Mitogenome comparative analysis of 3 Myotis species endemic to Mexico and detecting selection in OXPHOS genes
Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within...
Saved in:
Published in | Journal of mammalogy Vol. 106; no. 3; pp. 587 - 602 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Society of Mammalogists
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2372 1545-1542 |
DOI | 10.1093/jmammal/gyae144 |
Cover
Abstract | Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within their mitochondrial genomes crucial for the oxidative phosphorylation pathway. In this study, the complete mitogenomes of 3 Myotis species endemic to Mexico were obtained and evaluated to obtain signatures of adaptive evolution in genes encoding mitochondrial proteins. The mitochondrial genomes span 17,147; 17,148; and 17,171 bp in size of M. findleyi, M. vivesi, and M. planiceps, respectively. A phylogenetic analysis focusing on the 13 protein-coding genes supports the delimitation of several clades included in the genus Myotis. Notably, Branch Models propose that Cox1, Cytb, and Nad4 may be subject to more robust purifying selection compared to other mitochondrial genes, while the Nad5 gene likely experiences positive selection pressure. The statistical analysis supports that Branch-Site Models contribute insights into 5 genes featuring amino acid sites potentially under selection pressure. Further analysis revealed episodic diversifying selection in Cox3 and signatures of diversifying/positive selection in 5 genes. This research significantly advances our understanding of the adaptive evolution of mitochondrial protein-coding genes in chiropterans, shedding light on their potential role in sustaining active flight. Respecto a las demandas metabólicas, el vuelo activo destaca por ser una forma de locomoción caracterizado por necesidades energéticas excepcionalmente altas. Los murciélagos exhiben distintas características anatómicas y fisiológicas asociadas con el vuelo, lo que provoca la anticipación de la evolución adaptativa en genes codificadores de proteínas mitocondriales, cruciales para llevar a cabo la fosforilación oxidativa. En este estudio, se obtuvieron y evaluaron los genomas mitocondriales completos de 3 especies endémicas de Myotis para obtener firmas de evolución adaptativa en genes que codifican proteínas mitocondriales. Los genomas mitocondriales abarcan 17.147; 17.148; y 17.171 pb de tamaño en M. findleyi, M. vivesi y M. planiceps, respectivamente. Un análisis filogenético, centrado en los 13 genes codificadores de proteínas, respalda la delimitación de los clados del Nuevo y Viejo Mundo dentro del género Myotis. En particular, Branch Models propone que Cox1, Cytb y Nad4 pueden estar sujetos a una selección purificadora más robusta en comparación con otros genes mitocondriales, mientras que el gen Nad5 probablemente experimente una presión de selección positiva. Los análisis con Branch-Site Models aporta información sobre 5 genes que presentan sitios de aminoácidos potencialmente bajo presión de selección, como lo indican las pruebas estadísticas. Análisis adicionales, empleando DataMonkey revelan una selección diversificadora episódica en el gen Cox3 y firmas de selección episódicas positivas/diversificadoras en 5 genes más. Esta investigación avanza significativamente en nuestra comprensión de la evolución adaptativa de los genes codificadores de proteínas mitocondriales en quirópteros, arrojando luz sobre su papel potencial en el mantenimiento del vuelo activo. |
---|---|
AbstractList | Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within their mitochondrial genomes crucial for the oxidative phosphorylation pathway. In this study, the complete mitogenomes of 3 Myotis species endemic to Mexico were obtained and evaluated to obtain signatures of adaptive evolution in genes encoding mitochondrial proteins. The mitochondrial genomes span 17,147; 17,148; and 17,171 bp in size of M. findleyi, M. vivesi, and M. planiceps, respectively. A phylogenetic analysis focusing on the 13 protein-coding genes supports the delimitation of several clades included in the genus Myotis. Notably, Branch Models propose that Cox1, Cytb, and Nad4 may be subject to more robust purifying selection compared to other mitochondrial genes, while the Nad5 gene likely experiences positive selection pressure. The statistical analysis supports that Branch-Site Models contribute insights into 5 genes featuring amino acid sites potentially under selection pressure. Further analysis revealed episodic diversifying selection in Cox3 and signatures of diversifying/positive selection in 5 genes. This research significantly advances our understanding of the adaptive evolution of mitochondrial protein-coding genes in chiropterans, shedding light on their potential role in sustaining active flight. Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within their mitochondrial genomes crucial for the oxidative phosphorylation pathway. In this study, the complete mitogenomes of 3 Myotis species endemic to Mexico were obtained and evaluated to obtain signatures of adaptive evolution in genes encoding mitochondrial proteins. The mitochondrial genomes span 17,147; 17,148; and 17,171 bp in size of M. findleyi, M. vivesi, and M. planiceps, respectively. A phylogenetic analysis focusing on the 13 protein-coding genes supports the delimitation of several clades included in the genus Myotis. Notably, Branch Models propose that Cox1, Cytb, and Nad4 may be subject to more robust purifying selection compared to other mitochondrial genes, while the Nad5 gene likely experiences positive selection pressure. The statistical analysis supports that Branch-Site Models contribute insights into 5 genes featuring amino acid sites potentially under selection pressure. Further analysis revealed episodic diversifying selection in Cox3 and signatures of diversifying/positive selection in 5 genes. This research significantly advances our understanding of the adaptive evolution of mitochondrial protein-coding genes in chiropterans, shedding light on their potential role in sustaining active flight. Respecto a las demandas metabólicas, el vuelo activo destaca por ser una forma de locomoción caracterizado por necesidades energéticas excepcionalmente altas. Los murciélagos exhiben distintas características anatómicas y fisiológicas asociadas con el vuelo, lo que provoca la anticipación de la evolución adaptativa en genes codificadores de proteínas mitocondriales, cruciales para llevar a cabo la fosforilación oxidativa. En este estudio, se obtuvieron y evaluaron los genomas mitocondriales completos de 3 especies endémicas de Myotis para obtener firmas de evolución adaptativa en genes que codifican proteínas mitocondriales. Los genomas mitocondriales abarcan 17.147; 17.148; y 17.171 pb de tamaño en M. findleyi, M. vivesi y M. planiceps, respectivamente. Un análisis filogenético, centrado en los 13 genes codificadores de proteínas, respalda la delimitación de los clados del Nuevo y Viejo Mundo dentro del género Myotis. En particular, Branch Models propone que Cox1, Cytb y Nad4 pueden estar sujetos a una selección purificadora más robusta en comparación con otros genes mitocondriales, mientras que el gen Nad5 probablemente experimente una presión de selección positiva. Los análisis con Branch-Site Models aporta información sobre 5 genes que presentan sitios de aminoácidos potencialmente bajo presión de selección, como lo indican las pruebas estadísticas. Análisis adicionales, empleando DataMonkey revelan una selección diversificadora episódica en el gen Cox3 y firmas de selección episódicas positivas/diversificadoras en 5 genes más. Esta investigación avanza significativamente en nuestra comprensión de la evolución adaptativa de los genes codificadores de proteínas mitocondriales en quirópteros, arrojando luz sobre su papel potencial en el mantenimiento del vuelo activo. |
Author | Gutiérrez, Edgar G. Ortega, Jorge |
Author_xml | – sequence: 1 givenname: Edgar G. orcidid: 0000-0002-6901-4924 surname: Gutiérrez fullname: Gutiérrez, Edgar G. organization: Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Quimicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Ciudad de México C.P. 11340, México – sequence: 2 givenname: Jorge orcidid: 0000-0003-1132-1910 surname: Ortega fullname: Ortega, Jorge organization: Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Quimicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Ciudad de México C.P. 11340, México |
BookMark | eNqFkEtLAzEUhYNUsK2u3eYPjM2zM11KUSu0VFDB3ZDHTUmZJGUSxPn3jrR7N_ecxTnnwjdDk5giIHRPyQMlK744BhWC6haHQQEV4gpNqRSyGg-boCkhjFWM1-wGzXI-EkJkzcgUhZ0v6QAxBcAmhZPqVfHfgFVU3ZB9xslhjndDKqPPJzAeMoZoIXiDS8I7-PEmjXGLLRQwxccDztD9uRSxj3j_9bbZv-PxB-RbdO1Ul-HuonP0-fz0sd5U2_3L6_pxW2nGZamEaPjSOaulcaZhSltNhLZKSkVWS2epolQ0ZpRaOlLThgmQwKXU9VIxJ_kcLc67pk859-DaU--D6oeWkvaPVnuh1V5ojY3q3NA-jVz_zf8CGBdzwg |
Cites_doi | 10.1093/molbev/msm088 10.1016/j.ympev.2006.06.019 10.1093/jmammal/gyw078 10.1139/cjz-2021-0018 10.1080/23802359.2017.1280701 10.1098/rspb.2015.1028 10.1186/s40709-017-0060-4 10.1080/23802359.2019.1681316 10.1093/gbe/evad173 10.1093/jmammal/gyv216 10.1093/molbev/msx335 10.1038/s41576-022-00480-x 10.1016/j.gene.2011.10.038 10.1098/rspb.2006.3680 10.1186/s12864-023-09596-8 10.1093/molbev/msm259 10.1093/molbev/msv035 10.1093/molbev/msy096 10.1016/s0378-1119(97)00404-6 10.3109/19401736.2015.1122775 10.1093/nar/27.2.573 10.1093/molbev/msv022 10.3161/15081109ACC2018.20.2.001 10.1093/oxfordjournals.molbev.a025957 10.1016/j.exger.2023.112134 10.1126/science.1230835 10.1016/j.mambio.2008.09.002 10.1073/pnas.2201518120 10.1016/j.mambio.2011.11.003 10.1016/j.gdata.2015.06.009 10.3897/zookeys.1105.85055 10.1644/12-MAMM-A-281.1 10.1098/rsos.160398 10.1093/bioinformatics/btg491 10.1186/s13059-020-02154-5 10.1093/genetics/128.3.607 10.3161/1733-5329(2005)7[309:ROTMFB]2.0.CO;2 10.3389/fgene.2014.00109 10.1017/S0030605317000874 10.1093/nar/gkt290 10.3791/59505 10.3109/19401736.2014.958681 10.1146/annurev-biochem-060815-014402 10.1093/oxfordjournals.molbev.a040410 10.1093/molbev/msz197 10.1016/j.dib.2019.103830 10.1007/s10914-016-9351-z 10.1093/gbe/evw195 10.1098/rsob.200061 10.1093/bioinformatics/btv372 10.1093/molbev/msi097 10.1093/molbev/msi237 10.1016/j.ympev.2012.08.023 10.1098/rspb.2023.0045 10.1093/oxfordjournals.molbev.a003945 10.1093/bioinformatics/btp348 10.1007/s10914-009-9118-x 10.1017/CBO9781139045599.008 10.1080/23802359.2018.1467740 10.1007/s10914-005-6945-2 10.1093/sysbio/syx070 10.1093/jmammal/gyaa092 10.1111/mam.12211 10.1007/s12686-018-1002-7 10.1093/nar/gkn772 10.1080/23802359.2021.1875911 10.1098/rsbl.2018.0857 10.3109/19401736.2011.624598 10.1093/nar/27.8.1767 10.1038/hdy.2008.62 10.1242/jeb.031203 10.1093/oxfordjournals.molbev.a004148 10.1186/1471-2164-12-402 10.1093/nar/gks400 10.5281/zenodo.13414627 10.1086/693847 10.3109/19401736.2014.892086 10.1371/journal.pone.0046578 10.11646/zootaxa.5188.5.2 10.1073/pnas.0912613107 10.1644/09-mamm-a-192.1 10.3390/ani10112130 10.1093/jcbiol/ruac012 10.1371/journal.pone.0172621 10.3109/19401736.2012.760558 10.3109/19401736.2015.1030625 10.1038/s41598-018-31093-2 10.1644/1545-1542(2004)085<0133:msotfb>2.0.co;2 10.3109/19401736.2015.1079871 10.1093/oxfordjournals.molbev.a003935 10.1093/molbev/msad041 10.1093/molbev/msu400 10.1006/mpev.2001.1017 10.1093/molbev/msu300 10.1111/evo.13849 10.1093/nar/gkr1131 10.1017/CBO9781139045599.011 10.12933/therya-20-999 10.1002/pro.3290 10.1016/j.ympev.2013.08.011 10.1080/23802359.2019.1641436 10.1206/3780.2 10.1186/1471-2164-9-119 10.1093/molbev/msz189 10.3109/19401736.2013.823179 10.1007/s11033-023-08468-4 10.17504/protocols.io.b46bqzan 10.3109/19401736.2013.840596 10.2305/IUCN.UK.2016-1.RLTS.T14209A22069146.en 10.1371/journal.pbio.1002297 10.1093/sysbio/21.1.31 10.2307/3672062 10.1016/j.gene.2007.03.017 10.1146/annurev.biochem.66.1.409 10.1016/s1055-7903(03)00121-0 10.3109/19401736.2013.766176 10.1080/23802359.2022.2059408 10.1080/23802359.2020.1830726 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1093/jmammal/gyae144 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1545-1542 |
EndPage | 602 |
ExternalDocumentID | 10_1093_jmammal_gyae144 10.1093/jmammal/gyae144 |
GroupedDBID | -ET -JH -~X 0R~ 29K 4.4 48X 5GY 5WD 79B 85S AAHBH AAHKG AAILS AAIMJ AAMDB AAMVS AAOGV AAPQZ AAPSS AAPXW AARHZ AAUAY AAVAP ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABMNT ABPLY ABPPZ ABPQP ABPTD ABQLI ABTLG ABVGC ABWST ABXVV ABXZS ACGFO ACGFS ACGOD ACNCT ACPRK ACSIT ACUFI ACUTJ ADBBV ADCFL ADGKP ADGZP ADHKW ADHSS ADHZD ADIPN ADNBA ADQBN ADRTK ADVEK ADYVW AEGPL AEGXH AEHKS AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AEPYG AETBJ AEWNT AFAZZ AFFNX AFFZL AFGWE AFIYH AFNWH AFOFC AFRAH AFYAG AGINJ AGORE AGQXC AGSYK AHGBF AIAGR AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT ARIXL ATGXG AVWKF AXUDD AYOIW BAYMD BCRHZ BES BEYMZ BHONS BQDIO BSWAC CDBKE CS3 D-I DAKXR DILTD DU5 EBS EJD F5P FHSFR FJW FLUFQ FOEOM FQBLK GAUVT GJXCC H13 HAR HF~ J21 JBS JLS JXSIZ KOP KQ8 KSI KSN LU7 MV1 NLBLG NOMLY NU- NVHAQ O-3 O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OWPYF P2P PAFKI PEELM PQ0 PRG Q5Y RBO ROX ROZ RUSNO RWL RXO RXW TAE TLC TN5 WH7 XSW YAYTL YKOAZ YQT YR5 YROCO YV5 YXANX ZCA ZO4 ~02 ~EF ~KM AAYXX ALIPV CITATION |
ID | FETCH-LOGICAL-b235t-44836ffdb5cfc82abdb04bda55a096fd1a1148c1a175f071824e5e355b76a2f53 |
ISSN | 0022-2372 |
IngestDate | Thu Jul 03 08:43:30 EDT 2025 Wed Aug 20 00:35:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b235t-44836ffdb5cfc82abdb04bda55a096fd1a1148c1a175f071824e5e355b76a2f53 |
ORCID | 0000-0002-6901-4924 0000-0003-1132-1910 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1093_jmammal_gyae144 bioone_primary_10_1093_jmammal_gyae144 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of mammalogy |
PublicationYear | 2025 |
Publisher | American Society of Mammalogists |
Publisher_xml | – name: American Society of Mammalogists |
References | Haynie (2025061204072162600_CIT0041) 2016; 97 Sun (2025061204072162600_CIT0104) 2009; 74 Huang (2025061204072162600_CIT0045) 2019; 4 Findley (2025061204072162600_CIT0027) 1972; 21 Sikes (2025061204072162600_CIT0098) 2016; 97 Jia (2025061204072162600_CIT0050) 2008; 25 Voigt (2025061204072162600_CIT0106) 2017; 92 Lamelas (2025061204072162600_CIT0066) 2020; 10 Watanabe (2025061204072162600_CIT0108) 2014; 5 Yu (2025061204072162600_CIT0122) 2016; 27 Darriba (2025061204072162600_CIT0024) 2020; 37 Herrera (2025061204072162600_CIT0043) 2019; 53 Murrell (2025061204072162600_CIT0079) 2015; 32 Yang (2025061204072162600_CIT0114) 2022; 7 Jebb (2025061204072162600_CIT0049) 2018; 8 Gutiérrez (2025061204072162600_CIT0039) 2023; 24 Jiménez-Guzmán (2025061204072162600_CIT0052) 2014 Wang (2025061204072162600_CIT0107) 2016; 27 Bernt (2025061204072162600_CIT0013) 2013; 69 Moratelli (2025061204072162600_CIT0078) 2013; 2013 Yoon (2025061204072162600_CIT0120) 2015; 5 Gissi (2025061204072162600_CIT0031) 2008; 101 Yohe (2025061204072162600_CIT0118) 2019 Rackham (2025061204072162600_CIT0088) 2022; 23 Jebb (2025061204072162600_CIT0047) 2015; 1736 Chung (2025061204072162600_CIT0019) 2018; 3 Matson (2025061204072162600_CIT0073) 2001; 18 Novaes (2025061204072162600_CIT0083) 2022; 5188 Álvarez-Carretero (2025061204072162600_CIT0002) 2023; 40 Shadel (2025061204072162600_CIT0095) 1997; 66 Czaplewski (2025061204072162600_CIT0022) 1993; 38 Hedenström (2025061204072162600_CIT0042) 2015; 218 Yang (2025061204072162600_CIT0115) 2002; 19 Arroyo-Cabrales (2025061204072162600_CIT0006) 2005; 7 Drinkwater (2025061204072162600_CIT0025) 2021; 99 Otálora-Ardila (2025061204072162600_CIT0086) 2013; 94 Salin (2025061204072162600_CIT0093) 2015; 282 Kučka (2025061204072162600_CIT0062) 2022 Bergou (2025061204072162600_CIT0012) 2015; 13 Hou (2025061204072162600_CIT0044) 2007; 396 Nei (2025061204072162600_CIT0081) 1986; 3 Guo (2025061204072162600_CIT0037) 2022; 120 Ruedi (2025061204072162600_CIT0090) 2001; 21 Yang (2025061204072162600_CIT0117) 2007; 24 Stadelmann (2025061204072162600_CIT0101) 2004; 85 Kumar (2025061204072162600_CIT0063) 2018; 35 Jebb (2025061204072162600_CIT0048) 2017; 2 Arroyo-Cabrales (2025061204072162600_CIT0007) 2016 Larsen (2025061204072162600_CIT0067) 2012; 7 Carrión-Bonilla (2025061204072162600_CIT0018) 2020; 11 Eiting (2025061204072162600_CIT0026) 2009; 16 Meganathan (2025061204072162600_CIT0075) 2012; 492 Gunnell (2025061204072162600_CIT0034) 2005; 12 Luo (2025061204072162600_CIT0072) 2013; 24 Storch (2025061204072162600_CIT0103) 1999 Morgan (2025061204072162600_CIT0076) 1991; 206 Zhang (2025061204072162600_CIT0123) 2013; 339 Ruedi (2025061204072162600_CIT0091) 2013; 69 Boore (2025061204072162600_CIT0016) 1999; 27 Sun (2025061204072162600_CIT0105) 2013; 24 Gorobeyko (2025061204072162600_CIT0033) 2023; 50 Amador (2025061204072162600_CIT0003) 2019; 15 Nam (2025061204072162600_CIT0080) 2015; 26 Yang (2025061204072162600_CIT0116) 2005; 22 Sievers (2025061204072162600_CIT0097) 2017; 27 Simmons (2025061204072162600_CIT0099) 2024 Yoon (2025061204072162600_CIT0119) 2014; 27 McCracken (2025061204072162600_CIT0074) 2016; 3 Anderson (2025061204072162600_CIT0004) 2020; 50 Jühling (2025061204072162600_CIT0054) 2009; 37 Capella-Gutiérrez (2025061204072162600_CIT0017) 2009; 25 Claramunt (2025061204072162600_CIT0020) 2023; 15 Wilkinson (2025061204072162600_CIT0111) 1991; 128 Ladoukakis (2025061204072162600_CIT0065) 2017; 24 Stadelmann (2025061204072162600_CIT0102) 2007; 43 Weaver (2025061204072162600_CIT0109) 2018; 35 Nguyen (2025061204072162600_CIT0082) 2015; 32 Novaes (2025061204072162600_CIT0084) 2022; 1105 Currie (2025061204072162600_CIT0021) 2023; 290 Gunnell (2025061204072162600_CIT0036) 2017; 12 Saccone (2025061204072162600_CIT0092) 1993 Juste (2025061204072162600_CIT0056) 2018; 20 Sbisà (2025061204072162600_CIT0094) 1997; 205 Shen (2025061204072162600_CIT0096) 2010; 107 Yoon (2025061204072162600_CIT0121) 2015; 26 Rahman (2025061204072162600_CIT0089) 2019; 24 Zhang (2025061204072162600_CIT0124) 2005; 22 Jiang (2025061204072162600_CIT0051) 2019; 11 Gaughan (2025061204072162600_CIT0028) 2020; 5 Bikandi (2025061204072162600_CIT0015) 2004; 20 Artimo (2025061204072162600_CIT0008) 2012; 40 Wilson (2025061204072162600_CIT0112) 2014 Benson (2025061204072162600_CIT0011) 1999; 27 Kerpedjiev (2025061204072162600_CIT0058) 2015; 31 Larsen (2025061204072162600_CIT0068) 2012; 77 Gómez (2025061204072162600_CIT0032) 2023; 174 Gunnell (2025061204072162600_CIT0035) 2012 Platt (2025061204072162600_CIT0087) 2018; 67 Kim (2025061204072162600_CIT0060) 2011; 22 da Fonseca (2025061204072162600_CIT0023) 2008; 9 Hao (2025061204072162600_CIT0040) 2019; 4 Lawless (2025061204072162600_CIT0070) 2020; 10 Ghazali (2025061204072162600_CIT0029) 2017; 24 Hwang (2025061204072162600_CIT0046) 2015; 27 Kim (2025061204072162600_CIT0059) 2021; 6 Anisimova (2025061204072162600_CIT0005) 2001; 18 Lack (2025061204072162600_CIT0064) 2010; 91 Smith (2025061204072162600_CIT0100) 2015; 32 Baeza (2025061204072162600_CIT0009) 2022; 42 Bellaousov (2025061204072162600_CIT0010) 2013; 41 Wertheim (2025061204072162600_CIT0110) 2015; 32 Jin (2025061204072162600_CIT0053) 2020; 21 Lavrov (2025061204072162600_CIT0069) 2016; 8 Berthier (2025061204072162600_CIT0014) 2006; 273 Kawai (2025061204072162600_CIT0057) 2003; 28 Alikhan (2025061204072162600_CIT0001) 2011; 12 Yang (2025061204072162600_CIT0113) 1998; 15 Núñez-Rojo (2025061204072162600_CIT0085) 2020; 101 Gustafsson (2025061204072162600_CIT0038) 2016; 85 Kosakovsky Pond (2025061204072162600_CIT0061) 2020; 37 Morales (2025061204072162600_CIT0077) 2019; 73 Jühling (2025061204072162600_CIT0055) 2012; 40 Giannini (2025061204072162600_CIT0030) 2012 |
References_xml | – volume: 24 start-page: 1586 issue: 8 year: 2007 ident: 2025061204072162600_CIT0117 article-title: PAML 4: phylogenetic analysis by maximum likelihood publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msm088 – volume: 43 start-page: 32 issue: 1 year: 2007 ident: 2025061204072162600_CIT0102 article-title: Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2006.06.019 – volume: 97 start-page: 663 issue: 3 year: 2016 ident: 2025061204072162600_CIT0098 article-title: Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education publication-title: Journal of Mammalogy doi: 10.1093/jmammal/gyw078 – volume: 99 start-page: 752 issue: 9 year: 2021 ident: 2025061204072162600_CIT0025 article-title: Molecular diet analysis of the marine fish-eating bat (Myotis vivesi) and potential mercury exposure publication-title: Canadian Journal of Zoology doi: 10.1139/cjz-2021-0018 – volume: 2 start-page: 92 issue: 1 year: 2017 ident: 2025061204072162600_CIT0048 article-title: The complete mitochondrial genome of the Bechstein’s bat, Myotis bechsteinii (Chiroptera, Vespertilionidae) publication-title: Mitochondrial DNA part B: Resources doi: 10.1080/23802359.2017.1280701 – volume: 282 start-page: 20151028 issue: 1812 year: 2015 ident: 2025061204072162600_CIT0093 article-title: Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance publication-title: Proceedings Biological Sciences doi: 10.1098/rspb.2015.1028 – volume: 24 start-page: 1 issue: 1 year: 2017 ident: 2025061204072162600_CIT0065 article-title: Evolution and inheritance of animal mitochondrial DNA: rules and exceptions publication-title: Journal of Biological Research-Thessaloniki doi: 10.1186/s40709-017-0060-4 – volume: 4 start-page: 3748 issue: 2 year: 2019 ident: 2025061204072162600_CIT0040 article-title: Complete mitochondrial genome of the East Asian fish-eating bat: Myotis ricketti (Chiroptera, Vespertilionidae) publication-title: Mitochondrial DNA. Part B, Resources doi: 10.1080/23802359.2019.1681316 – volume: 15 start-page: evad17 issue: 10 year: 2023 ident: 2025061204072162600_CIT0020 article-title: No signs of adaptations for high flight intensity in the mitochondrial genome of birds publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evad173 – volume: 97 start-page: 701 issue: 3 year: 2016 ident: 2025061204072162600_CIT0041 article-title: Placement of the rediscovered Myotis planiceps (Chiroptera: Vespertilionidae) within the Myotis phylogeny publication-title: Journal of Mammalogy doi: 10.1093/jmammal/gyv216 – volume: 35 start-page: 773 issue: 3 year: 2018 ident: 2025061204072162600_CIT0109 article-title: Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msx335 – volume: 23 start-page: 606 issue: 10 year: 2022 ident: 2025061204072162600_CIT0088 article-title: Organization and expression of the mammalian mitochondrial genome publication-title: Nature Reviews Genetics doi: 10.1038/s41576-022-00480-x – volume: 492 start-page: 121 issue: 1 year: 2012 ident: 2025061204072162600_CIT0075 article-title: Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera publication-title: Gene doi: 10.1016/j.gene.2011.10.038 – volume: 273 start-page: 3101 issue: 1605 year: 2006 ident: 2025061204072162600_CIT0014 article-title: Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii publication-title: Proceedings Biological Sciences doi: 10.1098/rspb.2006.3680 – volume: 24 start-page: 527 issue: 1 year: 2023 ident: 2025061204072162600_CIT0039 article-title: The mitochondrial genome of the mountain wooly tapir, Tapirus pinchaque and a formal test of the effect of altitude on the adaptive evolution of mitochondrial protein coding genes in odd-toed ungulates publication-title: BMC Genomics doi: 10.1186/s12864-023-09596-8 – volume: 25 start-page: 339 issue: 2 year: 2008 ident: 2025061204072162600_CIT0050 article-title: Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msm259 – volume: 32 start-page: 1365 issue: 5 year: 2015 ident: 2025061204072162600_CIT0079 article-title: Gene-wide identification of episodic selection publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msv035 – volume: 35 start-page: 1547 issue: 6 year: 2018 ident: 2025061204072162600_CIT0063 article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msy096 – volume: 205 start-page: 125 issue: 1–2 year: 1997 ident: 2025061204072162600_CIT0094 article-title: Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications publication-title: Gene doi: 10.1016/s0378-1119(97)00404-6 – volume: 1736 start-page: 1 issue: 3 year: 2015 ident: 2025061204072162600_CIT0047 article-title: The complete mitochondrial genome of the Greater Mouse-Eared bat, Myotis myotis (Chiroptera: Vespertilionidae) publication-title: Mitochondrial DNA doi: 10.3109/19401736.2015.1122775 – volume: 27 start-page: 573 issue: 2 year: 1999 ident: 2025061204072162600_CIT0011 article-title: Tandem repeats finder: a program to analyze DNA sequences publication-title: Nucleic Acids Research doi: 10.1093/nar/27.2.573 – volume: 32 start-page: 1342 issue: 5 year: 2015 ident: 2025061204072162600_CIT0100 article-title: Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msv022 – volume: 20 start-page: 285 issue: 2 year: 2018 ident: 2025061204072162600_CIT0056 article-title: Two new cryptic bat species within the Myotis nattereri species complex (Vespertilionidae, Chiroptera) from the Western Palearctic publication-title: Acta Chiropterologica doi: 10.3161/15081109ACC2018.20.2.001 – volume: 15 start-page: 568 issue: 5 year: 1998 ident: 2025061204072162600_CIT0113 article-title: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution publication-title: Molecular Biology and Evolution doi: 10.1093/oxfordjournals.molbev.a025957 – start-page: 27 volume-title: Mitochondrial DNA in human pathology year: 1993 ident: 2025061204072162600_CIT0092 article-title: Peculiar features and evolution of mitochondrial genome in mammals – volume: 174 start-page: 112134 issue: 1 year: 2023 ident: 2025061204072162600_CIT0032 article-title: Mitochondrial ROS production, oxidative stress and aging within and between species: evidences and recent advances on this aging effector publication-title: Experimental Gerontology doi: 10.1016/j.exger.2023.112134 – volume: 339 start-page: 456 issue: 6118 year: 2013 ident: 2025061204072162600_CIT0123 article-title: Comparative analysis of bat genomes provides insight into the evolution of flight and immunity publication-title: Science doi: 10.1126/science.1230835 – volume: 74 start-page: 130 issue: 2 year: 2009 ident: 2025061204072162600_CIT0104 article-title: Structure, DNA sequence variation and phylogenetic implications of the mitochondrial control region in horseshoe bats publication-title: Mammalian Biology doi: 10.1016/j.mambio.2008.09.002 – volume: 120 start-page: e2201518120 issue: 1 year: 2022 ident: 2025061204072162600_CIT0037 article-title: High-frequency and functional mitochondrial DNA mutations at the single-cell level publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2201518120 – volume: 77 start-page: 124 issue: 2 year: 2012 ident: 2025061204072162600_CIT0068 article-title: Evolutionary history of Caribbean species of Myotis, with evidence of a third Lesser Antillean endemic publication-title: Mammalian Biology doi: 10.1016/j.mambio.2011.11.003 – volume: 5 start-page: 213 issue: 1 year: 2015 ident: 2025061204072162600_CIT0120 article-title: Secondary structure and feature of mitochondrial tRNA genes of the Ussurian tube-nosed bat Murina ussuriensis (Chiroptera: Vespertilionidae) publication-title: Genomics Data doi: 10.1016/j.gdata.2015.06.009 – volume: 1105 start-page: 127 issue: 1 year: 2022 ident: 2025061204072162600_CIT0084 article-title: Catalogue of primary types of Neotropical Myotis (Chiroptera, Vespertilionidae) publication-title: ZooKeys doi: 10.3897/zookeys.1105.85055 – volume: 94 start-page: 1102 issue: 5 year: 2013 ident: 2025061204072162600_CIT0086 article-title: Marine and terrestrial food sources in the diet of fish-eating myotis (Myotis vivesi) publication-title: Journal of Mammalogy doi: 10.1644/12-MAMM-A-281.1 – volume: 3 start-page: 160398 issue: 11 year: 2016 ident: 2025061204072162600_CIT0074 article-title: Airplane tracking documents the fastest flight speeds recorded for bats publication-title: Royal Society Open Science doi: 10.1098/rsos.160398 – volume: 20 start-page: 798 issue: 5 year: 2004 ident: 2025061204072162600_CIT0015 article-title: In silico analysis of complete bacterial genomes: PCR, AFLP-PCR, and endonuclease restriction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg491 – volume: 21 start-page: 241 issue: 1 year: 2020 ident: 2025061204072162600_CIT0053 article-title: GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes publication-title: Genome Biology doi: 10.1186/s13059-020-02154-5 – volume: 128 start-page: 607 issue: 3 year: 1991 ident: 2025061204072162600_CIT0111 article-title: Length and sequence variation in evening bat D-loop mtDNA publication-title: Genetics doi: 10.1093/genetics/128.3.607 – volume: 7 start-page: 309 issue: 2 year: 2005 ident: 2025061204072162600_CIT0006 article-title: Rediscovery of the Mexican flat-headed bat Myotis planiceps (Vespertilionidae) publication-title: Acta Chiropterologica doi: 10.3161/1733-5329(2005)7[309:ROTMFB]2.0.CO;2 – volume: 5 start-page: 109 issue: 1 year: 2014 ident: 2025061204072162600_CIT0108 article-title: Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors publication-title: Frontiers in Genetics doi: 10.3389/fgene.2014.00109 – volume: 53 start-page: 388 issue: 2 year: 2019 ident: 2025061204072162600_CIT0043 article-title: Geographical distribution and conservation status of an endemic insular mammal: the Vulnerable fish-eating bat Myotis vivesi publication-title: Oryx doi: 10.1017/S0030605317000874 – volume: 41 start-page: W471 issue: Web Server issue year: 2013 ident: 2025061204072162600_CIT0010 article-title: RNAstructure: web servers for RNA secondary structure prediction and analysis publication-title: Nucleic Acids Research doi: 10.1093/nar/gkt290 – start-page: e59505 issue: 152 year: 2019 ident: 2025061204072162600_CIT0118 article-title: Tissue collection of bats for – omics analyses and primary cell culture publication-title: Journal of Visualized Experiments doi: 10.3791/59505 – volume: 27 start-page: 1587 issue: 3 year: 2016 ident: 2025061204072162600_CIT0107 article-title: The complete mitochondrial genome of David’s myotis, Myotis davidii (Myotis, Vespertilionidae) publication-title: Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis doi: 10.3109/19401736.2014.958681 – volume: 85 start-page: 133 issue: 1 year: 2016 ident: 2025061204072162600_CIT0038 article-title: Maintenance and expression of mammalian mitochondrial DNA publication-title: Annual Review of Biochemistry doi: 10.1146/annurev-biochem-060815-014402 – volume: 3 start-page: 418 issue: 5 year: 1986 ident: 2025061204072162600_CIT0081 article-title: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions publication-title: Molecular Biology and Evolution doi: 10.1093/oxfordjournals.molbev.a040410 – start-page: 81 volume-title: The Miocene land mammals of Europe year: 1999 ident: 2025061204072162600_CIT0103 article-title: Order Chiroptera – volume: 37 start-page: 295 issue: 1 year: 2020 ident: 2025061204072162600_CIT0061 article-title: HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using phylogenies publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msz197 – volume: 24 start-page: 103830 issue: 1 year: 2019 ident: 2025061204072162600_CIT0089 article-title: Structural characteristics of a mitochondrial control region from Myotis bat (Vespertilionidae) mitogenomes based on sequence datasets publication-title: Data in Brief doi: 10.1016/j.dib.2019.103830 – volume: 24 start-page: 475 issue: 4 year: 2017 ident: 2025061204072162600_CIT0029 article-title: Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera) publication-title: Journal of Mammalian Evolution doi: 10.1007/s10914-016-9351-z – volume: 8 start-page: 2896 issue: 9 year: 2016 ident: 2025061204072162600_CIT0069 article-title: Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages publication-title: Genome Biology and Evolution doi: 10.1093/gbe/evw195 – volume: 10 start-page: 200061 issue: 5 year: 2020 ident: 2025061204072162600_CIT0070 article-title: The rise and rise of mitochondrial DNA mutations publication-title: Open Biology doi: 10.1098/rsob.200061 – volume: 31 start-page: 3377 issue: 20 year: 2015 ident: 2025061204072162600_CIT0058 article-title: Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv372 – volume: 22 start-page: 1107 issue: 4 year: 2005 ident: 2025061204072162600_CIT0116 article-title: Bayes empirical bayes inference of amino acid sites under positive selection publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msi097 – volume: 22 start-page: 2472 issue: 12 year: 2005 ident: 2025061204072162600_CIT0124 article-title: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msi237 – volume: 69 start-page: 313 issue: 2 year: 2013 ident: 2025061204072162600_CIT0013 article-title: MITOS: improved de novo metazoan mitochondrial genome annotation publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2012.08.023 – volume: 290 start-page: 20230045 issue: 1998 year: 2023 ident: 2025061204072162600_CIT0021 article-title: Conversion efficiency of flight power is low, but increases with flight speed in the migratory bat Pipistrellus nathusii publication-title: Proceedings Biological Sciences doi: 10.1098/rspb.2023.0045 – volume: 18 start-page: 1585 issue: 8 year: 2001 ident: 2025061204072162600_CIT0005 article-title: Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution publication-title: Molecular Biology and Evolution doi: 10.1093/oxfordjournals.molbev.a003945 – volume: 25 start-page: 1972 issue: 15 year: 2009 ident: 2025061204072162600_CIT0017 article-title: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp348 – volume: 16 start-page: 151 issue: 3 year: 2009 ident: 2025061204072162600_CIT0026 article-title: Global completeness of the bat fossil record publication-title: Journal of Mammalian Evolution doi: 10.1007/s10914-009-9118-x – start-page: 788 volume-title: Mammals of Mexico year: 2014 ident: 2025061204072162600_CIT0112 article-title: Myotis findleyi Bogan, 1978. Findley’s myotis – start-page: 252 volume-title: Evolutionary history of bats year: 2012 ident: 2025061204072162600_CIT0035 article-title: African Vespertilionoidea (Chiroptera) and the antiquity of Myotinae doi: 10.1017/CBO9781139045599.008 – volume: 3 start-page: 570 issue: 2 year: 2018 ident: 2025061204072162600_CIT0019 article-title: The complete mitochondrial genome of long-tailed whiskered bat, Myotis frater (Myotis, Vespertilionidae) publication-title: Mitochondrial DNA Part B: Resources doi: 10.1080/23802359.2018.1467740 – volume: 12 start-page: 209 issue: 1-2 year: 2005 ident: 2025061204072162600_CIT0034 article-title: Fossil evidence and the origin of bats publication-title: Journal of Mammalian Evolution doi: 10.1007/s10914-005-6945-2 – volume: 67 start-page: 236 issue: 2 year: 2018 ident: 2025061204072162600_CIT0087 article-title: Conflicting evolutionary histories of the mitochondrial and nuclear genomes in new world Myotis bats publication-title: Systematic Biology doi: 10.1093/sysbio/syx070 – volume: 101 start-page: 1526 issue: 6 year: 2020 ident: 2025061204072162600_CIT0085 article-title: Summer roosts of “The revenant” flat-headed myotis, Myotis planiceps publication-title: Journal of Mammalogy doi: 10.1093/jmammal/gyaa092 – volume: 50 start-page: 426 issue: 4 year: 2020 ident: 2025061204072162600_CIT0004 article-title: The evolution of flight in bats: a novel hypothesis publication-title: Mammal Review doi: 10.1111/mam.12211 – volume: 11 start-page: 259 issue: 3 year: 2019 ident: 2025061204072162600_CIT0051 article-title: Complete mitochondrial genome of Chinese Noctule bat, Nyctalus plancyi (Microchiroptera: Vespertilionidae) publication-title: Conservation Genetics Resources doi: 10.1007/s12686-018-1002-7 – volume: 37 start-page: D159 issue: Database issue year: 2009 ident: 2025061204072162600_CIT0054 article-title: tRNAdb 2009: compilation of tRNA sequences and tRNA genes publication-title: Nucleic Acids Research doi: 10.1093/nar/gkn772 – volume: 6 start-page: 615 issue: 2 year: 2021 ident: 2025061204072162600_CIT0059 article-title: The complete mitochondrial genome of the far Eastern myotis: Myotis bombinus Thomas, 1906 in mainland of Korea (Chiroptera, Vespertilionidae) publication-title: Mitochondrial DNA. Part B, Resources doi: 10.1080/23802359.2021.1875911 – volume: 15 start-page: 20180857 issue: 3 year: 2019 ident: 2025061204072162600_CIT0003 article-title: Aerodynamic reconstruction of the primitive fossil bat Onychonycteris finneyi (Mammalia: Chiroptera) publication-title: Biology Letters doi: 10.1098/rsbl.2018.0857 – volume: 22 start-page: 71 issue: 4 year: 2011 ident: 2025061204072162600_CIT0060 article-title: Complete mitochondrial genome of the Hodson’s bat Myotis formosus (Mammalia, Chiroptera, Vespertilionidae) publication-title: Mitochondrial DNA doi: 10.3109/19401736.2011.624598 – volume: 27 start-page: 1767 issue: 8 year: 1999 ident: 2025061204072162600_CIT0016 article-title: Animal mitochondrial genomes publication-title: Nucleic Acids Research doi: 10.1093/nar/27.8.1767 – volume: 101 start-page: 301 issue: 4 year: 2008 ident: 2025061204072162600_CIT0031 article-title: Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species publication-title: Heredity doi: 10.1038/hdy.2008.62 – volume: 218 start-page: 653 issue: Pt 5 year: 2015 ident: 2025061204072162600_CIT0042 article-title: Bat flight: aerodynamics, kinematics and flight morphology publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.031203 – volume: 19 start-page: 908 issue: 6 year: 2002 ident: 2025061204072162600_CIT0115 article-title: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages publication-title: Molecular Biology and Evolution doi: 10.1093/oxfordjournals.molbev.a004148 – volume: 12 start-page: 402 issue: 1 year: 2011 ident: 2025061204072162600_CIT0001 article-title: BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons publication-title: BMC Genomics doi: 10.1186/1471-2164-12-402 – volume: 40 start-page: W597 issue: Web Server issue year: 2012 ident: 2025061204072162600_CIT0008 article-title: ExPASy: SIB bioinformatics resource portal publication-title: Nucleic Acids Research doi: 10.1093/nar/gks400 – volume: 206 start-page: 176 issue: 1 year: 1991 ident: 2025061204072162600_CIT0076 article-title: Neotropical Chiroptera from the Pliocene and Pleistocene of Florida publication-title: Bulletin of the American Museum of Natural History doi: 10.5281/zenodo.13414627 – volume: 92 start-page: 267 issue: 3 year: 2017 ident: 2025061204072162600_CIT0106 article-title: Principles, and patterns of bat movements: from aerodynamics to Ecology publication-title: The Quarterly Review of Biology doi: 10.1086/693847 – volume: 27 start-page: 299 issue: 1 year: 2014 ident: 2025061204072162600_CIT0119 article-title: The complete mitochondrial genome of the Asian particolored bat Vespertilio sinensis (Chiroptera: Vespertilionidae) in Korea publication-title: Mitochondrial DNA doi: 10.3109/19401736.2014.892086 – volume: 7 start-page: e46578 issue: 10 year: 2012 ident: 2025061204072162600_CIT0067 article-title: Genetic diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an emphasis on South American species publication-title: PLoS One doi: 10.1371/journal.pone.0046578 – volume: 5188 start-page: 430 issue: 5 year: 2022 ident: 2025061204072162600_CIT0083 article-title: Systematic review of Myotis (Chiroptera, Vespertilionidae) from Chile based on molecular, morphological, and bioacoustics data publication-title: Zootaxa doi: 10.11646/zootaxa.5188.5.2 – volume: 107 start-page: 8666 issue: 19 year: 2010 ident: 2025061204072162600_CIT0096 article-title: Adaptive evolution of energy metabolism genes and the origin of flight in bats publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0912613107 – volume: 91 start-page: 976 issue: 4 year: 2010 ident: 2025061204072162600_CIT0064 article-title: Molecular phylogenetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera) publication-title: Journal of Mammalogy doi: 10.1644/09-mamm-a-192.1 – volume: 10 start-page: 2130 issue: 11 year: 2020 ident: 2025061204072162600_CIT0066 article-title: Complete mitochondrial genome of three species of the genus Microtus (Arvicolinae, Rodentia) publication-title: Animals: An Open Access Journal from MDPI doi: 10.3390/ani10112130 – volume: 42 start-page: 1 issue: 1 year: 2022 ident: 2025061204072162600_CIT0009 article-title: An introduction to the Special Section on Crustacean Mitochondrial Genomics: improving the assembly, annotation, and characterization of mitochondrial genomes using user-friendly and open-access bioinformatics tools, with decapod crustaceans as an example publication-title: Journal of Crustacean Biology doi: 10.1093/jcbiol/ruac012 – volume: 12 start-page: e0172621 issue: 3 year: 2017 ident: 2025061204072162600_CIT0036 article-title: 33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats publication-title: PLoS One doi: 10.1371/journal.pone.0172621 – volume: 24 start-page: 313 issue: 4 year: 2013 ident: 2025061204072162600_CIT0072 article-title: Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation publication-title: Mitochondrial DNA doi: 10.3109/19401736.2012.760558 – volume: 27 start-page: 2423 issue: 4 year: 2016 ident: 2025061204072162600_CIT0122 article-title: The complete mitochondrial genome of Myotis lucifugus (Chiroptera: Vespertilionidae) publication-title: Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis doi: 10.3109/19401736.2015.1030625 – volume: 8 start-page: 13634 issue: 1 year: 2018 ident: 2025061204072162600_CIT0049 article-title: Population level mitogenomics of long-lived bats reveals dynamic heteroplasmy and challenges the Free Radical Theory of Ageing publication-title: Scientific Reports doi: 10.1038/s41598-018-31093-2 – volume: 85 start-page: 133 issue: 1 year: 2004 ident: 2025061204072162600_CIT0101 article-title: Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi publication-title: Journal of Mammalogy doi: 10.1644/1545-1542(2004)085<0133:msotfb>2.0.co;2 – volume: 27 start-page: 3715 issue: 5 year: 2015 ident: 2025061204072162600_CIT0046 article-title: Complete sequences of eastern water bat, Myotis petax (Chiroptera; Microchiroptera; Vespertilionidae) mitogenome publication-title: Mitochondrial DNA Part A doi: 10.3109/19401736.2015.1079871 – volume: 18 start-page: 1494 issue: 8 year: 2001 ident: 2025061204072162600_CIT0073 article-title: DNA sequence variation in the mitochondrial control region of red-backed voles (Clethrionomys) publication-title: Molecular Biology and Evolution doi: 10.1093/oxfordjournals.molbev.a003935 – volume: 40 start-page: msad041 issue: 4 year: 2023 ident: 2025061204072162600_CIT0002 article-title: Beginner’s guide on the use of PAML to detect positive publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msad041 – volume: 32 start-page: 820 issue: 3 year: 2015 ident: 2025061204072162600_CIT0110 article-title: RELAX: detecting relaxed selection in a phylogenetic framework publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msu400 – volume: 21 start-page: 436 issue: 3 year: 2001 ident: 2025061204072162600_CIT0090 article-title: Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences publication-title: Molecular Phylogenetics and Evolution doi: 10.1006/mpev.2001.1017 – volume: 32 start-page: 268 issue: 1 year: 2015 ident: 2025061204072162600_CIT0082 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msu300 – volume: 73 start-page: 2263 issue: 11 year: 2019 ident: 2025061204072162600_CIT0077 article-title: Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats, Myotis publication-title: Evolution doi: 10.1111/evo.13849 – volume: 40 start-page: 2833 issue: 7 year: 2012 ident: 2025061204072162600_CIT0055 article-title: Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements publication-title: Nucleic Acids Research doi: 10.1093/nar/gkr1131 – start-page: 353 volume-title: Evolutionary history of bats year: 2012 ident: 2025061204072162600_CIT0030 article-title: Toward an integrative theory on the origin of bat flight doi: 10.1017/CBO9781139045599.011 – volume: 11 start-page: 508 issue: 3 year: 2020 ident: 2025061204072162600_CIT0018 article-title: A new bat species of the genus Myotis with comments on the phylogenetic placement of M. keaysi and M. pilosatibialis publication-title: Therya doi: 10.12933/therya-20-999 – volume: 27 start-page: 135 issue: 1 year: 2017 ident: 2025061204072162600_CIT0097 article-title: Clustal Omega for making accurate alignments of many protein sequences publication-title: Protein Science doi: 10.1002/pro.3290 – volume: 69 start-page: 437 issue: 3 year: 2013 ident: 2025061204072162600_CIT0091 article-title: Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera) publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2013.08.011 – volume: 4 start-page: 2588 issue: 2 year: 2019 ident: 2025061204072162600_CIT0045 article-title: Mitochondrial genome of Murina shuipuensis (Chiroptera: Vespertilionidae) from Shuifu Village, Guizhou, China (type locality) publication-title: Mitochondrial DNA. Part B, Resources doi: 10.1080/23802359.2019.1641436 – volume: 2013 start-page: 1 issue: 3780 year: 2013 ident: 2025061204072162600_CIT0078 article-title: Review of Myotis (Chiroptera, Vespertilionidae) from Northern South America, including description of a new species publication-title: American Museum Novitates doi: 10.1206/3780.2 – volume: 9 start-page: 119 issue: 1 year: 2008 ident: 2025061204072162600_CIT0023 article-title: The adaptive evolution of the mammalian mitochondrial genome publication-title: BMC Genomics doi: 10.1186/1471-2164-9-119 – volume: 37 start-page: 291 issue: 1 year: 2020 ident: 2025061204072162600_CIT0024 article-title: ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msz189 – volume: 26 start-page: 274 issue: 2 year: 2015 ident: 2025061204072162600_CIT0121 article-title: Complete mitochondrial genome of the Korean ikonnikov’s bat Myotis ikonnikovi (Chiroptera: Vespertilionidae) publication-title: Mitochondrial DNA doi: 10.3109/19401736.2013.823179 – volume: 50 start-page: 5137 issue: 6 year: 2023 ident: 2025061204072162600_CIT0033 article-title: A new type of tandem repeats in Myotis petax (Chiroptera, Vespertilionidae) mitochondrial control region publication-title: Molecular Biology Reports doi: 10.1007/s11033-023-08468-4 – year: 2022 ident: 2025061204072162600_CIT0062 doi: 10.17504/protocols.io.b46bqzan – volume: 26 start-page: 661 issue: 5 year: 2015 ident: 2025061204072162600_CIT0080 article-title: Complete mitochondrial genome of a large-footed bat, Myotis macrodactylus (Vespertilionidae) publication-title: Mitochondrial DNA doi: 10.3109/19401736.2013.840596 – year: 2024 ident: 2025061204072162600_CIT0099 – start-page: e.T14209A22069146 volume-title: The IUCN red list of threatened species year: 2016 ident: 2025061204072162600_CIT0007 article-title: Myotis vivesi doi: 10.2305/IUCN.UK.2016-1.RLTS.T14209A22069146.en – volume: 13 start-page: e1002297 issue: 11 year: 2015 ident: 2025061204072162600_CIT0012 article-title: Falling with style: bats perform complex aerial rotations by adjusting wing inertia publication-title: PLoS Biology doi: 10.1371/journal.pbio.1002297 – volume: 21 start-page: 31 issue: 1 year: 1972 ident: 2025061204072162600_CIT0027 article-title: Phenetic relationships among bats of the genus Myotis publication-title: Systematic Biology doi: 10.1093/sysbio/21.1.31 – volume: 38 start-page: 111 issue: 2 year: 1993 ident: 2025061204072162600_CIT0022 article-title: Late Tertiary bats (Mammalia, Chiroptera) from the southwestern United States publication-title: Southwestern Naturalist doi: 10.2307/3672062 – volume: 396 start-page: 188 issue: 1 year: 2007 ident: 2025061204072162600_CIT0044 article-title: Purifying selection and positive selection on the myxovirus resistance gene in mammals and chickens publication-title: Gene doi: 10.1016/j.gene.2007.03.017 – volume: 66 start-page: 409 issue: 1 year: 1997 ident: 2025061204072162600_CIT0095 article-title: Mitochondrial DNA maintenance in vertebrates publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.biochem.66.1.409 – volume: 28 start-page: 297 issue: 2 year: 2003 ident: 2025061204072162600_CIT0057 article-title: The status of the Japanese and east Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/s1055-7903(03)00121-0 – volume: 24 start-page: 451 issue: 4 year: 2013 ident: 2025061204072162600_CIT0105 article-title: Molecular characteristics and evolution of the mitochondrial control region in three genera (Hipposideridae: Hipposideros, Aselliscus, and Coelops) of leaf-nosed bats publication-title: Mitochondrial DNA doi: 10.3109/19401736.2013.766176 – volume: 7 start-page: 611 issue: 4 year: 2022 ident: 2025061204072162600_CIT0114 article-title: The complete mitochondrial genome of Steppe Whiskered Bat (Myotis aurascens; Kuzyakin, 1935) and phylogenetic analysis publication-title: Mitochondrial DNA. Part B, Resources doi: 10.1080/23802359.2022.2059408 – start-page: 795 volume-title: Mammals of Mexico year: 2014 ident: 2025061204072162600_CIT0052 article-title: Myotis planiceps Baker, 1955. Flat-headed myotis – volume: 5 start-page: 3592 issue: 3 year: 2020 ident: 2025061204072162600_CIT0028 article-title: Mitogenome of northern long-eared bat publication-title: Mitochondrial DNA Part B doi: 10.1080/23802359.2020.1830726 |
SSID | ssj0005720 |
Score | 2.4289672 |
Snippet | Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct... |
SourceID | crossref bioone |
SourceType | Index Database Publisher |
StartPage | 587 |
SubjectTerms | bats fosforilación oxidativa genes codificadores de proteínas genoma mitocondrial mitochondrial genome murciélagos oxidative phosphorylation positive selective pressure presión de selección positiva protein-coding genes RESEARCH ARTICLE Vespertilionidae |
Title | Mitogenome comparative analysis of 3 Myotis species endemic to Mexico and detecting selection in OXPHOS genes |
URI | http://www.bioone.org/doi/abs/10.1093/jmammal/gyae144 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dSxwxFA1bpdAXUdtSrZU8SCkso2M-JruPUtRF2dpShaUvSzJJxMLslGEs6q_35mN3oxa1vsyGIWR3cs9mbu499wShLSqZpZaUGc_LPGO6V2aODJX1meRU94no-TOWht-KwRk7GvFRp_M3YS1dtmq7vPlnXclLrAr3wK6uSvY_LDsbFG5AG-wLV7AwXJ9l4yH8HZ3IamUilzyoeMtEaIR2h9d1C21XUgm74q4LeTs-PPicQ3MFOPDpA21cMsHHFvzBOJEBeTL6Pjj56Y5ZjlTDh25sJatKpqH5Q3jgkH5vmhCe3tfnsukebs8Cuk1rQjz3yAXk08AD4XOCVML1d4tQpJd6yk74SkBoGmp0FQOEirurbl4k8KLJGsrjGzi8jgtfkP1wpQ8qWL_DQ0Lr_Fqa3SAleU9A-5Her9AiEcKn949_zFXmuYhynvF3TyWh-nQnDrETBwC_RV3U9cQkbk3in5wuo6VoEbwXULKCOmayil7_qn3a5C2q5ljBCVbwFCu4tpjigBUcsYIjVnBb44AV6K7xDCt4hhV8McEBK9hj5R06O9g__TrI4lEbmSKUtxls0mlhrVa8tGWPSKVVzpSWnEvY41q9K92-uYQPwS14pT3CDDfgqypRSGI5fY8WJjANHxAWyuYlsdK6owmsKPpOwIkUhFnJNNVsDX0OUzb-E_RUxoEHQcdxbsdxbtfQl-mUPtV1_bljfkRv5lDeQAttc2k-gVfZqk0PgVtBt38X |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitogenome+comparative+analysis+of+3+Myotis+species+endemic+to+Mexico+and+detecting+selection+in+OXPHOS+genes&rft.jtitle=Journal+of+mammalogy&rft.au=Guti%C3%A9rrez%2C+Edgar+G.&rft.au=Ortega%2C+Jorge&rft.date=2025-06-01&rft.pub=American+Society+of+Mammalogists&rft.issn=0022-2372&rft.volume=106&rft.issue=3&rft.spage=587&rft.epage=602&rft_id=info:doi/10.1093%2Fjmammal%2Fgyae144&rft.externalDocID=10.1093%2Fjmammal%2Fgyae144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2372&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2372&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2372&client=summon |