TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods
The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the fie...
Saved in:
Published in | BMJ (Online) Vol. 385; p. e078378 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
British Medical Journal Publishing Group
16.04.2024
BMJ Publishing Group LTD |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the field of prediction have since included the widespread use of artificial intelligence (AI) powered by machine learning methods to develop prediction models. An update to the TRIPOD statement is thus needed. TRIPOD+AI provides harmonised guidance for reporting prediction model studies, irrespective of whether regression modelling or machine learning methods have been used. The new checklist supersedes the TRIPOD 2015 checklist, which should no longer be used. This article describes the development of TRIPOD+AI and presents the expanded 27 item checklist with more detailed explanation of each reporting recommendation, and the TRIPOD+AI for Abstracts checklist. TRIPOD+AI aims to promote the complete, accurate, and transparent reporting of studies that develop a prediction model or evaluate its performance. Complete reporting will facilitate study appraisal, model evaluation, and model implementation. |
---|---|
AbstractList | The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the field of prediction have since included the widespread use of artificial intelligence (AI) powered by machine learning methods to develop prediction models. An update to the TRIPOD statement is thus needed. TRIPOD+AI provides harmonised guidance for reporting prediction model studies, irrespective of whether regression modelling or machine learning methods have been used. The new checklist supersedes the TRIPOD 2015 checklist, which should no longer be used. This article describes the development of TRIPOD+AI and presents the expanded 27 item checklist with more detailed explanation of each reporting recommendation, and the TRIPOD+AI for Abstracts checklist. TRIPOD+AI aims to promote the complete, accurate, and transparent reporting of studies that develop a prediction model or evaluate its performance. Complete reporting will facilitate study appraisal, model evaluation, and model implementation. |
Author | Boulesteix, Anne-Laure Denniston, Alastair K Lam, Emily Oakden-Rayner, Lauren Dhiman, Paula Beam, Andrew L van Smeden, Maarten Reitsma, Johannes B Harvey, Hugh Collins, Gary S Moons, Karel G M Logullo, Patricia Hoffman, Michael M Golub, Robert M McCradden, Melissa D Heinze, Georg Maier-Hein, Lena Parnell, Richard Kengne, André Pascal Ghassemi, Marzyeh Camaradou, Jennifer Catherine Loder, Elizabeth W Rose, Sherri Van Calster, Ben Wynants, Laure Celi, Leo Anthony Lee, Naomi Liu, Xiaoxuan Ordish, Johan Singh, Karandeep Denaxas, Spiros Mateen, Bilal A Riley, Richard D Glocker, Ben |
Author_xml | – sequence: 1 givenname: Gary S orcidid: 0000-0002-2772-2316 surname: Collins fullname: Collins, Gary S email: gary.collins@csm.ox.ac.uk organization: Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK – sequence: 2 givenname: Karel G M orcidid: 0000-0003-2118-004X surname: Moons fullname: Moons, Karel G M organization: Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 3 givenname: Paula orcidid: 0000-0002-0989-0623 surname: Dhiman fullname: Dhiman, Paula organization: Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK – sequence: 4 givenname: Richard D orcidid: 0000-0001-8699-0735 surname: Riley fullname: Riley, Richard D organization: National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK – sequence: 5 givenname: Andrew L orcidid: 0000-0002-6657-2787 surname: Beam fullname: Beam, Andrew L organization: Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA – sequence: 6 givenname: Ben orcidid: 0000-0003-1613-7450 surname: Van Calster fullname: Van Calster, Ben organization: Department of Biomedical Data Science, Leiden University Medical Centre, Leiden, Netherlands – sequence: 7 givenname: Marzyeh orcidid: 0000-0001-6349-7251 surname: Ghassemi fullname: Ghassemi, Marzyeh organization: Department of Electrical Engineering and Computer Science, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 8 givenname: Xiaoxuan orcidid: 0000-0002-1286-0038 surname: Liu fullname: Liu, Xiaoxuan organization: University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK – sequence: 9 givenname: Johannes B orcidid: 0000-0003-4026-4345 surname: Reitsma fullname: Reitsma, Johannes B organization: Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 10 givenname: Maarten orcidid: 0000-0002-5529-1541 surname: van Smeden fullname: van Smeden, Maarten organization: Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 11 givenname: Anne-Laure orcidid: 0000-0002-2729-0947 surname: Boulesteix fullname: Boulesteix, Anne-Laure organization: Institute for Medical Information Processing, Biometry and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University of Munich and Munich Centre of Machine Learning, Germany – sequence: 12 givenname: Jennifer Catherine orcidid: 0000-0002-5742-2840 surname: Camaradou fullname: Camaradou, Jennifer Catherine organization: Patient representative, University of East Anglia, Faculty of Health Sciences, Norwich Research Park, Norwich, UK – sequence: 13 givenname: Leo Anthony orcidid: 0000-0001-6712-6626 surname: Celi fullname: Celi, Leo Anthony organization: Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, MA, USA – sequence: 14 givenname: Spiros orcidid: 0000-0001-9612-7791 surname: Denaxas fullname: Denaxas, Spiros organization: British Heart Foundation Data Science Centre, London, UK – sequence: 15 givenname: Alastair K orcidid: 0000-0001-7849-0087 surname: Denniston fullname: Denniston, Alastair K organization: Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK – sequence: 16 givenname: Ben orcidid: 0000-0002-4897-9356 surname: Glocker fullname: Glocker, Ben organization: Department of Computing, Imperial College London, London, UK – sequence: 17 givenname: Robert M orcidid: 0000-0001-7881-1207 surname: Golub fullname: Golub, Robert M organization: Northwestern University Feinberg School of Medicine, Chicago, IL, USA – sequence: 18 givenname: Hugh orcidid: 0000-0003-4528-1312 surname: Harvey fullname: Harvey, Hugh organization: Hardian Health, Haywards Heath, UK – sequence: 19 givenname: Georg orcidid: 0000-0003-1147-8491 surname: Heinze fullname: Heinze, Georg organization: Section for Clinical Biometrics, Centre for Medical Data Science, Medical University of Vienna, Vienna, Austria – sequence: 20 givenname: Michael M orcidid: 0000-0002-4517-1562 surname: Hoffman fullname: Hoffman, Michael M organization: Vector Institute for Artificial Intelligence, Toronto, ON, Canada – sequence: 21 givenname: André Pascal orcidid: 0000-0002-5183-131X surname: Kengne fullname: Kengne, André Pascal organization: Department of Medicine, University of Cape Town, Cape Town, South Africa – sequence: 22 givenname: Emily surname: Lam fullname: Lam, Emily organization: Patient representative, Health Data Research UK patient and public involvement and engagement group – sequence: 23 givenname: Naomi orcidid: 0000-0003-0100-9659 surname: Lee fullname: Lee, Naomi organization: National Institute for Health and Care Excellence, London, UK – sequence: 24 givenname: Elizabeth W orcidid: 0000-0003-1501-2947 surname: Loder fullname: Loder, Elizabeth W organization: Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA – sequence: 25 givenname: Lena orcidid: 0000-0003-4910-9368 surname: Maier-Hein fullname: Maier-Hein, Lena organization: Department of Intelligent Medical