Bridging Big Data: Procedures for Combining Non-equivalent Cognitive Measures from the ENIGMA Consortium
Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
19.01.2023
Cold Spring Harbor Laboratory |
Edition | 1.2 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2023.01.16.524331 |
Cover
Abstract | Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences. |
---|---|
AbstractList | Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual’s latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.
We present a global effort to devise harmonization procedures necessary to meaningfully leverage big data. Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences. Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences. Investigators in the cognitive neurosciences have turned to Big Data to address persistent replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. While there is tremendous potential to advance science through open data sharing, these efforts unveil a host of new questions about how to integrate data arising from distinct sources and instruments. We focus on the most frequently assessed area of cognition - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated raw data from 53 studies from around the world which measured at least one of three distinct verbal learning tasks, totaling N = 10,505 healthy and brain-injured individuals. A mega analysis was conducted using empirical bayes harmonization to isolate and remove site effects, followed by linear models which adjusted for common covariates. After corrections, a continuous item response theory (IRT) model estimated each individual subjects latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance by 37% while preserving covariate effects. The effects of age, sex, and education on scores were found to be highly consistent across memory tests. IRT methods for equating scores across AVLTs agreed with held-out data of dually-administered tests, and these tools are made available for free online. This work demonstrates that large-scale data sharing and harmonization initiatives can offer opportunities to address reproducibility and integration challenges across the behavioral sciences.Competing Interest StatementDr. Arango has been a consultant to or has received honoraria or grants from Acadia, Angelini, Biogen, Boehringer, Gedeon Richter, Janssen Cilag, Lundbeck, Medscape, Menarini, Minerva, Otsuka, Pfizer, Roche, Sage, Servier, Shire, Schering Plough, Sumitomo Dainippon Pharma, Sunovion and Takeda. Dr. Brodtmann serves on the editorial boards of Neurology and International Journal of Stroke. Dr. Diaz-Caneja has received honoraria from Exeltis and Angelinii. Dr. Giza: consultant for NBA, NFL, NHLPA, Los Angeles Lakers; Advisory Board: Highmark Interactive, Novartis, MLS, NBA, USSF; Medicolegal 1-2 cases annually. Dr. Soares: ALKERMES (Research Grant), ALLERGAN (Research Grant), ASOFARMA (Consultant), ATAI (Stock), BOEHRINGER Ingelheim (Consultant), COMPASS (Research Grant), JOHNSON & JOHNSON (Consultant), LIVANOVA (Consultant), PFIZER (Consultant), PULVINAR NEURO LLC (Consultant), RELMADA (Consultant), SANOFI (Consultant), SUNOVIAN (Consultant). Dr. Thompson received partial research support from Biogen, Inc., for research unrelated to this manuscript. Dr. Yatham has been on speaker or advisory boards for, or has received research grants from, Alkermes, Abbvie, Canadian Institutes of Health Research, Sumitomo Dainippon Pharma, GlaxoSmithKline, Intracellular Therapies, Merck, Sanofi, Sequiris, Servier, and Sunovion, over the past 3 years, all outside this work. The collection of this cohort was partially supported by an investigator-initiated research grant from Biogen (US). Biogen had no role in the analysis or writing of this manuscript. Eisai (JP) and Life Molecular Imaging for research unrelated to this manuscript. Dr. Wylie has received research support from the NJ Commission for brain injury research, from the Dept of Veterans' Affairs, from Biogen, from Bristol, Myers, Squibb, from Genetech, and has served on advisory boards for the CDMRP and the VA. All of these activities are unrelated to this research. The views expressed in this article are those of the author(s) and do not reflect the official policy of the Department of Army/Navy/Air Force, Department of Defense, or U.S. Government. |
Author | Khlif, Mohamed Salah Chiaravalloti, Nancy D Merchan-Naranjo, Jessica Anderson, Tim J Dalrymple-Alford, John C Ehrlich, Stefan Haavik, Jan Kerkova, Barbora O'Brien, Terence Darby, David Adamson, Maheen Marotta, Cassandra Liebel, Spencer W Brosch, Katharina Ollinger, John Langella, Roberto Morey, Rajendra A Liou-Johnson, Victoria Frank, Lea E Mayeli, Ahmad Avram, Mihai Borgwardt, Stefan Davenport, Nicholas Banaj, Nerisa Goltermann, Janik Ozmen, Mustafa Knizkova, Karolina Kang, Xiaojian Michel, Chantal Lei, Pui-Wa Kim, Minah Brodtmann, Amy DeLuca, John Krch, Denise Kolskar, Knut K Calhoun, Vince D Hubl, Daniela Arango, Celso Dams-O'Connor, Kristen Kenney, Kimbra Kremen, William S Lindsey, Hannah M Dannlowski, Udo Lengenfelder, Jean Kumari, Veena Gutierrez-Zotes, Alfonso Marquardt, Craig A Myall, Daniel J Ferrarelli, Fabio Cifu, David X Irimia, Andrei Oertel, Viola Vadlamani, Shashank Fuentes-Claramonte, Paola Olsen, Alexander Nenadi, Igor Ayesa-Arriola, Rosa Caeyenberghs, Karen Diaz-Caneja, Covadonga M Meinert, Susanne Pugh, Mary Jo Ambrogi, Sonia J |
Author_xml | – sequence: 1 givenname: Eamonn orcidid: 0000-0002-9211-1271 surname: Kennedy fullname: Kennedy, Eamonn – sequence: 2 givenname: Shashank surname: Vadlamani fullname: Vadlamani, Shashank – sequence: 3 givenname: Hannah M orcidid: 0000-0003-3826-854X surname: Lindsey fullname: Lindsey, Hannah M – sequence: 4 givenname: Pui-Wa surname: Lei fullname: Lei, Pui-Wa – sequence: 5 givenname: Mary Jo orcidid: 0000-0003-4196-7763 surname: Pugh fullname: Pugh, Mary Jo – sequence: 6 givenname: Maheen orcidid: 0000-0002-1534-4063 surname: Adamson fullname: Adamson, Maheen – sequence: 7 givenname: Martin orcidid: 0000-0001-9544-3944 surname: Alda fullname: Alda, Martin – sequence: 8 givenname: Silvia orcidid: 0000-0002-3063-6929 surname: Alonso-Lana fullname: Alonso-Lana, Silvia – sequence: 9 givenname: Sonia orcidid: 0000-0002-2897-358X surname: Ambrogi fullname: Ambrogi, Sonia – sequence: 10 givenname: Tim J orcidid: 0000-0002-1116-3839 surname: Anderson fullname: Anderson, Tim J – sequence: 11 givenname: Celso surname: Arango fullname: Arango, Celso – sequence: 12 givenname: Robert surname: Asarnow fullname: Asarnow, Robert – sequence: 13 givenname: Mihai orcidid: 0000-0003-2171-8313 surname: Avram fullname: Avram, Mihai – sequence: 14 givenname: Rosa orcidid: 0000-0003-0570-5352 surname: Ayesa-Arriola fullname: Ayesa-Arriola, Rosa – sequence: 15 givenname: Talin surname: Babikian fullname: Babikian, Talin – sequence: 16 givenname: Nerisa orcidid: 0000-0002-6317-8549 surname: Banaj fullname: Banaj, Nerisa – sequence: 17 givenname: Laura J orcidid: 0000-0001-7073-725X surname: Bird fullname: Bird, Laura J – sequence: 18 givenname: Stefan surname: Borgwardt fullname: Borgwardt, Stefan – sequence: 19 givenname: Amy orcidid: 0000-0001-9466-2862 surname: Brodtmann fullname: Brodtmann, Amy – sequence: 20 givenname: Katharina orcidid: 0000-0002-0526-8095 surname: Brosch fullname: Brosch, Katharina – sequence: 21 givenname: Karen surname: Caeyenberghs fullname: Caeyenberghs, Karen – sequence: 22 givenname: Vince D orcidid: 0000-0001-9058-0747 surname: Calhoun fullname: Calhoun, Vince D – sequence: 23 givenname: Nancy D orcidid: 0000-0003-2943-7567 surname: Chiaravalloti fullname: Chiaravalloti, Nancy D – sequence: 24 givenname: David X surname: Cifu fullname: Cifu, David X – sequence: 25 givenname: Benedicto surname: Crespo-Facorro fullname: Crespo-Facorro, Benedicto – sequence: 26 givenname: John C orcidid: 0000-0002-6672-033X surname: Dalrymple-Alford fullname: Dalrymple-Alford, John C – sequence: 27 givenname: Kristen surname: Dams-O'Connor fullname: Dams-O'Connor, Kristen – sequence: 28 givenname: Udo orcidid: 0000-0002-0623-3759 surname: Dannlowski fullname: Dannlowski, Udo – sequence: 29 givenname: David orcidid: 0000-0002-7660-8800 surname: Darby fullname: Darby, David – sequence: 30 givenname: Nicholas surname: Davenport fullname: Davenport, Nicholas – sequence: 31 givenname: John orcidid: 0000-0003-3745-4156 surname: DeLuca fullname: DeLuca, John – sequence: 32 givenname: Covadonga M surname: Diaz-Caneja fullname: Diaz-Caneja, Covadonga M – sequence: 33 givenname: Seth G orcidid: 0000-0003-3635-9421 surname: Disner fullname: Disner, Seth G – sequence: 34 givenname: Ekaterina surname: Dobryakova fullname: Dobryakova, Ekaterina – sequence: 35 givenname: Stefan orcidid: 0000-0003-2132-4445 surname: Ehrlich fullname: Ehrlich, Stefan – sequence: 36 givenname: Carrie orcidid: 0000-0001-8607-5633 surname: Esopenko fullname: Esopenko, Carrie – sequence: 37 givenname: Fabio surname: Ferrarelli fullname: Ferrarelli, Fabio – sequence: 38 givenname: Lea E orcidid: 0000-0002-6774-0826 surname: Frank fullname: Frank, Lea E – sequence: 39 givenname: Carol orcidid: 0000-0002-8987-1755 surname: Franz fullname: Franz, Carol – sequence: 40 givenname: Paola orcidid: 0000-0002-1428-7976 surname: Fuentes-Claramonte fullname: Fuentes-Claramonte, Paola – sequence: 41 givenname: Helen orcidid: 0000-0002-5897-0304 surname: Genova fullname: Genova, Helen – sequence: 42 givenname: Christopher C orcidid: 0000-0002-5721-2667 surname: Giza fullname: Giza, Christopher C – sequence: 43 givenname: Janik orcidid: 0000-0003-3087-1002 surname: Goltermann fullname: Goltermann, Janik – sequence: 44 givenname: Dominik orcidid: 0000-0001-8718-0128 surname: Grotegerd fullname: Grotegerd, Dominik – sequence: 45 givenname: Marius orcidid: 0000-0002-6094-9950 surname: Gruber fullname: Gruber, Marius – sequence: 46 givenname: Alfonso orcidid: 0000-0002-4858-1487 surname: Gutierrez-Zotes fullname: Gutierrez-Zotes, Alfonso – sequence: 47 givenname: Minji surname: Ha fullname: Ha, Minji – sequence: 48 givenname: Jan orcidid: 0000-0001-7865-2808 surname: Haavik fullname: Haavik, Jan – sequence: 49 givenname: Charles surname: Hinkin fullname: Hinkin, Charles – sequence: 50 givenname: Kristen R orcidid: 0000-0003-4044-9753 surname: Hoskinson fullname: Hoskinson, Kristen R – sequence: 51 givenname: Daniela surname: Hubl fullname: Hubl, Daniela – sequence: 52 givenname: Andrei orcidid: 0000-0002-9254-9388 surname: Irimia fullname: Irimia, Andrei – sequence: 53 givenname: Andreas orcidid: 0000-0002-3140-8207 surname: Jansen fullname: Jansen, Andreas – sequence: 54 givenname: Michael surname: Kaess fullname: Kaess, Michael – sequence: 55 givenname: Xiaojian surname: Kang fullname: Kang, Xiaojian – sequence: 56 givenname: Kimbra orcidid: 0000-0002-8138-7539 surname: Kenney fullname: Kenney, Kimbra – sequence: 57 givenname: Barbora orcidid: 0000-0003-1345-8216 surname: Kerkova fullname: Kerkova, Barbora – sequence: 58 givenname: Mohamed Salah surname: Khlif fullname: Khlif, Mohamed Salah – sequence: 59 givenname: Minah orcidid: 0000-0001-8668-0817 surname: Kim fullname: Kim, Minah – sequence: 60 givenname: Jochen orcidid: 0000-0002-9034-2770 surname: Kindler fullname: Kindler, Jochen – sequence: 61 givenname: Tilo orcidid: 0000-0002-2514-2625 surname: Kircher fullname: Kircher, Tilo – sequence: 62 givenname: Karolina orcidid: 0000-0003-3069-6750 surname: Knizkova fullname: Knizkova, Karolina – sequence: 63 givenname: Knut K orcidid: 0000-0003-3878-814X surname: Kolskar fullname: Kolskar, Knut K – sequence: 64 givenname: Denise orcidid: 0000-0002-2037-8436 surname: Krch fullname: Krch, Denise – sequence: 65 givenname: William S orcidid: 0000-0002-8629-5609 surname: Kremen fullname: Kremen, William S – sequence: 66 givenname: Taylor orcidid: 0000-0002-5932-1584 surname: Kuhn fullname: Kuhn, Taylor – sequence: 67 givenname: Veena surname: Kumari fullname: Kumari, Veena – sequence: 68 givenname: Jun Soo orcidid: 0000-0002-1060-1462 surname: Kwon fullname: Kwon, Jun Soo – sequence: 69 givenname: Roberto surname: Langella fullname: Langella, Roberto – sequence: 70 givenname: Sarah surname: Laskowitz fullname: Laskowitz, Sarah – sequence: 71 givenname: Jungha surname: Lee fullname: Lee, Jungha – sequence: 72 givenname: Jean surname: Lengenfelder fullname: Lengenfelder, Jean – sequence: 73 givenname: Spencer W orcidid: 0000-0002-7036-4198 surname: Liebel fullname: Liebel, Spencer W – sequence: 74 givenname: Victoria surname: Liou-Johnson fullname: Liou-Johnson, Victoria – sequence: 75 givenname: Sara M surname: Lippa fullname: Lippa, Sara M – sequence: 76 givenname: Marianne orcidid: 0000-0002-8738-8401 surname: Lovstad fullname: Lovstad, Marianne – sequence: 77 givenname: Astri J surname: Lundervold fullname: Lundervold, Astri J – sequence: 78 givenname: Cassandra surname: Marotta fullname: Marotta, Cassandra – sequence: 79 givenname: Craig A orcidid: 0000-0003-2714-6168 surname: Marquardt fullname: Marquardt, Craig A – sequence: 80 givenname: Paulo orcidid: 0000-0003-0709-3783 surname: Mattos fullname: Mattos, Paulo – sequence: 81 givenname: Ahmad orcidid: 0000-0002-2084-5559 surname: Mayeli fullname: Mayeli, Ahmad – sequence: 82 givenname: Carrie R surname: McDonald fullname: McDonald, Carrie R – sequence: 83 givenname: Susanne orcidid: 0000-0003-2177-7161 surname: Meinert fullname: Meinert, Susanne – sequence: 84 givenname: Tracy R orcidid: 0000-0003-0621-212X surname: Melzer fullname: Melzer, Tracy R – sequence: 85 givenname: Jessica orcidid: 0000-0002-4826-6962 surname: Merchan-Naranjo fullname: Merchan-Naranjo, Jessica – sequence: 86 givenname: Chantal orcidid: 0000-0003-1165-6681 surname: Michel fullname: Michel, Chantal – sequence: 87 givenname: Rajendra A surname: Morey fullname: Morey, Rajendra A – sequence: 88 givenname: Benson surname: Mwangi fullname: Mwangi, Benson – sequence: 89 givenname: Daniel J orcidid: 0000-0002-0032-6567 surname: Myall fullname: Myall, Daniel J – sequence: 90 givenname: Igor orcidid: 0000-0002-0749-7473 surname: Nenadi fullname: Nenadi, Igor – sequence: 91 givenname: Mary R orcidid: 0000-0002-7082-7631 surname: Newsome fullname: Newsome, Mary R – sequence: 92 givenname: Abraham orcidid: 0000-0002-4955-9150 surname: Nunes fullname: Nunes, Abraham – sequence: 93 givenname: Terence orcidid: 0000-0002-7198-8621 surname: O'Brien fullname: O'Brien, Terence – sequence: 94 givenname: Viola surname: Oertel fullname: Oertel, Viola – sequence: 95 givenname: John surname: Ollinger fullname: Ollinger, John – sequence: 96 givenname: Alexander orcidid: 0000-0001-8691-3860 surname: Olsen fullname: Olsen, Alexander – sequence: 97 givenname: Victor orcidid: 0000-0002-0627-1827 surname: Ortiz Garcia de la Foz fullname: Ortiz Garcia de la Foz, Victor – sequence: 98 givenname: Mustafa orcidid: 0000-0002-5867-3684 surname: Ozmen fullname: Ozmen, Mustafa – sequence: 99 givenname: Heath orcidid: 0000-0002-0123-2167 surname: Pardoe fullname: Pardoe, Heath – sequence: 100 givenname: Marise surname: Parent fullname: Parent, Marise |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36712107$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0E1PwyAYB3BiNL5MP4AX08SLl04eoEC9uTmnyXw56LlpC52YFRTaRb-9LJsv8QQJvzwP__8B2rbOaoSOAQ8BMJwTTOgQwxD4MCOMUthC-4TnJJUEZ9t_7nvoKIRXjDHJOVDBdtEe5QIIYLGPXkbeqLmx82Rk5slV2ZUXyaN3tVa91yFpnE_Grq2MXZF7Z1P93ptludC2iw9zazqz1MmdLsPae9cm3YtOJve307vLSGxwvjN9e4h2mnIR9NHmHKDn68nT-CadPUxvx5eztKIxVSpqJnOZKSWVykpSca6IIDkBjSlwLptaClFRJgSwjDRMiYayhqiYLZPAajpAZ-u5lXH-wyyLN2_a0n8Wq74KDAXwYt3XL33z7r3XoStaE2q9WJRWuz4UJC7BknHOIj39R19d720MElX8lswgJ1GdbFRftVr9rP6um34BBHt_6w |
ContentType | Journal Article Paper |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 FX. |
DOI | 10.1101/2023.01.16.524331 |
DatabaseName | PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic bioRxiv |
DatabaseTitle | PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.2 |
ExternalDocumentID | 2023.01.16.524331v2 36712107 |
Genre | Preprint Working Paper/Pre-Print |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG064955 – fundername: NIA NIH HHS grantid: R01 AG050595 – fundername: NIA NIH HHS grantid: P01 AG055367 – fundername: NCRR NIH HHS grantid: U24 RR021992 – fundername: NINDS NIH HHS grantid: F32 NS119285 – fundername: NIMH NIH HHS grantid: U01 MH124639 – fundername: NIMH NIH HHS grantid: T32 MH019535 – fundername: NINDS NIH HHS grantid: R01 NS122827 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NIA NIH HHS grantid: R56 AG058854 |
GroupedDBID | NPM 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI 7X8 PUEGO FX. |
ID | FETCH-LOGICAL-b3101-7c48985dd8dd5a2b66d272921e031668fc877b34771452f4d7f34f2d2965814c3 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:54:26 EST 2025 Fri Sep 05 13:40:49 EDT 2025 Fri Jul 25 09:18:25 EDT 2025 Wed Feb 19 02:24:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Tools Verbal learning Harmonization Mega analysis |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b3101-7c48985dd8dd5a2b66d272921e031668fc877b34771452f4d7f34f2d2965814c3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 Competing Interest Statement: Dr. Arango has been a consultant to or has received honoraria or grants from Acadia, Angelini, Biogen, Boehringer, Gedeon Richter, Janssen Cilag, Lundbeck, Medscape, Menarini, Minerva, Otsuka, Pfizer, Roche, Sage, Servier, Shire, Schering Plough, Sumitomo Dainippon Pharma, Sunovion and Takeda. Dr. Brodtmann serves on the editorial boards of Neurology and International Journal of Stroke. Dr. Diaz-Caneja has received honoraria from Exeltis and Angelinii. Dr. Giza: consultant for NBA, NFL, NHLPA, Los Angeles Lakers; Advisory Board: Highmark Interactive, Novartis, MLS, NBA, USSF; Medicolegal 1-2 cases annually. Dr. Soares: ALKERMES (Research Grant), ALLERGAN (Research Grant), ASOFARMA (Consultant), ATAI (Stock), BOEHRINGER Ingelheim (Consultant), COMPASS (Research Grant), JOHNSON & JOHNSON (Consultant), LIVANOVA (Consultant), PFIZER (Consultant), PULVINAR NEURO LLC (Consultant), RELMADA (Consultant), SANOFI (Consultant), SUNOVIAN (Consultant). Dr. Thompson received partial research support from Biogen, Inc., for research unrelated to this manuscript. Dr. Yatham has been on speaker or advisory boards for, or has received research grants from, Alkermes, Abbvie, Canadian Institutes of Health Research, Sumitomo Dainippon Pharma, GlaxoSmithKline, Intracellular Therapies, Merck, Sanofi, Sequiris, Servier, and Sunovion, over the past 3 years, all outside this work. The collection of this cohort was partially supported by an investigator-initiated research grant from Biogen (US). Biogen had no role in the analysis or writing of this manuscript. Eisai (JP) and Life Molecular Imaging for research unrelated to this manuscript. Dr. Wylie has received research support from the NJ Commission for brain injury research, from the Dept of Veterans' Affairs, from Biogen, from Bristol, Myers, Squibb, from Genetech, and has served on advisory boards for the CDMRP and the VA. All of these activities are unrelated to this research. The views expressed in this article are those of the author(s) and do not reflect the official policy of the Department of Army/Navy/Air Force, Department of Defense, or U.S. Government. |
ORCID | 0000-0001-9544-3944 0000-0002-5932-1584 0000-0002-1428-7976 0000-0002-0623-3759 0000-0003-3878-814X 0000-0002-0627-1827 0000-0003-3069-6750 0000-0003-2714-6168 0000-0002-9254-9388 0000-0002-0749-7473 0000-0003-2943-7567 0000-0003-3826-854X 0000-0002-3063-6929 0000-0002-0526-8095 0000-0003-1345-8216 0000-0002-4955-9150 0000-0003-4196-7763 0000-0002-7082-7631 0000-0002-4826-6962 0000-0002-7660-8800 0000-0002-6094-9950 0000-0002-7198-8621 0000-0002-1534-4063 0000-0003-0570-5352 0000-0001-7865-2808 0000-0002-8629-5609 0000-0002-9211-1271 0000-0003-3087-1002 0000-0002-2897-358X 0000-0002-1116-3839 0000-0002-6317-8549 0000-0002-8987-1755 0000-0002-1060-1462 0000-0001-8668-0817 0000-0002-2514-2625 0000-0001-8718-0128 0000-0002-2037-8436 0000-0003-3635-9421 0000-0002-5867-3684 0000-0003-2171-8313 0000-0002-6774-0826 0000-0002-7036-4198 0000-0002-2084-5559 0000-0002-8738-8401 0000-0002-0123-2167 0000-0001-9466-2862 0000-0002-9034-2770 0000-0002-6672-033X 0000-0002-0032-6567 0000-0001-8607-5633 0000-0003-0709-3783 0000-0002-5897-0304 0000-0003-2177-7161 0000-0001-8691-3860 0000-0003-0621-212X 0000-0002-8138-7539 0000-0001-9058-0747 0000-0003-3745-4156 0000-0002-5721-2667 0000-0003-2132-4445 0000-0002-4858-1487 0000-0003-4044-9753 0000-0002-3140-8207 0000-0003-1165-6681 0000-0001-7073-725X 0000-0003-0292-930X 0000-0002-5052-6022 0000-0001-8644-956X 0000-0002-0540-8027 0000-0003-0213-1920 0000-0002-1887-5919 0000-0002-7061-6658 0000-0002-0878-8889 0000-0003-1379-9491 0000-0003-4021-1673 0000-0003-4912-8307 0000-0003-3566-5494 0000-0002-7432-4249 0000-0002-0046-4070 0000-0001-6475-2576 0000-0002-9839-4428 0000-0002-0371-7686 0000-0001-7112-4009 0000-0002-2638-2452 0000-0002-4720-8867 0000-0002-9837-0944 0000-0001-6055-8397 0000-0001-5107-3339 0000-0001-9446-9018 0000-0002-9546-7038 |
OpenAccessLink | https://www.proquest.com/docview/2766885192?pq-origsite=%requestingapplication% |
PMID | 36712107 |
PQID | 2766885192 |
PQPubID | 2050091 |
PageCount | 24 |
ParticipantIDs | biorxiv_primary_2023_01_16_524331 proquest_miscellaneous_2771084664 proquest_journals_2766885192 pubmed_primary_36712107 |
PublicationCentury | 2000 |
PublicationDate | 20230119 |
PublicationDateYYYYMMDD | 2023-01-19 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230119 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2023 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Kennedy, Dennis, Lindsey, deRoon-Cassini, Du Plessis, Fani, Kaufman, Koen, Larson, Laskowitz, Lebois, Morey, Newsome, Palermo, Pastorek, Powers, Scheibel, Seedat, Seligowski, Stein, Stevens, Sun, Thompson, Troyanskaya, van Rooij, Watts, Weis, Williams, Hillary, Pugh, Wilde, Tate (2023.01.16.524331v2.4) Priestley, Staph, Koneru, Rajtmajer, Cwiek, Vervoordt, Hillary (2023.01.16.524331v2.20) 2023; 5 Pugh, Kennedy, Prager, Humpherys, Dams-O’Connor, Hack, McCafferty, Wolfe, Yaffe, McCrea, Ferguson, Lancashire, Ghajar, Lumba-Brown (2023.01.16.524331v2.25) 2021; 38 Pan, Huang, Chen, Zhao, Guo (2023.01.16.524331v2.5) 2020; 20 Barwegen, Resch, Ovsiew, Jennette, Soble (2023.01.16.524331v2.22) 2022; 37 Shojima (2023.01.16.524331v2.36) 2005; 28 Wilde, Dennis, Tate (2023.01.16.524331v2.15) 2019 Samejima (2023.01.16.524331v2.37) 1973; 38 Broglio, McAllister, Katz, LaPradd, Zhou, McCrea (2023.01.16.524331v2.31) 2022; 52 Petrovsky, Quednow, Ettinger, Schmechtig, Mössner, Collier, Kühn, Maier, Wagner, Kumari (2023.01.16.524331v2.30) 2010; 35 Nasir, Hand (2023.01.16.524331v2.34) 2006; 76 Zopluoglu (2023.01.16.524331v2.35) 2012; 36 Schoenberg, Dawson, Duff, Patton, Scott, Adams (2023.01.16.524331v2.18) 2006; 21 Wang, Zeng (2023.01.16.524331v2.23) 1998; 22 Woods, Delis, Scott, Kramer, Holdnack (2023.01.16.524331v2.7) 2006; 21 Schmidt, Crossley, Harrisberger, Smieskova, Lenz, Riecher-Rössler, Lang, McGuire, Fusar-Poli, Borgwardt (2023.01.16.524331v2.28) 2016 Naim, Katkov, Romani, Tsodyks (2023.01.16.524331v2.21) 2020; 124 Coryn, Hobson, McCowen (2023.01.16.524331v2.16) 2015; 15 Thompson, Jahanshad, Ching, Salminen, Thomopoulos, Bright, Baune, Bertolín, Bralten, Bruin, Bülow, Chen, Chye, Dannlowski, de Kovel, Donohoe, Eyler, Faraone, Favre, Filippi, Frodl, Garijo, Gil, Grabe, Grasby, Hajek, Han, Hatton, Hilbert, Ho, Holleran, Homuth, Hosten, Houenou, Ivanov, Jia, Kelly, Klein, Kwon, Laansma, Leerssen, Lueken, Nunes, Neill, Opel, Piras, Piras, Postema, Pozzi, Shatokhina, Soriano-Mas, Spalletta, Sun, Teumer, Tilot, Tozzi, van der Merwe, Van Someren, van Wingen, Völzke, Walton, Wang, Winkler, Wittfeld, Wright, Yun, Zhang, Zhang-James, Adhikari, Agartz, Aghajani, Aleman, Althoff, Altmann, Andreassen, Baron, Bartnik-Olson, Marie Bas-Hoogendam, Baskin-Sommers, Bearden, Berner, Boedhoe, Brouwer, Buitelaar, Caeyenberghs, Cecil, Cohen, Cole, Conrod, De Brito, de Zwarte, Dennis, Desrivieres, Dima, Ehrlich, Esopenko, Fairchild, Fisher, Fouche, Francks, Frangou, Franke, Garavan, Glahn, Groenewold, Gurholt, Gutman, Hahn, Harding, Hernaus, Hibar, Hillary, Hoogman, Hulshoff Pol, Jalbrzikowski, Karkashadze, Klapwijk, Knickmeyer, Kochunov, Koerte, Kong, Liew, Lin, Logue, Luders, Macciardi, Mackey, Mayer, McDonald, McMahon, Medland, Modinos, Morey, Mueller, Mukherjee, Namazova-Baranova, Nir, Olsen, Paschou, Pine, Pizzagalli, Rentería, Rohrer, Sämann, Schmaal, Schumann, Shiroishi, Sisodiya, Smit, Sønderby, Stein, Stein, Tahmasian, Tate, Turner, van den Heuvel, van der Wee, van der Werf, van Erp, van Haren, van Rooij, van Velzen, Veer, Veltman, Villalon-Reina, Walter, Whelan, Wilde, Zarei, Zelman (2023.01.16.524331v2.1) 2020; 10 Thiruselvam, Hoelzle (2023.01.16.524331v2.12) 2020; 35 Toga, Crawford (2023.01.16.524331v2.27) 2015; 11 Logue, van Rooij, Dennis, Davis, Hayes, Stevens, Densmore, Haswell, Ipser, Koch, Korgaonkar, Lebois, Peverill, Baker, Boedhoe, Frijling, Gruber, Harpaz-Rotem, Jahanshad, Koopowitz, Levy, Nawijn, O’Connor, Olff, Salat, Sheridan, Spielberg, van Zuiden, Winternitz, Wolff, Wolf, Wang, Wrocklage, Abdallah, Bryant, Geuze, Jovanovic, Kaufman, King, Krystal, Lagopoulos, Bennett, Lanius, Liberzon, McGlinchey, McLaughlin, Milberg, Miller, Ressler, Veltman, Stein, Thomaes, Thompson, Morey (2023.01.16.524331v2.32) 2018; 83 Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan, Launer, Masters, Maruff, Zhuo, Völzke, Johnson, Fripp, Koutsouleris, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wolk, Shinohara, Shou, Davatzikos (2023.01.16.524331v2.13) 2020; 208 Lundervold, Halleland, Brevik, Haavik, Sørensen (2023.01.16.524331v2.29) 2019; 23 Guilmette, Rasile (2023.01.16.524331v2.8) 1995; 9 Jennett, Teasdale (2023.01.16.524331v2.11) Rajtmajer, Errington, Hillary (2023.01.16.524331v2.3) 2022; 11 Roalf, Moore, Mechanic-Hamilton, Wolk, Arnold, Weintraub, Moberg (2023.01.16.524331v2.6) 2017; 13 Kennedy, Panahi, Stewart, Tate, Wilde, Kenney, Werner, Gill, Diaz-Arrastia, Amuan, Van Cott, Pugh (2023.01.16.524331v2.33) 2022; 36 Benedict, Schretlen, Groninger, Brandt (2023.01.16.524331v2.19) 1998; 12 Cifu, Dixon (2023.01.16.524331v2.17) 2016; 30 Cardenas, Kassem, Brotman, Leibenluft, McMahon (2023.01.16.524331v2.10) 2016; 69 Hastings, Frishkoff, Smith, Jensen, Poldrack, Lomax, Bandrowski, Imam, Turner, Martone (2023.01.16.524331v2.24) 2014; 8 Nagaraj, Shears, de Vaan (2023.01.16.524331v2.2) 2020; 117 Shapiro, Benedict, Schretlen, Brandt (2023.01.16.524331v2.26) 1999; 13 Radua, Vieta, Shinohara, Kochunov, Quidé, Green, Weickert, Weickert, Bruggemann, Kircher, Nenadić, Cairns, Seal, Schall, Henskens, Fullerton, Mowry, Pantelis, Lenroot, Cropley, Loughland, Scott, Wolf, Satterthwaite, Tan, Sim, Piras, Spalletta, Banaj, Pomarol-Clotet, Solanes, Albajes-Eizagirre, Canales-Rodríguez, Sarro, Di Giorgio, Bertolino, Stäblein, Oertel, Knöchel, Borgwardt, du Plessis, Yun, Kwon, Dannlowski, Hahn, Grotegerd, Alloza, Arango, Janssen, Díaz-Caneja, Jiang, Calhoun, Ehrlich, Yang, Cascella, Takayanagi, Sawa, Tomyshev, Lebedeva, Kaleda, Kirschner, Hoschl, Tomecek, Skoch, van Amelsvoort, Bakker, James, Preda, Weideman, Stein, Howells, Uhlmann, Temmingh, López-Jaramillo, Díaz-Zuluaga, Fortea, Martinez-Heras, Solana, Llufriu, Jahanshad, Thompson, Turner, van Erp (2023.01.16.524331v2.14) 2020; 218 Spreen, Strauss (2023.01.16.524331v2.9) 1998 |
References_xml | – year: 2019 ident: 2023.01.16.524331v2.15 article-title: The ENIGMA Brain Injury Working Group: Approach, Challenges, and Potential Benefits publication-title: Brain Imaging Behav. – volume: 38 start-page: 3222 year: 2021 end-page: 3234 ident: 2023.01.16.524331v2.25 article-title: Phenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization publication-title: J. Neurotrauma – volume: 117 start-page: 23490 year: 2020 end-page: 23498 ident: 2023.01.16.524331v2.2 article-title: Improving data access democratizes and diversifies science publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 8 start-page: 62 year: 2014 ident: 2023.01.16.524331v2.24 article-title: Interdisciplinary perspectives on the development, integration, and application of cognitive ontologies publication-title: Front. Neuroinform – volume: 21 start-page: 693 year: 2006 end-page: 703 ident: 2023.01.16.524331v2.18 article-title: Test performance and classification statistics for the Rey Auditory Verbal Learning Test in selected clinical samples publication-title: Arch. Clin. Neuropsychol – volume: 38 start-page: 203 year: 1973 end-page: 219 ident: 2023.01.16.524331v2.37 article-title: Homogeneous case of the continuous response model publication-title: Psychometrika – volume: 13 start-page: 947 year: 2017 end-page: 952 ident: 2023.01.16.524331v2.6 article-title: Bridging cognitive screening tests in neurologic disorders: A crosswalk between the short Montreal Cognitive Assessment and Mini-Mental State Examination publication-title: Alzheimers. Dement – volume: 218 start-page: 116956 year: 2020 ident: 2023.01.16.524331v2.14 article-title: ENIGMA Consortium collaborators, Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA publication-title: Neuroimage – volume: 12 start-page: 43 year: 1998 end-page: 55 ident: 2023.01.16.524331v2.19 article-title: Hopkins Verbal Learning Test – Revised: Normative Data and Analysis of Inter-Form and Test-Retest Reliability publication-title: The Clinical Neuropsychologist – volume: 83 start-page: 244 year: 2018 end-page: 253 ident: 2023.01.16.524331v2.32 article-title: Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia publication-title: Biol. Psychiatry – volume: 36 start-page: 620 year: 2022 end-page: 627 ident: 2023.01.16.524331v2.33 article-title: Traumatic Brain Injury and Early Onset Dementia in Post 9-11 Veterans publication-title: Brain Inj – volume: 28 start-page: 11 year: 2005 end-page: 22 ident: 2023.01.16.524331v2.36 article-title: A noniterative item parameter solution in each EM cycle of the continuous response model publication-title: Educ. Technol. Res. Dev – volume: 11 start-page: e78830 year: 2022 ident: 2023.01.16.524331v2.3 article-title: How failure to falsify in high-volume science contributes to the replication crisis publication-title: Elife – volume: 13 start-page: 348 year: 1999 end-page: 358 ident: 2023.01.16.524331v2.26 article-title: Construct and concurrent validity of the Hopkins Verbal Learning Test-revised publication-title: Clin. Neuropsychol – volume: 76 start-page: 449 year: 2006 end-page: 475 ident: 2023.01.16.524331v2.34 article-title: Exploring Sociocultural Perspectives on Race, Culture, and Learning publication-title: Rev. Educ. Res – volume: 20 start-page: 78 year: 2020 ident: 2023.01.16.524331v2.5 article-title: A comparative study on the validations of three cognitive screening tests in identifying subtle cognitive decline publication-title: BMC Neurol – volume: 37 start-page: 1388 year: 2022 end-page: 1388 ident: 2023.01.16.524331v2.22 article-title: A-232 Head-To-Head Comparison of the Rey Auditory Verbal Learning Test Effort Score and Forced Choice Embedded Performance Validity Indicators Among Patients with and without Verbal Memory Impairment publication-title: Arch. Clin. Neuropsychol – volume: 69 start-page: 193 year: 2016 end-page: 215 ident: 2023.01.16.524331v2.10 article-title: Neurocognitive functioning in euthymic patients with bipolar disorder and unaffected relatives: A review of the literature publication-title: Neurosci. Biobehav. Rev – volume: 11 start-page: 832 year: 2015 end-page: 839 ident: 2023.01.16.524331v2.27 article-title: The Alzheimer’s Disease Neuroimaging Initiative informatics core: A decade in review publication-title: Alzheimers. Dement – volume: 208 start-page: 116450 year: 2020 ident: 2023.01.16.524331v2.13 article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan publication-title: Neuroimage – start-page: sbw110 year: 2016 ident: 2023.01.16.524331v2.28 article-title: Structural Network Disorganization in Subjects at Clinical High Risk for Psychosis publication-title: Schizophrenia Bulletin – volume: 10 start-page: 100 year: 2020 ident: 2023.01.16.524331v2.1 article-title: ENIGMA Consortium, ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries publication-title: Transl. Psychiatry – volume: 22 start-page: 333 year: 1998 end-page: 344 ident: 2023.01.16.524331v2.23 article-title: Item Parameter Estimation for a Continuous Response Model Using an EM Algorithm publication-title: Appl. Psychol. Meas – volume: 36 start-page: 149 year: 2012 ident: 2023.01.16.524331v2.35 article-title: EstCRM: An R package for Samejima’s continuous IRT model publication-title: Appl. Psychol. Meas – volume: 5 start-page: fcac322 year: 2023 ident: 2023.01.16.524331v2.20 article-title: Establishing ground truth in the traumatic brain injury literature: if replication is the answer, then what are the questions? publication-title: Brain Commun – volume: 35 start-page: 90 year: 2020 end-page: 104 ident: 2023.01.16.524331v2.12 article-title: Refined measurement of verbal learning and memory: Application of item response theory to California Verbal Learning Test - Second Edition (CVLT-II) learning trials publication-title: Arch. Clin. Neuropsychol – ident: 2023.01.16.524331v2.4 article-title: Harmonizing PTSD Severity Scales Across Instruments and Sites publication-title: Neuropsychology. Accepted – volume: 35 start-page: 1429 year: 2010 end-page: 1439 ident: 2023.01.16.524331v2.30 article-title: Sensorimotor Gating is Associated with CHRNA3 Polymorphisms in Schizophrenia and Healthy Volunteers publication-title: Neuropsychopharmacology – year: 1998 ident: 2023.01.16.524331v2.9 – volume: 15 start-page: 4 year: 2015 end-page: 14 ident: 2023.01.16.524331v2.16 article-title: Meta-analysis as a method of multi-site evaluation: An example from international development publication-title: Evaluation Journal of Australasia – volume: 21 start-page: 413 year: 2006 end-page: 420 ident: 2023.01.16.524331v2.7 article-title: The California Verbal Learning Test – second edition: Test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms publication-title: Archives of Clinical Neuropsychology – volume: 30 start-page: 1397 year: 2016 end-page: 1398 ident: 2023.01.16.524331v2.17 article-title: Chronic effects of neurotrauma consortium publication-title: Brain Inj – volume: 9 start-page: 338 year: 1995 end-page: 344 ident: 2023.01.16.524331v2.8 article-title: Sensitivity, specificity, and diagnostic accuracy of three verbal memory measures in the assessment of mild brain injury publication-title: Neuropsychology – ident: 2023.01.16.524331v2.11 article-title: Wechsler D. A standardized memory scale for clinical use publication-title: J. Psychol – volume: 52 start-page: 403 year: 2022 end-page: 415 ident: 2023.01.16.524331v2.31 article-title: CARE Consortium Investigators, The Natural History of Sport-Related Concussion in Collegiate Athletes: Findings from the NCAA-DoD CARE Consortium publication-title: Sports Med – volume: 124 start-page: 018101 year: 2020 ident: 2023.01.16.524331v2.21 article-title: Fundamental Law of Memory Recall publication-title: Phys. Rev. Lett – volume: 23 start-page: 1188 year: 2019 end-page: 1198 ident: 2023.01.16.524331v2.29 article-title: Verbal Memory Function in Intellectually Well-Functioning Adults With ADHD: Relations to Working Memory and Response Inhibition publication-title: Journal of Attention Disorders |
SSID | ssj0002961374 |
Score | 1.8220708 |
SecondaryResourceType | preprint |
Snippet | Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and... Investigators in the cognitive neurosciences have turned to Big Data to address persistent replication and reliability issues by increasing sample sizes,... |
SourceID | biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Bayesian analysis Big Data Brain injury Cognitive ability Grants Information sharing Learning Memory Neuroimaging Neuroscience Pulvinar Verbal learning |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT4MwEG50i4lv_nY6TU18ZVlLacE3p5vTZIsPLtkbobQoD4OJw-h_7x3g4oMmvtJC4XLHfde7fkfIJY8Fsr5BdJJI4QiuEicywjrg6xOrPQUhGWZ0J1M5nomHuTf_0eoLyyp1mhcf6XuVx8eCbfj71sbdZxiru8izyWTP43jaZ5O0QaU4dm0YzXvr7RUegJ9Soslj_nonIN5mpb_RZeVlRjuk_RgtbbFLNmy2R7bqNpGf--RlgKeqwMfQQfpMb6NVdEWrAn9TQrBMAXZSMGtdtXqg0zxz7GuZggbBF8FAUx5EJ_VuIMwv8gUF3EeH0_u7yTXFnp0AwtNycUBmo-HTzdhpOiQ4GmAZc1Qs_MD3jPGN8SKupTQc0DJnFmxVSj-JfaW0K5RiAoQvjEpckXDDkfKFidg9JK0sz-wxocaTKgZsZ10hRSD62kXelhjM2zcQRMUdctFIK1zWPBghSjTss5DJsJZoh3S_5Rg2pvAWcgUvArgu4PCI9TAoMWYmoszmJc4BoOMj032HHNXyX6_iSoUkZ-rkHy9wSrbxGm6RsKBLWquitGcAGlb6vFKPL1Nzt6U priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Bridging Big Data: Procedures for Combining Non-equivalent Cognitive Measures from the ENIGMA Consortium |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36712107 https://www.proquest.com/docview/2766885192 https://www.proquest.com/docview/2771084664 https://www.biorxiv.org/content/10.1101/2023.01.16.524331 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5g0yRuvBkvBYlrx5qmScsFMdgYSKsmxKTdqrZJoYe1Y6wI_j12m40TXHpJlFaOHX-208-EXLKEI-sbRCep4BZnMrUixbUFvj7VsSshJMOK7igQwwl_mrpTk3D7MNcqV2didVCrIsEc-RWTQngAD3x2M3-3sGsUVldNC41N0oQj2AM9b_b6wfh5nWVhPririoqZCR9Mn3VdU9oEVcTA30HSTlt0XFY3mmvFWbH4yj7_BpyV4xlsk-Y4muvFDtnQ-S5p1Z0jv_fIWw9_tAK3Q3vZK72PltE1re78qxLiZwpIlIKlx1X3BxoUuaXfywyUClwMDJgbQ3RUJwhh_qKYUYCCtB88PoxuKbbxBFyelbN9Mhn0X-6GlmmaYMWA1GxLJtzzPVcpTyk3YrEQigGAZrYG8wURpoknZexwKW0O-8GVTB2eMsWQBcbmiXNAGnmR6yNClStkAnBPO1xwn3djB6lcErB4T0FclbTJhZFWOK-pMUKUaNi1Q1uEtUTb5HQlx9BYx0f4u5ewxHoY9BqLFVGuixLnAPbxkPy-TQ5r-a_f4giJvGfy-P_FT8gWfg8mTGz_lDSWi1KfAYRYxudGT87J5mDagWcwHv0A3gvBOA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED6xVmh7G4ONbsCMNB6z1Y5jJ5MQoqPQDhqhCSTeQhI7Wx5ISmm28af4jdwlafc03niOZVuX8913d_Z3AJ9EKon1DaOTTElHCp05sZHWQV-f2cTTGJJRRXcSqtGl_H7lXa3Aw-ItDF2rXNjE2lCbMqUc-RehlfIRHgTiYHrrUNcoqq4uWmg0anFq7_9gyHa3Pz7C_7snxPHw4tvIabsKOAlCGe7oVPqB7xnjG-PFIlHKCESYglvUb1wjS32tE1dqzSVuWBqduTITRhBNCpepi_O-gK6kF60d6A6G4fmPZVYHB3G3pn4WKkBTI_peW0rFpSnR4BJJKFefPdE0tltN8nL2N__9f4BbO7rj19A9j6d2tgYrtngDq02nyvt1-DWgh13o5tgg_8mO4nn8ldVvDEyF8TpD5MvQsiR1twkWloVjb6sclRhdGn5obyixSZOQxPGz8oYh9GTDcHwyOWTUNhTjgLy62YDLZxHnW-gUZWE3gRlP6RThpXWlkoHsJy5Rx6RoYXyDcVzag91WWtG0oeKISKJRn0dcRY1Ee7C1kGPUnsa76J_u4BTLz3iOqDgSF7asaAxiLZ_I9nvwrpH_chVXaeJZ0--fnvwjvBxdTM6is3F4-gFe0d4oWcODLejMZ5XdRvgyT3ZanWFw_dxq-gixqvlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gE4gbbwYDgsS105KmScuNsY0N2LQDSLtVbZNCD2vHWBH8e-y2TBxA4pwoSR27_vyITcgljwRWfQPrJJbCElzFVqCFsUDXxyZ0FJhkGNEdjeXgSdxNnemPtzCYVhkm2eIjeS_i-JiwDX_fUrjbDG11G-tsMtlyOL72aaGbujXX8TqpA28x5Oz-tLXys3APFJYSVUDz1yUA-lZb_g0zC3XT3yb1STA3ix2yZtJdslH2i_zcIy8dfF4FyoZ2kmfaDZbBFS0y_XUOVjMF_ElBvsOi5wMdZ6llXvMEWAk-DQaqPCE6Kt2CMH-RzSgAQNobD29H1xSbdwIaT_LZPnnq9x5vBlbVKsEKAZ8xS0XC9VxHa1drJ-ChlJoDbObMgNBK6caRq1RoC6WYgFsQWsW2iLnmWPuFicg-ILU0S80RodqRKgKQZ2whhSfaoY0FXCKQc1eDNRU1yEVFLX9eFsTwkaJ-m_lM-iVFG6T5TUe_kok3nys4CAA8j8MSq2HgZgxRBKnJcpwDiMfFkvcNcljSf7WLLRVWO1PH_zjAOdmcdPv-w3B8f0K2cBjdJsxrktpykZtTABLL8KzglC_ZKr2N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bridging+Big+Data%3A+Procedures+for+Combining+Non-equivalent+Cognitive+Measures+from+the+ENIGMA+Consortium&rft.jtitle=bioRxiv&rft.au=Kennedy%2C+Eamonn&rft.au=Lindsey%2C+Hannah+M&rft.au=Lei%2C+Pui-Wa&rft.au=Jo-Pugh%2C+Mary&rft.date=2023-01-19&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.01.16.524331&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |