Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300
SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studi...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article Paper |
Language | English Japanese |
Published |
United States
Cold Spring Harbor Laboratory
12.04.2021
|
Edition | 1.2 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight. |
---|---|
AbstractList | SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight. SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight.SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight. |
Author | Wingfield, Paul Hattori, Shin-Ichiro Jaeger, Hannah K Yarchoan, Robert Shrestha, Prabha Davis, David A Mitsuya, Hiroaki Bulut, Haydar Yaparla, Amulya |
Author_xml | – sequence: 1 givenname: David A surname: Davis fullname: Davis, David A – sequence: 2 givenname: Haydar surname: Bulut fullname: Bulut, Haydar – sequence: 3 givenname: Prabha surname: Shrestha fullname: Shrestha, Prabha – sequence: 4 givenname: Amulya surname: Yaparla fullname: Yaparla, Amulya – sequence: 5 givenname: Hannah K surname: Jaeger fullname: Jaeger, Hannah K – sequence: 6 givenname: Shin-Ichiro surname: Hattori fullname: Hattori, Shin-Ichiro – sequence: 7 givenname: Paul surname: Wingfield fullname: Wingfield, Paul – sequence: 8 givenname: Hiroaki surname: Mitsuya fullname: Mitsuya, Hiroaki – sequence: 9 givenname: Robert surname: Yarchoan fullname: Yarchoan, Robert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33851157$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkMtOwzAQRS0EouXxAWyQl2xS7EnsxMuqQEEqApXHNnKSSWuUxiV2Kor4eFIVKKt56MwZ6R6R_drWSMgZZwPOGb8EBnzAogFTgyhUXKo90gepIEiAif1_fY-cOvfGGAMleRhHh6QXhongXMR98jXFWVtpb2xNbUn9HOmVWWBjPrc7XRd0mHuzMn69AZ6G06dgZF8DoPfa1PSxsR61w-6yse1sTqe4wsaZrEI6rlqv_bzTrHcfRmvn0dRIQ8ZOyEGpK4enP_WYvNxcP49ug8nD-G40nAQZJKACGbOcaZ5nmEd5GYEouilO4lIUpcoBpZKxgkQylIUqhcgjjCSAFlIm2DHhMbnYejNjmw-zSpeNWehmnW4yTFmUMpVuM9yhy8a-t-h8ujAux6rSNdrWpSA4xKBAJR16_oO22QKLP-lvuOE3ZWl8oQ |
ContentType | Journal Article Paper |
Copyright | 2021, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2021, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. |
DOI | 10.1101/2021.04.09.439169 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.2 |
ExternalDocumentID | 2021.04.09.439169v2 33851157 |
Genre | Preprint |
GroupedDBID | NPM 7X8 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI FX. |
ID | FETCH-LOGICAL-b2829-670c0a1cbec4cf425d0a1787f5df9c2e696792860e6d9f55c4e4622a5668e5df3 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 19:00:19 EST 2025 Tue Aug 05 10:31:05 EDT 2025 Wed Feb 19 02:28:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b2829-670c0a1cbec4cf425d0a1787f5df9c2e696792860e6d9f55c4e4622a5668e5df3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Working Paper/Pre-Print-1 ObjectType-Feature-3 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2021.04.09.439169 |
PMID | 33851157 |
PQID | 2512729298 |
PQPubID | 23479 |
PageCount | 43 |
ParticipantIDs | biorxiv_primary_2021_04_09_439169 proquest_miscellaneous_2512729298 pubmed_primary_33851157 |
PublicationCentury | 2000 |
PublicationDate | 20210412 |
PublicationDateYYYYMMDD | 2021-04-12 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210412 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Wilhelm Filho, Althoff, Dafre, Boveris (2021.04.09.439169v2.35) 2007; 146 DeLano (2021.04.09.439169v2.41) 2009; 238 Miseta, Csutora (2021.04.09.439169v2.17) 2000; 17 Costantini, Lindecke, Petersons, Voigt (2021.04.09.439169v2.37) 2019; 65 Naor, Jensen (2021.04.09.439169v2.25) 2004; 57 Ge (2021.04.09.439169v2.33) 2013; 503 Mieyal, Gallogly, Qanungo, Sabens, Shelton (2021.04.09.439169v2.19) 2008; 10 Luo, Levine (2021.04.09.439169v2.30) 2009; 23 Awoonor-Williams, Rowley (2021.04.09.439169v2.28) 2016; 12 Shi, Sivaraman, Song (2021.04.09.439169v2.7) 2008; 82 Cabiscol, Levine (2021.04.09.439169v2.22) 1996; 93 Davis (2021.04.09.439169v2.10) 2000; 2 Huang, Pinto, Deng, Richie (2021.04.09.439169v2.18) 2008; 75 Huang, Wei, Fan, Liu, Lai (2021.04.09.439169v2.39) 2004; 43 Ciriolo (2021.04.09.439169v2.29) 1997; 272 Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld (2021.04.09.439169v2.5) 2003; 300 Banerjee, Baker, Kulcsar, Misra, Plowright, Mossman (2021.04.09.439169v2.34) 2020; 11 Hattori (2021.04.09.439169v2.2) 2020; 11 Davis (2021.04.09.439169v2.9) 1996; 35 Liang (2021.04.09.439169v2.3) 2006; 6 Xia, Kang (2021.04.09.439169v2.4) 2011; 2 Davis, Yusa, Gillim, Newcomb, Mitsuya, Yarchoan (2021.04.09.439169v2.11) 1999; 73 Wright (2021.04.09.439169v2.21) 1991; 26 Karlstrom, Shames, Levine (2021.04.09.439169v2.27) 1993; 304 (2021.04.09.439169v2.38) 2021; 7945 Requejo, Hurd, Costa, Murphy (2021.04.09.439169v2.31) 2010; 277 Parker, Hunter (2021.04.09.439169v2.15) 2001; 98 Mieyal, Chock (2021.04.09.439169v2.23) 2012; 16 D’Ettorre, Levine (2021.04.09.439169v2.26) 1994; 313 Jin (2021.04.09.439169v2.1) 2020; 582 Shelton, Mieyal (2021.04.09.439169v2.24) 2008; 25 Wei (2021.04.09.439169v2.40) 2006; 339 Davis, Newcomb, Starke, Ott, Mieyal, Yarchoan (2021.04.09.439169v2.13) 1997; 272 Davis, Newcomb, Moskovitz, Fales, Levine, Yarchoan (2021.04.09.439169v2.12) 2002; 348 Davis (2021.04.09.439169v2.14) 2009; 419 Zhang (2021.04.09.439169v2.6) 2020; 368 Davis (2021.04.09.439169v2.8) 2003; 77 Checconi, Limongi, Baldelli, Ciriolo, Nencioni, Palamara (2021.04.09.439169v2.20) 2019; 11 Daniels (2021.04.09.439169v2.16) 2010; 5 Jaimes, Andre, Chappie, Millet, Whittaker (2021.04.09.439169v2.32) 2020; 432 Chionh (2021.04.09.439169v2.36) 2019; 24 |
References_xml | – volume: 43 start-page: 4568 year: 2004 end-page: 4574 ident: 2021.04.09.439169v2.39 article-title: 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism publication-title: Biochemistry – volume: 2 start-page: 305 year: 2000 end-page: 311 ident: 2021.04.09.439169v2.10 article-title: HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase publication-title: Biochem J 346 Pt – volume: 98 start-page: 14631 year: 2001 end-page: 14636 ident: 2021.04.09.439169v2.15 article-title: Activation of the Mason-Pfizer monkey virus protease within immature capsids in vitro publication-title: Proc Natl Acad Sci U S A – volume: 24 start-page: 835 year: 2019 end-page: 849 ident: 2021.04.09.439169v2.36 article-title: High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress publication-title: Cell Stress Chaperones – volume: 300 start-page: 1763 year: 2003 end-page: 1767 ident: 2021.04.09.439169v2.5 article-title: Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs publication-title: Science – volume: 272 start-page: 2700 year: 1997 end-page: 2708 ident: 2021.04.09.439169v2.29 article-title: Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection publication-title: J Biol Chem – volume: 272 start-page: 25935 year: 1997 end-page: 25940 ident: 2021.04.09.439169v2.13 article-title: Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro publication-title: J Biol Chem – volume: 65 start-page: 147 year: 2019 end-page: 153 ident: 2021.04.09.439169v2.37 article-title: Migratory flight imposes oxidative stress in bats publication-title: Curr Zool – volume: 16 start-page: 471 year: 2012 end-page: 475 ident: 2021.04.09.439169v2.23 article-title: Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation publication-title: Antioxid Redox Signal – volume: 6 start-page: 361 year: 2006 end-page: 376 ident: 2021.04.09.439169v2.3 article-title: Characterization and inhibition of SARS-coronavirus main protease publication-title: Curr Top Med Chem – volume: 339 start-page: 865 year: 2006 end-page: 872 ident: 2021.04.09.439169v2.40 article-title: The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase publication-title: Biochem Biophys Res Commun – volume: 277 start-page: 1465 year: 2010 end-page: 1480 ident: 2021.04.09.439169v2.31 article-title: Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage publication-title: FEBS J – volume: 57 start-page: 799 year: 2004 end-page: 803 ident: 2021.04.09.439169v2.25 article-title: Determinants of cysteine pKa values in creatine kinase and alpha1-antitrypsin publication-title: Proteins – volume: 93 start-page: 4170 year: 1996 end-page: 4174 ident: 2021.04.09.439169v2.22 article-title: The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation publication-title: Proc Natl Acad Sci U S A – volume: 419 start-page: 497 year: 2009 end-page: 506 ident: 2021.04.09.439169v2.14 article-title: Analysis and characterization of dimerization inhibition of a multi-drug-resistant human immunodeficiency virus type 1 protease using a novel size-exclusion chromatographic approach publication-title: Biochem J – volume: 82 start-page: 4620 year: 2008 end-page: 4629 ident: 2021.04.09.439169v2.7 article-title: Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease publication-title: J Virol – volume: 26 start-page: 1 year: 1991 end-page: 52 ident: 2021.04.09.439169v2.21 article-title: Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins publication-title: Crit Rev Biochem Mol Biol – volume: 75 start-page: 2234 year: 2008 end-page: 2244 ident: 2021.04.09.439169v2.18 article-title: Inhibition of caspase-3 activity and activation by protein glutathionylation publication-title: Biochem Pharmacol – volume: 7945 year: 2021 ident: 2021.04.09.439169v2.38 article-title: X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease publication-title: Science 101126 science.abf – volume: 313 start-page: 71 year: 1994 end-page: 76 ident: 2021.04.09.439169v2.26 article-title: Reactivity of cysteine-67 of the human immunodeficiency virus-1 protease: studies on a peptide spanning residues 59 to 75 publication-title: Arch Biochem Biophys – volume: 12 start-page: 4662 year: 2016 end-page: 4673 ident: 2021.04.09.439169v2.28 article-title: Evaluation of Methods for the Calculation of the pKa of Cysteine Residues in Proteins publication-title: J Chem Theory Comput – volume: 146 start-page: 214 year: 2007 end-page: 220 ident: 