Systems, German Cancer Research Centre, Heidelberg, Germany – sequence: 26 givenname: Bilal A orcidid: 0000-0003-4423-6472 surname: Mateen fullname: Mateen, Bilal A organization: Alan Turing Institute, London, UK – sequence: 27 givenname: Melissa D orcidid: 0000-0002-6476-2165 surname: McCradden fullname: McCradden, Melissa D organization: Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada – sequence: 28 givenname: Lauren orcidid: 0000-0001-5471-5202 surname: Oakden-Rayner fullname: Oakden-Rayner, Lauren organization: Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia – sequence: 29 givenname: Johan orcidid: 0000-0001-6911-2367 surname: Ordish fullname: Ordish, Johan organization: Medicines and Healthcare products Regulatory Agency, London, UK – sequence: 30 givenname: Richard orcidid: 0000-0003-0044-3496 surname: Parnell fullname: Parnell, Richard organization: Patient representative, Health Data Research UK patient and public involvement and engagement group – sequence: 31 givenname: Sherri orcidid: 0000-0002-9076-8472 surname: Rose fullname: Rose, Sherri organization: Department of Health Policy and Center for Health Policy, Stanford University, Stanford, CA, USA – sequence: 32 givenname: Karandeep orcidid: 0000-0001-8980-2330 surname: Singh fullname: Singh, Karandeep organization: Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA – sequence: 33 givenname: Laure orcidid: 0000-0002-3037-122X surname: Wynants fullname: Wynants, Laure organization: Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands – sequence: 34 givenname: Patricia orcidid: 0000-0001-8708-7003 surname: Logullo fullname: Logullo, Patricia organization: Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38626948$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJaT6ac29F0EshuJEsW5J7C2naLgRSSnoWsjTe1WJLriQfcunfXplNSgnkpIH5vdHMe6foyAcPCL2j5BOljF_2076qSc0qIiQT8hU6oaLlFZWMHf1XH6PzlPaEFFLIjrdv0DGTvOZdI0_Qn_ufmx93Xy6uNjhlnWECnz_jZbaltni7OKu9ATyEiCPMIWbnt9iMzjujRzxHsM5kFzyegoUx4bzTGS8JCr2NkNLaKtpJm53zgEfQ0a8jJsi7YNNb9HrQY4Lzx_cM_fp6c3_9vbq9-7a5vrqtekaFrGotBHS81xYENNZQwxht2pY2HdFdXeuemnIalx0dGG85o4O1nYGetUQXjJ2hj4e5cwy_F0hZTS4ZGEftISxJMdIQVlPCZUE_PEP3YYm-bLdSlJd_BSvU-0dq6Sewao5u0vFBPTlbgPYAmBhSijAo44rBxY8ctRsVJWoNUZUQ1RqiOoRYdJfPdE-jX1ZcHBRr49-uL9F_AYjfq4g |
CitedBy_id | crossref_primary_10_3390_diagnostics14171847 crossref_primary_10_1080_07357907_2024_2354991 crossref_primary_10_1177_19322968241267779 crossref_primary_10_1186_s42466_024_00338_z crossref_primary_10_20517_ais_2024_29 crossref_primary_10_1136_bmjhci_2024_101088 crossref_primary_10_1007_s10916_025_02140_z crossref_primary_10_1007_s11886_025_02219_6 crossref_primary_10_7717_peerj_18741 crossref_primary_10_1056_AIoa2400948 crossref_primary_10_1016_j_compag_2024_109892 crossref_primary_10_1093_jamia_ocae286 crossref_primary_10_1093_jamia_ocae321 crossref_primary_10_1097_PEC_0000000000003314 crossref_primary_10_2196_66612 crossref_primary_10_3346_jkms_2024_39_e291 crossref_primary_10_1136_bmjopen_2024_098476 crossref_primary_10_3390_jcm13123583 crossref_primary_10_1001_jamanetworkopen_2024_37871 crossref_primary_10_3389_froh_2025_1569567 crossref_primary_10_1038_s41598_024_83781_x crossref_primary_10_2340_17453674_2024_42700 crossref_primary_10_7759_cureus_76095 crossref_primary_10_1007_s00259_024_06922_4 crossref_primary_10_1093_jrsssc_qlae070 crossref_primary_10_1088_1361_6560_ad8290 crossref_primary_10_1161_CIRCOUTCOMES_124_011504 crossref_primary_10_3390_cancers16173000 crossref_primary_10_1016_j_lungcan_2024_108075 crossref_primary_10_3389_fdgth_2025_1550731 crossref_primary_10_3390_biomedicines12122842 crossref_primary_10_2196_59916 crossref_primary_10_1038_s41746_024_01255_w crossref_primary_10_1093_eurheartj_ehae595 crossref_primary_10_1186_s12882_025_03972_0 crossref_primary_10_1007_s00784_025_06158_y crossref_primary_10_1200_GO_24_00318 crossref_primary_10_1136_rmdopen_2024_004309 crossref_primary_10_1093_postmj_qgae080 crossref_primary_10_2196_65994 crossref_primary_10_1038_s41598_024_84607_6 crossref_primary_10_1093_rheumatology_keae681 crossref_primary_10_1136_bmj_2023_078276 crossref_primary_10_1055_s_0044_1789218 crossref_primary_10_1089_aipo_2024_0025 crossref_primary_10_1089_dia_2024_0484 crossref_primary_10_1161_STROKEAHA_124_047449 crossref_primary_10_1007_s00330_024_11188_3 crossref_primary_10_1136_bmjopen_2024_086231 crossref_primary_10_1038_s41467_025_58283_7 crossref_primary_10_1186_s12916_025_03994_3 crossref_primary_10_2196_58779 crossref_primary_10_1038_s41746_025_01470_z crossref_primary_10_1038_s41430_024_01529_2 crossref_primary_10_2196_53768 crossref_primary_10_1186_s13054_024_05248_9 crossref_primary_10_1007_s40266_024_01160_7 crossref_primary_10_3348_kjr_2024_0598 crossref_primary_10_1136_bmj_q832 crossref_primary_10_1016_j_radonc_2025_110764 crossref_primary_10_1038_s41598_024_77535_y crossref_primary_10_1136_bmj_2023_076703 crossref_primary_10_1167_iovs_65_10_10 crossref_primary_10_3390_cancers16223817 crossref_primary_10_1136_bmjopen_2024_092594 crossref_primary_10_1002_jmri_29708 crossref_primary_10_1097_MEJ_0000000000001228 crossref_primary_10_12688_wellcomeopenres_23471_1 crossref_primary_10_1007_s40279_024_02131_z crossref_primary_10_1002_acn3_52185 crossref_primary_10_1038_s41746_024_01254_x crossref_primary_10_3389_fonc_2024_1449235 crossref_primary_10_1017_S0033291724002642 crossref_primary_10_1093_eurheartj_ehae651 crossref_primary_10_1186_s13014_024_02512_8 crossref_primary_10_1136_bmj_q824 crossref_primary_10_1007_s40746_024_00301_9 crossref_primary_10_1186_s12912_025_02723_8 crossref_primary_10_1093_jamiaopen_ooae155 crossref_primary_10_1136_bmjopen_2023_082941 crossref_primary_10_1002_phar_4605 crossref_primary_10_1002_jso_27766 crossref_primary_10_1093_jamiaopen_ooae158 crossref_primary_10_1080_07357907_2024_2370692 crossref_primary_10_3389_fmed_2024_1454057 crossref_primary_10_3390_app15010146 crossref_primary_10_1038_s41598_024_81625_2 crossref_primary_10_1093_clinchem_hvae168 crossref_primary_10_1001_jamanetworkopen_2024_55475 crossref_primary_10_1186_s41512_024_00182_4 crossref_primary_10_1136_bmjno_2024_000878 crossref_primary_10_3390_jcdd11120402 crossref_primary_10_1111_jgs_19440 crossref_primary_10_2196_64354 crossref_primary_10_1038_s41591_024_03425_5 crossref_primary_10_1111_head_14806 crossref_primary_10_1016_j_radonc_2024_110428 crossref_primary_10_1136_tsaco_2024_001567 crossref_primary_10_1186_s12877_025_05721_2 crossref_primary_10_3390_cancers17030407 crossref_primary_10_1186_s12916_025_03978_3 crossref_primary_10_1038_s41598_025_85559_1 crossref_primary_10_1210_clinem_dgae863 crossref_primary_10_1038_s41598_024_80968_0 crossref_primary_10_2147_JIR_S496559 crossref_primary_10_1097_MCA_0000000000001490 crossref_primary_10_1136_bmjsem_2024_002090 crossref_primary_10_12688_f1000research_161046_1 crossref_primary_10_1001_jamasurg_2024_6028 crossref_primary_10_1017_S0266462324000394 crossref_primary_10_1136_bmj_2024_082505 crossref_primary_10_1136_gutjnl_2024_334324 crossref_primary_10_1002_ksa_12443 crossref_primary_10_1177_10732748241272713 crossref_primary_10_1371_journal_pmed_1004390 crossref_primary_10_1161_JAHA_124_039221 crossref_primary_10_7759_cureus_80734 crossref_primary_10_1186_s12888_025_06514_y crossref_primary_10_1093_oncolo_oyae337 crossref_primary_10_1007_s00431_024_05925_5 crossref_primary_10_1001_jamapsychiatry_2024_4702 crossref_primary_10_1007_s43678_024_00826_w crossref_primary_10_1186_s12876_025_03697_2 crossref_primary_10_1001_jamanetworkopen_2024_53190 crossref_primary_10_1080_24733938_2025_2476478 crossref_primary_10_3390_proteomes12030024 crossref_primary_10_1007_s00592_024_02404_z crossref_primary_10_1111_acem_15099 crossref_primary_10_1186_s13018_024_05170_4 crossref_primary_10_1007_s00264_024_06326_x crossref_primary_10_1093_bjro_tzae039 crossref_primary_10_1111_iju_15585 crossref_primary_10_1007_s11908_024_00854_8 crossref_primary_10_3390_bioengineering12020125 crossref_primary_10_34133_bmef_0054 crossref_primary_10_1093_ehjdh_ztae080 crossref_primary_10_1161_JAHA_124_036447 crossref_primary_10_1161_JAHA_124_038504 crossref_primary_10_1371_journal_pone_0316526 crossref_primary_10_2196_63809 crossref_primary_10_3390_ecm2010011 crossref_primary_10_1080_07853890_2025_2474172 crossref_primary_10_1093_ejendo_lvae166 crossref_primary_10_1038_s41746_024_01361_9 crossref_primary_10_1097_ALN_0000000000005099 crossref_primary_10_1136_bmjdrc_2024_004595 crossref_primary_10_3390_children11121512 crossref_primary_10_1007_s11604_024_01608_1 crossref_primary_10_1093_jamia_ocae301 crossref_primary_10_1136_jitc_2024_011126 crossref_primary_10_1186_s12890_025_03488_1 crossref_primary_10_1111_apt_18274 crossref_primary_10_1136_bmjhci_2024_101180 crossref_primary_10_1136_bmjonc_2024_000430 crossref_primary_10_1371_journal_pmed_1004432 crossref_primary_10_1212_WNL_0000000000209861 crossref_primary_10_1186_s12904_025_01696_4 crossref_primary_10_2196_63875 crossref_primary_10_1001_jamanetworkopen_2024_50260 crossref_primary_10_1111_acem_15103 crossref_primary_10_1186_s12882_025_04053_y crossref_primary_10_1371_journal_pone_0312968 crossref_primary_10_1097_ALN_0000000000005370 crossref_primary_10_2196_57750 crossref_primary_10_3389_fimmu_2025_1529812 crossref_primary_10_1136_bmj_2024_081554 crossref_primary_10_1097_ACO_0000000000001445 crossref_primary_10_1136_openhrt_2024_002779 crossref_primary_10_1080_0142159X_2024_2429614 crossref_primary_10_3390_jfb15120367 crossref_primary_10_1038_s41523_025_00727_w crossref_primary_10_1186_s12884_025_07180_4 crossref_primary_10_1002_phar_4642 crossref_primary_10_1038_s41598_025_89037_6 crossref_primary_10_3348_kjr_2024_1254 crossref_primary_10_1038_s41746_024_01237_y crossref_primary_10_1038_s41746_024_01372_6 crossref_primary_10_1093_noajnl_vdae132 crossref_primary_10_3389_fendo_2025_1495306 crossref_primary_10_1093_ehjdh_ztae074 crossref_primary_10_1186_s12873_025_01175_2 crossref_primary_10_3390_life14091130 crossref_primary_10_1038_s41591_024_03310_1 crossref_primary_10_1056_AIp2401088 |
Cites_doi | 10.1148/RYAI.2020200029 10.3390/brainsci13030495 10.1161/CIRCULATIONAHA.107.699579 10.7326/M18-1377 10.1016/j.jclinepi.2021.02.011 10.1056/NEJMp2034518 10.1371/journal.pbio.3002362 10.1186/s12874-022-01577-x 10.1016/J.JCLINEPI.2021.01.009 10.1038/s41746-020-0253-3 10.1126/scitranslmed.abb1655 10.1093/jamia/ocaa088 10.1111/jep.13765 10.1093/jnci/81.24.1879 10.1186/s12933-023-01741-7 10.1016/j.jdent.2021.103610 10.1186/s41512-022-00126-w 10.1186/1741-7015-9-103 10.1136/bmj.j3453 10.1016/j.jclinepi.2019.02.004 10.1136/bmj-2023-074819 10.1016/j.oraloncology.2023.106386 10.1080/17453674.2021.1918389 10.1136/bmj-2023-074820 10.1136/bmj.m441 10.1136/bmj-2022-073538 10.1038/s42256-023-00705-6 10.1093/ejcts/ezs043 10.7326/M14-0698 10.1161/CIRCOUTCOMES.121.007858 10.1007/s00198-007-0343-y 10.1186/s12874-021-01469-6 10.1161/CIRCOUTCOMES.120.006556 10.1016/j.jclinepi.2023.03.012 10.1016/S2589-7500(20)30065-0 10.1002/sim.8766 10.1016/j.jclinepi.2023.10.015 10.1038/s41746-021-00549-7 10.1136/bmj.m1328 10.1016/S2589-7500(20)30317-4 10.1038/s41591-022-01772-9 10.1186/s12874-016-0267-3 10.1136/bmj.m3164 10.1016/j.artmed.2023.102536 10.1186/s12916-023-02779-w 10.7326/M14-0697 10.1080/17453674.2021.1910448 10.1177/962280218784726 10.1002/9781119333784 10.1145/3593013.3594096 10.1371/journal.pone.0234722 10.1136/bmjopen-2020-048008 10.1101/2023.05.31.23290788 10.1016/S0140-6736(13)62228-X 10.1038/s41591-020-1041-y 10.1111/aogs.14475 10.1136/bmj.m3210 10.1016/j.jclinepi.2021.06.024 10.1146/annurev-biodatasci-092820-114757 10.1002/sim.9275 10.1136/bmjopen-2019-034568 10.1038/s41591-022-02139-w 10.1371/journal.pmed.0050165 10.1016/S0140-6736(19)30037-6 10.1136/bmjhci-2020-100251 10.1016/j.jclinepi.2022.11.015 10.1371/journal.pmed.1000217 10.1186/1471-2288-14-40 10.7326/M20-0193 10.1002/sim.9025 10.7326/M18-1376 10.1136/bmj-2023-074821 10.1038/s41591-022-01987-w 10.1136/bmjopen-2020-047709 10.1186/s41512-020-00084-1 10.1016/j.euf.2021.07.004 10.3389/fcvm.2022.951881 10.1371/journal.pmed.1001221 10.1186/1741-7015-8-20 10.1136/bmjhci-2020-100289 10.1016/j.autrev.2023.103294 10.1136/bmj.l5358 10.1371/journal.pmed.1004326 10.1136/bmj-2022-071018 10.1007/s12325-023-02511-3 10.1002/sim.7992 10.1002/jor.25036 10.1136/bmj-2022-071058 10.1038/s41746-021-00552-y 10.1136/bmj.i2416 10.1001/jamapediatrics.2023.0034 10.1016/j.jclinepi.2023.03.024 10.1136/bmj.n2281 10.1002/sim.7993 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. 2024 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2024 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88I 8AF 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ASE AZQEC BBNVY BENPR BHPHI BTHHO CCPQU DWQXO FPQ FYUFA GHDGH GNUQQ GUQSH HCIFZ K6X K9. KB0 LK8 M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1136/bmj-2023-078378 |
DatabaseName | BMJ Open Access Journals BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Index ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection BMJ Journals ProQuest One Community College ProQuest Central British Nursing Index (BNI) (1985 to Present) Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection British Nursing Index ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition British Nursing Index ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition BMJ Journals ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1756-1833 |
ExternalDocumentID | 38626948 10_1136_bmj_2023_078378 bmj |
Genre | Journal Article |
GrantInformation_xml | – fundername: Health Data Research UK funderid: http://dx.doi.org/10.13039/501100023699 – fundername: Cancer Research UK funderid: http://dx.doi.org/10.13039/501100000289 – fundername: Cancer Research UK grantid: 27294 – fundername: Wellcome Trust |
GroupedDBID | 23N 39C 4.4 40O 53G 5GY 7RV 7X7 88I 8AF 8F7 8FE 8FH 8FI 8FJ 8G5 9YT AACGO AANCE AAWJN ABIVO ABJNI ABPLY ABTLG ABUWG ABVAJ ACGFS ACGOD ACMFJ ACMMV ACPRK AFKRA AGFXO AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ BTHHO C45 CCPQU CS3 DWQXO EBS EJD F5P FYUFA GNUQQ GUQSH H13 HAJ HCIFZ HMCUK HZ~ JLS JSG L7B LK8 M2O M2P M7P NAPCQ NXWIF O9- OVD PHGZT PQQKQ PROAC R53 RHI RMJ RV8 TEORI UKHRP VVN WOQ YFH YQY AAYXX CITATION PHGZM CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK ASE FPQ K6X K9. MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-b3178-2a77e96bade7e4dc1c3314551490a922ab1c8966891f365631fdd9ceb350a5513 |
IEDL.DBID | 9YT |
ISSN | 1756-1833 |
IngestDate | Fri Jul 11 11:34:27 EDT 2025 Fri Jul 25 11:41:01 EDT 2025 Sat May 31 02:13:21 EDT 2025 Tue Jul 01 02:24:34 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Thu Apr 24 22:50:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b3178-2a77e96bade7e4dc1c3314551490a922ab1c8966891f365631fdd9ceb350a5513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6712-6626 0000-0002-2772-2316 0000-0003-1613-7450 0000-0003-0044-3496 0000-0003-4528-1312 0000-0001-7881-1207 0000-0001-5471-5202 0000-0002-1286-0038 0000-0001-8699-0735 0000-0003-4910-9368 0000-0002-3037-122X 0000-0003-1501-2947 0000-0003-4026-4345 0000-0002-5183-131X 0000-0003-1147-8491 0000-0002-6476-2165 0000-0001-8708-7003 0000-0002-5742-2840 0000-0002-4897-9356 0000-0002-6657-2787 0000-0001-8980-2330 0000-0001-6349-7251 0000-0002-5529-1541 0000-0001-7849-0087 0000-0002-4517-1562 0000-0001-6911-2367 0000-0001-9612-7791 0000-0002-2729-0947 0000-0003-2118-004X 0000-0003-0100-9659 0000-0003-4423-6472 0000-0002-0989-0623 0000-0002-9076-8472 |
OpenAccessLink | https://bmj.com/content/385/bmj-2023-078378.full |
PMID | 38626948 |
PQID | 3041614573 |
PQPubID | 2043523 |
ParticipantIDs | proquest_miscellaneous_3040321068 proquest_journals_3041614573 pubmed_primary_38626948 crossref_citationtrail_10_1136_bmj_2023_078378 crossref_primary_10_1136_bmj_2023_078378 bmj_journals_10_1136_bmj_2023_078378 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-16 |
PublicationDateYYYYMMDD | 2024-04-16 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMJ (Online) |
PublicationTitleAbbrev | BMJ |
PublicationTitleAlternate | BMJ |
PublicationYear | 2024 |
Publisher | British Medical Journal Publishing Group BMJ Publishing Group LTD |
Publisher_xml | – name: British Medical Journal Publishing Group – name: BMJ Publishing Group LTD |
References | Collins, Mallett, Omar, Yu (ref11) 2011; 9 Groot, Ogink, Lans (ref45) 2022; 40 Dhiman, Ma, Andaur Navarro (ref37) 2022; 22 Ganapathi, Palmer, Alderman (ref62) 2022; 28 Riley, Snell, Ensor (ref23) 2019; 38 D’Agostino, Vasan, Pencina (ref4) 2008; 117 Collins, Dhiman, Ma (ref74) 2024; 384 Mallett, Royston, Dutton, Waters, Altman (ref10) 2010; 8 Groot, Bindels, Ogink (ref48) 2021; 92 Rech, de Macedo Filho, White (ref40) 2023; 13 Rivera, Liu, Chan, Denniston, Calvert (ref71) 2020; 370 Lans, Kanbier, Bernstein (ref46) 2023; 29 Moons, Wolff, Riley (ref91) 2019; 170 Munguía-Realpozo, Etchegaray-Morales, Mendoza-Pinto (ref41) 2023; 22 Damen, Hooft, Schuit (ref7) 2016; 353 Scott, Carter, Coiera (ref84) 2021; 28 Song, Yang, Hou, Shi (ref43) 2022; 9 van Smeden, de Groot, Moons (ref26) 2016; 16 Dhiman, Ma, Andaur Navarro (ref55) 2022; 6 Andaur Navarro, Damen, Takada (ref60) 2023; 158 Sheehy, Rutledge, Acharya (ref57) 2023; 139 Wynants, Van Calster, Collins (ref9) 2020; 369 Glasziou, Altman, Bossuyt (ref13) 2014; 383 Steyerberg, Mushkudiani, Perel (ref5) 2008; 5 Mongan, Moy, Kahn (ref68) 2020; 2 de Hond, Leeuwenberg, Hooft (ref89) 2022; 5 Camaradou, Hogg (ref65) 2023; 40 Riley, Collins, Ensor (ref31) 2022; 41 Chen, Pierson, Rose, Joshi, Ferryman, Ghassemi (ref61) 2021; 4 Sounderajah, Ashrafian, Golub (ref67) 2021; 11 Kwong, McLoughlin, Haider (ref88) 2021; 7 Altman, Simera, Hoey, Moher, Schulz (ref12) 2008; 2 van Smeden, Moons, de Groot (ref27) 2019; 28 Collins, Moons (ref78) 2019; 393 Riley, Ensor, Snell (ref25) 2020; 368 Moher, Schulz, Simera, Altman (ref77) 2010; 7 Araújo, Moraes, Pérez-de-Oliveira (ref56) 2023; 140 van Smeden, Reitsma, Riley, Collins, Moons (ref1) 2021; 132 Nashef, Roques, Sharples (ref2) 2012; 41 Archer, Snell, Ensor, Hudda, Collins, Riley (ref29) 2021; 40 Riley, Snell, Archer (ref32) 2024; 384 Debray, Collins, Riley (ref19) 2023; 380 Wawira Gichoya, McCoy, Celi, Ghassemi (ref33) 2021; 28 Yusuf, Atal, Li (ref51) 2020; 10 Van Calster, Steyerberg, Wynants, van Smeden (ref76) 2023; 21 Snell, Archer, Ensor (ref28) 2021; 135 Andaur Navarro, Damen, van Smeden (ref38) 2023; 154 Collins, Whittle, Bullock (ref58) 2024; 165 McDermott, Wang, Marinsek, Ranganath, Foschini, Ghassemi (ref34) 2021; 13 Yang, Fan, Cao (ref44) 2023; 102 Collins, de Groot, Dutton (ref14) 2014; 14 Riley, Debray, Collins (ref30) 2021; 40 Vasey, Nagendran, Campbell (ref69) 2022; 28 Dhiman, Ma, Andaur Navarro (ref59) 2023; 157 Collins, Reitsma, Altman, Moons (ref16) 2015; 162 Collins, Dhiman, Andaur Navarro (ref79) 2021; 11 McCradden, Joshi, Mazwi, Anderson (ref93) 2020; 2 Bellou, Belbasis, Konstantinidis, Tzoulaki, Evangelou (ref8) 2019; 367 Gattrell, Logullo, van Zuuren (ref80) 2024; 21 Debray, Collins, Riley (ref20) 2023; 380 Liu, Rivera, Moher, Calvert, Denniston (ref72) 2020; 370 Schwendicke, Singh, Lee (ref85) 2021; 107 Stevens, Mortazavi, Deo, Curtis, Kao (ref87) 2020; 13 Dhiman, Ma, Navarro (ref54) 2021; 138 Gail, Brinton, Byar (ref3) 1989; 81 Riley, Archer, Snell (ref75) 2024; 384 Moons, Altman, Reitsma (ref17) 2015; 162 Norgeot, Quer, Beaulieu-Jones (ref82) 2020; 26 Ibrahim, Liu, Zariffa, Morris, Denniston (ref92) 2021; 3 Olczak, Pavlopoulos, Prijs (ref81) 2021; 92 Staniszewska, Brett, Simera (ref64) 2017; 358 Christodoulou, Ma, Collins, Steyerberg, Verbakel, Van Calster (ref50) 2019; 110 Kanis, Oden, Johnell (ref6) 2007; 18 Sendak, Gao, Brajer, Balu (ref86) 2020; 3 Snell, Levis, Damen (ref21) 2023; 381 Hernandez-Boussard, Bozkurt, Ioannidis, Shah (ref83) 2020; 27 Bouwmeester, Zuithoff, Mallett (ref15) 2012; 9 Riley, Snell, Ensor (ref24) 2019; 38 Wang, Kiik, Peek (ref52) 2020; 15 Finlayson, Beam, van Smeden (ref66) 2023; 177 Miles, Turner, Jacques, Williams, Mason (ref53) 2020; 4 Thibault, Amaral, Argolo, Bandrowski, Davidson, Drude (ref95) 2023; 21 Andaur Navarro, Damen, Takada (ref49) 2021; 375 Heus, Reitsma, Collins (ref18) 2020; 173 Wessler, Nelson, Park (ref36) 2021; 14 Kee, Harun, Mustafa (ref42) 2023; 22 Kadakia, Beckman, Ross, Krumholz (ref63) 2021; 384 Wolff, Moons, Riley (ref90) 2019; 170 Li, Feridooni, Cuen-Ojeda (ref47) 2022; 5 Dhiman, Whittle, Van Calster (ref22) 2023; 5 Andaur Navarro, Damen, Takada (ref39) 2022; 22 Cacciamani, Chu, Sanford (ref73) 2023; 29 2024061109550993000_385.apr16_11.e078378.82 2024061109550993000_385.apr16_11.e078378.83 2024061109550993000_385.apr16_11.e078378.40 2024061109550993000_385.apr16_11.e078378.84 2024061109550993000_385.apr16_11.e078378.41 2024061109550993000_385.apr16_11.e078378.85 2024061109550993000_385.apr16_11.e078378.42 2024061109550993000_385.apr16_11.e078378.86 2024061109550993000_385.apr16_11.e078378.43 2024061109550993000_385.apr16_11.e078378.87 2024061109550993000_385.apr16_11.e078378.44 2024061109550993000_385.apr16_11.e078378.88 2024061109550993000_385.apr16_11.e078378.45 2024061109550993000_385.apr16_11.e078378.89 2024061109550993000_385.apr16_11.e078378.80 2024061109550993000_385.apr16_11.e078378.81 2024061109550993000_385.apr16_11.e078378.4 2024061109550993000_385.apr16_11.e078378.5 2024061109550993000_385.apr16_11.e078378.2 2024061109550993000_385.apr16_11.e078378.3 2024061109550993000_385.apr16_11.e078378.1 2024061109550993000_385.apr16_11.e078378.35 2024061109550993000_385.apr16_11.e078378.79 2024061109550993000_385.apr16_11.e078378.36 2024061109550993000_385.apr16_11.e078378.37 2024061109550993000_385.apr16_11.e078378.38 2024061109550993000_385.apr16_11.e078378.8 2024061109550993000_385.apr16_11.e078378.39 2024061109550993000_385.apr16_11.e078378.9 2024061109550993000_385.apr16_11.e078378.6 2024061109550993000_385.apr16_11.e078378.7 2024061109550993000_385.apr16_11.e078378.71 2024061109550993000_385.apr16_11.e078378.72 2024061109550993000_385.apr16_11.e078378.73 2024061109550993000_385.apr16_11.e078378.30 2024061109550993000_385.apr16_11.e078378.74 2024061109550993000_385.apr16_11.e078378.31 2024061109550993000_385.apr16_11.e078378.75 2024061109550993000_385.apr16_11.e078378.32 2024061109550993000_385.apr16_11.e078378.76 2024061109550993000_385.apr16_11.e078378.33 2024061109550993000_385.apr16_11.e078378.77 2024061109550993000_385.apr16_11.e078378.34 2024061109550993000_385.apr16_11.e078378.78 2024061109550993000_385.apr16_11.e078378.70 2024061109550993000_385.apr16_11.e078378.24 2024061109550993000_385.apr16_11.e078378.68 2024061109550993000_385.apr16_11.e078378.25 2024061109550993000_385.apr16_11.e078378.69 2024061109550993000_385.apr16_11.e078378.26 2024061109550993000_385.apr16_11.e078378.27 2024061109550993000_385.apr16_11.e078378.28 2024061109550993000_385.apr16_11.e078378.29 2024061109550993000_385.apr16_11.e078378.60 2024061109550993000_385.apr16_11.e078378.61 2024061109550993000_385.apr16_11.e078378.62 2024061109550993000_385.apr16_11.e078378.63 2024061109550993000_385.apr16_11.e078378.20 2024061109550993000_385.apr16_11.e078378.64 2024061109550993000_385.apr16_11.e078378.21 2024061109550993000_385.apr16_11.e078378.65 2024061109550993000_385.apr16_11.e078378.22 2024061109550993000_385.apr16_11.e078378.66 2024061109550993000_385.apr16_11.e078378.23 2024061109550993000_385.apr16_11.e078378.67 2024061109550993000_385.apr16_11.e078378.13 2024061109550993000_385.apr16_11.e078378.57 2024061109550993000_385.apr16_11.e078378.14 2024061109550993000_385.apr16_11.e078378.58 2024061109550993000_385.apr16_11.e078378.15 2024061109550993000_385.apr16_11.e078378.59 2024061109550993000_385.apr16_11.e078378.16 2024061109550993000_385.apr16_11.e078378.17 2024061109550993000_385.apr16_11.e078378.18 2024061109550993000_385.apr16_11.e078378.19 2024061109550993000_385.apr16_11.e078378.93 2024061109550993000_385.apr16_11.e078378.50 2024061109550993000_385.apr16_11.e078378.94 2024061109550993000_385.apr16_11.e078378.51 2024061109550993000_385.apr16_11.e078378.95 2024061109550993000_385.apr16_11.e078378.52 2024061109550993000_385.apr16_11.e078378.96 2024061109550993000_385.apr16_11.e078378.53 2024061109550993000_385.apr16_11.e078378.10 2024061109550993000_385.apr16_11.e078378.54 2024061109550993000_385.apr16_11.e078378.11 2024061109550993000_385.apr16_11.e078378.55 2024061109550993000_385.apr16_11.e078378.56 2024061109550993000_385.apr16_11.e078378.90 2024061109550993000_385.apr16_11.e078378.91 Altman (2024061109550993000_385.apr16_11.e078378.12) 2008; 2 2024061109550993000_385.apr16_11.e078378.92 2024061109550993000_385.apr16_11.e078378.46 2024061109550993000_385.apr16_11.e078378.47 2024061109550993000_385.apr16_11.e078378.48 2024061109550993000_385.apr16_11.e078378.49 38626949 - BMJ. 2024 Apr 16;385:q824. doi: 10.1136/bmj.q824. 38636956 - BMJ. 2024 Apr 18;385:q902. doi: 10.1136/bmj.q902. |
References_xml | – volume: 375 start-page: n2281 year: 2021 ident: ref49 article-title: Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review publication-title: BMJ – volume: 22 start-page: 101 year: 2022 ident: ref37 article-title: Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review publication-title: BMC Med Res Methodol – volume: 28 start-page: 2455 year: 2019 ident: ref27 article-title: Sample size for binary logistic prediction models: Beyond events per variable criteria publication-title: Stat Methods Med Res – volume: 38 start-page: 1262 year: 2019 ident: ref24 article-title: Minimum sample size for developing a multivariable prediction model: Part I - Continuous outcomes publication-title: Stat Med – volume: 9 start-page: 1 year: 2012 ident: ref15 article-title: Reporting and methods in clinical prediction research: a systematic review publication-title: PLoS Med – volume: 380 year: 2023 ident: ref19 article-title: Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist publication-title: BMJ – volume: 162 start-page: W1 year: 2015 ident: ref17 article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration publication-title: Ann Intern Med – volume: 40 start-page: 4230 year: 2021 ident: ref30 article-title: Minimum sample size for external validation of a clinical prediction model with a binary outcome publication-title: Stat Med – volume: 381 year: 2023 ident: ref21 article-title: Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA) publication-title: BMJ – volume: 4 start-page: 123 year: 2021 ident: ref61 article-title: Ethical Machine Learning in Healthcare publication-title: Annu Rev Biomed Data Sci – volume: 21 start-page: 70 year: 2023 ident: ref76 article-title: There is no such thing as a validated prediction model publication-title: BMC Med – volume: 102 start-page: 7 year: 2023 ident: ref44 article-title: Reporting and risk of bias of prediction models based on machine learning methods in preterm birth: A systematic review publication-title: Acta Obstet Gynecol Scand – volume: 380 year: 2023 ident: ref20 article-title: Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration publication-title: BMJ – volume: 92 start-page: 385 year: 2021 ident: ref48 article-title: Availability and reporting quality of external validations of machine-learning prediction models with orthopedic surgical outcomes: a systematic review publication-title: Acta Orthop – volume: 170 start-page: 51 year: 2019 ident: ref90 article-title: PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies publication-title: Ann Intern Med – volume: 28 start-page: 2232 year: 2022 ident: ref62 article-title: Tackling bias in AI health datasets through the STANDING Together initiative publication-title: Nat Med – volume: 29 start-page: 14 year: 2023 ident: ref73 article-title: PRISMA AI reporting guidelines for systematic reviews and meta-analyses on AI in healthcare publication-title: Nat Med – volume: 21 year: 2023 ident: ref95 article-title: Open Science 2.0: Towards a truly collaborative research ecosystem publication-title: PLoS Biol – volume: 22 start-page: 12 year: 2022 ident: ref39 article-title: Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review publication-title: BMC Med Res Methodol – volume: 157 start-page: 120 year: 2023 ident: ref59 article-title: Overinterpretation of findings in machine learning prediction model studies in oncology: a systematic review publication-title: J Clin Epidemiol – volume: 369 start-page: m1328 year: 2020 ident: ref9 article-title: Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal publication-title: BMJ – volume: 26 start-page: 1320 year: 2020 ident: ref82 article-title: Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist publication-title: Nat Med – volume: 15 year: 2020 ident: ref52 article-title: A systematic review of machine learning models for predicting outcomes of stroke with structured data publication-title: PLoS One – volume: 27 start-page: 2011 year: 2020 ident: ref83 article-title: MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care publication-title: J Am Med Inform Assoc – volume: 28 start-page: 924 year: 2022 ident: ref69 article-title: Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI publication-title: Nat Med – volume: 138 start-page: 60 year: 2021 ident: ref54 article-title: Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved publication-title: J Clin Epidemiol – volume: 165 year: 2024 ident: ref58 article-title: Open science practices need substantial improvement in prognostic model studies in oncology using machine learning publication-title: J Clin Epidemiol – volume: 5 start-page: 7 year: 2022 ident: ref47 article-title: Machine learning in vascular surgery: a systematic review and critical appraisal publication-title: NPJ Digit Med – volume: 40 start-page: 475 year: 2022 ident: ref45 article-title: Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting publication-title: J Orthop Res – volume: 393 start-page: 1577 year: 2019 ident: ref78 article-title: Reporting of artificial intelligence prediction models publication-title: Lancet – volume: 370 start-page: m3210 year: 2020 ident: ref71 article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension publication-title: BMJ – volume: 40 start-page: 2563 year: 2023 ident: ref65 article-title: Commentary: Patient Perspectives on Artificial Intelligence; What have We Learned and How Should We Move Forward? publication-title: Adv Ther – volume: 7 start-page: 672 year: 2021 ident: ref88 article-title: Standardized Reporting of Machine Learning Applications in Urology: The STREAM-URO Framework publication-title: Eur Urol Focus – volume: 384 year: 2024 ident: ref75 article-title: Evaluation of clinical prediction models (part 2): how to undertake an external validation study publication-title: BMJ – volume: 2 start-page: e49 year: 2008 ident: ref12 article-title: EQUATOR: reporting guidelines for health research publication-title: Open Med – volume: 6 start-page: 13 year: 2022 ident: ref55 article-title: Risk of bias of prognostic models developed using machine learning: a systematic review in oncology publication-title: Diagn Progn Res – volume: 9 start-page: 103 year: 2011 ident: ref11 article-title: Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting publication-title: BMC Med – volume: 368 start-page: m441 year: 2020 ident: ref25 article-title: Calculating the sample size required for developing a clinical prediction model publication-title: BMJ – volume: 41 start-page: 734 year: 2012 ident: ref2 article-title: EuroSCORE II publication-title: Eur J Cardiothorac Surg – volume: 81 start-page: 1879 year: 1989 ident: ref3 article-title: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually publication-title: J Natl Cancer Inst – volume: 110 start-page: 12 year: 2019 ident: ref50 article-title: A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models publication-title: J Clin Epidemiol – volume: 4 start-page: 16 year: 2020 ident: ref53 article-title: Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review publication-title: Diagn Progn Res – volume: 5 year: 2008 ident: ref5 article-title: Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics publication-title: PLoS Med – volume: 16 start-page: 163 year: 2016 ident: ref26 article-title: No rationale for 1 variable per 10 events criterion for binary logistic regression analysis publication-title: BMC Med Res Methodol – volume: 14 year: 2021 ident: ref36 article-title: External Validations of Cardiovascular Clinical Prediction Models: A Large-Scale Review of the Literature publication-title: Circ Cardiovasc Qual Outcomes – volume: 10 year: 2020 ident: ref51 article-title: Reporting quality of studies using machine learning models for medical diagnosis: a systematic review publication-title: BMJ Open – volume: 8 start-page: 20 year: 2010 ident: ref10 article-title: Reporting methods in studies developing prognostic models in cancer: a review publication-title: BMC Med – volume: 21 year: 2024 ident: ref80 article-title: ACCORD (ACcurate COnsensus Reporting Document): A reporting guideline for consensus methods in biomedicine developed via a modified Delphi publication-title: PLoS Med – volume: 154 start-page: 8 year: 2023 ident: ref38 article-title: Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models publication-title: J Clin Epidemiol – volume: 132 start-page: 142 year: 2021 ident: ref1 article-title: Clinical prediction models: diagnosis versus prognosis publication-title: J Clin Epidemiol – volume: 3 start-page: 41 year: 2020 ident: ref86 article-title: Presenting machine learning model information to clinical end users with model facts labels publication-title: NPJ Digit Med – volume: 29 start-page: 292 year: 2023 ident: ref46 article-title: Social determinants of health in prognostic machine learning models for orthopaedic outcomes: A systematic review publication-title: J Eval Clin Pract – volume: 384 year: 2024 ident: ref74 article-title: Evaluation of clinical prediction models (part 1): from development to external validation publication-title: BMJ – volume: 13 year: 2020 ident: ref87 article-title: Recommendations for Reporting Machine Learning Analyses in Clinical Research publication-title: Circ Cardiovasc Qual Outcomes – volume: 28 year: 2021 ident: ref33 article-title: Equity in essence: a call for operationalising fairness in machine learning for healthcare publication-title: BMJ Health Care Inform – volume: 13 start-page: 495 year: 2023 ident: ref40 article-title: Machine Learning Models to Forecast Outcomes of Pituitary Surgery: A Systematic Review in Quality of Reporting and Current Evidence publication-title: Brain Sci – volume: 38 start-page: 1276 year: 2019 ident: ref23 article-title: Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes publication-title: Stat Med – volume: 22 start-page: 13 year: 2023 ident: ref42 article-title: Cardiovascular complications in a diabetes prediction model using machine learning: a systematic review publication-title: Cardiovasc Diabetol – volume: 13 year: 2021 ident: ref34 article-title: Reproducibility in machine learning for health research: Still a ways to go publication-title: Sci Transl Med – volume: 177 start-page: 448 year: 2023 ident: ref66 article-title: Machine Learning and Statistics in Clinical Research Articles-Moving Past the False Dichotomy publication-title: JAMA Pediatr – volume: 135 start-page: 79 year: 2021 ident: ref28 article-title: External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb publication-title: J Clin Epidemiol – volume: 162 start-page: 55 year: 2015 ident: ref16 article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement publication-title: Ann Intern Med – volume: 384 year: 2024 ident: ref32 article-title: Evaluation of clinical prediction models (part 3): calculating the sample size required for an external validation study publication-title: BMJ – volume: 92 start-page: 513 year: 2021 ident: ref81 article-title: Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal publication-title: Acta Orthop – volume: 370 start-page: m3164 year: 2020 ident: ref72 article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension publication-title: BMJ – volume: 7 year: 2010 ident: ref77 article-title: Guidance for developers of health research reporting guidelines publication-title: PLoS Med – volume: 353 start-page: i2416 year: 2016 ident: ref7 article-title: Prediction models for cardiovascular disease risk in the general population: systematic review publication-title: BMJ – volume: 40 start-page: 133 year: 2021 ident: ref29 article-title: Minimum sample size for external validation of a clinical prediction model with a continuous outcome publication-title: Stat Med – volume: 140 year: 2023 ident: ref56 article-title: Machine learning for the prediction of toxicities from head and neck cancer treatment: A systematic review with meta-analysis publication-title: Oral Oncol – volume: 139 year: 2023 ident: ref57 article-title: Gynecological cancer prognosis using machine learning techniques: A systematic review of the last three decades (1990-2022) publication-title: Artif Intell Med – volume: 383 start-page: 267 year: 2014 ident: ref13 article-title: Reducing waste from incomplete or unusable reports of biomedical research publication-title: Lancet – volume: 9 year: 2022 ident: ref43 article-title: Machine learning in predicting cardiac surgery-associated acute kidney injury: A systemic review and meta-analysis publication-title: Front Cardiovasc Med – volume: 11 year: 2021 ident: ref67 article-title: Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol publication-title: BMJ Open – volume: 11 year: 2021 ident: ref79 article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence publication-title: BMJ Open – volume: 5 start-page: 2 year: 2022 ident: ref89 article-title: Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review publication-title: NPJ Digit Med – volume: 358 start-page: j3453 year: 2017 ident: ref64 article-title: GRIPP2 reporting checklists: tools to improve reporting of patient and public involvement in research publication-title: BMJ – volume: 18 start-page: 1033 year: 2007 ident: ref6 article-title: The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women publication-title: Osteoporos Int – volume: 22 year: 2023 ident: ref41 article-title: Current state and completeness of reporting clinical prediction models using machine learning in systemic lupus erythematosus: A systematic review publication-title: Autoimmun Rev – volume: 14 start-page: 40 year: 2014 ident: ref14 article-title: External validation of multivariable prediction models: a systematic review of methodological conduct and reporting publication-title: BMC Med Res Methodol – volume: 384 year: 2021 ident: ref63 article-title: Leveraging Open Science to Accelerate Research publication-title: N Engl J Med – volume: 3 start-page: e260 year: 2021 ident: ref92 article-title: Health data poverty: an assailable barrier to equitable digital health care publication-title: Lancet Digit Health – volume: 173 start-page: 42 year: 2020 ident: ref18 article-title: Transparent Reporting of Multivariable Prediction Models in Journal and Conference Abstracts: TRIPOD for Abstracts publication-title: Ann Intern Med – volume: 107 year: 2021 ident: ref85 article-title: Artificial intelligence in dental research: Checklist for authors, reviewers, readers publication-title: J Dent – volume: 2 year: 2020 ident: ref68 article-title: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers publication-title: Radiol Artif Intell – volume: 28 year: 2021 ident: ref84 article-title: Clinician checklist for assessing suitability of machine learning applications in healthcare publication-title: BMJ Health Care Inform – volume: 5 start-page: 816 year: 2023 ident: ref22 article-title: The TRIPOD-P reporting guideline for improving the integrity and transparency of predictive analytics in healthcare through study protocols publication-title: Nat Mach Intell – volume: 367 start-page: l5358 year: 2019 ident: ref8 article-title: Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal publication-title: BMJ – volume: 117 start-page: 743 year: 2008 ident: ref4 article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study publication-title: Circulation – volume: 158 start-page: 99 year: 2023 ident: ref60 article-title: Systematic review finds “spin” practices and poor reporting standards in studies on machine learning-based prediction models publication-title: J Clin Epidemiol – volume: 2 start-page: e221 year: 2020 ident: ref93 article-title: Ethical limitations of algorithmic fairness solutions in health care machine learning publication-title: Lancet Digit Health – volume: 41 start-page: 1280 year: 2022 ident: ref31 article-title: Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome publication-title: Stat Med – volume: 170 start-page: W1 year: 2019 ident: ref91 article-title: PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration publication-title: Ann Intern Med – ident: 2024061109550993000_385.apr16_11.e078378.68 doi: 10.1148/RYAI.2020200029 – ident: 2024061109550993000_385.apr16_11.e078378.40 doi: 10.3390/brainsci13030495 – ident: 2024061109550993000_385.apr16_11.e078378.4 doi: 10.1161/CIRCULATIONAHA.107.699579 – ident: 2024061109550993000_385.apr16_11.e078378.91 doi: 10.7326/M18-1377 – ident: 2024061109550993000_385.apr16_11.e078378.28 doi: 10.1016/j.jclinepi.2021.02.011 – ident: 2024061109550993000_385.apr16_11.e078378.63 doi: 10.1056/NEJMp2034518 – ident: 2024061109550993000_385.apr16_11.e078378.95 doi: 10.1371/journal.pbio.3002362 – ident: 2024061109550993000_385.apr16_11.e078378.37 doi: 10.1186/s12874-022-01577-x – ident: 2024061109550993000_385.apr16_11.e078378.1 doi: 10.1016/J.JCLINEPI.2021.01.009 – ident: 2024061109550993000_385.apr16_11.e078378.86 doi: 10.1038/s41746-020-0253-3 – ident: 2024061109550993000_385.apr16_11.e078378.34 doi: 10.1126/scitranslmed.abb1655 – ident: 2024061109550993000_385.apr16_11.e078378.83 doi: 10.1093/jamia/ocaa088 – ident: 2024061109550993000_385.apr16_11.e078378.46 doi: 10.1111/jep.13765 – ident: 2024061109550993000_385.apr16_11.e078378.3 doi: 10.1093/jnci/81.24.1879 – ident: 2024061109550993000_385.apr16_11.e078378.42 doi: 10.1186/s12933-023-01741-7 – ident: 2024061109550993000_385.apr16_11.e078378.85 doi: 10.1016/j.jdent.2021.103610 – ident: 2024061109550993000_385.apr16_11.e078378.55 doi: 10.1186/s41512-022-00126-w – ident: 2024061109550993000_385.apr16_11.e078378.11 doi: 10.1186/1741-7015-9-103 – ident: 2024061109550993000_385.apr16_11.e078378.64 doi: 10.1136/bmj.j3453 – ident: 2024061109550993000_385.apr16_11.e078378.50 doi: 10.1016/j.jclinepi.2019.02.004 – ident: 2024061109550993000_385.apr16_11.e078378.74 doi: 10.1136/bmj-2023-074819 – ident: 2024061109550993000_385.apr16_11.e078378.56 doi: 10.1016/j.oraloncology.2023.106386 – ident: 2024061109550993000_385.apr16_11.e078378.81 doi: 10.1080/17453674.2021.1918389 – ident: 2024061109550993000_385.apr16_11.e078378.75 doi: 10.1136/bmj-2023-074820 – ident: 2024061109550993000_385.apr16_11.e078378.25 doi: 10.1136/bmj.m441 – ident: 2024061109550993000_385.apr16_11.e078378.21 doi: 10.1136/bmj-2022-073538 – ident: 2024061109550993000_385.apr16_11.e078378.22 doi: 10.1038/s42256-023-00705-6 – ident: 2024061109550993000_385.apr16_11.e078378.2 doi: 10.1093/ejcts/ezs043 – ident: 2024061109550993000_385.apr16_11.e078378.17 doi: 10.7326/M14-0698 – ident: 2024061109550993000_385.apr16_11.e078378.36 doi: 10.1161/CIRCOUTCOMES.121.007858 – ident: 2024061109550993000_385.apr16_11.e078378.6 doi: 10.1007/s00198-007-0343-y – ident: 2024061109550993000_385.apr16_11.e078378.39 doi: 10.1186/s12874-021-01469-6 – ident: 2024061109550993000_385.apr16_11.e078378.87 doi: 10.1161/CIRCOUTCOMES.120.006556 – ident: 2024061109550993000_385.apr16_11.e078378.59 doi: 10.1016/j.jclinepi.2023.03.012 – ident: 2024061109550993000_385.apr16_11.e078378.93 doi: 10.1016/S2589-7500(20)30065-0 – ident: 2024061109550993000_385.apr16_11.e078378.29 doi: 10.1002/sim.8766 – ident: 2024061109550993000_385.apr16_11.e078378.58 doi: 10.1016/j.jclinepi.2023.10.015 – ident: 2024061109550993000_385.apr16_11.e078378.89 doi: 10.1038/s41746-021-00549-7 – ident: 2024061109550993000_385.apr16_11.e078378.9 doi: 10.1136/bmj.m1328 – ident: 2024061109550993000_385.apr16_11.e078378.92 doi: 10.1016/S2589-7500(20)30317-4 – ident: 2024061109550993000_385.apr16_11.e078378.35 – ident: 2024061109550993000_385.apr16_11.e078378.69 doi: 10.1038/s41591-022-01772-9 – ident: 2024061109550993000_385.apr16_11.e078378.26 doi: 10.1186/s12874-016-0267-3 – ident: 2024061109550993000_385.apr16_11.e078378.72 doi: 10.1136/bmj.m3164 – ident: 2024061109550993000_385.apr16_11.e078378.57 doi: 10.1016/j.artmed.2023.102536 – ident: 2024061109550993000_385.apr16_11.e078378.76 doi: 10.1186/s12916-023-02779-w – ident: 2024061109550993000_385.apr16_11.e078378.16 doi: 10.7326/M14-0697 – ident: 2024061109550993000_385.apr16_11.e078378.48 doi: 10.1080/17453674.2021.1910448 – ident: 2024061109550993000_385.apr16_11.e078378.27 doi: 10.1177/962280218784726 – ident: 2024061109550993000_385.apr16_11.e078378.96 doi: 10.1002/9781119333784 – ident: 2024061109550993000_385.apr16_11.e078378.94 doi: 10.1145/3593013.3594096 – ident: 2024061109550993000_385.apr16_11.e078378.52 doi: 10.1371/journal.pone.0234722 – ident: 2024061109550993000_385.apr16_11.e078378.79 doi: 10.1136/bmjopen-2020-048008 – ident: 2024061109550993000_385.apr16_11.e078378.70 doi: 10.1101/2023.05.31.23290788 – ident: 2024061109550993000_385.apr16_11.e078378.13 doi: 10.1016/S0140-6736(13)62228-X – ident: 2024061109550993000_385.apr16_11.e078378.82 doi: 10.1038/s41591-020-1041-y – ident: 2024061109550993000_385.apr16_11.e078378.44 doi: 10.1111/aogs.14475 – ident: 2024061109550993000_385.apr16_11.e078378.71 doi: 10.1136/bmj.m3210 – ident: 2024061109550993000_385.apr16_11.e078378.54 doi: 10.1016/j.jclinepi.2021.06.024 – ident: 2024061109550993000_385.apr16_11.e078378.61 doi: 10.1146/annurev-biodatasci-092820-114757 – ident: 2024061109550993000_385.apr16_11.e078378.31 doi: 10.1002/sim.9275 – ident: 2024061109550993000_385.apr16_11.e078378.51 doi: 10.1136/bmjopen-2019-034568 – ident: 2024061109550993000_385.apr16_11.e078378.73 doi: 10.1038/s41591-022-02139-w – ident: 2024061109550993000_385.apr16_11.e078378.5 doi: 10.1371/journal.pmed.0050165 – ident: 2024061109550993000_385.apr16_11.e078378.78 doi: 10.1016/S0140-6736(19)30037-6 – ident: 2024061109550993000_385.apr16_11.e078378.84 doi: 10.1136/bmjhci-2020-100251 – ident: 2024061109550993000_385.apr16_11.e078378.38 doi: 10.1016/j.jclinepi.2022.11.015 – ident: 2024061109550993000_385.apr16_11.e078378.77 doi: 10.1371/journal.pmed.1000217 – ident: 2024061109550993000_385.apr16_11.e078378.14 doi: 10.1186/1471-2288-14-40 – ident: 2024061109550993000_385.apr16_11.e078378.18 doi: 10.7326/M20-0193 – ident: 2024061109550993000_385.apr16_11.e078378.30 doi: 10.1002/sim.9025 – ident: 2024061109550993000_385.apr16_11.e078378.90 doi: 10.7326/M18-1376 – ident: 2024061109550993000_385.apr16_11.e078378.32 doi: 10.1136/bmj-2023-074821 – ident: 2024061109550993000_385.apr16_11.e078378.62 doi: 10.1038/s41591-022-01987-w – ident: 2024061109550993000_385.apr16_11.e078378.67 doi: 10.1136/bmjopen-2020-047709 – ident: 2024061109550993000_385.apr16_11.e078378.53 doi: 10.1186/s41512-020-00084-1 – ident: 2024061109550993000_385.apr16_11.e078378.88 doi: 10.1016/j.euf.2021.07.004 – ident: 2024061109550993000_385.apr16_11.e078378.43 doi: 10.3389/fcvm.2022.951881 – ident: 2024061109550993000_385.apr16_11.e078378.15 doi: 10.1371/journal.pmed.1001221 – ident: 2024061109550993000_385.apr16_11.e078378.10 doi: 10.1186/1741-7015-8-20 – ident: 2024061109550993000_385.apr16_11.e078378.33 doi: 10.1136/bmjhci-2020-100289 – ident: 2024061109550993000_385.apr16_11.e078378.41 doi: 10.1016/j.autrev.2023.103294 – ident: 2024061109550993000_385.apr16_11.e078378.8 doi: 10.1136/bmj.l5358 – ident: 2024061109550993000_385.apr16_11.e078378.80 doi: 10.1371/journal.pmed.1004326 – ident: 2024061109550993000_385.apr16_11.e078378.19 doi: 10.1136/bmj-2022-071018 – ident: 2024061109550993000_385.apr16_11.e078378.65 doi: 10.1007/s12325-023-02511-3 – ident: 2024061109550993000_385.apr16_11.e078378.23 doi: 10.1002/sim.7992 – ident: 2024061109550993000_385.apr16_11.e078378.45 doi: 10.1002/jor.25036 – ident: 2024061109550993000_385.apr16_11.e078378.20 doi: 10.1136/bmj-2022-071058 – ident: 2024061109550993000_385.apr16_11.e078378.47 doi: 10.1038/s41746-021-00552-y – volume: 2 start-page: e49 year: 2008 ident: 2024061109550993000_385.apr16_11.e078378.12 article-title: EQUATOR: reporting guidelines for health research publication-title: Open Med – ident: 2024061109550993000_385.apr16_11.e078378.7 doi: 10.1136/bmj.i2416 – ident: 2024061109550993000_385.apr16_11.e078378.66 doi: 10.1001/jamapediatrics.2023.0034 – ident: 2024061109550993000_385.apr16_11.e078378.60 doi: 10.1016/j.jclinepi.2023.03.024 – ident: 2024061109550993000_385.apr16_11.e078378.49 doi: 10.1136/bmj.n2281 – ident: 2024061109550993000_385.apr16_11.e078378.24 doi: 10.1002/sim.7993 – reference: 38626949 - BMJ. 2024 Apr 16;385:q824. doi: 10.1136/bmj.q824. – reference: 38636956 - BMJ. 2024 Apr 18;385:q902. doi: 10.1136/bmj.q902. |
SSID | ssj0002378965 |
Score | 2.7566311 |
Snippet | The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the... |
SourceID | proquest pubmed crossref bmj |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e078378 |
SubjectTerms | Artificial intelligence Calibration Check lists Checklist Decision Support Techniques Deep learning Humans Learning algorithms Machine learning Medical imaging Models, Statistical Open access Prediction models Prognosis Regression analysis Research Methods & Reporting Validation studies |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLf4kCYuiAGDQoeMxGES8khix453maoNBEgwhEDqLXJip2yiaSHNdX_73nPcoh3K1bEd6z1_vO8fISfKKhNH1rC0koLBe10xnWrLEie0UEnpsggThW9u5eWjuB6mw2Bwa0JY5fxO9Be1nZRoIz8DtRuEE5Eq_n36whA1Cr2rAUJjlaxj6TLc1WqoFjaWhKtMyzRU9Im5PCvGfxgChjP0XiG02iq0_P8kLZEz_XtzsUU2g6BIBx1nP5IVV2-TDzfBFb5D_j7cX939-nk6uKI-KQitfN9oO0UN3tJR-9siPynIpLTzC8AbRed5kHT6ihMhU6jHwmno7MnMaNs46D3qYmNrCmPHPtjS0YAuMaId5HSzSx4vzh9-XLIApsAKEBHgNBilnJaFsU45Ycu45ByLlIOGFBmdJKaISyCWzHRccRDyeFxZq0vQtdPIIArMJ7JWT2q3T2hlQQ1xWepEWoiMO23jIslKGVlVKWNUj5wAVfNwGJrc6xlc5tiIxM874vfI1znZ8zIUJEdcjOflA74sBky7WhzLu_bnfHxbx9sW6pHjxWc4TugjMbWbtL5PhGlNEqbY6_i_-BdH7U-L7OD9yQ_JBqzEh_fEsk_WZq-t-wySy6w48tvzH0Se6y8 priority: 102 providerName: ProQuest |
Title | TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods |
URI | https://bmj.com/content/385/bmj-2023-078378.full https://www.ncbi.nlm.nih.gov/pubmed/38626948 https://www.proquest.com/docview/3041614573 https://www.proquest.com/docview/3040321068 |
Volume | 385 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9RkBAvCNgH5aMyEg-TprAkju2Yt8JAMKkMoTJ1T5ETO90QhIomr_vbd5ePTkOqxFOU2Ockd7buzue7H8CxssoEvjWeyGXkob7OPS209UIX6UiFmYt9ShQe3cir--jbRExWwO9yYdKnhyaTgWozFeUXHgt65hHKt0chJxWf0MZ0D9YImoTmsf45XuyqhNiupWhr-ARcvibegHVORrwmwJ8eNv6vj5YYmbWyudyCzdZKZMNGrNuw4oodWB-1cfB38Gd8d337_evn4TWrM4Joi--UVTNy3y2bVr8tCZOhQcqaoAAqKNYlQbLZCw1EEmE1EM6clb9Myaq5w97T5mBswZD2qT5p6VgLLTFlDd70_D3cX16Mz6-8FknBS9E-wKVglHJapsY65SKbBRnnVKEc3SPf6DA0aZAh32Ssg5yjhceD3FqdoaMtfEN8_gCrxXPhdoHlFn0QFwsXiTSKudM2SMM4k75VuTJG9eEYuZq0K2Ge1E4Glwk9JDkkjRz6cNKxPcnaauQEivG4nODTgmDWFOJY3vWgk-O_7-A-uXKRULwPR4tmXEsUIDGFe67qPj7lNEkc4mMj_8W7ulmz97b_24cNvKvP-ATyAFbLl8odovlSpgPoqYka1PN2AGvD89HoB17PLm5u7_4CwRfrww |
linkProvider | BMJ Publishing Group Ltd |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5tQwJeEL8pDDDSkJCQtyR24hgJoYkxtWwdCHVS34ITOwXE0rI0QrzwJ_E3cucknXgob3t1bMc6n333-Xz-AHaUVSYMrOFxmUiO9rrkOtaWR05qqaLCpQElCo9PkuGpfD-Npxvwp8-FoWuV_Z7oN2o7L-iMfA9hNzonMlbizeIHJ9Yoiq72FBqtWhy5Xz8RstWvRwc4v8-j6PDd5O2Qd6wCPEdbiWphlHI6yY11yklbhIUQ9Fo3QoXA6CgyeVikCAJSHZYCvR0RltbqAkFnHBiiQ8F-N-EKGt6AwJ6aqtWZTiQUtoy7F4RCkezlZ984EZRzipYRldsmlvxrAtf4td6-Hd6EG51jyvZbTboFG666DVfHXej9DvyefBp9_HDwcn_EfBISnSq-Ys2CTgwsmzVfLekPQx-YtXEItImsz7tki3PqiJSAee6dmi2_mCVraoe1Z-1d3Iph2zN_udOxjs1ixlqK6_ounF6KmO_BVjWv3ANgpUXY49LYyTiXqXDahnmUFklgVamMUQPYQalm3eKrM49rRJJRIQk_a4U_gN1e7FnRPYBOPBzf1zd4sWqwaN_-WF91u5_Hi3FcqOwAnq0-4_KlmIyp3LzxdQJKo0qwi_vt_K_-JQhtapk-_H_nT-HacDI-zo5HJ0eP4DqOyl8tCpNt2FqeN-4xek3L_IlXVQafL3tt_AVpFyaj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnTTxgvimMMBIQ0JCpknsxDESQoOuWhkr1bRJe8uc2CkglpalEeKFP4y_jrt8dOKhvO01sZ3ofPbdz3fnH8Cussr4njU8zCPJ0V7nXIfa8sBJLVWQudijQuGjSXRwKj-ehWcb8KerhaG0ym5PrDdqO8_ojHyAsBudExkqMcjbtIjpcPRu8YMTgxRFWjs6jUZFDt2vnwjfyrfjIc71iyAY7Z98OOAtwwBP0W6iihilnI5SY51y0mZ-JgTd3I2wwTM6CEzqZzECglj7uUDPR_i5tTpDABp6hqhRcNxN2FKEinqw9X5_Mj1enfAEQmHfsL1PyBfRIL34xomunFPsjIjdNvHJvwZxjZdbW7vRLbjZuqlsr9Gr27DhijuwfdQG4u_C75Pj8fTz8NXemNUlSXTG-IZVCzo_sGxWfbWkTQw9YtZEJdBCsq4Kky0uaSBSCVYz8ZRs-cUsWVU6bD1rMnMLhn0v6lRPx1puixlrCK_Le3B6LYK-D71iXriHwHKLIMjFoZNhKmPhtPXTIM4iz6pcGaP6sItSTdqlWCY1yhFRQg9J-Ekj_D687sSeZO116MTK8X19h5erDovmJpD1TXe6ebz6jysF7sPz1WtczBShMYWbV3Ubj4qqIhziQTP_q28Jwp5axo_-P_gz2MZ1kXwaTw4fww38qTrPyI92oLe8rNwTdKGW6dNWVxmcX_fy-AtBdSw- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIPOD%2BAI+statement%3A+updated+guidance+for+reporting+clinical+prediction+models+that+use+regression+or+machine+learning+methods&rft.jtitle=BMJ.+British+medical+journal+%28Clinical+research+ed.%29&rft.au=Collins%2C+Gary+S&rft.au=Moons%2C+Karel+G+M&rft.au=Dhiman%2C+Paula&rft.au=Riley%2C+Richard+D&rft.date=2024-04-16&rft.issn=1756-1833&rft.eissn=1756-1833&rft.volume=385&rft.spage=e078378&rft_id=info:doi/10.1136%2Fbmj-2023-078378&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-1833&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-1833&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-1833&client=summon |