Mitogenome comparative analysis of 3 Myotis species endemic to Mexico and detecting selection in OXPHOS genes

Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within...

Full description

Saved in:
Bibliographic Details
Published inJournal of mammalogy Vol. 106; no. 3; pp. 587 - 602
Main Authors Gutiérrez, Edgar G., Ortega, Jorge
Format Journal Article
LanguageEnglish
Published American Society of Mammalogists 01.06.2025
Subjects
Online AccessGet full text
ISSN0022-2372
1545-1542
DOI10.1093/jmammal/gyae144

Cover

Abstract Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within their mitochondrial genomes crucial for the oxidative phosphorylation pathway. In this study, the complete mitogenomes of 3 Myotis species endemic to Mexico were obtained and evaluated to obtain signatures of adaptive evolution in genes encoding mitochondrial proteins. The mitochondrial genomes span 17,147; 17,148; and 17,171 bp in size of M. findleyi, M. vivesi, and M. planiceps, respectively. A phylogenetic analysis focusing on the 13 protein-coding genes supports the delimitation of several clades included in the genus Myotis. Notably, Branch Models propose that Cox1, Cytb, and Nad4 may be subject to more robust purifying selection compared to other mitochondrial genes, while the Nad5 gene likely experiences positive selection pressure. The statistical analysis supports that Branch-Site Models contribute insights into 5 genes featuring amino acid sites potentially under selection pressure. Further analysis revealed episodic diversifying selection in Cox3 and signatures of diversifying/positive selection in 5 genes. This research significantly advances our understanding of the adaptive evolution of mitochondrial protein-coding genes in chiropterans, shedding light on their potential role in sustaining active flight. Respecto a las demandas metabólicas, el vuelo activo destaca por ser una forma de locomoción caracterizado por necesidades energéticas excepcionalmente altas. Los murciélagos exhiben distintas características anatómicas y fisiológicas asociadas con el vuelo, lo que provoca la anticipación de la evolución adaptativa en genes codificadores de proteínas mitocondriales, cruciales para llevar a cabo la fosforilación oxidativa. En este estudio, se obtuvieron y evaluaron los genomas mitocondriales completos de 3 especies endémicas de Myotis para obtener firmas de evolución adaptativa en genes que codifican proteínas mitocondriales. Los genomas mitocondriales abarcan 17.147; 17.148; y 17.171 pb de tamaño en M. findleyi, M. vivesi y M. planiceps, respectivamente. Un análisis filogenético, centrado en los 13 genes codificadores de proteínas, respalda la delimitación de los clados del Nuevo y Viejo Mundo dentro del género Myotis. En particular, Branch Models propone que Cox1, Cytb y Nad4 pueden estar sujetos a una selección purificadora más robusta en comparación con otros genes mitocondriales, mientras que el gen Nad5 probablemente experimente una presión de selección positiva. Los análisis con Branch-Site Models aporta información sobre 5 genes que presentan sitios de aminoácidos potencialmente bajo presión de selección, como lo indican las pruebas estadísticas. Análisis adicionales, empleando DataMonkey revelan una selección diversificadora episódica en el gen Cox3 y firmas de selección episódicas positivas/diversificadoras en 5 genes más. Esta investigación avanza significativamente en nuestra comprensión de la evolución adaptativa de los genes codificadores de proteínas mitocondriales en quirópteros, arrojando luz sobre su papel potencial en el mantenimiento del vuelo activo.
AbstractList Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within their mitochondrial genomes crucial for the oxidative phosphorylation pathway. In this study, the complete mitogenomes of 3 Myotis species endemic to Mexico were obtained and evaluated to obtain signatures of adaptive evolution in genes encoding mitochondrial proteins. The mitochondrial genomes span 17,147; 17,148; and 17,171 bp in size of M. findleyi, M. vivesi, and M. planiceps, respectively. A phylogenetic analysis focusing on the 13 protein-coding genes supports the delimitation of several clades included in the genus Myotis. Notably, Branch Models propose that Cox1, Cytb, and Nad4 may be subject to more robust purifying selection compared to other mitochondrial genes, while the Nad5 gene likely experiences positive selection pressure. The statistical analysis supports that Branch-Site Models contribute insights into 5 genes featuring amino acid sites potentially under selection pressure. Further analysis revealed episodic diversifying selection in Cox3 and signatures of diversifying/positive selection in 5 genes. This research significantly advances our understanding of the adaptive evolution of mitochondrial protein-coding genes in chiropterans, shedding light on their potential role in sustaining active flight.
Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct anatomical and physiological features associated with flight, prompting the anticipation of adaptive evolution in protein-coding genes within their mitochondrial genomes crucial for the oxidative phosphorylation pathway. In this study, the complete mitogenomes of 3 Myotis species endemic to Mexico were obtained and evaluated to obtain signatures of adaptive evolution in genes encoding mitochondrial proteins. The mitochondrial genomes span 17,147; 17,148; and 17,171 bp in size of M. findleyi, M. vivesi, and M. planiceps, respectively. A phylogenetic analysis focusing on the 13 protein-coding genes supports the delimitation of several clades included in the genus Myotis. Notably, Branch Models propose that Cox1, Cytb, and Nad4 may be subject to more robust purifying selection compared to other mitochondrial genes, while the Nad5 gene likely experiences positive selection pressure. The statistical analysis supports that Branch-Site Models contribute insights into 5 genes featuring amino acid sites potentially under selection pressure. Further analysis revealed episodic diversifying selection in Cox3 and signatures of diversifying/positive selection in 5 genes. This research significantly advances our understanding of the adaptive evolution of mitochondrial protein-coding genes in chiropterans, shedding light on their potential role in sustaining active flight. Respecto a las demandas metabólicas, el vuelo activo destaca por ser una forma de locomoción caracterizado por necesidades energéticas excepcionalmente altas. Los murciélagos exhiben distintas características anatómicas y fisiológicas asociadas con el vuelo, lo que provoca la anticipación de la evolución adaptativa en genes codificadores de proteínas mitocondriales, cruciales para llevar a cabo la fosforilación oxidativa. En este estudio, se obtuvieron y evaluaron los genomas mitocondriales completos de 3 especies endémicas de Myotis para obtener firmas de evolución adaptativa en genes que codifican proteínas mitocondriales. Los genomas mitocondriales abarcan 17.147; 17.148; y 17.171 pb de tamaño en M. findleyi, M. vivesi y M. planiceps, respectivamente. Un análisis filogenético, centrado en los 13 genes codificadores de proteínas, respalda la delimitación de los clados del Nuevo y Viejo Mundo dentro del género Myotis. En particular, Branch Models propone que Cox1, Cytb y Nad4 pueden estar sujetos a una selección purificadora más robusta en comparación con otros genes mitocondriales, mientras que el gen Nad5 probablemente experimente una presión de selección positiva. Los análisis con Branch-Site Models aporta información sobre 5 genes que presentan sitios de aminoácidos potencialmente bajo presión de selección, como lo indican las pruebas estadísticas. Análisis adicionales, empleando DataMonkey revelan una selección diversificadora episódica en el gen Cox3 y firmas de selección episódicas positivas/diversificadoras en 5 genes más. Esta investigación avanza significativamente en nuestra comprensión de la evolución adaptativa de los genes codificadores de proteínas mitocondriales en quirópteros, arrojando luz sobre su papel potencial en el mantenimiento del vuelo activo.
Author Gutiérrez, Edgar G.
Ortega, Jorge
Author_xml – sequence: 1
  givenname: Edgar G.
  orcidid: 0000-0002-6901-4924
  surname: Gutiérrez
  fullname: Gutiérrez, Edgar G.
  organization: Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Quimicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Ciudad de México C.P. 11340, México
– sequence: 2
  givenname: Jorge
  orcidid: 0000-0003-1132-1910
  surname: Ortega
  fullname: Ortega, Jorge
  organization: Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Quimicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Ciudad de México C.P. 11340, México
BookMark eNqFkEtLAzEUhYNUsK2u3eYPjM2zM11KUSu0VFDB3ZDHTUmZJGUSxPn3jrR7N_ecxTnnwjdDk5giIHRPyQMlK744BhWC6haHQQEV4gpNqRSyGg-boCkhjFWM1-wGzXI-EkJkzcgUhZ0v6QAxBcAmhZPqVfHfgFVU3ZB9xslhjndDKqPPJzAeMoZoIXiDS8I7-PEmjXGLLRQwxccDztD9uRSxj3j_9bbZv-PxB-RbdO1Ul-HuonP0-fz0sd5U2_3L6_pxW2nGZamEaPjSOaulcaZhSltNhLZKSkVWS2epolQ0ZpRaOlLThgmQwKXU9VIxJ_kcLc67pk859-DaU--D6oeWkvaPVnuh1V5ojY3q3NA-jVz_zf8CGBdzwg
Cites_doi 10.1093/molbev/msm088
10.1016/j.ympev.2006.06.019
10.1093/jmammal/gyw078
10.1139/cjz-2021-0018
10.1080/23802359.2017.1280701
10.1098/rspb.2015.1028
10.1186/s40709-017-0060-4
10.1080/23802359.2019.1681316
10.1093/gbe/evad173
10.1093/jmammal/gyv216
10.1093/molbev/msx335
10.1038/s41576-022-00480-x
10.1016/j.gene.2011.10.038
10.1098/rspb.2006.3680
10.1186/s12864-023-09596-8
10.1093/molbev/msm259
10.1093/molbev/msv035
10.1093/molbev/msy096
10.1016/s0378-1119(97)00404-6
10.3109/19401736.2015.1122775
10.1093/nar/27.2.573
10.1093/molbev/msv022
10.3161/15081109ACC2018.20.2.001
10.1093/oxfordjournals.molbev.a025957
10.1016/j.exger.2023.112134
10.1126/science.1230835
10.1016/j.mambio.2008.09.002
10.1073/pnas.2201518120
10.1016/j.mambio.2011.11.003
10.1016/j.gdata.2015.06.009
10.3897/zookeys.1105.85055
10.1644/12-MAMM-A-281.1
10.1098/rsos.160398
10.1093/bioinformatics/btg491
10.1186/s13059-020-02154-5
10.1093/genetics/128.3.607
10.3161/1733-5329(2005)7[309:ROTMFB]2.0.CO;2
10.3389/fgene.2014.00109
10.1017/S0030605317000874
10.1093/nar/gkt290
10.3791/59505
10.3109/19401736.2014.958681
10.1146/annurev-biochem-060815-014402
10.1093/oxfordjournals.molbev.a040410
10.1093/molbev/msz197
10.1016/j.dib.2019.103830
10.1007/s10914-016-9351-z
10.1093/gbe/evw195
10.1098/rsob.200061
10.1093/bioinformatics/btv372
10.1093/molbev/msi097
10.1093/molbev/msi237
10.1016/j.ympev.2012.08.023
10.1098/rspb.2023.0045
10.1093/oxfordjournals.molbev.a003945
10.1093/bioinformatics/btp348
10.1007/s10914-009-9118-x
10.1017/CBO9781139045599.008
10.1080/23802359.2018.1467740
10.1007/s10914-005-6945-2
10.1093/sysbio/syx070
10.1093/jmammal/gyaa092
10.1111/mam.12211
10.1007/s12686-018-1002-7
10.1093/nar/gkn772
10.1080/23802359.2021.1875911
10.1098/rsbl.2018.0857
10.3109/19401736.2011.624598
10.1093/nar/27.8.1767
10.1038/hdy.2008.62
10.1242/jeb.031203
10.1093/oxfordjournals.molbev.a004148
10.1186/1471-2164-12-402
10.1093/nar/gks400
10.5281/zenodo.13414627
10.1086/693847
10.3109/19401736.2014.892086
10.1371/journal.pone.0046578
10.11646/zootaxa.5188.5.2
10.1073/pnas.0912613107
10.1644/09-mamm-a-192.1
10.3390/ani10112130
10.1093/jcbiol/ruac012
10.1371/journal.pone.0172621
10.3109/19401736.2012.760558
10.3109/19401736.2015.1030625
10.1038/s41598-018-31093-2
10.1644/1545-1542(2004)085<0133:msotfb>2.0.co;2
10.3109/19401736.2015.1079871
10.1093/oxfordjournals.molbev.a003935
10.1093/molbev/msad041
10.1093/molbev/msu400
10.1006/mpev.2001.1017
10.1093/molbev/msu300
10.1111/evo.13849
10.1093/nar/gkr1131
10.1017/CBO9781139045599.011
10.12933/therya-20-999
10.1002/pro.3290
10.1016/j.ympev.2013.08.011
10.1080/23802359.2019.1641436
10.1206/3780.2
10.1186/1471-2164-9-119
10.1093/molbev/msz189
10.3109/19401736.2013.823179
10.1007/s11033-023-08468-4
10.17504/protocols.io.b46bqzan
10.3109/19401736.2013.840596
10.2305/IUCN.UK.2016-1.RLTS.T14209A22069146.en
10.1371/journal.pbio.1002297
10.1093/sysbio/21.1.31
10.2307/3672062
10.1016/j.gene.2007.03.017
10.1146/annurev.biochem.66.1.409
10.1016/s1055-7903(03)00121-0
10.3109/19401736.2013.766176
10.1080/23802359.2022.2059408
10.1080/23802359.2020.1830726
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1093/jmammal/gyae144
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1545-1542
EndPage 602
ExternalDocumentID 10_1093_jmammal_gyae144
10.1093/jmammal/gyae144
GroupedDBID -ET
-JH
-~X
0R~
29K
4.4
48X
5GY
5WD
79B
85S
AAHBH
AAHKG
AAILS
AAIMJ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPSS
AAPXW
AARHZ
AAUAY
AAVAP
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABTLG
ABVGC
ABWST
ABXVV
ABXZS
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACSIT
ACUFI
ACUTJ
ADBBV
ADCFL
ADGKP
ADGZP
ADHKW
ADHSS
ADHZD
ADIPN
ADNBA
ADQBN
ADRTK
ADVEK
ADYVW
AEGPL
AEGXH
AEHKS
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AEPYG
AETBJ
AEWNT
AFAZZ
AFFNX
AFFZL
AFGWE
AFIYH
AFNWH
AFOFC
AFRAH
AFYAG
AGINJ
AGORE
AGQXC
AGSYK
AHGBF
AIAGR
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
ARIXL
ATGXG
AVWKF
AXUDD
AYOIW
BAYMD
BCRHZ
BES
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CS3
D-I
DAKXR
DILTD
DU5
EBS
EJD
F5P
FHSFR
FJW
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
HAR
HF~
J21
JBS
JLS
JXSIZ
KOP
KQ8
KSI
KSN
LU7
MV1
NLBLG
NOMLY
NU-
NVHAQ
O-3
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQ0
PRG
Q5Y
RBO
ROX
ROZ
RUSNO
RWL
RXO
RXW
TAE
TLC
TN5
WH7
XSW
YAYTL
YKOAZ
YQT
YR5
YROCO
YV5
YXANX
ZCA
ZO4
~02
~EF
~KM
AAYXX
ALIPV
CITATION
ID FETCH-LOGICAL-b235t-44836ffdb5cfc82abdb04bda55a096fd1a1148c1a175f071824e5e355b76a2f53
ISSN 0022-2372
IngestDate Thu Jul 03 08:43:30 EDT 2025
Wed Aug 20 00:35:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b235t-44836ffdb5cfc82abdb04bda55a096fd1a1148c1a175f071824e5e355b76a2f53
ORCID 0000-0002-6901-4924
0000-0003-1132-1910
PageCount 16
ParticipantIDs crossref_primary_10_1093_jmammal_gyae144
bioone_primary_10_1093_jmammal_gyae144
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of mammalogy
PublicationYear 2025
Publisher American Society of Mammalogists
Publisher_xml – name: American Society of Mammalogists
References Haynie (2025061204072162600_CIT0041) 2016; 97
Sun (2025061204072162600_CIT0104) 2009; 74
Huang (2025061204072162600_CIT0045) 2019; 4
Findley (2025061204072162600_CIT0027) 1972; 21
Sikes (2025061204072162600_CIT0098) 2016; 97
Jia (2025061204072162600_CIT0050) 2008; 25
Voigt (2025061204072162600_CIT0106) 2017; 92
Lamelas (2025061204072162600_CIT0066) 2020; 10
Watanabe (2025061204072162600_CIT0108) 2014; 5
Yu (2025061204072162600_CIT0122) 2016; 27
Darriba (2025061204072162600_CIT0024) 2020; 37
Herrera (2025061204072162600_CIT0043) 2019; 53
Murrell (2025061204072162600_CIT0079) 2015; 32
Yang (2025061204072162600_CIT0114) 2022; 7
Jebb (2025061204072162600_CIT0049) 2018; 8
Gutiérrez (2025061204072162600_CIT0039) 2023; 24
Jiménez-Guzmán (2025061204072162600_CIT0052) 2014
Wang (2025061204072162600_CIT0107) 2016; 27
Bernt (2025061204072162600_CIT0013) 2013; 69
Moratelli (2025061204072162600_CIT0078) 2013; 2013
Yoon (2025061204072162600_CIT0120) 2015; 5
Gissi (2025061204072162600_CIT0031) 2008; 101
Yohe (2025061204072162600_CIT0118) 2019
Rackham (2025061204072162600_CIT0088) 2022; 23
Jebb (2025061204072162600_CIT0047) 2015; 1736
Chung (2025061204072162600_CIT0019) 2018; 3
Matson (2025061204072162600_CIT0073) 2001; 18
Novaes (2025061204072162600_CIT0083) 2022; 5188
Álvarez-Carretero (2025061204072162600_CIT0002) 2023; 40
Shadel (2025061204072162600_CIT0095) 1997; 66
Czaplewski (2025061204072162600_CIT0022) 1993; 38
Hedenström (2025061204072162600_CIT0042) 2015; 218
Yang (2025061204072162600_CIT0115) 2002; 19
Arroyo-Cabrales (2025061204072162600_CIT0006) 2005; 7
Drinkwater (2025061204072162600_CIT0025) 2021; 99
Otálora-Ardila (2025061204072162600_CIT0086) 2013; 94
Salin (2025061204072162600_CIT0093) 2015; 282
Kučka (2025061204072162600_CIT0062) 2022
Bergou (2025061204072162600_CIT0012) 2015; 13
Hou (2025061204072162600_CIT0044) 2007; 396
Nei (2025061204072162600_CIT0081) 1986; 3
Guo (2025061204072162600_CIT0037) 2022; 120
Ruedi (2025061204072162600_CIT0090) 2001; 21
Yang (2025061204072162600_CIT0117) 2007; 24
Stadelmann (2025061204072162600_CIT0101) 2004; 85
Kumar (2025061204072162600_CIT0063) 2018; 35
Jebb (2025061204072162600_CIT0048) 2017; 2
Arroyo-Cabrales (2025061204072162600_CIT0007) 2016
Larsen (2025061204072162600_CIT0067) 2012; 7
Carrión-Bonilla (2025061204072162600_CIT0018) 2020; 11
Eiting (2025061204072162600_CIT0026) 2009; 16
Meganathan (2025061204072162600_CIT0075) 2012; 492
Gunnell (2025061204072162600_CIT0034) 2005; 12
Luo (2025061204072162600_CIT0072) 2013; 24
Storch (2025061204072162600_CIT0103) 1999
Morgan (2025061204072162600_CIT0076) 1991; 206
Zhang (2025061204072162600_CIT0123) 2013; 339
Ruedi (2025061204072162600_CIT0091) 2013; 69
Boore (2025061204072162600_CIT0016) 1999; 27
Sun (2025061204072162600_CIT0105) 2013; 24
Gorobeyko (2025061204072162600_CIT0033) 2023; 50
Amador (2025061204072162600_CIT0003) 2019; 15
Nam (2025061204072162600_CIT0080) 2015; 26
Yang (2025061204072162600_CIT0116) 2005; 22
Sievers (2025061204072162600_CIT0097) 2017; 27
Simmons (2025061204072162600_CIT0099) 2024
Yoon (2025061204072162600_CIT0119) 2014; 27
McCracken (2025061204072162600_CIT0074) 2016; 3
Anderson (2025061204072162600_CIT0004) 2020; 50
Jühling (2025061204072162600_CIT0054) 2009; 37
Capella-Gutiérrez (2025061204072162600_CIT0017) 2009; 25
Claramunt (2025061204072162600_CIT0020) 2023; 15
Wilkinson (2025061204072162600_CIT0111) 1991; 128
Ladoukakis (2025061204072162600_CIT0065) 2017; 24
Stadelmann (2025061204072162600_CIT0102) 2007; 43
Weaver (2025061204072162600_CIT0109) 2018; 35
Nguyen (2025061204072162600_CIT0082) 2015; 32
Novaes (2025061204072162600_CIT0084) 2022; 1105
Currie (2025061204072162600_CIT0021) 2023; 290
Gunnell (2025061204072162600_CIT0036) 2017; 12
Saccone (2025061204072162600_CIT0092) 1993
Juste (2025061204072162600_CIT0056) 2018; 20
Sbisà (2025061204072162600_CIT0094) 1997; 205
Shen (2025061204072162600_CIT0096) 2010; 107
Yoon (2025061204072162600_CIT0121) 2015; 26
Rahman (2025061204072162600_CIT0089) 2019; 24
Zhang (2025061204072162600_CIT0124) 2005; 22
Jiang (2025061204072162600_CIT0051) 2019; 11
Gaughan (2025061204072162600_CIT0028) 2020; 5
Bikandi (2025061204072162600_CIT0015) 2004; 20
Artimo (2025061204072162600_CIT0008) 2012; 40
Wilson (2025061204072162600_CIT0112) 2014
Benson (2025061204072162600_CIT0011) 1999; 27
Kerpedjiev (2025061204072162600_CIT0058) 2015; 31
Larsen (2025061204072162600_CIT0068) 2012; 77
Gómez (2025061204072162600_CIT0032) 2023; 174
Gunnell (2025061204072162600_CIT0035) 2012
Platt (2025061204072162600_CIT0087) 2018; 67
Kim (2025061204072162600_CIT0060) 2011; 22
da Fonseca (2025061204072162600_CIT0023) 2008; 9
Hao (2025061204072162600_CIT0040) 2019; 4
Lawless (2025061204072162600_CIT0070) 2020; 10
Ghazali (2025061204072162600_CIT0029) 2017; 24
Hwang (2025061204072162600_CIT0046) 2015; 27
Kim (2025061204072162600_CIT0059) 2021; 6
Anisimova (2025061204072162600_CIT0005) 2001; 18
Lack (2025061204072162600_CIT0064) 2010; 91
Smith (2025061204072162600_CIT0100) 2015; 32
Baeza (2025061204072162600_CIT0009) 2022; 42
Bellaousov (2025061204072162600_CIT0010) 2013; 41
Wertheim (2025061204072162600_CIT0110) 2015; 32
Jin (2025061204072162600_CIT0053) 2020; 21
Lavrov (2025061204072162600_CIT0069) 2016; 8
Berthier (2025061204072162600_CIT0014) 2006; 273
Kawai (2025061204072162600_CIT0057) 2003; 28
Alikhan (2025061204072162600_CIT0001) 2011; 12
Yang (2025061204072162600_CIT0113) 1998; 15
Núñez-Rojo (2025061204072162600_CIT0085) 2020; 101
Gustafsson (2025061204072162600_CIT0038) 2016; 85
Kosakovsky Pond (2025061204072162600_CIT0061) 2020; 37
Morales (2025061204072162600_CIT0077) 2019; 73
Jühling (2025061204072162600_CIT0055) 2012; 40
Giannini (2025061204072162600_CIT0030) 2012
References_xml – volume: 24
  start-page: 1586
  issue: 8
  year: 2007
  ident: 2025061204072162600_CIT0117
  article-title: PAML 4: phylogenetic analysis by maximum likelihood
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msm088
– volume: 43
  start-page: 32
  issue: 1
  year: 2007
  ident: 2025061204072162600_CIT0102
  article-title: Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2006.06.019
– volume: 97
  start-page: 663
  issue: 3
  year: 2016
  ident: 2025061204072162600_CIT0098
  article-title: Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education
  publication-title: Journal of Mammalogy
  doi: 10.1093/jmammal/gyw078
– volume: 99
  start-page: 752
  issue: 9
  year: 2021
  ident: 2025061204072162600_CIT0025
  article-title: Molecular diet analysis of the marine fish-eating bat (Myotis vivesi) and potential mercury exposure
  publication-title: Canadian Journal of Zoology
  doi: 10.1139/cjz-2021-0018
– volume: 2
  start-page: 92
  issue: 1
  year: 2017
  ident: 2025061204072162600_CIT0048
  article-title: The complete mitochondrial genome of the Bechstein’s bat, Myotis bechsteinii (Chiroptera, Vespertilionidae)
  publication-title: Mitochondrial DNA part B: Resources
  doi: 10.1080/23802359.2017.1280701
– volume: 282
  start-page: 20151028
  issue: 1812
  year: 2015
  ident: 2025061204072162600_CIT0093
  article-title: Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance
  publication-title: Proceedings Biological Sciences
  doi: 10.1098/rspb.2015.1028
– volume: 24
  start-page: 1
  issue: 1
  year: 2017
  ident: 2025061204072162600_CIT0065
  article-title: Evolution and inheritance of animal mitochondrial DNA: rules and exceptions
  publication-title: Journal of Biological Research-Thessaloniki
  doi: 10.1186/s40709-017-0060-4
– volume: 4
  start-page: 3748
  issue: 2
  year: 2019
  ident: 2025061204072162600_CIT0040
  article-title: Complete mitochondrial genome of the East Asian fish-eating bat: Myotis ricketti (Chiroptera, Vespertilionidae)
  publication-title: Mitochondrial DNA. Part B, Resources
  doi: 10.1080/23802359.2019.1681316
– volume: 15
  start-page: evad17
  issue: 10
  year: 2023
  ident: 2025061204072162600_CIT0020
  article-title: No signs of adaptations for high flight intensity in the mitochondrial genome of birds
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evad173
– volume: 97
  start-page: 701
  issue: 3
  year: 2016
  ident: 2025061204072162600_CIT0041
  article-title: Placement of the rediscovered Myotis planiceps (Chiroptera: Vespertilionidae) within the Myotis phylogeny
  publication-title: Journal of Mammalogy
  doi: 10.1093/jmammal/gyv216
– volume: 35
  start-page: 773
  issue: 3
  year: 2018
  ident: 2025061204072162600_CIT0109
  article-title: Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msx335
– volume: 23
  start-page: 606
  issue: 10
  year: 2022
  ident: 2025061204072162600_CIT0088
  article-title: Organization and expression of the mammalian mitochondrial genome
  publication-title: Nature Reviews Genetics
  doi: 10.1038/s41576-022-00480-x
– volume: 492
  start-page: 121
  issue: 1
  year: 2012
  ident: 2025061204072162600_CIT0075
  article-title: Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera
  publication-title: Gene
  doi: 10.1016/j.gene.2011.10.038
– volume: 273
  start-page: 3101
  issue: 1605
  year: 2006
  ident: 2025061204072162600_CIT0014
  article-title: Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii
  publication-title: Proceedings Biological Sciences
  doi: 10.1098/rspb.2006.3680
– volume: 24
  start-page: 527
  issue: 1
  year: 2023
  ident: 2025061204072162600_CIT0039
  article-title: The mitochondrial genome of the mountain wooly tapir, Tapirus pinchaque and a formal test of the effect of altitude on the adaptive evolution of mitochondrial protein coding genes in odd-toed ungulates
  publication-title: BMC Genomics
  doi: 10.1186/s12864-023-09596-8
– volume: 25
  start-page: 339
  issue: 2
  year: 2008
  ident: 2025061204072162600_CIT0050
  article-title: Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msm259
– volume: 32
  start-page: 1365
  issue: 5
  year: 2015
  ident: 2025061204072162600_CIT0079
  article-title: Gene-wide identification of episodic selection
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msv035
– volume: 35
  start-page: 1547
  issue: 6
  year: 2018
  ident: 2025061204072162600_CIT0063
  article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msy096
– volume: 205
  start-page: 125
  issue: 1–2
  year: 1997
  ident: 2025061204072162600_CIT0094
  article-title: Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications
  publication-title: Gene
  doi: 10.1016/s0378-1119(97)00404-6
– volume: 1736
  start-page: 1
  issue: 3
  year: 2015
  ident: 2025061204072162600_CIT0047
  article-title: The complete mitochondrial genome of the Greater Mouse-Eared bat, Myotis myotis (Chiroptera: Vespertilionidae)
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2015.1122775
– volume: 27
  start-page: 573
  issue: 2
  year: 1999
  ident: 2025061204072162600_CIT0011
  article-title: Tandem repeats finder: a program to analyze DNA sequences
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/27.2.573
– volume: 32
  start-page: 1342
  issue: 5
  year: 2015
  ident: 2025061204072162600_CIT0100
  article-title: Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msv022
– volume: 20
  start-page: 285
  issue: 2
  year: 2018
  ident: 2025061204072162600_CIT0056
  article-title: Two new cryptic bat species within the Myotis nattereri species complex (Vespertilionidae, Chiroptera) from the Western Palearctic
  publication-title: Acta Chiropterologica
  doi: 10.3161/15081109ACC2018.20.2.001
– volume: 15
  start-page: 568
  issue: 5
  year: 1998
  ident: 2025061204072162600_CIT0113
  article-title: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a025957
– start-page: 27
  volume-title: Mitochondrial DNA in human pathology
  year: 1993
  ident: 2025061204072162600_CIT0092
  article-title: Peculiar features and evolution of mitochondrial genome in mammals
– volume: 174
  start-page: 112134
  issue: 1
  year: 2023
  ident: 2025061204072162600_CIT0032
  article-title: Mitochondrial ROS production, oxidative stress and aging within and between species: evidences and recent advances on this aging effector
  publication-title: Experimental Gerontology
  doi: 10.1016/j.exger.2023.112134
– volume: 339
  start-page: 456
  issue: 6118
  year: 2013
  ident: 2025061204072162600_CIT0123
  article-title: Comparative analysis of bat genomes provides insight into the evolution of flight and immunity
  publication-title: Science
  doi: 10.1126/science.1230835
– volume: 74
  start-page: 130
  issue: 2
  year: 2009
  ident: 2025061204072162600_CIT0104
  article-title: Structure, DNA sequence variation and phylogenetic implications of the mitochondrial control region in horseshoe bats
  publication-title: Mammalian Biology
  doi: 10.1016/j.mambio.2008.09.002
– volume: 120
  start-page: e2201518120
  issue: 1
  year: 2022
  ident: 2025061204072162600_CIT0037
  article-title: High-frequency and functional mitochondrial DNA mutations at the single-cell level
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2201518120
– volume: 77
  start-page: 124
  issue: 2
  year: 2012
  ident: 2025061204072162600_CIT0068
  article-title: Evolutionary history of Caribbean species of Myotis, with evidence of a third Lesser Antillean endemic
  publication-title: Mammalian Biology
  doi: 10.1016/j.mambio.2011.11.003
– volume: 5
  start-page: 213
  issue: 1
  year: 2015
  ident: 2025061204072162600_CIT0120
  article-title: Secondary structure and feature of mitochondrial tRNA genes of the Ussurian tube-nosed bat Murina ussuriensis (Chiroptera: Vespertilionidae)
  publication-title: Genomics Data
  doi: 10.1016/j.gdata.2015.06.009
– volume: 1105
  start-page: 127
  issue: 1
  year: 2022
  ident: 2025061204072162600_CIT0084
  article-title: Catalogue of primary types of Neotropical Myotis (Chiroptera, Vespertilionidae)
  publication-title: ZooKeys
  doi: 10.3897/zookeys.1105.85055
– volume: 94
  start-page: 1102
  issue: 5
  year: 2013
  ident: 2025061204072162600_CIT0086
  article-title: Marine and terrestrial food sources in the diet of fish-eating myotis (Myotis vivesi)
  publication-title: Journal of Mammalogy
  doi: 10.1644/12-MAMM-A-281.1
– volume: 3
  start-page: 160398
  issue: 11
  year: 2016
  ident: 2025061204072162600_CIT0074
  article-title: Airplane tracking documents the fastest flight speeds recorded for bats
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.160398
– volume: 20
  start-page: 798
  issue: 5
  year: 2004
  ident: 2025061204072162600_CIT0015
  article-title: In silico analysis of complete bacterial genomes: PCR, AFLP-PCR, and endonuclease restriction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg491
– volume: 21
  start-page: 241
  issue: 1
  year: 2020
  ident: 2025061204072162600_CIT0053
  article-title: GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes
  publication-title: Genome Biology
  doi: 10.1186/s13059-020-02154-5
– volume: 128
  start-page: 607
  issue: 3
  year: 1991
  ident: 2025061204072162600_CIT0111
  article-title: Length and sequence variation in evening bat D-loop mtDNA
  publication-title: Genetics
  doi: 10.1093/genetics/128.3.607
– volume: 7
  start-page: 309
  issue: 2
  year: 2005
  ident: 2025061204072162600_CIT0006
  article-title: Rediscovery of the Mexican flat-headed bat Myotis planiceps (Vespertilionidae)
  publication-title: Acta Chiropterologica
  doi: 10.3161/1733-5329(2005)7[309:ROTMFB]2.0.CO;2
– volume: 5
  start-page: 109
  issue: 1
  year: 2014
  ident: 2025061204072162600_CIT0108
  article-title: Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors
  publication-title: Frontiers in Genetics
  doi: 10.3389/fgene.2014.00109
– volume: 53
  start-page: 388
  issue: 2
  year: 2019
  ident: 2025061204072162600_CIT0043
  article-title: Geographical distribution and conservation status of an endemic insular mammal: the Vulnerable fish-eating bat Myotis vivesi
  publication-title: Oryx
  doi: 10.1017/S0030605317000874
– volume: 41
  start-page: W471
  issue: Web Server issue
  year: 2013
  ident: 2025061204072162600_CIT0010
  article-title: RNAstructure: web servers for RNA secondary structure prediction and analysis
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt290
– start-page: e59505
  issue: 152
  year: 2019
  ident: 2025061204072162600_CIT0118
  article-title: Tissue collection of bats for – omics analyses and primary cell culture
  publication-title: Journal of Visualized Experiments
  doi: 10.3791/59505
– volume: 27
  start-page: 1587
  issue: 3
  year: 2016
  ident: 2025061204072162600_CIT0107
  article-title: The complete mitochondrial genome of David’s myotis, Myotis davidii (Myotis, Vespertilionidae)
  publication-title: Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis
  doi: 10.3109/19401736.2014.958681
– volume: 85
  start-page: 133
  issue: 1
  year: 2016
  ident: 2025061204072162600_CIT0038
  article-title: Maintenance and expression of mammalian mitochondrial DNA
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev-biochem-060815-014402
– volume: 3
  start-page: 418
  issue: 5
  year: 1986
  ident: 2025061204072162600_CIT0081
  article-title: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a040410
– start-page: 81
  volume-title: The Miocene land mammals of Europe
  year: 1999
  ident: 2025061204072162600_CIT0103
  article-title: Order Chiroptera
– volume: 37
  start-page: 295
  issue: 1
  year: 2020
  ident: 2025061204072162600_CIT0061
  article-title: HyPhy 2.5—a customizable platform for evolutionary hypothesis testing using phylogenies
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msz197
– volume: 24
  start-page: 103830
  issue: 1
  year: 2019
  ident: 2025061204072162600_CIT0089
  article-title: Structural characteristics of a mitochondrial control region from Myotis bat (Vespertilionidae) mitogenomes based on sequence datasets
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2019.103830
– volume: 24
  start-page: 475
  issue: 4
  year: 2017
  ident: 2025061204072162600_CIT0029
  article-title: Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera)
  publication-title: Journal of Mammalian Evolution
  doi: 10.1007/s10914-016-9351-z
– volume: 8
  start-page: 2896
  issue: 9
  year: 2016
  ident: 2025061204072162600_CIT0069
  article-title: Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages
  publication-title: Genome Biology and Evolution
  doi: 10.1093/gbe/evw195
– volume: 10
  start-page: 200061
  issue: 5
  year: 2020
  ident: 2025061204072162600_CIT0070
  article-title: The rise and rise of mitochondrial DNA mutations
  publication-title: Open Biology
  doi: 10.1098/rsob.200061
– volume: 31
  start-page: 3377
  issue: 20
  year: 2015
  ident: 2025061204072162600_CIT0058
  article-title: Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv372
– volume: 22
  start-page: 1107
  issue: 4
  year: 2005
  ident: 2025061204072162600_CIT0116
  article-title: Bayes empirical bayes inference of amino acid sites under positive selection
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msi097
– volume: 22
  start-page: 2472
  issue: 12
  year: 2005
  ident: 2025061204072162600_CIT0124
  article-title: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msi237
– volume: 69
  start-page: 313
  issue: 2
  year: 2013
  ident: 2025061204072162600_CIT0013
  article-title: MITOS: improved de novo metazoan mitochondrial genome annotation
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2012.08.023
– volume: 290
  start-page: 20230045
  issue: 1998
  year: 2023
  ident: 2025061204072162600_CIT0021
  article-title: Conversion efficiency of flight power is low, but increases with flight speed in the migratory bat Pipistrellus nathusii
  publication-title: Proceedings Biological Sciences
  doi: 10.1098/rspb.2023.0045
– volume: 18
  start-page: 1585
  issue: 8
  year: 2001
  ident: 2025061204072162600_CIT0005
  article-title: Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a003945
– volume: 25
  start-page: 1972
  issue: 15
  year: 2009
  ident: 2025061204072162600_CIT0017
  article-title: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp348
– volume: 16
  start-page: 151
  issue: 3
  year: 2009
  ident: 2025061204072162600_CIT0026
  article-title: Global completeness of the bat fossil record
  publication-title: Journal of Mammalian Evolution
  doi: 10.1007/s10914-009-9118-x
– start-page: 788
  volume-title: Mammals of Mexico
  year: 2014
  ident: 2025061204072162600_CIT0112
  article-title: Myotis findleyi Bogan, 1978. Findley’s myotis
– start-page: 252
  volume-title: Evolutionary history of bats
  year: 2012
  ident: 2025061204072162600_CIT0035
  article-title: African Vespertilionoidea (Chiroptera) and the antiquity of Myotinae
  doi: 10.1017/CBO9781139045599.008
– volume: 3
  start-page: 570
  issue: 2
  year: 2018
  ident: 2025061204072162600_CIT0019
  article-title: The complete mitochondrial genome of long-tailed whiskered bat, Myotis frater (Myotis, Vespertilionidae)
  publication-title: Mitochondrial DNA Part B: Resources
  doi: 10.1080/23802359.2018.1467740
– volume: 12
  start-page: 209
  issue: 1-2
  year: 2005
  ident: 2025061204072162600_CIT0034
  article-title: Fossil evidence and the origin of bats
  publication-title: Journal of Mammalian Evolution
  doi: 10.1007/s10914-005-6945-2
– volume: 67
  start-page: 236
  issue: 2
  year: 2018
  ident: 2025061204072162600_CIT0087
  article-title: Conflicting evolutionary histories of the mitochondrial and nuclear genomes in new world Myotis bats
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/syx070
– volume: 101
  start-page: 1526
  issue: 6
  year: 2020
  ident: 2025061204072162600_CIT0085
  article-title: Summer roosts of “The revenant” flat-headed myotis, Myotis planiceps
  publication-title: Journal of Mammalogy
  doi: 10.1093/jmammal/gyaa092
– volume: 50
  start-page: 426
  issue: 4
  year: 2020
  ident: 2025061204072162600_CIT0004
  article-title: The evolution of flight in bats: a novel hypothesis
  publication-title: Mammal Review
  doi: 10.1111/mam.12211
– volume: 11
  start-page: 259
  issue: 3
  year: 2019
  ident: 2025061204072162600_CIT0051
  article-title: Complete mitochondrial genome of Chinese Noctule bat, Nyctalus plancyi (Microchiroptera: Vespertilionidae)
  publication-title: Conservation Genetics Resources
  doi: 10.1007/s12686-018-1002-7
– volume: 37
  start-page: D159
  issue: Database issue
  year: 2009
  ident: 2025061204072162600_CIT0054
  article-title: tRNAdb 2009: compilation of tRNA sequences and tRNA genes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkn772
– volume: 6
  start-page: 615
  issue: 2
  year: 2021
  ident: 2025061204072162600_CIT0059
  article-title: The complete mitochondrial genome of the far Eastern myotis: Myotis bombinus Thomas, 1906 in mainland of Korea (Chiroptera, Vespertilionidae)
  publication-title: Mitochondrial DNA. Part B, Resources
  doi: 10.1080/23802359.2021.1875911
– volume: 15
  start-page: 20180857
  issue: 3
  year: 2019
  ident: 2025061204072162600_CIT0003
  article-title: Aerodynamic reconstruction of the primitive fossil bat Onychonycteris finneyi (Mammalia: Chiroptera)
  publication-title: Biology Letters
  doi: 10.1098/rsbl.2018.0857
– volume: 22
  start-page: 71
  issue: 4
  year: 2011
  ident: 2025061204072162600_CIT0060
  article-title: Complete mitochondrial genome of the Hodson’s bat Myotis formosus (Mammalia, Chiroptera, Vespertilionidae)
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2011.624598
– volume: 27
  start-page: 1767
  issue: 8
  year: 1999
  ident: 2025061204072162600_CIT0016
  article-title: Animal mitochondrial genomes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/27.8.1767
– volume: 101
  start-page: 301
  issue: 4
  year: 2008
  ident: 2025061204072162600_CIT0031
  article-title: Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species
  publication-title: Heredity
  doi: 10.1038/hdy.2008.62
– volume: 218
  start-page: 653
  issue: Pt 5
  year: 2015
  ident: 2025061204072162600_CIT0042
  article-title: Bat flight: aerodynamics, kinematics and flight morphology
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.031203
– volume: 19
  start-page: 908
  issue: 6
  year: 2002
  ident: 2025061204072162600_CIT0115
  article-title: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a004148
– volume: 12
  start-page: 402
  issue: 1
  year: 2011
  ident: 2025061204072162600_CIT0001
  article-title: BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-402
– volume: 40
  start-page: W597
  issue: Web Server issue
  year: 2012
  ident: 2025061204072162600_CIT0008
  article-title: ExPASy: SIB bioinformatics resource portal
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gks400
– volume: 206
  start-page: 176
  issue: 1
  year: 1991
  ident: 2025061204072162600_CIT0076
  article-title: Neotropical Chiroptera from the Pliocene and Pleistocene of Florida
  publication-title: Bulletin of the American Museum of Natural History
  doi: 10.5281/zenodo.13414627
– volume: 92
  start-page: 267
  issue: 3
  year: 2017
  ident: 2025061204072162600_CIT0106
  article-title: Principles, and patterns of bat movements: from aerodynamics to Ecology
  publication-title: The Quarterly Review of Biology
  doi: 10.1086/693847
– volume: 27
  start-page: 299
  issue: 1
  year: 2014
  ident: 2025061204072162600_CIT0119
  article-title: The complete mitochondrial genome of the Asian particolored bat Vespertilio sinensis (Chiroptera: Vespertilionidae) in Korea
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2014.892086
– volume: 7
  start-page: e46578
  issue: 10
  year: 2012
  ident: 2025061204072162600_CIT0067
  article-title: Genetic diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an emphasis on South American species
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046578
– volume: 5188
  start-page: 430
  issue: 5
  year: 2022
  ident: 2025061204072162600_CIT0083
  article-title: Systematic review of Myotis (Chiroptera, Vespertilionidae) from Chile based on molecular, morphological, and bioacoustics data
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.5188.5.2
– volume: 107
  start-page: 8666
  issue: 19
  year: 2010
  ident: 2025061204072162600_CIT0096
  article-title: Adaptive evolution of energy metabolism genes and the origin of flight in bats
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0912613107
– volume: 91
  start-page: 976
  issue: 4
  year: 2010
  ident: 2025061204072162600_CIT0064
  article-title: Molecular phylogenetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera)
  publication-title: Journal of Mammalogy
  doi: 10.1644/09-mamm-a-192.1
– volume: 10
  start-page: 2130
  issue: 11
  year: 2020
  ident: 2025061204072162600_CIT0066
  article-title: Complete mitochondrial genome of three species of the genus Microtus (Arvicolinae, Rodentia)
  publication-title: Animals: An Open Access Journal from MDPI
  doi: 10.3390/ani10112130
– volume: 42
  start-page: 1
  issue: 1
  year: 2022
  ident: 2025061204072162600_CIT0009
  article-title: An introduction to the Special Section on Crustacean Mitochondrial Genomics: improving the assembly, annotation, and characterization of mitochondrial genomes using user-friendly and open-access bioinformatics tools, with decapod crustaceans as an example
  publication-title: Journal of Crustacean Biology
  doi: 10.1093/jcbiol/ruac012
– volume: 12
  start-page: e0172621
  issue: 3
  year: 2017
  ident: 2025061204072162600_CIT0036
  article-title: 33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0172621
– volume: 24
  start-page: 313
  issue: 4
  year: 2013
  ident: 2025061204072162600_CIT0072
  article-title: Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2012.760558
– volume: 27
  start-page: 2423
  issue: 4
  year: 2016
  ident: 2025061204072162600_CIT0122
  article-title: The complete mitochondrial genome of Myotis lucifugus (Chiroptera: Vespertilionidae)
  publication-title: Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis
  doi: 10.3109/19401736.2015.1030625
– volume: 8
  start-page: 13634
  issue: 1
  year: 2018
  ident: 2025061204072162600_CIT0049
  article-title: Population level mitogenomics of long-lived bats reveals dynamic heteroplasmy and challenges the Free Radical Theory of Ageing
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-31093-2
– volume: 85
  start-page: 133
  issue: 1
  year: 2004
  ident: 2025061204072162600_CIT0101
  article-title: Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi
  publication-title: Journal of Mammalogy
  doi: 10.1644/1545-1542(2004)085<0133:msotfb>2.0.co;2
– volume: 27
  start-page: 3715
  issue: 5
  year: 2015
  ident: 2025061204072162600_CIT0046
  article-title: Complete sequences of eastern water bat, Myotis petax (Chiroptera; Microchiroptera; Vespertilionidae) mitogenome
  publication-title: Mitochondrial DNA Part A
  doi: 10.3109/19401736.2015.1079871
– volume: 18
  start-page: 1494
  issue: 8
  year: 2001
  ident: 2025061204072162600_CIT0073
  article-title: DNA sequence variation in the mitochondrial control region of red-backed voles (Clethrionomys)
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a003935
– volume: 40
  start-page: msad041
  issue: 4
  year: 2023
  ident: 2025061204072162600_CIT0002
  article-title: Beginner’s guide on the use of PAML to detect positive
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msad041
– volume: 32
  start-page: 820
  issue: 3
  year: 2015
  ident: 2025061204072162600_CIT0110
  article-title: RELAX: detecting relaxed selection in a phylogenetic framework
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msu400
– volume: 21
  start-page: 436
  issue: 3
  year: 2001
  ident: 2025061204072162600_CIT0090
  article-title: Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1006/mpev.2001.1017
– volume: 32
  start-page: 268
  issue: 1
  year: 2015
  ident: 2025061204072162600_CIT0082
  article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msu300
– volume: 73
  start-page: 2263
  issue: 11
  year: 2019
  ident: 2025061204072162600_CIT0077
  article-title: Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats, Myotis
  publication-title: Evolution
  doi: 10.1111/evo.13849
– volume: 40
  start-page: 2833
  issue: 7
  year: 2012
  ident: 2025061204072162600_CIT0055
  article-title: Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkr1131
– start-page: 353
  volume-title: Evolutionary history of bats
  year: 2012
  ident: 2025061204072162600_CIT0030
  article-title: Toward an integrative theory on the origin of bat flight
  doi: 10.1017/CBO9781139045599.011
– volume: 11
  start-page: 508
  issue: 3
  year: 2020
  ident: 2025061204072162600_CIT0018
  article-title: A new bat species of the genus Myotis with comments on the phylogenetic placement of M. keaysi and M. pilosatibialis
  publication-title: Therya
  doi: 10.12933/therya-20-999
– volume: 27
  start-page: 135
  issue: 1
  year: 2017
  ident: 2025061204072162600_CIT0097
  article-title: Clustal Omega for making accurate alignments of many protein sequences
  publication-title: Protein Science
  doi: 10.1002/pro.3290
– volume: 69
  start-page: 437
  issue: 3
  year: 2013
  ident: 2025061204072162600_CIT0091
  article-title: Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera)
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2013.08.011
– volume: 4
  start-page: 2588
  issue: 2
  year: 2019
  ident: 2025061204072162600_CIT0045
  article-title: Mitochondrial genome of Murina shuipuensis (Chiroptera: Vespertilionidae) from Shuifu Village, Guizhou, China (type locality)
  publication-title: Mitochondrial DNA. Part B, Resources
  doi: 10.1080/23802359.2019.1641436
– volume: 2013
  start-page: 1
  issue: 3780
  year: 2013
  ident: 2025061204072162600_CIT0078
  article-title: Review of Myotis (Chiroptera, Vespertilionidae) from Northern South America, including description of a new species
  publication-title: American Museum Novitates
  doi: 10.1206/3780.2
– volume: 9
  start-page: 119
  issue: 1
  year: 2008
  ident: 2025061204072162600_CIT0023
  article-title: The adaptive evolution of the mammalian mitochondrial genome
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-119
– volume: 37
  start-page: 291
  issue: 1
  year: 2020
  ident: 2025061204072162600_CIT0024
  article-title: ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msz189
– volume: 26
  start-page: 274
  issue: 2
  year: 2015
  ident: 2025061204072162600_CIT0121
  article-title: Complete mitochondrial genome of the Korean ikonnikov’s bat Myotis ikonnikovi (Chiroptera: Vespertilionidae)
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2013.823179
– volume: 50
  start-page: 5137
  issue: 6
  year: 2023
  ident: 2025061204072162600_CIT0033
  article-title: A new type of tandem repeats in Myotis petax (Chiroptera, Vespertilionidae) mitochondrial control region
  publication-title: Molecular Biology Reports
  doi: 10.1007/s11033-023-08468-4
– year: 2022
  ident: 2025061204072162600_CIT0062
  doi: 10.17504/protocols.io.b46bqzan
– volume: 26
  start-page: 661
  issue: 5
  year: 2015
  ident: 2025061204072162600_CIT0080
  article-title: Complete mitochondrial genome of a large-footed bat, Myotis macrodactylus (Vespertilionidae)
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2013.840596
– year: 2024
  ident: 2025061204072162600_CIT0099
– start-page: e.T14209A22069146
  volume-title: The IUCN red list of threatened species
  year: 2016
  ident: 2025061204072162600_CIT0007
  article-title: Myotis vivesi
  doi: 10.2305/IUCN.UK.2016-1.RLTS.T14209A22069146.en
– volume: 13
  start-page: e1002297
  issue: 11
  year: 2015
  ident: 2025061204072162600_CIT0012
  article-title: Falling with style: bats perform complex aerial rotations by adjusting wing inertia
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.1002297
– volume: 21
  start-page: 31
  issue: 1
  year: 1972
  ident: 2025061204072162600_CIT0027
  article-title: Phenetic relationships among bats of the genus Myotis
  publication-title: Systematic Biology
  doi: 10.1093/sysbio/21.1.31
– volume: 38
  start-page: 111
  issue: 2
  year: 1993
  ident: 2025061204072162600_CIT0022
  article-title: Late Tertiary bats (Mammalia, Chiroptera) from the southwestern United States
  publication-title: Southwestern Naturalist
  doi: 10.2307/3672062
– volume: 396
  start-page: 188
  issue: 1
  year: 2007
  ident: 2025061204072162600_CIT0044
  article-title: Purifying selection and positive selection on the myxovirus resistance gene in mammals and chickens
  publication-title: Gene
  doi: 10.1016/j.gene.2007.03.017
– volume: 66
  start-page: 409
  issue: 1
  year: 1997
  ident: 2025061204072162600_CIT0095
  article-title: Mitochondrial DNA maintenance in vertebrates
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.biochem.66.1.409
– volume: 28
  start-page: 297
  issue: 2
  year: 2003
  ident: 2025061204072162600_CIT0057
  article-title: The status of the Japanese and east Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/s1055-7903(03)00121-0
– volume: 24
  start-page: 451
  issue: 4
  year: 2013
  ident: 2025061204072162600_CIT0105
  article-title: Molecular characteristics and evolution of the mitochondrial control region in three genera (Hipposideridae: Hipposideros, Aselliscus, and Coelops) of leaf-nosed bats
  publication-title: Mitochondrial DNA
  doi: 10.3109/19401736.2013.766176
– volume: 7
  start-page: 611
  issue: 4
  year: 2022
  ident: 2025061204072162600_CIT0114
  article-title: The complete mitochondrial genome of Steppe Whiskered Bat (Myotis aurascens; Kuzyakin, 1935) and phylogenetic analysis
  publication-title: Mitochondrial DNA. Part B, Resources
  doi: 10.1080/23802359.2022.2059408
– start-page: 795
  volume-title: Mammals of Mexico
  year: 2014
  ident: 2025061204072162600_CIT0052
  article-title: Myotis planiceps Baker, 1955. Flat-headed myotis
– volume: 5
  start-page: 3592
  issue: 3
  year: 2020
  ident: 2025061204072162600_CIT0028
  article-title: Mitogenome of northern long-eared bat
  publication-title: Mitochondrial DNA Part B
  doi: 10.1080/23802359.2020.1830726
SSID ssj0005720
Score 2.4289672
Snippet Concerning metabolic demands, powered flight stands out as a mode of locomotion characterized by exceptionally high energy requirements. Bats exhibit distinct...
SourceID crossref
bioone
SourceType Index Database
Publisher
StartPage 587
SubjectTerms bats
fosforilación oxidativa
genes codificadores de proteínas
genoma mitocondrial
mitochondrial genome
murciélagos
oxidative phosphorylation
positive selective pressure
presión de selección positiva
protein-coding genes
RESEARCH ARTICLE
Vespertilionidae
Title Mitogenome comparative analysis of 3 Myotis species endemic to Mexico and detecting selection in OXPHOS genes
URI http://www.bioone.org/doi/abs/10.1093/jmammal/gyae144
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dSxwxFA1bpdAXUdtSrZU8SCkso2M-JruPUtRF2dpShaUvSzJJxMLslGEs6q_35mN3oxa1vsyGIWR3cs9mbu499wShLSqZpZaUGc_LPGO6V2aODJX1meRU94no-TOWht-KwRk7GvFRp_M3YS1dtmq7vPlnXclLrAr3wK6uSvY_LDsbFG5AG-wLV7AwXJ9l4yH8HZ3IamUilzyoeMtEaIR2h9d1C21XUgm74q4LeTs-PPicQ3MFOPDpA21cMsHHFvzBOJEBeTL6Pjj56Y5ZjlTDh25sJatKpqH5Q3jgkH5vmhCe3tfnsukebs8Cuk1rQjz3yAXk08AD4XOCVML1d4tQpJd6yk74SkBoGmp0FQOEirurbl4k8KLJGsrjGzi8jgtfkP1wpQ8qWL_DQ0Lr_Fqa3SAleU9A-5Her9AiEcKn949_zFXmuYhynvF3TyWh-nQnDrETBwC_RV3U9cQkbk3in5wuo6VoEbwXULKCOmayil7_qn3a5C2q5ljBCVbwFCu4tpjigBUcsYIjVnBb44AV6K7xDCt4hhV8McEBK9hj5R06O9g__TrI4lEbmSKUtxls0mlhrVa8tGWPSKVVzpSWnEvY41q9K92-uYQPwS14pT3CDDfgqypRSGI5fY8WJjANHxAWyuYlsdK6owmsKPpOwIkUhFnJNNVsDX0OUzb-E_RUxoEHQcdxbsdxbtfQl-mUPtV1_bljfkRv5lDeQAttc2k-gVfZqk0PgVtBt38X
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitogenome+comparative+analysis+of+3+Myotis+species+endemic+to+Mexico+and+detecting+selection+in+OXPHOS+genes&rft.jtitle=Journal+of+mammalogy&rft.au=Guti%C3%A9rrez%2C+Edgar+G.&rft.au=Ortega%2C+Jorge&rft.date=2025-06-01&rft.pub=American+Society+of+Mammalogists&rft.issn=0022-2372&rft.volume=106&rft.issue=3&rft.spage=587&rft.epage=602&rft_id=info:doi/10.1093%2Fjmammal%2Fgyae144&rft.externalDocID=10.1093%2Fjmammal%2Fgyae144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2372&client=summon