2021.04.09.439169v2.35 article-title: Antioxidant defenses, longevity and ecophysiology of South American bats publication-title: Comp Biochem Physiol C Toxicol Pharmacol – volume: 11 year: 2020 ident: 2021.04.09.439169v2.2 article-title: GRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection publication-title: mBio – volume: 35 start-page: 2482 year: 1996 end-page: 2488 ident: 2021.04.09.439169v2.9 article-title: Regulation of HIV-1 protease activity through cysteine modification publication-title: Biochemistry – volume: 77 start-page: 3319 year: 2003 end-page: 3325 ident: 2021.04.09.439169v2.8 article-title: Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation publication-title: J Virol – volume: 368 start-page: 409 year: 2020 end-page: 412 ident: 2021.04.09.439169v2.6 article-title: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors publication-title: Science – volume: 25 start-page: 332 year: 2008 end-page: 346 ident: 2021.04.09.439169v2.24 article-title: Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases publication-title: Mol Cells – volume: 73 start-page: 1156 year: 1999 end-page: 1164 ident: 2021.04.09.439169v2.11 article-title: Conserved cysteines of the human immunodeficiency virus type 1 protease are involved in regulation of polyprotein processing and viral maturation of immature virions publication-title: J Virol – volume: 432 start-page: 3309 year: 2020 end-page: 3325 ident: 2021.04.09.439169v2.32 article-title: Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop publication-title: J Mol Biol – volume: 238 year: 2009 ident: 2021.04.09.439169v2.41 article-title: PyMOL molecular viewer: Updates and refinements publication-title: Abstr Pap Am Chem S – volume: 17 start-page: 1232 year: 2000 end-page: 1239 ident: 2021.04.09.439169v2.17 article-title: Relationship between the occurrence of cysteine in proteins and the complexity of organisms publication-title: Mol Biol Evol – volume: 2 start-page: 282 year: 2011 end-page: 290 ident: 2021.04.09.439169v2.4 article-title: Activation and maturation of SARS-CoV main protease publication-title: Protein Cell – volume: 582 start-page: 289 year: 2020 end-page: 293 ident: 2021.04.09.439169v2.1 article-title: Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors publication-title: Nature – volume: 10 start-page: 1941 year: 2008 end-page: 1988 ident: 2021.04.09.439169v2.19 article-title: Molecular mechanisms and clinical implications of reversible protein S-glutathionylation publication-title: Antioxid Redox Signal – volume: 23 start-page: 464 year: 2009 end-page: 472 ident: 2021.04.09.439169v2.30 article-title: Methionine in proteins defends against oxidative stress publication-title: FASEB J – volume: 348 start-page: 249 year: 2002 end-page: 259 ident: 2021.04.09.439169v2.12 article-title: Reversible oxidation of HIV-2 protease publication-title: Methods Enzymol – volume: 304 start-page: 163 year: 1993 end-page: 169 ident: 2021.04.09.439169v2.27 article-title: Reactivity of cysteine residues in the protease from human immunodeficiency virus: identification of a surface-exposed region which affects enzyme function publication-title: Arch Biochem Biophys – volume: 5 start-page: e13595 year: 2010 ident: 2021.04.09.439169v2.16 article-title: The initial step in human immunodeficiency virus type 1 GagProPol processing can be regulated by reversible oxidation publication-title: PLoS One – volume: 11 start-page: 26 year: 2020 ident: 2021.04.09.439169v2.34 article-title: Novel Insights Into Immune Systems of Bats publication-title: Front Immunol – volume: 11 year: 2019 ident: 2021.04.09.439169v2.20 article-title: Role of Glutathionylation in Infection and Inflammation publication-title: Nutrients – volume: 503 start-page: 535 year: 2013 end-page: 538 ident: 2021.04.09.439169v2.33 article-title: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor publication-title: Nature |
SSID | ssj0002961374 |
Score | 1.7572225 |
SecondaryResourceType | preprint |
Snippet | SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to... |
SourceID | biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Microbiology |
Title | Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33851157 https://www.proquest.com/docview/2512729298 https://www.biorxiv.org/content/10.1101/2021.04.09.439169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6Ifjmt_OLCL5G0jRNm0edm0PYGNPJ3ko-YSDtmB8o-Md7aevwQcGXQkvag8ul97vc5X4IXWQ-UlZkmniRWsK98ETrhEGoIqyR0ilZbegPR2Iw5XezZPaD6iuUVep5uXyfv1V5_FCwDX_fenHTKMTqUdObtDozKtdRG0yKB9aG_uxytb3CJPiplDd5zF_fBMTbSPobXVZepr-F2mO1cMtttOaKHbRR00R-7KLPSU0YDyrEpccA2fDNPGRa6iOUWBUWX5maBiIMuL-a3JNu-UgYHkLgj8ehFwN4K9yQ8uCJq4ox9JPDt2B5oQAxFKivJHRDe2eAnzimdA9N-72H7oA0rAlEh6woESk1VEUGJocbD0vSwh0sS59YLw1zQopUskxQJ6z0SWK444IxBbguczAm3ketoizcIcKRSFLjIx8LYXiqYsUs1zz2iWbOUus66LzRYL6oe2PkQcs55TmVea1lGPOt2xwsN6QjVOHK1-c8ICuA9kxmHXRQK331GQick9AG6OgfEo7RZnhGqgaMJ6j1snx1p4AUXvQZal_3RuPJWWUbcB2Nh1_dgbsH |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcG1QRvbAwosM2TeDVyHMeJH1Gh67YWoQJT3yJ_SpVQUrWAQOKP5y7J-jQkHqM4sXS5y_3uw78j5KSIifGqsCyq3DMZVWTWZgJCFeWd1sHoJqE_uVSjW_l7ls26hNuqa6u083r5NH9s6vjYsA1_39a4eYKxetJxkzZnRvUppqk3SA-JzrClazg7XedYhAZnlcuumPnfxwH2dtu9DTEbVzPcIb0rswjLT-RDqD6Tj-2syOdd8jJtp8aDHGkdKeA2ej7Hckt7jpKaytMz186CwAXXZ9NrNqj_MkEnEP3TKyRkAJdFu8k8dBqajgx7F-hPUD_sQsQu9fUOA-R4BgxKU86_kNvhxc1gxLrRCcxiaZSpnDtuEgdfSLoIdunhCmwzZj5qJ4LSKteiUDwor2OWORmkEsIAuCsCrEn3yGZVV-GA0ERluYtJTJVyMjepEV5amcbMiuC5D33yo5NguWgJMkqUcsllyXXZShnW_JNtCeqLNQlThfphVSK8AnwvdNEn-63Q16-B6DlDLqDDd-zwnWyNbibjcvzr8s8R2cb7rGFkPCab98uH8BWgw7391ujHK0qvvTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFLa2ok28sY1BgTFP4tWV4zhO_IhaCmwDVQWmvkW-SpVQUpWLQOLHc04SKh6GxGMUy5a-HMffufg7hBwUMTFeFZZFlXsmo4rM2kyAq6K80zoY3QT0z87VyZX8Pctmr-7CYFmlndfLh_l9k8fHgm34-7abmyfoqyedNmlzZ1QPMEw9WPj4kayh2Bla9ng2WMVZhIYDK5ddQvO_UwD17ZZ8m2Y2x814g6xNzCIsv5APofpKPrX9Ih-_kadp2zkesKR1pMDd6GiOKZf2LiU1laeHru0HgQMuDqcXbFj_Y4KemXlFJyjKAMcW7brz0GloqjLsdaDHYIJYiYiV6qsVhqjzDDyUppxvkqvx0eXwhHXtE5jF9ChTOXfcJA6-knQR9qaHJ9ifMfNROxGUVrkWheJBeR2zzMkglRAGCF4RYEz6nfSqugrbhCYqy11MYqqUk7lJjfDSyjRmVgTPfeiTXx2C5aIVySgR5ZLLkuuyRRnGvGBbggljXsJUob67KZFiAccXuuiTrRb01TTgQWeoB7TzjhV-ks-T0bj8e3r-Z5es42vWiDLukd7t8i78APZwa_cb83gGJsW-SQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+the+Dimerization+and+Activity+of+SARS-CoV-2+Main+Protease+through+Reversible+Glutathionylation+of+Cysteine+300&rft.jtitle=bioRxiv&rft.au=Davis%2C+David+A&rft.au=Bulut%2C+Haydar&rft.au=Shrestha%2C+Prabha&rft.au=Yaparla%2C+Amulya&rft.date=2021-04-12&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.04.09.439169&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |