro (ref59) 2023; 157
Collins, Reitsma, Altman, Moons (ref16) 2015; 162
Collins, Dhiman, Andaur Navarro (ref79) 2021; 11
McCradden, Joshi, Mazwi, Anderson (ref93) 2020; 2
Bellou, Belbasis, Konstantinidis, Tzoulaki, Evangelou (ref8) 2019; 367
Gattrell, Logullo, van Zuuren (ref80) 2024; 21
Debray, Collins, Riley (ref20) 2023; 380
Liu, Rivera, Moher, Calvert, Denniston (ref72) 2020; 370
Schwendicke, Singh, Lee (ref85) 2021; 107
Stevens, Mortazavi, Deo, Curtis, Kao (ref87) 2020; 13
Dhiman, Ma, Navarro (ref54) 2021; 138
Gail, Brinton, Byar (ref3) 1989; 81
Riley, Archer, Snell (ref75) 2024; 384
Moons, Altman, Reitsma (ref17) 2015; 162
Norgeot, Quer, Beaulieu-Jones (ref82) 2020; 26
Ibrahim, Liu, Zariffa, Morris, Denniston (ref92) 2021; 3
Olczak, Pavlopoulos, Prijs (ref81) 2021; 92
Staniszewska, Brett, Simera (ref64) 2017; 358
Christodoulou, Ma, Collins, Steyerberg, Verbakel, Van Calster (ref50) 2019; 110
Kanis, Oden, Johnell (ref6) 2007; 18
Sendak, Gao, Brajer, Balu (ref86) 2020; 3
Snell, Levis, Damen (ref21) 2023; 381
Hernandez-Boussard, Bozkurt, Ioannidis, Shah (ref83) 2020; 27
Bouwmeester, Zuithoff, Mallett (ref15) 2012; 9
Riley, Snell, Ensor (ref24) 2019; 38
Wang, Kiik, Peek (ref52) 2020; 15
Finlayson, Beam, van Smeden (ref66) 2023; 177
Miles, Turner, Jacques, Williams, Mason (ref53) 2020; 4
Thibault, Amaral, Argolo, Bandrowski, Davidson, Drude (ref95) 2023; 21
Andaur Navarro, Damen, Takada (ref49) 2021; 375
Heus, Reitsma, Collins (ref18) 2020; 173
Wessler, Nelson, Park (ref36) 2021; 14
Kee, Harun, Mustafa (ref42) 2023; 22
Kadakia, Beckman, Ross, Krumholz (ref63) 2021; 384
Wolff, Moons, Riley (ref90) 2019; 170
Li, Feridooni, Cuen-Ojeda (ref47) 2022; 5
Dhiman, Whittle, Van Calster (ref22) 2023; 5
Andaur Navarro, Damen, Takada (ref39) 2022; 22
Cacciamani, Chu, Sanford (ref73) 2023; 29
2024061109550993000_385.apr16_11.e078378.82
2024061109550993000_385.apr16_11.e078378.83
2024061109550993000_385.apr16_11.e078378.40
2024061109550993000_385.apr16_11.e078378.84
2024061109550993000_385.apr16_11.e078378.41
2024061109550993000_385.apr16_11.e078378.85
2024061109550993000_385.apr16_11.e078378.42
2024061109550993000_385.apr16_11.e078378.86
2024061109550993000_385.apr16_11.e078378.43
2024061109550993000_385.apr16_11.e078378.87
2024061109550993000_385.apr16_11.e078378.44
2024061109550993000_385.apr16_11.e078378.88
2024061109550993000_385.apr16_11.e078378.45
2024061109550993000_385.apr16_11.e078378.89
2024061109550993000_385.apr16_11.e078378.80
2024061109550993000_385.apr16_11.e078378.81
2024061109550993000_385.apr16_11.e078378.4
2024061109550993000_385.apr16_11.e078378.5
2024061109550993000_385.apr16_11.e078378.2
2024061109550993000_385.apr16_11.e078378.3
2024061109550993000_385.apr16_11.e078378.1
2024061109550993000_385.apr16_11.e078378.35
2024061109550993000_385.apr16_11.e078378.79
2024061109550993000_385.apr16_11.e078378.36
2024061109550993000_385.apr16_11.e078378.37
2024061109550993000_385.apr16_11.e078378.38
2024061109550993000_385.apr16_11.e078378.8
2024061109550993000_385.apr16_11.e078378.39
2024061109550993000_385.apr16_11.e078378.9
2024061109550993000_385.apr16_11.e078378.6
2024061109550993000_385.apr16_11.e078378.7
2024061109550993000_385.apr16_11.e078378.71
2024061109550993000_385.apr16_11.e078378.72
2024061109550993000_385.apr16_11.e078378.73
2024061109550993000_385.apr16_11.e078378.30
2024061109550993000_385.apr16_11.e078378.74
2024061109550993000_385.apr16_11.e078378.31
2024061109550993000_385.apr16_11.e078378.75
2024061109550993000_385.apr16_11.e078378.32
2024061109550993000_385.apr16_11.e078378.76
2024061109550993000_385.apr16_11.e078378.33
2024061109550993000_385.apr16_11.e078378.77
2024061109550993000_385.apr16_11.e078378.34
2024061109550993000_385.apr16_11.e078378.78
2024061109550993000_385.apr16_11.e078378.70
2024061109550993000_385.apr16_11.e078378.24
2024061109550993000_385.apr16_11.e078378.68
2024061109550993000_385.apr16_11.e078378.25
2024061109550993000_385.apr16_11.e078378.69
2024061109550993000_385.apr16_11.e078378.26
2024061109550993000_385.apr16_11.e078378.27
2024061109550993000_385.apr16_11.e078378.28
2024061109550993000_385.apr16_11.e078378.29
2024061109550993000_385.apr16_11.e078378.60
2024061109550993000_385.apr16_11.e078378.61
2024061109550993000_385.apr16_11.e078378.62
2024061109550993000_385.apr16_11.e078378.63
2024061109550993000_385.apr16_11.e078378.20
2024061109550993000_385.apr16_11.e078378.64
2024061109550993000_385.apr16_11.e078378.21
2024061109550993000_385.apr16_11.e078378.65
2024061109550993000_385.apr16_11.e078378.22
2024061109550993000_385.apr16_11.e078378.66
2024061109550993000_385.apr16_11.e078378.23
2024061109550993000_385.apr16_11.e078378.67
2024061109550993000_385.apr16_11.e078378.13
2024061109550993000_385.apr16_11.e078378.57
2024061109550993000_385.apr16_11.e078378.14
2024061109550993000_385.apr16_11.e078378.58
2024061109550993000_385.apr16_11.e078378.15
2024061109550993000_385.apr16_11.e078378.59
2024061109550993000_385.apr16_11.e078378.16
2024061109550993000_385.apr16_11.e078378.17
2024061109550993000_385.apr16_11.e078378.18
2024061109550993000_385.apr16_11.e078378.19
2024061109550993000_385.apr16_11.e078378.93
2024061109550993000_385.apr16_11.e078378.50
2024061109550993000_385.apr16_11.e078378.94
2024061109550993000_385.apr16_11.e078378.51
2024061109550993000_385.apr16_11.e078378.95
2024061109550993000_385.apr16_11.e078378.52
2024061109550993000_385.apr16_11.e078378.96
2024061109550993000_385.apr16_11.e078378.53
2024061109550993000_385.apr16_11.e078378.10
2024061109550993000_385.apr16_11.e078378.54
2024061109550993000_385.apr16_11.e078378.11
2024061109550993000_385.apr16_11.e078378.55
2024061109550993000_385.apr16_11.e078378.56
2024061109550993000_385.apr16_11.e078378.90
2024061109550993000_385.apr16_11.e078378.91
Altman (2024061109550993000_385.apr16_11.e078378.12) 2008; 2
2024061109550993000_385.apr16_11.e078378.92
2024061109550993000_385.apr16_11.e078378.46
2024061109550993000_385.apr16_11.e078378.47
2024061109550993000_385.apr16_11.e078378.48
2024061109550993000_385.apr16_11.e078378.49
38626949 - BMJ. 2024 Apr 16;385:q824. doi: 10.1136/bmj.q824.
38636956 - BMJ. 2024 Apr 18;385:q902. doi: 10.1136/bmj.q902.
References_xml – volume: 375
  start-page: n2281
  year: 2021
  ident: ref49
  article-title: Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
  publication-title: BMJ
– volume: 22
  start-page: 101
  year: 2022
  ident: ref37
  article-title: Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review
  publication-title: BMC Med Res Methodol
– volume: 28
  start-page: 2455
  year: 2019
  ident: ref27
  article-title: Sample size for binary logistic prediction models: Beyond events per variable criteria
  publication-title: Stat Methods Med Res
– volume: 38
  start-page: 1262
  year: 2019
  ident: ref24
  article-title: Minimum sample size for developing a multivariable prediction model: Part I - Continuous outcomes
  publication-title: Stat Med
– volume: 9
  start-page: 1
  year: 2012
  ident: ref15
  article-title: Reporting and methods in clinical prediction research: a systematic review
  publication-title: PLoS Med
– volume: 380
  year: 2023
  ident: ref19
  article-title: Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist
  publication-title: BMJ
– volume: 162
  start-page: W1
  year: 2015
  ident: ref17
  article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration
  publication-title: Ann Intern Med
– volume: 40
  start-page: 4230
  year: 2021
  ident: ref30
  article-title: Minimum sample size for external validation of a clinical prediction model with a binary outcome
  publication-title: Stat Med
– volume: 381
  year: 2023
  ident: ref21
  article-title: Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA)
  publication-title: BMJ
– volume: 4
  start-page: 123
  year: 2021
  ident: ref61
  article-title: Ethical Machine Learning in Healthcare
  publication-title: Annu Rev Biomed Data Sci
– volume: 21
  start-page: 70
  year: 2023
  ident: ref76
  article-title: There is no such thing as a validated prediction model
  publication-title: BMC Med
– volume: 102
  start-page: 7
  year: 2023
  ident: ref44
  article-title: Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: A systematic review
  publication-title: Acta Obstet Gynecol Scand
– volume: 380
  year: 2023
  ident: ref20
  article-title: Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration
  publication-title: BMJ
– volume: 92
  start-page: 385
  year: 2021
  ident: ref48
  article-title: Availability and reporting quality of external validations of machine-learning prediction models with orthopedic surgical outcomes: a systematic review
  publication-title: Acta Orthop
– volume: 170
  start-page: 51
  year: 2019
  ident: ref90
  article-title: PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies
  publication-title: Ann Intern Med
– volume: 28
  start-page: 2232
  year: 2022
  ident: ref62
  article-title: Tackling bias in AI health datasets through the STANDING Together initiative
  publication-title: Nat Med
– volume: 29
  start-page: 14
  year: 2023
  ident: ref73
  article-title: PRISMA AI reporting guidelines for systematic reviews and meta-analyses on AI in healthcare
  publication-title: Nat Med
– volume: 21
  year: 2023
  ident: ref95
  article-title: Open Science 2.0: Towards a truly collaborative research ecosystem
  publication-title: PLoS Biol
– volume: 22
  start-page: 12
  year: 2022
  ident: ref39
  article-title: Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review
  publication-title: BMC Med Res Methodol
– volume: 157
  start-page: 120
  year: 2023
  ident: ref59
  article-title: Overinterpretation of findings in machine learning prediction model studies in oncology: a systematic review
  publication-title: J Clin Epidemiol
– volume: 369
  start-page: m1328
  year: 2020
  ident: ref9
  article-title: Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal
  publication-title: BMJ
– volume: 26
  start-page: 1320
  year: 2020
  ident: ref82
  article-title: Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist
  publication-title: Nat Med
– volume: 15
  year: 2020
  ident: ref52
  article-title: A systematic review of machine learning models for predicting outcomes of stroke with structured data
  publication-title: PLoS One
– volume: 27
  start-page: 2011
  year: 2020
  ident: ref83
  article-title: MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care
  publication-title: J Am Med Inform Assoc
– volume: 28
  start-page: 924
  year: 2022
  ident: ref69
  article-title: Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI
  publication-title: Nat Med
– volume: 138
  start-page: 60
  year: 2021
  ident: ref54
  article-title: Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved
  publication-title: J Clin Epidemiol
– volume: 165
  year: 2024
  ident: ref58
  article-title: Open science practices need substantial improvement in prognostic model studies in oncology using machine learning
  publication-title: J Clin Epidemiol
– volume: 5
  start-page: 7
  year: 2022
  ident: ref47
  article-title: Machine learning in vascular surgery: a systematic review and critical appraisal
  publication-title: NPJ Digit Med
– volume: 40
  start-page: 475
  year: 2022
  ident: ref45
  article-title: Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting
  publication-title: J Orthop Res
– volume: 393
  start-page: 1577
  year: 2019
  ident: ref78
  article-title: Reporting of artificial intelligence prediction models
  publication-title: Lancet
– volume: 370
  start-page: m3210
  year: 2020
  ident: ref71
  article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension
  publication-title: BMJ
– volume: 40
  start-page: 2563
  year: 2023
  ident: ref65
  article-title: Commentary: Patient Perspectives on Artificial Intelligence; What have We Learned and How Should We Move Forward?
  publication-title: Adv Ther
– volume: 7
  start-page: 672
  year: 2021
  ident: ref88
  article-title: Standardized Reporting of Machine Learning Applications in Urology: The STREAM-URO Framework
  publication-title: Eur Urol Focus
– volume: 384
  year: 2024
  ident: ref75
  article-title: Evaluation of clinical prediction models (part 2): how to undertake an external validation study
  publication-title: BMJ
– volume: 2
  start-page: e49
  year: 2008
  ident: ref12
  article-title: EQUATOR: reporting guidelines for health research
  publication-title: Open Med
– volume: 6
  start-page: 13
  year: 2022
  ident: ref55
  article-title: Risk of bias of prognostic models developed using machine learning: a systematic review in oncology
  publication-title: Diagn Progn Res
– volume: 9
  start-page: 103
  year: 2011
  ident: ref11
  article-title: Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting
  publication-title: BMC Med
– volume: 368
  start-page: m441
  year: 2020
  ident: ref25
  article-title: Calculating the sample size required for developing a clinical prediction model
  publication-title: BMJ
– volume: 41
  start-page: 734
  year: 2012
  ident: ref2
  article-title: EuroSCORE II
  publication-title: Eur J Cardiothorac Surg
– volume: 81
  start-page: 1879
  year: 1989
  ident: ref3
  article-title: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually
  publication-title: J Natl Cancer Inst
– volume: 110
  start-page: 12
  year: 2019
  ident: ref50
  article-title: A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
  publication-title: J Clin Epidemiol
– volume: 4
  start-page: 16
  year: 2020
  ident: ref53
  article-title: Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review
  publication-title: Diagn Progn Res
– volume: 5
  year: 2008
  ident: ref5
  article-title: Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics
  publication-title: PLoS Med
– volume: 16
  start-page: 163
  year: 2016
  ident: ref26
  article-title: No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
  publication-title: BMC Med Res Methodol
– volume: 14
  year: 2021
  ident: ref36
  article-title: External Validations of Cardiovascular Clinical Prediction Models: A Large-Scale Review of the Literature
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 10
  year: 2020
  ident: ref51
  article-title: Reporting quality of studies using machine learning models for medical diagnosis: a systematic review
  publication-title: BMJ Open
– volume: 8
  start-page: 20
  year: 2010
  ident: ref10
  article-title: Reporting methods in studies developing prognostic models in cancer: a review
  publication-title: BMC Med
– volume: 21
  year: 2024
  ident: ref80
  article-title: ACCORD (ACcurate COnsensus Reporting Document): A reporting guideline for consensus methods in biomedicine developed via a modified Delphi
  publication-title: PLoS Med
– volume: 154
  start-page: 8
  year: 2023
  ident: ref38
  article-title: Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models
  publication-title: J Clin Epidemiol
– volume: 132
  start-page: 142
  year: 2021
  ident: ref1
  article-title: Clinical prediction models: diagnosis versus prognosis
  publication-title: J Clin Epidemiol
– volume: 3
  start-page: 41
  year: 2020
  ident: ref86
  article-title: Presenting machine learning model information to clinical end users with model facts labels
  publication-title: NPJ Digit Med
– volume: 29
  start-page: 292
  year: 2023
  ident: ref46
  article-title: Social determinants of health in prognostic machine learning models for orthopaedic outcomes: A systematic review
  publication-title: J Eval Clin Pract
– volume: 384
  year: 2024
  ident: ref74
  article-title: Evaluation of clinical prediction models (part 1): from development to external validation
  publication-title: BMJ
– volume: 13
  year: 2020
  ident: ref87
  article-title: Recommendations for Reporting Machine Learning Analyses in Clinical Research
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 28
  year: 2021
  ident: ref33
  article-title: Equity in essence: a call for operationalising fairness in machine learning for healthcare
  publication-title: BMJ Health Care Inform
– volume: 13
  start-page: 495
  year: 2023
  ident: ref40
  article-title: Machine Learning Models to Forecast Outcomes of Pituitary Surgery: A Systematic Review in Quality of Reporting and Current Evidence
  publication-title: Brain Sci
– volume: 38
  start-page: 1276
  year: 2019
  ident: ref23
  article-title: Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes
  publication-title: Stat Med
– volume: 22
  start-page: 13
  year: 2023
  ident: ref42
  article-title: Cardiovascular complications in a diabetes prediction model using machine learning: a systematic review
  publication-title: Cardiovasc Diabetol
– volume: 13
  year: 2021
  ident: ref34
  article-title: Reproducibility in machine learning for health research: Still a ways to go
  publication-title: Sci Transl Med
– volume: 177
  start-page: 448
  year: 2023
  ident: ref66
  article-title: Machine Learning and Statistics in Clinical Research Articles-Moving Past the False Dichotomy
  publication-title: JAMA Pediatr
– volume: 135
  start-page: 79
  year: 2021
  ident: ref28
  article-title: External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb
  publication-title: J Clin Epidemiol
– volume: 162
  start-page: 55
  year: 2015
  ident: ref16
  article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement
  publication-title: Ann Intern Med
– volume: 384
  year: 2024
  ident: ref32
  article-title: Evaluation of clinical prediction models (part 3): calculating the sample size required for an external validation study
  publication-title: BMJ
– volume: 92
  start-page: 513
  year: 2021
  ident: ref81
  article-title: Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal
  publication-title: Acta Orthop
– volume: 370
  start-page: m3164
  year: 2020
  ident: ref72
  article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension
  publication-title: BMJ
– volume: 7
  year: 2010
  ident: ref77
  article-title: Guidance for developers of health research reporting guidelines
  publication-title: PLoS Med
– volume: 353
  start-page: i2416
  year: 2016
  ident: ref7
  article-title: Prediction models for cardiovascular disease risk in the general population: systematic review
  publication-title: BMJ
– volume: 40
  start-page: 133
  year: 2021
  ident: ref29
  article-title: Minimum sample size for external validation of a clinical prediction model with a continuous outcome
  publication-title: Stat Med
– volume: 140
  year: 2023
  ident: ref56
  article-title: Machine learning for the prediction of toxicities from head and neck cancer treatment: A systematic review with meta-analysis
  publication-title: Oral Oncol
– volume: 139
  year: 2023
  ident: ref57
  article-title: Gynecological cancer prognosis using machine learning techniques: A systematic review of the last three decades (1990-2022)
  publication-title: Artif Intell Med
– volume: 383
  start-page: 267
  year: 2014
  ident: ref13
  article-title: Reducing waste from incomplete or unusable reports of biomedical research
  publication-title: Lancet
– volume: 9
  year: 2022
  ident: ref43
  article-title: Machine learning in predicting cardiac surgery-associated acute kidney injury: A systemic review and meta-analysis
  publication-title: Front Cardiovasc Med
– volume: 11
  year: 2021
  ident: ref67
  article-title: Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol
  publication-title: BMJ Open
– volume: 11
  year: 2021
  ident: ref79
  article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
  publication-title: BMJ Open
– volume: 5
  start-page: 2
  year: 2022
  ident: ref89
  article-title: Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review
  publication-title: NPJ Digit Med
– volume: 358
  start-page: j3453
  year: 2017
  ident: ref64
  article-title: GRIPP2 reporting checklists: tools to improve reporting of patient and public involvement in research
  publication-title: BMJ
– volume: 18
  start-page: 1033
  year: 2007
  ident: ref6
  article-title: The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women
  publication-title: Osteoporos Int
– volume: 22
  year: 2023
  ident: ref41
  article-title: Current state and completeness of reporting clinical prediction models using machine learning in systemic lupus erythematosus: A systematic review
  publication-title: Autoimmun Rev
– volume: 14
  start-page: 40
  year: 2014
  ident: ref14
  article-title: External validation of multivariable prediction models: a systematic review of methodological conduct and reporting
  publication-title: BMC Med Res Methodol
– volume: 384
  year: 2021
  ident: ref63
  article-title: Leveraging Open Science to Accelerate Research
  publication-title: N Engl J Med
– volume: 3
  start-page: e260
  year: 2021
  ident: ref92
  article-title: Health data poverty: an assailable barrier to equitable digital health care
  publication-title: Lancet Digit Health
– volume: 173
  start-page: 42
  year: 2020
  ident: ref18
  article-title: Transparent Reporting of Multivariable Prediction Models in Journal and Conference Abstracts: TRIPOD for Abstracts
  publication-title: Ann Intern Med
– volume: 107
  year: 2021
  ident: ref85
  article-title: Artificial intelligence in dental research: Checklist for authors, reviewers, readers
  publication-title: J Dent
– volume: 2
  year: 2020
  ident: ref68
  article-title: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers
  publication-title: Radiol Artif Intell
– volume: 28
  year: 2021
  ident: ref84
  article-title: Clinician checklist for assessing suitability of machine learning applications in healthcare
  publication-title: BMJ Health Care Inform
– volume: 5
  start-page: 816
  year: 2023
  ident: ref22
  article-title: The TRIPOD-P reporting guideline for improving the integrity and transparency of predictive analytics in healthcare through study protocols
  publication-title: Nat Mach Intell
– volume: 367
  start-page: l5358
  year: 2019
  ident: ref8
  article-title: Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal
  publication-title: BMJ
– volume: 117
  start-page: 743
  year: 2008
  ident: ref4
  article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study
  publication-title: Circulation
– volume: 158
  start-page: 99
  year: 2023
  ident: ref60
  article-title: Systematic review finds “spin” practices and poor reporting standards in studies on machine learning-based prediction models
  publication-title: J Clin Epidemiol
– volume: 2
  start-page: e221
  year: 2020
  ident: ref93
  article-title: Ethical limitations of algorithmic fairness solutions in health care machine learning
  publication-title: Lancet Digit Health
– volume: 41
  start-page: 1280
  year: 2022
  ident: ref31
  article-title: Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome
  publication-title: Stat Med
– volume: 170
  start-page: W1
  year: 2019
  ident: ref91
  article-title: PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration
  publication-title: Ann Intern Med
– ident: 2024061109550993000_385.apr16_11.e078378.68
  doi: 10.1148/RYAI.2020200029
– ident: 2024061109550993000_385.apr16_11.e078378.40
  doi: 10.3390/brainsci13030495
– ident: 2024061109550993000_385.apr16_11.e078378.4
  doi: 10.1161/CIRCULATIONAHA.107.699579
– ident: 2024061109550993000_385.apr16_11.e078378.91
  doi: 10.7326/M18-1377
– ident: 2024061109550993000_385.apr16_11.e078378.28
  doi: 10.1016/j.jclinepi.2021.02.011
– ident: 2024061109550993000_385.apr16_11.e078378.63
  doi: 10.1056/NEJMp2034518
– ident: 2024061109550993000_385.apr16_11.e078378.95
  doi: 10.1371/journal.pbio.3002362
– ident: 2024061109550993000_385.apr16_11.e078378.37
  doi: 10.1186/s12874-022-01577-x
– ident: 2024061109550993000_385.apr16_11.e078378.1
  doi: 10.1016/J.JCLINEPI.2021.01.009
– ident: 2024061109550993000_385.apr16_11.e078378.86
  doi: 10.1038/s41746-020-0253-3
– ident: 2024061109550993000_385.apr16_11.e078378.34
  doi: 10.1126/scitranslmed.abb1655
– ident: 2024061109550993000_385.apr16_11.e078378.83
  doi: 10.1093/jamia/ocaa088
– ident: 2024061109550993000_385.apr16_11.e078378.46
  doi: 10.1111/jep.13765
– ident: 2024061109550993000_385.apr16_11.e078378.3
  doi: 10.1093/jnci/81.24.1879
– ident: 2024061109550993000_385.apr16_11.e078378.42
  doi: 10.1186/s12933-023-01741-7
– ident: 2024061109550993000_385.apr16_11.e078378.85
  doi: 10.1016/j.jdent.2021.103610
– ident: 2024061109550993000_385.apr16_11.e078378.55
  doi: 10.1186/s41512-022-00126-w
– ident: 2024061109550993000_385.apr16_11.e078378.11
  doi: 10.1186/1741-7015-9-103
– ident: 2024061109550993000_385.apr16_11.e078378.64
  doi: 10.1136/bmj.j3453
– ident: 2024061109550993000_385.apr16_11.e078378.50
  doi: 10.1016/j.jclinepi.2019.02.004
– ident: 2024061109550993000_385.apr16_11.e078378.74
  doi: 10.1136/bmj-2023-074819
– ident: 2024061109550993000_385.apr16_11.e078378.56
  doi: 10.1016/j.oraloncology.2023.106386
– ident: 2024061109550993000_385.apr16_11.e078378.81
  doi: 10.1080/17453674.2021.1918389
– ident: 2024061109550993000_385.apr16_11.e078378.75
  doi: 10.1136/bmj-2023-074820
– ident: 2024061109550993000_385.apr16_11.e078378.25
  doi: 10.1136/bmj.m441
– ident: 2024061109550993000_385.apr16_11.e078378.21
  doi: 10.1136/bmj-2022-073538
– ident: 2024061109550993000_385.apr16_11.e078378.22
  doi: 10.1038/s42256-023-00705-6
– ident: 2024061109550993000_385.apr16_11.e078378.2
  doi: 10.1093/ejcts/ezs043
– ident: 2024061109550993000_385.apr16_11.e078378.17
  doi: 10.7326/M14-0698
– ident: 2024061109550993000_385.apr16_11.e078378.36
  doi: 10.1161/CIRCOUTCOMES.121.007858
– ident: 2024061109550993000_385.apr16_11.e078378.6
  doi: 10.1007/s00198-007-0343-y
– ident: 2024061109550993000_385.apr16_11.e078378.39
  doi: 10.1186/s12874-021-01469-6
– ident: 2024061109550993000_385.apr16_11.e078378.87
  doi: 10.1161/CIRCOUTCOMES.120.006556
– ident: 2024061109550993000_385.apr16_11.e078378.59
  doi: 10.1016/j.jclinepi.2023.03.012
– ident: 2024061109550993000_385.apr16_11.e078378.93
  doi: 10.1016/S2589-7500(20)30065-0
– ident: 2024061109550993000_385.apr16_11.e078378.29
  doi: 10.1002/sim.8766
– ident: 2024061109550993000_385.apr16_11.e078378.58
  doi: 10.1016/j.jclinepi.2023.10.015
– ident: 2024061109550993000_385.apr16_11.e078378.89
  doi: 10.1038/s41746-021-00549-7
– ident: 2024061109550993000_385.apr16_11.e078378.9
  doi: 10.1136/bmj.m1328
– ident: 2024061109550993000_385.apr16_11.e078378.92
  doi: 10.1016/S2589-7500(20)30317-4
– ident: 2024061109550993000_385.apr16_11.e078378.35
– ident: 2024061109550993000_385.apr16_11.e078378.69
  doi: 10.1038/s41591-022-01772-9
– ident: 2024061109550993000_385.apr16_11.e078378.26
  doi: 10.1186/s12874-016-0267-3
– ident: 2024061109550993000_385.apr16_11.e078378.72
  doi: 10.1136/bmj.m3164
– ident: 2024061109550993000_385.apr16_11.e078378.57
  doi: 10.1016/j.artmed.2023.102536
– ident: 2024061109550993000_385.apr16_11.e078378.76
  doi: 10.1186/s12916-023-02779-w
– ident: 2024061109550993000_385.apr16_11.e078378.16
  doi: 10.7326/M14-0697
– ident: 2024061109550993000_385.apr16_11.e078378.48
  doi: 10.1080/17453674.2021.1910448
– ident: 2024061109550993000_385.apr16_11.e078378.27
  doi: 10.1177/962280218784726
– ident: 2024061109550993000_385.apr16_11.e078378.96
  doi: 10.1002/9781119333784
– ident: 2024061109550993000_385.apr16_11.e078378.94
  doi: 10.1145/3593013.3594096
– ident: 2024061109550993000_385.apr16_11.e078378.52
  doi: 10.1371/journal.pone.0234722
– ident: 2024061109550993000_385.apr16_11.e078378.79
  doi: 10.1136/bmjopen-2020-048008
– ident: 2024061109550993000_385.apr16_11.e078378.70
  doi: 10.1101/2023.05.31.23290788
– ident: 2024061109550993000_385.apr16_11.e078378.13
  doi: 10.1016/S0140-6736(13)62228-X
– ident: 2024061109550993000_385.apr16_11.e078378.82
  doi: 10.1038/s41591-020-1041-y
– ident: 2024061109550993000_385.apr16_11.e078378.44
  doi: 10.1111/aogs.14475
– ident: 2024061109550993000_385.apr16_11.e078378.71
  doi: 10.1136/bmj.m3210
– ident: 2024061109550993000_385.apr16_11.e078378.54
  doi: 10.1016/j.jclinepi.2021.06.024
– ident: 2024061109550993000_385.apr16_11.e078378.61
  doi: 10.1146/annurev-biodatasci-092820-114757
– ident: 2024061109550993000_385.apr16_11.e078378.31
  doi: 10.1002/sim.9275
– ident: 2024061109550993000_385.apr16_11.e078378.51
  doi: 10.1136/bmjopen-2019-034568
– ident: 2024061109550993000_385.apr16_11.e078378.73
  doi: 10.1038/s41591-022-02139-w
– ident: 2024061109550993000_385.apr16_11.e078378.5
  doi: 10.1371/journal.pmed.0050165
– ident: 2024061109550993000_385.apr16_11.e078378.78
  doi: 10.1016/S0140-6736(19)30037-6
– ident: 2024061109550993000_385.apr16_11.e078378.84
  doi: 10.1136/bmjhci-2020-100251
– ident: 2024061109550993000_385.apr16_11.e078378.38
  doi: 10.1016/j.jclinepi.2022.11.015
– ident: 2024061109550993000_385.apr16_11.e078378.77
  doi: 10.1371/journal.pmed.1000217
– ident: 2024061109550993000_385.apr16_11.e078378.14
  doi: 10.1186/1471-2288-14-40
– ident: 2024061109550993000_385.apr16_11.e078378.18
  doi: 10.7326/M20-0193
– ident: 2024061109550993000_385.apr16_11.e078378.30
  doi: 10.1002/sim.9025
– ident: 2024061109550993000_385.apr16_11.e078378.90
  doi: 10.7326/M18-1376
– ident: 2024061109550993000_385.apr16_11.e078378.32
  doi: 10.1136/bmj-2023-074821
– ident: 2024061109550993000_385.apr16_11.e078378.62
  doi: 10.1038/s41591-022-01987-w
– ident: 2024061109550993000_385.apr16_11.e078378.67
  doi: 10.1136/bmjopen-2020-047709
– ident: 2024061109550993000_385.apr16_11.e078378.53
  doi: 10.1186/s41512-020-00084-1
– ident: 2024061109550993000_385.apr16_11.e078378.88
  doi: 10.1016/j.euf.2021.07.004
– ident: 2024061109550993000_385.apr16_11.e078378.43
  doi: 10.3389/fcvm.2022.951881
– ident: 2024061109550993000_385.apr16_11.e078378.15
  doi: 10.1371/journal.pmed.1001221
– ident: 2024061109550993000_385.apr16_11.e078378.10
  doi: 10.1186/1741-7015-8-20
– ident: 2024061109550993000_385.apr16_11.e078378.33
  doi: 10.1136/bmjhci-2020-100289
– ident: 2024061109550993000_385.apr16_11.e078378.41
  doi: 10.1016/j.autrev.2023.103294
– ident: 2024061109550993000_385.apr16_11.e078378.8
  doi: 10.1136/bmj.l5358
– ident: 2024061109550993000_385.apr16_11.e078378.80
  doi: 10.1371/journal.pmed.1004326
– ident: 2024061109550993000_385.apr16_11.e078378.19
  doi: 10.1136/bmj-2022-071018
– ident: 2024061109550993000_385.apr16_11.e078378.65
  doi: 10.1007/s12325-023-02511-3
– ident: 2024061109550993000_385.apr16_11.e078378.23
  doi: 10.1002/sim.7992
– ident: 2024061109550993000_385.apr16_11.e078378.45
  doi: 10.1002/jor.25036
– ident: 2024061109550993000_385.apr16_11.e078378.20
  doi: 10.1136/bmj-2022-071058
– ident: 2024061109550993000_385.apr16_11.e078378.47
  doi: 10.1038/s41746-021-00552-y
– volume: 2
  start-page: e49
  year: 2008
  ident: 2024061109550993000_385.apr16_11.e078378.12
  article-title: EQUATOR: reporting guidelines for health research
  publication-title: Open Med
– ident: 2024061109550993000_385.apr16_11.e078378.7
  doi: 10.1136/bmj.i2416
– ident: 2024061109550993000_385.apr16_11.e078378.66
  doi: 10.1001/jamapediatrics.2023.0034
– ident: 2024061109550993000_385.apr16_11.e078378.60
  doi: 10.1016/j.jclinepi.2023.03.024
– ident: 2024061109550993000_385.apr16_11.e078378.49
  doi: 10.1136/bmj.n2281
– ident: 2024061109550993000_385.apr16_11.e078378.24
  doi: 10.1002/sim.7993
– reference: 38626949 - BMJ. 2024 Apr 16;385:q824. doi: 10.1136/bmj.q824.
– reference: 38636956 - BMJ. 2024 Apr 18;385:q902. doi: 10.1136/bmj.q902.
SSID ssj0002378965
Score 2.7566311
Snippet The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the...
SourceID proquest
pubmed
crossref
bmj
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e078378
SubjectTerms Artificial intelligence
Calibration
Check lists
Checklist
Decision Support Techniques
Deep learning
Humans
Learning algorithms
Machine learning
Medical imaging
Models, Statistical
Open access
Prediction models
Prognosis
Regression analysis
Research Methods & Reporting
Validation studies
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLf4kCYuiAGDQoeMxGES8khix453maoNBEgwhEDqLXJip2yiaSHNdX_73nPcoh3K1bEd6z1_vO8fISfKKhNH1rC0koLBe10xnWrLEie0UEnpsggThW9u5eWjuB6mw2Bwa0JY5fxO9Be1nZRoIz8DtRuEE5Eq_n36whA1Cr2rAUJjlaxj6TLc1WqoFjaWhKtMyzRU9Im5PCvGfxgChjP0XiG02iq0_P8kLZEz_XtzsUU2g6BIBx1nP5IVV2-TDzfBFb5D_j7cX939-nk6uKI-KQitfN9oO0UN3tJR-9siPynIpLTzC8AbRed5kHT6ihMhU6jHwmno7MnMaNs46D3qYmNrCmPHPtjS0YAuMaId5HSzSx4vzh9-XLIApsAKEBHgNBilnJaFsU45Ycu45ByLlIOGFBmdJKaISyCWzHRccRDyeFxZq0vQtdPIIArMJ7JWT2q3T2hlQQ1xWepEWoiMO23jIslKGVlVKWNUj5wAVfNwGJrc6xlc5tiIxM874vfI1znZ8zIUJEdcjOflA74sBky7WhzLu_bnfHxbx9sW6pHjxWc4TugjMbWbtL5PhGlNEqbY6_i_-BdH7U-L7OD9yQ_JBqzEh_fEsk_WZq-t-wySy6w48tvzH0Se6y8
  priority: 102
  providerName: ProQuest
Title TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods
URI https://bmj.com/content/385/bmj-2023-078378.full
https://www.ncbi.nlm.nih.gov/pubmed/38626948
https://www.proquest.com/docview/3041614573
https://www.proquest.com/docview/3040321068
Volume 385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9RkBAvCNgH5aMyEg-TprAkju2Yt8JAMKkMoTJ1T5ETO90QhIomr_vbd5ePTkOqxFOU2Ockd7buzue7H8CxssoEvjWeyGXkob7OPS209UIX6UiFmYt9ShQe3cir--jbRExWwO9yYdKnhyaTgWozFeUXHgt65hHKt0chJxWf0MZ0D9YImoTmsf45XuyqhNiupWhr-ARcvibegHVORrwmwJ8eNv6vj5YYmbWyudyCzdZKZMNGrNuw4oodWB-1cfB38Gd8d337_evn4TWrM4Joi--UVTNy3y2bVr8tCZOhQcqaoAAqKNYlQbLZCw1EEmE1EM6clb9Myaq5w97T5mBswZD2qT5p6VgLLTFlDd70_D3cX16Mz6-8FknBS9E-wKVglHJapsY65SKbBRnnVKEc3SPf6DA0aZAh32Ssg5yjhceD3FqdoaMtfEN8_gCrxXPhdoHlFn0QFwsXiTSKudM2SMM4k75VuTJG9eEYuZq0K2Ge1E4Glwk9JDkkjRz6cNKxPcnaauQEivG4nODTgmDWFOJY3vWgk-O_7-A-uXKRULwPR4tmXEsUIDGFe67qPj7lNEkc4mMj_8W7ulmz97b_24cNvKvP-ATyAFbLl8odovlSpgPoqYka1PN2AGvD89HoB17PLm5u7_4CwRfrww
linkProvider BMJ Publishing Group Ltd
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQwJeEL8pDDDSkJCQtyR24hgJoYkxtWwdCHVS34ITOwXE0rI0QrzwJ_E3cucknXgob3t1bMc6n333-Xz-AHaUVSYMrOFxmUiO9rrkOtaWR05qqaLCpQElCo9PkuGpfD-Npxvwp8-FoWuV_Z7oN2o7L-iMfA9hNzonMlbizeIHJ9Yoiq72FBqtWhy5Xz8RstWvRwc4v8-j6PDd5O2Qd6wCPEdbiWphlHI6yY11yklbhIUQ9Fo3QoXA6CgyeVikCAJSHZYCvR0RltbqAkFnHBiiQ8F-N-EKGt6AwJ6aqtWZTiQUtoy7F4RCkezlZ984EZRzipYRldsmlvxrAtf4td6-Hd6EG51jyvZbTboFG666DVfHXej9DvyefBp9_HDwcn_EfBISnSq-Ys2CTgwsmzVfLekPQx-YtXEItImsz7tki3PqiJSAee6dmi2_mCVraoe1Z-1d3Iph2zN_udOxjs1ixlqK6_ounF6KmO_BVjWv3ANgpUXY49LYyTiXqXDahnmUFklgVamMUQPYQalm3eKrM49rRJJRIQk_a4U_gN1e7FnRPYBOPBzf1zd4sWqwaN_-WF91u5_Hi3FcqOwAnq0-4_KlmIyp3LzxdQJKo0qwi_vt_K_-JQhtapk-_H_nT-HacDI-zo5HJ0eP4DqOyl8tCpNt2FqeN-4xek3L_IlXVQafL3tt_AVpFyaj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnTTxgvimMMBIQ0JCpknsxDESQoOuWhkr1bRJe8uc2CkglpalEeKFP4y_jrt8dOKhvO01sZ3ofPbdz3fnH8Cussr4njU8zCPJ0V7nXIfa8sBJLVWQudijQuGjSXRwKj-ehWcb8KerhaG0ym5PrDdqO8_ojHyAsBudExkqMcjbtIjpcPRu8YMTgxRFWjs6jUZFDt2vnwjfyrfjIc71iyAY7Z98OOAtwwBP0W6iihilnI5SY51y0mZ-JgTd3I2wwTM6CEzqZzECglj7uUDPR_i5tTpDABp6hqhRcNxN2FKEinqw9X5_Mj1enfAEQmHfsL1PyBfRIL34xomunFPsjIjdNvHJvwZxjZdbW7vRLbjZuqlsr9Gr27DhijuwfdQG4u_C75Pj8fTz8NXemNUlSXTG-IZVCzo_sGxWfbWkTQw9YtZEJdBCsq4Kky0uaSBSCVYz8ZRs-cUsWVU6bD1rMnMLhn0v6lRPx1puixlrCK_Le3B6LYK-D71iXriHwHKLIMjFoZNhKmPhtPXTIM4iz6pcGaP6sItSTdqlWCY1yhFRQg9J-Ekj_D687sSeZO116MTK8X19h5erDovmJpD1TXe6ebz6jysF7sPz1WtczBShMYWbV3Ubj4qqIhziQTP_q28Jwp5axo_-P_gz2MZ1kXwaTw4fww38qTrPyI92oLe8rNwTdKGW6dNWVxmcX_fy-AtBdSw-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIPOD%2BAI+statement%3A+updated+guidance+for+reporting+clinical+prediction+models+that+use+regression+or+machine+learning+methods&rft.jtitle=BMJ.+British+medical+journal+%28Clinical+research+ed.%29&rft.au=Collins%2C+Gary+S&rft.au=Moons%2C+Karel+G+M&rft.au=Dhiman%2C+Paula&rft.au=Riley%2C+Richard+D&rft.date=2024-04-16&rft.issn=1756-1833&rft.eissn=1756-1833&rft.volume=385&rft.spage=e078378&rft_id=info:doi/10.1136%2Fbmj-2023-078378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-1833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-1833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-1833&client=summon