Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines

Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises signi...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Gilliland, Theron, Liu, Yanan, Li, Rong, Dunn, Matthew, Cottle, Emily, Terada, Yutaka, Ryckman, Zachary, Alcorn, Maria, Vasilatos, Shauna, Lundy, Jeneveve D, Larson, Deanna, Wu, Hua, Luke, Thomas, Bausch, Christoph, Egland, Kristi, Sullivan, Eddie, Wang, Zhongde, Klimstra, William
Format Paper Journal Article
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 26.07.2021
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2021.07.26.453840

Cover

Loading…
Abstract Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo. The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike del144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and del144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants. Competing Interest Statement Tom Luke, Hua Wu, Christoph Bausch, Kathi Egland and Eddie Sullivan are employees of SAB Biotherapeutics. The Klimstra laboratory has received contract support from SAB Biotherapeutics
AbstractList Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo . The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike Δ144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and Δ144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants.Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo . The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike Δ144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and Δ144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants.
Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo. The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike del144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and del144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants. Competing Interest Statement Tom Luke, Hua Wu, Christoph Bausch, Kathi Egland and Eddie Sullivan are employees of SAB Biotherapeutics. The Klimstra laboratory has received contract support from SAB Biotherapeutics
Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo. The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike Δ144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and Δ144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants.
Author Lundy, Jeneveve D
Li, Rong
Vasilatos, Shauna
Wu, Hua
Klimstra, William
Gilliland, Theron
Ryckman, Zachary
Sullivan, Eddie
Terada, Yutaka
Wang, Zhongde
Liu, Yanan
Cottle, Emily
Luke, Thomas
Egland, Kristi
Dunn, Matthew
Bausch, Christoph
Larson, Deanna
Alcorn, Maria
Author_xml – sequence: 1
  givenname: Theron
  surname: Gilliland
  fullname: Gilliland, Theron
– sequence: 2
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
– sequence: 3
  givenname: Rong
  surname: Li
  fullname: Li, Rong
– sequence: 4
  givenname: Matthew
  surname: Dunn
  fullname: Dunn, Matthew
– sequence: 5
  givenname: Emily
  surname: Cottle
  fullname: Cottle, Emily
– sequence: 6
  givenname: Yutaka
  surname: Terada
  fullname: Terada, Yutaka
– sequence: 7
  givenname: Zachary
  surname: Ryckman
  fullname: Ryckman, Zachary
– sequence: 8
  givenname: Maria
  surname: Alcorn
  fullname: Alcorn, Maria
– sequence: 9
  givenname: Shauna
  surname: Vasilatos
  fullname: Vasilatos, Shauna
– sequence: 10
  givenname: Jeneveve
  surname: Lundy
  middlename: D
  fullname: Lundy, Jeneveve D
– sequence: 11
  givenname: Deanna
  surname: Larson
  fullname: Larson, Deanna
– sequence: 12
  givenname: Hua
  surname: Wu
  fullname: Wu, Hua
– sequence: 13
  givenname: Thomas
  surname: Luke
  fullname: Luke, Thomas
– sequence: 14
  givenname: Christoph
  surname: Bausch
  fullname: Bausch, Christoph
– sequence: 15
  givenname: Kristi
  surname: Egland
  fullname: Egland, Kristi
– sequence: 16
  givenname: Eddie
  surname: Sullivan
  fullname: Sullivan, Eddie
– sequence: 17
  givenname: Zhongde
  surname: Wang
  fullname: Wang, Zhongde
– sequence: 18
  givenname: William
  surname: Klimstra
  fullname: Klimstra, William
BookMark eNpdkN1q20AQhZeSQPP3AL1b6E1u5M6O9ke6NCZJA4GGOOmtWMmjeIO06-5Kpupj9Ilrx4GGXM0w55tz4JyyIx88MfZFwEwIEN8QUMzAzFDPpMoLCZ_YCeoSswJBHb3bP7OLlF4AAEstciNP2N_7GAZqBhc8Dy1fj731fL64Qj5E69Mzedfw5RTd7ry2fRooJt7G0PPl_GHJF-Fnhnxr9_qQeD29OWxCNzVd8Lbjt883h4f1tKGYub4fvftDq0NAs95JIYV-F1OHrfOUztlxa7tEF2_zjD1dXz0uvmd3P25uF_O7rEZVQCZVS9AitnVZYC5KTVKT0YbAKiWNXZGBFbW2VFDXBdhc1dKAwlaaUukC8jN2efCtXYi_3bbaRNfbOFX7OiswFerqUOd_dBPDr5HSUPUuNdR11lMYU4VKGSULpffo1w_oSxjjrohXSmEuCyHyfx_DhUQ
Cites_doi 10.1007/s15010-020-01548-8
10.1038/s41598-020-72528-z
10.1093/infdis/jiy377
10.1016/S2213-2600(21)00005-9
10.7150/ijbs.47827
10.1038/s41586-020-2895-3
10.1016/j.chom.2021.02.020
10.1038/s41577-021-00542-x
10.1101/2020.11.06.372037
10.1101/2020.12.05.20241927
10.1099/jgv.0.001584
10.1002/rmv.2231
10.3390/vaccines9030243
10.1016/j.bbrc.2020.10.109
10.1371/journal.pone.0090383
10.7554/eLife.61312
10.1126/science.abe8499
10.1038/s41577-021-00544-9
10.1371/journal.ppat.1008903
10.1038/s41541-020-00279-z
10.1126/science.abf6950
10.1128/JVI.02012-06
10.1038/s41579-020-00459-7
10.1128/JVI.00226-17
10.1099/jgv.0.001481
10.1126/scitranslmed.aaf1061
10.1038/s41591-021-01255-3
10.1101/2021.02.23.432569
10.1016/j.xcrm.2021.100255
10.1038/nbt.1521
10.1073/pnas.2010146117
10.1080/14737159.2021.1917998
10.1126/science.abc6952
10.1371/journal.pone.0130699
ContentType Paper
Journal Article
Copyright 2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2021.07.26.453840v1
2021, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2021. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2021.07.26.453840v1
– notice: 2021, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
FX.
DOI 10.1101/2021.07.26.453840
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2021.07.26.453840v1
Genre Working Paper/Pre-Print
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
7X8
FX.
ID FETCH-LOGICAL-b2580-45fe0f22fb9823196e46e767e0a5547ade70defa950bb80a35b47052f47956803
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 18:55:16 EST 2025
Thu Jul 10 20:25:30 EDT 2025
Fri Jul 25 09:20:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2580-45fe0f22fb9823196e46e767e0a5547ade70defa950bb80a35b47052f47956803
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
Competing Interest Statement: Tom Luke, Hua Wu, Christoph Bausch, Kathi Egland and Eddie Sullivan are employees of SAB Biotherapeutics. The Klimstra laboratory has received contract support from SAB Biotherapeutics
OpenAccessLink https://www.proquest.com/docview/2555234811?pq-origsite=%requestingapplication%
PQID 2555234811
PQPubID 2050091
PageCount 30
ParticipantIDs biorxiv_primary_2021_07_26_453840
proquest_miscellaneous_2557548560
proquest_journals_2555234811
PublicationCentury 2000
PublicationDate 20210726
PublicationDateYYYYMMDD 2021-07-26
PublicationDate_xml – month: 07
  year: 2021
  text: 20210726
  day: 26
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Plante (2021.07.26.453840v1.15) 2021; 29
Nambulli (2021.07.26.453840v1.30) 2021
Groves, Rowland-Jones, Angyal (2021.07.26.453840v1.6) 2021; 538
Hartman (2021.07.26.453840v1.31) 2020; 16
Tegally (2021.07.26.453840v1.2) 2021; 27
Hou (2021.07.26.453840v1.9) 2020; 370
Hasanoglu (2021.07.26.453840v1.29) 2021; 49
Matsushita (2021.07.26.453840v1.19) 2015; 10
Cobey, Larremore, Grad, Lipsitch (2021.07.26.453840v1.14) 2021
Taylor (2021.07.26.453840v1.16) 2021
Gibson (2021.07.26.453840v1.25) 2021
Starr, Greaney, Dingens, Bloom (2021.07.26.453840v1.13) 2021; 2
Kemp (2021.07.26.453840v1.8) 2020
Luke (2021.07.26.453840v1.21) 2018; 218
Brocato (2021.07.26.453840v1.32) 2021; 6
Hu, Guo, Zhou, Shi (2021.07.26.453840v1.1) 2021; 19
Zella (2021.07.26.453840v1.4) 2021
Awadasseid, Wu, Tanaka, Zhang (2021.07.26.453840v1.5) 2021; 17
Gomez, Perdiguero, Esteban (2021.07.26.453840v1.10) 2021; 9
Luke (2021.07.26.453840v1.22) 2016; 8
Brooke, Prischi (2021.07.26.453840v1.27) 2020; 10
Gardner (2021.07.26.453840v1.23) 2017
Plante (2021.07.26.453840v1.12) 2021; 592
Matsushita (2021.07.26.453840v1.20) 2014; 9
Peacock, Penrice-Randal, Hiscox, Barclay (2021.07.26.453840v1.11) 2021; 102
Damas (2021.07.26.453840v1.26) 2020; 117
Chi (2021.07.26.453840v1.36) 2020; 369
Kirby (2021.07.26.453840v1.3) 2021; 9
Liu (2021.07.26.453840v1.34) 2020
Weisblum (2021.07.26.453840v1.33) 2020; 9
McCarthy (2021.07.26.453840v1.7) 2021; 371
Focosi, Maggi (2021.07.26.453840v1.17) 2021
Klimstra (2021.07.26.453840v1.35) 2020
Liu (2021.07.26.453840v1.24) 2021
Kuroiwa (2021.07.26.453840v1.18) 2009; 27
McCray (2021.07.26.453840v1.28) 2007; 81
References_xml – volume: 49
  start-page: 117
  year: 2021
  end-page: 126
  ident: 2021.07.26.453840v1.29
  article-title: Higher viral loads in asymptomatic COVID-19 patients might be the invisible part of the iceberg
  publication-title: Infection
  doi: 10.1007/s15010-020-01548-8
– volume: 10
  start-page: 15917
  year: 2020
  ident: 2021.07.26.453840v1.27
  article-title: Structural and functional modelling of SARS-CoV-2 entry in animal models
  publication-title: Scientific reports
  doi: 10.1038/s41598-020-72528-z
– volume: 218
  start-page: S636
  year: 2018
  end-page: S648
  ident: 2021.07.26.453840v1.21
  article-title: Fully Human Immunoglobulin G From Transchromosomic Bovines Treats Nonhuman Primates Infected With Ebola Virus Makona Isolate
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiy377
– volume: 9
  start-page: e20
  year: 2021
  end-page: e21
  ident: 2021.07.26.453840v1.3
  article-title: New variant of SARS-CoV-2 in UK causes surge of COVID-19
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(21)00005-9
– volume: 17
  start-page: 97
  year: 2021
  end-page: 106
  ident: 2021.07.26.453840v1.5
  article-title: SARS-CoV-2 variants evolved during the early stage of the pandemic and effects of mutations on adaptation in Wuhan populations
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.47827
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: 2021.07.26.453840v1.12
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
– volume: 29
  start-page: 508
  year: 2021
  end-page: 515
  ident: 2021.07.26.453840v1.15
  article-title: The variant gambit: COVID-19’s next move
  publication-title: Cell host & microbe
  doi: 10.1016/j.chom.2021.02.020
– year: 2021
  ident: 2021.07.26.453840v1.16
  article-title: Neutralizing monoclonal antibodies for treatment of COVID-19
  publication-title: Nature reviews. Immunology
  doi: 10.1038/s41577-021-00542-x
– year: 2020
  ident: 2021.07.26.453840v1.34
  article-title: Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization
  publication-title: bioRxiv
  doi: 10.1101/2020.11.06.372037
– year: 2020
  ident: 2021.07.26.453840v1.8
  article-title: Neutralising antibodies in Spike mediated SARS-CoV-2 adaptation
  publication-title: medRxiv
  doi: 10.1101/2020.12.05.20241927
– volume: 102
  year: 2021
  ident: 2021.07.26.453840v1.11
  article-title: SARS-CoV-2 one year on: evidence for ongoing viral adaptation
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.001584
– year: 2021
  ident: 2021.07.26.453840v1.17
  article-title: Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based Covid-19 therapeutics and vaccines
  publication-title: Reviews in medical virology
  doi: 10.1002/rmv.2231
– volume: 9
  year: 2021
  ident: 2021.07.26.453840v1.10
  article-title: Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines9030243
– year: 2021
  ident: 2021.07.26.453840v1.24
  article-title: Human immuunoglobulin from transchromosomic bovines hyperimmunized with SARS CoV-2 spike protein antigen efficiently neutralizes viral vraiants
  publication-title: Under Review
– volume: 538
  start-page: 104
  year: 2021
  end-page: 107
  ident: 2021.07.26.453840v1.6
  article-title: The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design
  publication-title: Biochemical and biophysical research communications
  doi: 10.1016/j.bbrc.2020.10.109
– year: 2021
  ident: 2021.07.26.453840v1.25
  article-title: SARS CoV-2 infection in hACE2 transgenic golden Syrian hamsters resutls in respiratory disease, neurological complications and death
  publication-title: Under Review
– volume: 9
  start-page: e90383
  year: 2014
  ident: 2021.07.26.453840v1.20
  article-title: Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0090383
– volume: 9
  year: 2020
  ident: 2021.07.26.453840v1.33
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: Elife
  doi: 10.7554/eLife.61312
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: 2021.07.26.453840v1.9
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
  doi: 10.1126/science.abe8499
– year: 2021
  ident: 2021.07.26.453840v1.14
  article-title: Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination
  publication-title: Nature reviews. Immunology
  doi: 10.1038/s41577-021-00544-9
– volume: 16
  start-page: e1008903
  year: 2020
  ident: 2021.07.26.453840v1.31
  article-title: SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts
  publication-title: PLoS pathogens
  doi: 10.1371/journal.ppat.1008903
– volume: 6
  start-page: 16
  year: 2021
  ident: 2021.07.26.453840v1.32
  article-title: Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-020-00279-z
– volume: 371
  start-page: 1139
  year: 2021
  end-page: 1142
  ident: 2021.07.26.453840v1.7
  article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
  publication-title: Science
  doi: 10.1126/science.abf6950
– volume: 81
  start-page: 813
  year: 2007
  end-page: 821
  ident: 2021.07.26.453840v1.28
  article-title: Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus
  publication-title: J Virol
  doi: 10.1128/JVI.02012-06
– volume: 19
  start-page: 141
  year: 2021
  end-page: 154
  ident: 2021.07.26.453840v1.1
  article-title: Characteristics of SARS-CoV-2 and COVID-19
  publication-title: Nature reviews. Microbiology
  doi: 10.1038/s41579-020-00459-7
– year: 2017
  ident: 2021.07.26.453840v1.23
  article-title: Antibody preparations from human transchromosomic cows exhibit prophylactic and therapeutic efficacy versus Venezuelan equine encephalitis virus
  publication-title: J Virol
  doi: 10.1128/JVI.00226-17
– year: 2020
  ident: 2021.07.26.453840v1.35
  article-title: SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.001481
– volume: 8
  start-page: 326ra321
  year: 2016
  ident: 2021.07.26.453840v1.22
  article-title: Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf1061
– volume: 27
  start-page: 440
  year: 2021
  end-page: 446
  ident: 2021.07.26.453840v1.2
  article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01255-3
– year: 2021
  ident: 2021.07.26.453840v1.30
  article-title: Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses
  publication-title: bioRxiv
  doi: 10.1101/2021.02.23.432569
– volume: 2
  start-page: 100255
  year: 2021
  ident: 2021.07.26.453840v1.13
  article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100255
– volume: 27
  start-page: 173
  year: 2009
  end-page: 181
  ident: 2021.07.26.453840v1.18
  article-title: Antigen-specific human polyclonal antibodies from hyperimmunized cattle
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1521
– volume: 117
  start-page: 22311
  year: 2020
  end-page: 22322
  ident: 2021.07.26.453840v1.26
  article-title: Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2010146117
– start-page: 1
  year: 2021
  end-page: 16
  ident: 2021.07.26.453840v1.4
  article-title: The importance of genomic analysis in cracking the coronavirus pandemic
  publication-title: Expert Rev Mol Diagn
  doi: 10.1080/14737159.2021.1917998
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: 2021.07.26.453840v1.36
  article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 10
  start-page: e0130699
  year: 2015
  ident: 2021.07.26.453840v1.19
  article-title: Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130699
SSID ssj0002961374
Score 1.767702
SecondaryResourceType preprint
Snippet Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms ACE2
Angiotensin-converting enzyme 2
Antibodies
Genotypes
Hyperimmunization
Immunoglobulin G
Lethality
Microbiology
Monoclonal antibodies
Pandemics
Patients
Plasmids
Proteins
Severe acute respiratory syndrome coronavirus 2
Spike protein
Strains (organisms)
Virulence
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NS8MwNMiG4M1PnE6J4LUjzdKmPY6xOQVlOCe7lSRN3WC2Y53D-TP8xb7X1iHowWvT5MHL-8z7IuTalUqBWvYcC9rAESZ0ix6QjgFlGbuhCmyRjHn_4A_G4m7iTX6M-sK0Sj3Llu-zdRHHx4RtkL4lczMXfXUXu21yvyWAVwV463XscYbZXP1Ja_u8wkPQU1JUccw_d4LFW0H6JYcL5dLfJ_WhWtjlAdmx6SHZLadDbo7I57DsoQCYo1lCi2l6tNPtcbpCBQM3PzN0tAEKSulUvWLHg5xiuQgddR5HtJs9O5yuFa6vcqo31QmLbL4xczTA6e3LTblhCt7o0pkVtSIfNi4BmCmm6uVYtkw1PjzY_JiM-72n7sCpRig4mnsBc4SXWJZwnugQ432hb4VvpS8tU2BHSBVbyWKbqNBjWgdMtT0tJPN4IiTWEbL2CamlWWpPCTXCBwaPTdxmRgSeCbliiWYgEMK4nbi2Qa4qdEaLslFGhCiPmIy4H5Uob5DmN6KjilfyCJwa8IZF4LpwxHYZqBxDFyq12VvxjwTfCsyzs3-AOSd7-A2fYLnfJLXV8s1egO2w0pcFlXwB7Ve-mQ
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines
URI https://www.proquest.com/docview/2555234811
https://www.proquest.com/docview/2557548560
https://www.biorxiv.org/content/10.1101/2021.07.26.453840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3bbtMw1GKtJvHGVQzGZCRePRzXl_hpGlXLQGKqVob6FtmOQyttSWm6aeUz-GLOSbzxgMSznWPp5NyvhLzPjHOglhWLoA2YDDbrZkCyAMqyzKzLY1eM-fVcn13KLwu1SAG3NpVV3svETlCXTcAY-QcwfcFnknmWnax_MtwahdnVtEJjjwxBBOdqQIYfJ-ezi4coi7CgrrpRzEJbYH3BVUptAimi45_h6E6hjyUwPgZA9v2q2dytbv8RzZ2-mT4hw5lbx81T8ijWz8h-vzBy95z8nvVjFQCZtKlot2CPno4ngm5R5wAxrAKd74Coarp01zgEoaXYQULnpxdzOm6-M0FvHZ5vW-p3CcK6udqFK7TJ6ecfn_oPluCgbtiqax_5Fcv-gbDE6r0WO5mpx1hEbF-Qy-nk2_iMpa0KzAuVcyZVFXklROUtpgCtjlJHo03kDkwL48poeBkrZxX3PudupLw0XIlKGmwt5KOXZFA3dXxFaJAaeL4M5YgHmatgheOV5yAjbDmqsnhA3iV0Fut-dkaBKC-4KYQuepQfkMN7RBeJfdri788GEA_HQPiYzXB1bG66OwbcLbDYXv8fxBvyGF_FgKzQh2Sw3dzEt2BJbP1RIpcjsjddHP8B5YHG3w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGqom98Sn2ARgJHg2OayfxA0Jb6WjZVlXrhvYWbMehlbakNN1Y-DP4Q_gbuUvS8YDE256dXKLz-X734bsj5HUQGQOwrJgHNGDS6aDuAckcgGUaaBP7-jLm8SgcnMnP5-p8jfxe1cLgtcqVTqwVdVo4jJG_A9MXfCYZB8GH-XeGU6Mwu7oaodGIxaGvfoDLVr4ffoT9fSPEQf-0N2DtVAFmhYo5kyrzPBMisxpTYDr0MvRRGHluAFojk_qIpz4zWnFrY266ysqIK5HJCEvreBfo3iMdMDM0nKLOfn80PrmN6ggN8Fi3fhahBlUjuGpTqSD6GGgIsFWoCN9KUDQYcNmws2JxM7v-BwpqfDt4QDpjM_eLh2TN54_IRjOgsnpMfo2bNg6webTIaD3Qj-71-oIuEeNA-GaOTioQ4pxOzSU2XSgpVqzQyd7JhPaKL0zQa4Pry5LaqqUwLy4qd4E-AB1--9S8MAWHeMFmdbnKT582H3BTvC1YYuU0tRj78OUTcnYn_H5K1vMi988IdTIEHZO6tMudjJXTwvDMctBJOu1mgd8ir1p2JvOmV0eCLE94lIgwaVi-RXZXjE7a41omf4ULSNwuw0HD7InJfXFVPxOBewcW4vb_Sbwk9wenx0fJ0XB0uEM28Q8wGCzCXbK-XFz552DFLO2LVnQo-XrX0voHVtEBMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSsNAcPGB4s0n1ucKXlM22002OUq1vqVYld7C7mbXFjQpTRXrZ_jFziRRBD143mQGhnk_CTn0pVJglgPPgjXwhIn9cgekZ8BYpn6sIls2Y17fhGf34qIf9H_MwmBbpR7m47fha1nHx4Zt0L6VcDMfY3Uft23ysClAVgVrYpq6OUrdLJnHZWcYgHX6ze88C4_BYElRFzT_BAGub43yl0IurUxnmcx31ciOV8iMzVbJQnUmcrpGPrrVMgUgIc0dLc_q0aP2CacTtDTAAkNDe1NgpYwO1DOuPigozo3Q3tFtj7bzB4_TV4Xvk4LqaQ1hlD9NzRN64vT88bT6YQBh6dgblkMj7zatEJgB9uwVOL9MNWYgbLFO7jsnd-0zr76l4GkeRMwTgbPMce50jIW_OLQitDKUlilwKKRKrWSpdSoOmNYRU61AC8kC7oTEgULW2iBzWZ7ZTUKNCEHSU5O2mBFRYGKumNMMNEOctpxvG-SgJmcyqjZmJEjyhMmEh0lF8gbZ-SJ0UgtNkUB0A2GxiHwfQHw_A7tjDUNlNn8pv5EQZIGftvUPNPtksXvcSa7Oby63yRI-Y1qWhztkbjJ-sbvgT0z0Xskwn8IPxHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protection+of+human+ACE2+transgenic+Syrian+hamsters+from+SARS+CoV-2+variants+by+human+polyclonal+IgG+from+hyper-immunized+transchromosomic+bovines&rft.jtitle=bioRxiv&rft.au=Gilliland%2C+Theron&rft.au=Liu%2C+Yanan&rft.au=Li%2C+Rong&rft.au=Dunn%2C+Matthew&rft.date=2021-07-26&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.07.26.453840&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon