Computational workflow and interactive analysis of single-cell expression profiling of islets generated by the Human Pancreas Analysis Program

Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inabilit...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Patil, Abhijeet R, Schug, Jonathan, Naji, Ali, Kaestner, Klaus H, Faryabi, Robert B, Vahedi, Golnaz
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 03.01.2023
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2023.01.03.522578

Cover

Abstract Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data prepublication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, autoantibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for singlecell pancreatic islet biology studies, especially diabetes-related conditions.
AbstractList Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data prepublication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, autoantibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for singlecell pancreatic islet biology studies, especially diabetes-related conditions.Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data prepublication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, autoantibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for singlecell pancreatic islet biology studies, especially diabetes-related conditions.
Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data prepublication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, autoantibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for singlecell pancreatic islet biology studies, especially diabetes-related conditions.
Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data pre-publication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, auto-antibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for single-cell pancreatic islet biology studies, especially diabetes-related conditions.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://faryabi16.pmacs.upenn.edu/view/T1D_T2D_public.h5ad* https://github.com/faryabiLab/HPAP-scRNA-seq-Workflow-2022
Author Naji, Ali
Faryabi, Robert B
Kaestner, Klaus H
Vahedi, Golnaz
Patil, Abhijeet R
Schug, Jonathan
Author_xml – sequence: 1
  givenname: Abhijeet R
  surname: Patil
  fullname: Patil, Abhijeet R
– sequence: 2
  givenname: Jonathan
  surname: Schug
  fullname: Schug, Jonathan
– sequence: 3
  givenname: Ali
  surname: Naji
  fullname: Naji, Ali
– sequence: 4
  givenname: Klaus H
  surname: Kaestner
  fullname: Kaestner, Klaus H
– sequence: 5
  givenname: Robert B
  surname: Faryabi
  fullname: Faryabi, Robert B
– sequence: 6
  givenname: Golnaz
  surname: Vahedi
  fullname: Vahedi, Golnaz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36711819$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1u3CAUhVGUKH_NA3RTIXXTjafAHYO9jEZtEilSskjXFpjrKSmGKdhJ5iX6zGGUn1ZdHdD9OFfncEL2QwxIyEfOFpwz_lUwAQvGFwwWtRC1avbIsZCtqBrB6v1_zkfkLOd7xphoJQe1PCRHIBXnDW-PyZ9VHDfzpCcXg_b0MaZfg4-PVAdLXZgw6X5yD1ju2m-zyzQONLuw9lj16D3Fp03CnMtruklxcL7MdozLHqdM1xiKxYSWmi2dfiK9nEcd6K0OfUKd6fmb7W2K66THD-Rg0D7j2auekh_fv92tLqvrm4ur1fl1ZQSvm6rWAK1tYaiZNNYyCwyxl1zVw5LJQVhuOMge0NTYCywtmMHYtkizBGUlnJIvL77GxfTkHrpNcqNO227Xasd4x6B7afUvWvL9njFP3ejyLrsOGOfcCaU4a5SAZUE__4fexzmViDtKMuDQgirUp1dqNiPa99VvnwLPrCeRnA
Cites_doi 10.1186/s13059-021-02281-7
10.1186/s12967-018-1578-4
10.1186/s13059-017-1382-0
10.1016/j.cmet.2016.08.020
10.1186/s13059-019-1874-1
10.1038/sdata.2018.192
10.1038/s42255-022-00531-x
10.1038/s41586-018-0590-4
10.1038/ncomms14049
10.1038/s41467-018-06318-7
10.1016/j.cell.2021.04.048
10.1016/j.cels.2016.09.002
10.1016/j.celrep.2018.11.086
10.7554/eLife.00940
10.1038/s41592-019-0654-x
10.7554/eLife.27041
10.1172/JCI142242
10.3389/fphys.2019.00218
10.2337/db19-0058
10.12688/f1000research.73600.1
10.1126/science.abo0510
ContentType Journal Article
Paper
Copyright 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.01.03.522578v1
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.01.03.522578v1
– notice: 2023, Posted by Cold Spring Harbor Laboratory
CorporateAuthor HPAP Consortium
CorporateAuthor_xml – name: HPAP Consortium
DBID NPM
7X8
FX.
DOI 10.1101/2023.01.03.522578
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2023.01.03.522578v1
36711819
Genre Preprint
Working Paper/Pre-Print
GroupedDBID NPM
8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
7X8
PUEGO
FX.
ID FETCH-LOGICAL-b2158-5a339d93f506bdd0d30eec6175f406f2d1b136c3eb5ec2e820bfbd920b8437d63
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:53:45 EST 2025
Fri Sep 05 09:39:41 EDT 2025
Fri Jul 25 09:19:56 EDT 2025
Wed Feb 19 02:23:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2158-5a339d93f506bdd0d30eec6175f406f2d1b136c3eb5ec2e820bfbd920b8437d63
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.biorxiv.org/content/10.1101/2023.01.03.522578
PMID 36711819
PQID 2760313937
PQPubID 2050091
PageCount 14
ParticipantIDs biorxiv_primary_2023_01_03_522578
proquest_miscellaneous_2771087234
proquest_journals_2760313937
pubmed_primary_36711819
PublicationCentury 2000
PublicationDate 2023-Jan-03
20230103
PublicationDateYYYYMMDD 2023-01-03
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References 37188822 - Nat Metab. 2023 May 15
Xin (2023.01.03.522578v1.20) 2016; 24
Hao (2023.01.03.522578v1.30) 2021; 184
Powers (2023.01.03.522578v1.36) 2021; 131
Zheng (2023.01.03.522578v1.41) 2017; 8
Simonett (2023.01.03.522578v1.11) 2021; 131
Regev (2023.01.03.522578v1.17) 2017; 6
Patil (2023.01.03.522578v1.46) 2022
Longnecker (2023.01.03.522578v1.1) 2014
Muraro (2023.01.03.522578v1.23) 2016; 3
Scherm (2023.01.03.522578v1.2) 2022; 64
Su (2023.01.03.522578v1.9) 2004; 101
Taneera (2023.01.03.522578v1.6) 2012; 16
Chiang, Melton (2023.01.03.522578v1.40) 2003; 4
Suo (2023.01.03.522578v1.14) 2022; 376
Avrahami (2023.01.03.522578v1.38) 2020; 42
Lukassen, Bosch, Ekici, Winterpacht (2023.01.03.522578v1.34) 2018; 5
Wolf, Angerer, Theis (2023.01.03.522578v1.31) 2018; 19
Basile (2023.01.03.522578v1.19) 2021; 13
Lee (2023.01.03.522578v1.4) 2013; 2
authors (2023.01.03.522578v1.29) 2022
Henry (2023.01.03.522578v1.32) 2018; 25
Germain, Lun, Macnair, Robinson (2023.01.03.522578v1.42) 2021; 10
Talathi, Zimmerman, Young (2023.01.03.522578v1.3) 2022
Hashimshony (2023.01.03.522578v1.24) 2016; 17
MacParland (2023.01.03.522578v1.35) 2018; 9
Wang (2023.01.03.522578v1.26) 2016; 65
Fasolino (2023.01.03.522578v1.18) 2022; 4
Hafemeister, Satija (2023.01.03.522578v1.44) 2019; 20
Baron (2023.01.03.522578v1.25) 2016; 3
Consortium (2023.01.03.522578v1.15) 2022; 376
Grün (2023.01.03.522578v1.22) 2016; 19
Chen (2023.01.03.522578v1.33) 2018; 16
Schaum (2023.01.03.522578v1.16) 2018; 562
Wang (2023.01.03.522578v1.39) 2019; 29
Guo, Li (2023.01.03.522578v1.45) 2021; 22
Dominguez (2023.01.03.522578v1.8) 2011; 286
Bediaga (2023.01.03.522578v1.10) 2022; 71
Zhou (2023.01.03.522578v1.5) 2019; 10
Martens (2023.01.03.522578v1.7) 2011; 6
Kaestner, Powers, Naji, Consortium, Atkinson (2023.01.03.522578v1.28) 2019; 68
authors (2023.01.03.522578v1.27) 2022
Amezquita (2023.01.03.522578v1.43) 2020; 17
Segerstolpe (2023.01.03.522578v1.21) 2016; 24
Eraslan (2023.01.03.522578v1.12) 2022; 376
Michels, Redondo, Atkinson (2023.01.03.522578v1.37) 2022; 10
Dominguez Conde (2023.01.03.522578v1.13) 2022; 376
References_xml – reference: 37188822 - Nat Metab. 2023 May 15;:
– volume: 22
  year: 2021
  ident: 2023.01.03.522578v1.45
  article-title: scSorter: assigning cells to known cell types according to marker genes
  publication-title: Genome Biology
  doi: 10.1186/s13059-021-02281-7
– volume: 16
  start-page: 198
  year: 2018
  ident: 2023.01.03.522578v1.33
  article-title: PBMC fixation and processing for Chromium single-cell RNA sequencing
  publication-title: J Transl Med
  doi: 10.1186/s12967-018-1578-4
– volume: 286
  start-page: 4216
  year: 2011
  end-page: 4225
  ident: 2023.01.03.522578v1.8
  article-title: Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic β cells
  publication-title: Journal of Biological Chemistry
– year: 2022
  ident: 2023.01.03.522578v1.3
  publication-title: StatPearls
– volume: 131
  year: 2021
  ident: 2023.01.03.522578v1.11
  article-title: Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation
  publication-title: The Journal of clinical investigation
– volume: 13
  start-page: 1
  year: 2021
  end-page: 17
  ident: 2023.01.03.522578v1.19
  article-title: Using single-nucleus RNA-sequencing to interrogate transcriptomic profiles of archived human pancreatic islets
  publication-title: Genome medicine
– volume: 19
  start-page: 15
  year: 2018
  ident: 2023.01.03.522578v1.31
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 24
  start-page: 593
  year: 2016
  end-page: 607
  ident: 2023.01.03.522578v1.21
  article-title: Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.020
– volume: 20
  year: 2019
  ident: 2023.01.03.522578v1.44
  article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
  publication-title: Genome Biology
  doi: 10.1186/s13059-019-1874-1
– volume: 5
  start-page: 180192
  year: 2018
  ident: 2023.01.03.522578v1.34
  article-title: Single-cell RNA sequencing of adult mouse testes
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.192
– volume: 71
  start-page: 566
  year: 2022
  end-page: 577
  ident: 2023.01.03.522578v1.10
  article-title: Cytotoxicity-related gene expression and chromatin accessibility define a subset of CD4+ T cells that mark progression to type 1 diabetes
  publication-title: Diabetes
– volume: 4
  start-page: 284
  year: 2022
  end-page: 299
  ident: 2023.01.03.522578v1.18
  article-title: Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes
  publication-title: Nature Metabolism
  doi: 10.1038/s42255-022-00531-x
– volume: 4
  start-page: 383
  year: 2003
  end-page: 393
  ident: 2023.01.03.522578v1.40
  article-title: Single-cell transcript analysis of pancreas development
  publication-title: Developmental cell
– volume: 376
  start-page: eabl5197
  year: 2022
  ident: 2023.01.03.522578v1.13
  article-title: Cross-tissue immune cell analysis reveals tissue-specific features in humans
  publication-title: Science
– volume: 562
  start-page: 367
  year: 2018
  end-page: 372
  ident: 2023.01.03.522578v1.16
  article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 29
  start-page: 769
  year: 2019
  end-page: 783
  ident: 2023.01.03.522578v1.39
  article-title: Multiplexed in situ imaging mass cytometry analysis of the human endocrine pancreas and immune system in type 1 diabetes
  publication-title: Cell Metab
– volume: 8
  start-page: 14049
  year: 2017
  ident: 2023.01.03.522578v1.41
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nature Communications
  doi: 10.1038/ncomms14049
– volume: 376
  start-page: eabl4290
  year: 2022
  ident: 2023.01.03.522578v1.12
  article-title: Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function
  publication-title: Science
– volume: 65
  start-page: 3028
  year: 2016
  end-page: 3038
  ident: 2023.01.03.522578v1.26
  article-title: Single-cell transcriptomics of the human endocrine pancreas
  publication-title: Diabetes
– volume: 9
  start-page: 4383
  year: 2018
  ident: 2023.01.03.522578v1.35
  article-title: Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06318-7
– volume: 16
  start-page: 122
  year: 2012
  end-page: 134
  ident: 2023.01.03.522578v1.6
  article-title: A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets
  publication-title: Cell Metab
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587
  ident: 2023.01.03.522578v1.30
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 3
  start-page: 385
  year: 2016
  end-page: 394
  ident: 2023.01.03.522578v1.23
  article-title: A Single-Cell Transcriptome Atlas of the Human Pancreas
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.09.002
– volume: 25
  start-page: 3530
  year: 2018
  end-page: 3542
  ident: 2023.01.03.522578v1.32
  article-title: A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.11.086
– volume: 2
  start-page: e00940
  year: 2013
  ident: 2023.01.03.522578v1.4
  article-title: Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells
  publication-title: eLife
  doi: 10.7554/eLife.00940
– year: 2022
  ident: 2023.01.03.522578v1.46
  publication-title: HPAP scRNA-seq workflow
– volume: 17
  start-page: 137
  year: 2020
  end-page: 145
  ident: 2023.01.03.522578v1.43
  article-title: Orchestrating single-cell analysis with Bioconductor
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0654-x
– volume: 3
  start-page: 346
  year: 2016
  end-page: 360
  ident: 2023.01.03.522578v1.25
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
  publication-title: Cell systems
– volume: 42
  start-page: 101057
  year: 2020
  ident: 2023.01.03.522578v1.38
  article-title: Single-cell transcriptomics of human islet ontogeny defines the molecular basis of β-cell dedifferentiation in T2D
  publication-title: Molecular metabolism
– volume: 17
  start-page: 1
  year: 2016
  end-page: 7
  ident: 2023.01.03.522578v1.24
  article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq
  publication-title: Genome biology
– year: 2022
  ident: 2023.01.03.522578v1.29
  publication-title: CELLXGENE
– volume: 6
  start-page: e27041
  year: 2017
  ident: 2023.01.03.522578v1.17
  article-title: The Human Cell Atlas
  publication-title: eLife
  doi: 10.7554/eLife.27041
– volume: 376
  start-page: eabl4896
  year: 2022
  ident: 2023.01.03.522578v1.15
  article-title: The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans
  publication-title: Science
– volume: 19
  start-page: 266
  year: 2016
  end-page: 277
  ident: 2023.01.03.522578v1.22
  article-title: De novo prediction of stem cell identity using single-cell transcriptome data
  publication-title: Cell stem cell
– volume: 131
  year: 2021
  ident: 2023.01.03.522578v1.36
  article-title: Type 1 diabetes mellitus: much progress, many opportunities
  publication-title: J Clin Invest
  doi: 10.1172/JCI142242
– year: 2014
  ident: 2023.01.03.522578v1.1
  article-title: Anatomy and Histology of the Pancreas (version 1.0)
  publication-title: Pancreapedia: The Exocrine Pancreas Knowledge Base
– volume: 10
  start-page: 90
  year: 2022
  end-page: 92
  ident: 2023.01.03.522578v1.37
  article-title: The pathogenesis, natural history, and treatment of type 1 diabetes: Time (thankfully) does not stand still
  publication-title: The Lancet Diabetes & Endocrinology
– volume: 6
  start-page: e24134
  year: 2011
  ident: 2023.01.03.522578v1.7
  article-title: Clusters of conserved beta cell marker genes for assessment of beta cell phenotype
  publication-title: PloS one
– volume: 10
  start-page: 218
  year: 2019
  ident: 2023.01.03.522578v1.5
  article-title: Pancreatic Stellate Cells: A Rising Translational Physiology Star as a Potential Stem Cell Type for Beta Cell Neogenesis
  publication-title: Frontiers in Physiology
  doi: 10.3389/fphys.2019.00218
– volume: 68
  start-page: 1394
  year: 2019
  end-page: 1402
  ident: 2023.01.03.522578v1.28
  article-title: NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP)
  publication-title: Diabetes
  doi: 10.2337/db19-0058
– volume: 10
  start-page: 979
  year: 2021
  ident: 2023.01.03.522578v1.42
  article-title: Doublet identification in single-cell sequencing data using scDblFinder
  publication-title: F1000Research
  doi: 10.12688/f1000research.73600.1
– volume: 376
  start-page: eabo0510
  year: 2022
  ident: 2023.01.03.522578v1.14
  article-title: Mapping the developing human immune system across organs
  publication-title: Science
  doi: 10.1126/science.abo0510
– volume: 24
  start-page: 608
  year: 2016
  end-page: 615
  ident: 2023.01.03.522578v1.20
  article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes
  publication-title: Cell Metab
– year: 2022
  ident: 2023.01.03.522578v1.27
  publication-title: PANCDB
– volume: 64
  start-page: 101565
  year: 2022
  ident: 2023.01.03.522578v1.2
  article-title: Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other
  publication-title: Molecular Metabolism
– volume: 101
  start-page: 6062
  year: 2004
  end-page: 6067
  ident: 2023.01.03.522578v1.9
  article-title: A gene atlas of the mouse and human protein-encoding transcriptomes
  publication-title: Proceedings of the National Academy of Sciences
SSID ssj0002961374
Score 1.8200274
SecondaryResourceType preprint
Snippet Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Autoantibodies
Biopsy
Computer applications
Data processing
Diabetes
Diabetes mellitus (insulin dependent)
Diabetes mellitus (non-insulin dependent)
Genetic disorders
Genomics
Leukocytes
Organ donors
Pancreas
Pathogenesis
Phenotypes
Title Computational workflow and interactive analysis of single-cell expression profiling of islets generated by the Human Pancreas Analysis Program
URI https://www.ncbi.nlm.nih.gov/pubmed/36711819
https://www.proquest.com/docview/2760313937
https://www.proquest.com/docview/2771087234
https://www.biorxiv.org/content/10.1101/2023.01.03.522578
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qInjz7foigtdK27RJc1VcRHAp4sLeStNMZGFpl12ff8Lf7EzTXTwoeGlpkzZlMul8-TKZYewS0OoZC2kgHcgALVQclKmOAqN0FQlZVZkjQv9hKO9Gyf04Hf9I9UVulWbSzD8mb-06Pjls49_XD-4worm6aONsiitEDqhu66yHKhVT1obB-GpFr8Qa7ZRKunXMX59ExNu19De6bK3MYJv18nIG8x22BvUu2_RpIj_32JdPvdDRdpxcqdy0eedlbTmFe2g3Or0BXvsAI7xxnCiAKQTEy3P46Lxda-5TdGMZ1ZkssNMW_LmNPI3Ik5tPjniQt8Q-z1EfyGOdL-OW8Nz7cu2z0eD26eYu6PIoBAYNehakpRDaauHSUBprQytCgAqhS-rQnLvYRoa6RYBJoYoBMYFxxmo8ZYlQVooDtlE3NRwxLq2rEmWMAJxH2VBpqV2cAWJI5YhB6rOLTqbFzEfLKEjuRRgVoSi83PvsdCntohswiyJWlO6aovPhK1bFqOokp7KG5pXqIBzKVCySPjv0vbRqRUhFW2j18T8-4IRt0b2WSBGnbONl_gpnCC1ezDnrXd8O88fzVpnwOMwfvgHTG80c
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-EL35dn1G8NqlbdqkOYvL-mQPCnsrTTORBWll1-ef8Dc708Q9KXgqJWlTZiadL18mM4ydAXo9YyGPpAMZoYdKoyrXSWSUrhMh67pwROjf3snhQ3Y1zseBcJuFsEozaacfk7duH58CtvHv6yd3nNBaXXR5NkUfkQOaW59o6kW2jHaVUEjXYNyfcyypRmelsrCZ-evjCHvDcH9DzM7VDNbZ8qh6hukGW4Bmk634WpGfW-zL118I3B2neCr31L7zqrGccj50p53eAO99lhHeOk48wBNERM5z-Aghrw33dbqxjfpMZqi5GX_s0k8j_OTmkyMo5B27z0doFBS2zn-Sl_CRD-jaZg-Di_vzYRSKKUQGvXoR5ZUQ2mrh8lgaa2MrYoAa8Uvu0Ke71CaGdCPA5FCngMDAOGM1XopMKCvFDltq2gb2GJfW1ZkyRgAupmystNQuLQCBpHJEI_XYaZBp-exTZpQk9zJOyliUXu49dvgj7TLMmlmZKqp5TSn68BXzZrR3klPVQPtKfRATFSoVWY_tei3NRxFS0Tlavf-PDzhhq8P725vy5vLu-oCtUXvHrIhDtvQyfYUjxBov5rgzqG94Z89N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66onjz7fqM4LVL27RJc1YX3-xBYW-laSayIO2y62v_hL_ZmaYuHhQ8lZKQlJlJ58uXyQxjp4Bez1hIA-lABuih4qBIdRQYpctIyLLMHBH6d_fy8jG5HqbDH3dhKKzSjOrJx-itOcengG38-_rFHUa0VxdNnk3RQ-SA5tYjmro3tm6RLaFtRWTZ_WFvzrPEGh2WStoDzV-HQOjbTvk3zGzcTX-NLQ2KMUzW2QJUG2zZ14ucbbJPX4Oh5e84xVS55_qdF5XllPehufH0BvjuM43w2nHiAp4hIIKew0cb9lpxX6sb26jPaIram_KnJgU1QlBuZhyBIW8Yfj5Aw6DQdf6dwIQPfFDXFnvsXzycXQZtQYXAoGfPgrQQQlstXBpKY21oRQhQIoZJHfp1F9vIkH4EmBTKGBAcGGesxkeWCGWl2Gadqq5gl3FpXZkoYwTghsqGSkvt4gwQTCpHVFKXnbQyzcc-bUZOcs_DKA9F7uXeZQff0s7blTPNY0V1rylNHw4xb0abJzkVFdSv1AdxUaZikXTZjtfSfBYhFd2l1Xv_-IBjtjI47-e3V_c3-2yVmhtyRRywzsvkFQ4RbryYo8aevgCGkNBe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+workflow+and+interactive+analysis+of+single-cell+expression+profiling+of+islets+generated+by+the+Human+Pancreas+Analysis+Program&rft.jtitle=bioRxiv&rft.au=Patil%2C+Abhijeet+R&rft.au=Schug%2C+Jonathan&rft.au=Naji%2C+Ali&rft.au=Kaestner%2C+Klaus+H&rft.date=2023-01-03&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.01.03.522578&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon