BIRDMAn: A Bayesian differential abundance framework that enables robust inference of host-microbe associations

Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn ( ayesia...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Rahman, Gibraan, Morton, James T, Martino, Cameron, Sepich-Poore, Gregory D, Allaband, Celeste, Guccione, Caitlin, Chen, Yang, Hakim, Daniel, Estaki, Mehrbod, Knight, Rob
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 02.02.2023
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2023.01.30.526328

Cover

Abstract Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn ( ayesian nferential egression for ifferential icrobiome alysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.
AbstractList Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.
Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn ( ayesian nferential egression for ifferential icrobiome alysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.
Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.Competing Interest StatementG.D.S.-P. and R.K. are inventors on a US patent application (PCT/US2019/059647) submitted by The Regents of the University of California and licensed by Micronoma; that application covers methods of diagnosing and treating cancer using multi-domain microbial biomarkers in blood and cancer tissues. G.D.S.-P. and R.K. are founders of and report stock interest in Micronoma. G.D.S.-P. has filed several additional US patent applications on cancer bacteriome and mycobiome diagnostics that are owned by The Regents of the University of California or Micronoma. R.K. additionally is a member of the scientific advisory board for GenCirq, holds an equity interest in GenCirq, and can receive reimbursements for expenses up to US $5,000 per year.Footnotes* https://birdman.readthedocs.io/en/stable/
Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.
Author Sepich-Poore, Gregory D
Estaki, Mehrbod
Morton, James T
Rahman, Gibraan
Allaband, Celeste
Chen, Yang
Hakim, Daniel
Knight, Rob
Martino, Cameron
Guccione, Caitlin
Author_xml – sequence: 1
  givenname: Gibraan
  surname: Rahman
  fullname: Rahman, Gibraan
  organization: Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: James T
  surname: Morton
  fullname: Morton, James T
  organization: Biostatistics & Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
– sequence: 3
  givenname: Cameron
  surname: Martino
  fullname: Martino, Cameron
  organization: Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
– sequence: 4
  givenname: Gregory D
  surname: Sepich-Poore
  fullname: Sepich-Poore, Gregory D
  organization: Micronoma, San Diego, CA, USA
– sequence: 5
  givenname: Celeste
  surname: Allaband
  fullname: Allaband, Celeste
  organization: Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
– sequence: 6
  givenname: Caitlin
  surname: Guccione
  fullname: Guccione, Caitlin
  organization: Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA
– sequence: 7
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA
– sequence: 8
  givenname: Daniel
  surname: Hakim
  fullname: Hakim, Daniel
  organization: Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
– sequence: 9
  givenname: Mehrbod
  surname: Estaki
  fullname: Estaki, Mehrbod
  organization: Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
– sequence: 10
  givenname: Rob
  surname: Knight
  fullname: Knight, Rob
  organization: Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36778470$$D View this record in MEDLINE/PubMed
BookMark eNpdkE1LHjEQgIMo1ao_wEsJ9OJlX_O5SXp7tVYFS0G8L8lmgtHdxCa7Wv-9a7W2lDnMwDwzwzwf0WbKCRA6oGRFKaFHjDC-InTFyUqyljO9gXZYa1ijGZGb_9TbaL_WW0IIMy3lSnxA27xVSgtFdlA-vrj6-n2dvuA1PrZPUKNN2McQoECaoh2wdXPyNvWAQ7EjPOZyh6cbO2FI1g1QcclurhOO6ffMwuWAb3KdmjH2Sw-wrTX30U4xp7qHtoIdKuy_5V10_e30-uS8ufxxdnGyvmwco1I3UhivNciWCheoV4QbS3TwxPnAgqTCLGF7Ca1W1CjTKwJCO-Fb6almfBcdvq51MZdf8aG7L3G05al7sdYR2nHSvVr7i96X_HOGOnVjrD0Mg02Q59oxpaSRUjKxoJ__Q2_zXNLyxwtFNWm1MAv16Y2a3Qj-_fQf6fwZ8gWDuQ
Cites_doi 10.1101/2021.05.10.443486
ContentType Journal Article
Paper
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
FX.
DOI 10.1101/2023.01.30.526328
DatabaseName PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2023.01.30.526328v1
36778470
Genre Preprint
Working Paper/Pre-Print
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007198
– fundername: NIA NIH HHS
  grantid: U24 AG021886
– fundername: NCI NIH HHS
  grantid: U24 CA248454
GroupedDBID NPM
8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
7X8
PUEGO
FX.
ID FETCH-LOGICAL-b2158-549d88e5614bf1d7039a08fd0bdf2f5149494ac5e6871979c70e48b4d65d1823
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 18:57:04 EST 2025
Fri Sep 05 06:41:18 EDT 2025
Fri Jul 25 09:18:11 EDT 2025
Wed Feb 19 02:06:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2158-549d88e5614bf1d7039a08fd0bdf2f5149494ac5e6871979c70e48b4d65d1823
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
Competing Interest Statement: G.D.S.-P. and R.K. are inventors on a US patent application (PCT/US2019/059647) submitted by The Regents of the University of California and licensed by Micronoma; that application covers methods of diagnosing and treating cancer using multi-domain microbial biomarkers in blood and cancer tissues. G.D.S.-P. and R.K. are founders of and report stock interest in Micronoma. G.D.S.-P. has filed several additional US patent applications on cancer bacteriome and mycobiome diagnostics that are owned by The Regents of the University of California or Micronoma. R.K. additionally is a member of the scientific advisory board for GenCirq, holds an equity interest in GenCirq, and can receive reimbursements for expenses up to US $5,000 per year.
ORCID 0000-0003-1832-4858
0000-0002-8843-0229
0000-0003-0511-6240
0000-0002-3443-3715
0000-0002-0164-8971
0000-0003-4556-8444
0000-0002-0975-9019
0000-0001-9334-1258
OpenAccessLink https://www.proquest.com/docview/2771806849?pq-origsite=%requestingapplication%
PMID 36778470
PQID 2771806849
PQPubID 2050091
PageCount 28
ParticipantIDs biorxiv_primary_2023_01_30_526328
proquest_miscellaneous_2775955524
proquest_journals_2771806849
pubmed_primary_36778470
PublicationCentury 2000
PublicationDate 2023-Feb-02
20230202
PublicationDateYYYYMMDD 2023-02-02
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-Feb-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Silverman, Durand, Bloom, Mukherjee, David (2023.01.30.526328v1.23) 2018; 6
Lau (2023.01.30.526328v1.63) 2017; 77
Hawinkel, Rayner, Bijnens, Thas (2023.01.30.526328v1.53) 2020; 15
Lindén, Mäntyniemi (2023.01.30.526328v1.56) 2011; 92
Waskom (2023.01.30.526328v1.74) 2021; 6
Hoffman, Gelman (2023.01.30.526328v1.20) 2011
Townes (2023.01.30.526328v1.54) 2020
Pedregosa (2023.01.30.526328v1.73) 2011; 12
Gibbons (2023.01.30.526328v1.29) 2020; 5
Fouquier (2023.01.30.526328v1.2) 2021; 6
Narunsky-Haziza (2023.01.30.526328v1.62) 2022; 185
Hawinkel, Mattiello, Bijnens, Thas (2023.01.30.526328v1.49) 2019; 20
Wickham (2023.01.30.526328v1.76) 2019; 4
McDonald (2023.01.30.526328v1.59) 2012; 6
Brumfield, Huq, Colwell, Olds, Leddy (2023.01.30.526328v1.47) 2020; 15
Taddy (2023.01.30.526328v1.55) 2015; 9
Proctor (2023.01.30.526328v1.9) 2019; 569
Nixon, Letourneau, David, Mukherjee, Silverman (2023.01.30.526328v1.18) 2022
Lin, Peddada (2023.01.30.526328v1.33) 2020; 11
Shenhav (2023.01.30.526328v1.26) 2019; 15
Wirbel (2023.01.30.526328v1.3) 2019; 25
Kumar, Carroll, Hartikainen, Martin (2023.01.30.526328v1.58) 2019; 4
Oliphant, Green (2023.01.30.526328v1.35) 2002; 65
Nejman (2023.01.30.526328v1.40) 2020; 368
Ramirez (2023.01.30.526328v1.38) 2020; 10
Poore (2023.01.30.526328v1.4) 2020; 579
Morton (2023.01.30.526328v1.31) 2019; 10
Spencer (2023.01.30.526328v1.11) 2021; 374
Yu, Smith, Zhu, Guan, Lam (2023.01.30.526328v1.78) 2017; 8
Dethlefsen, Relman (2023.01.30.526328v1.27) 2011; 108
Ward (2023.01.30.526328v1.61) 2017
Zuo (2023.01.30.526328v1.6) 2020; 159
Love, Huber, Anders (2023.01.30.526328v1.34) 2014; 15
Lo (2023.01.30.526328v1.42) 2022; 29
McDonald (2023.01.30.526328v1.57) 2012; 1
Williamson, Hughes, Willis (2023.01.30.526328v1.52) 2022; 78
Kostic (2023.01.30.526328v1.8) 2015; 17
Flemer (2023.01.30.526328v1.43) 2017; 66
Villapol (2023.01.30.526328v1.5) 2020; 226
Chen (2023.01.30.526328v1.15) 2020; 18
Hunter (2023.01.30.526328v1.75) 2007; 9
Wang, LêCao (2023.01.30.526328v1.14) 2020; 21
Peterson, Sharma, Elmén, Peterson (2023.01.30.526328v1.37) 2015; 179
Lambiase (2023.01.30.526328v1.46) 2009; 2
Kumar (2023.01.30.526328v1.17) 2018; 19
Lee (2023.01.30.526328v1.12) 2022; 28
Gloor, Macklaim, Pawlowsky-Glahn, Egozcue (2023.01.30.526328v1.51) 2017; 8
McKinney (2023.01.30.526328v1.69) 2010
Joseph, Pasarkar, Pe’er (2023.01.30.526328v1.25) 2020; 10
Laroumagne (2023.01.30.526328v1.45) 2013; 42
Luo (2023.01.30.526328v1.68) 2022; 40
Zhu (2023.01.30.526328v1.65) 2021
Sochocka (2023.01.30.526328v1.1) 2019; 56
Nearing (2023.01.30.526328v1.19) 2021
Bullman (2023.01.30.526328v1.41) 2017; 358
Fernandes (2023.01.30.526328v1.32) 2014; 2
Wang (2023.01.30.526328v1.77) 2020; 37
Card (2023.01.30.526328v1.36) 2015; 59
Nunley (2023.01.30.526328v1.44) 1998; 113
Hoyer, Hamman (2023.01.30.526328v1.72) 2017; 5
Pruitt, Tatusova, Maglott (2023.01.30.526328v1.66) 2007; 35
Gonzalez (2023.01.30.526328v1.64) 2018; 15
McMurdie, Holmes (2023.01.30.526328v1.21) 2014; 10
Chng (2023.01.30.526328v1.30) 2020; 4
Davis, Proctor, Holmes, Relman, Callahan (2023.01.30.526328v1.67) 2018; 6
Hiergeist, Reischl, Gessner (2023.01.30.526328v1.13) 2016; 306
Äijö, Müller, Bonneau (2023.01.30.526328v1.22) 2018; 34
Joseph, Shenhav, Xavier, Halperin, Pe’er (2023.01.30.526328v1.24) 2020; 16
Yang, Chen (2023.01.30.526328v1.50) 2022; 10
Vandeputte (2023.01.30.526328v1.16) 2017; 551
Durazzi (2023.01.30.526328v1.48) 2021; 11
Virtanen (2023.01.30.526328v1.71) 2020; 17
Harris (2023.01.30.526328v1.70) 2020; 585
Kopylova, Noé, Touzet (2023.01.30.526328v1.60) 2012; 28
Poyet (2023.01.30.526328v1.7) 2019; 25
Martino (2023.01.30.526328v1.28) 2021; 39
Weinstein (2023.01.30.526328v1.39) 2013; 45
Gopalakrishnan (2023.01.30.526328v1.10) 2018; 359
References_xml – volume: 56
  start-page: 1841
  year: 2019
  end-page: 1851
  ident: 2023.01.30.526328v1.1
  article-title: The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—a Critical Review
  publication-title: Mol. Neurobiol.
– volume: 569
  start-page: 641
  year: 2019
  end-page: 648
  ident: 2023.01.30.526328v1.9
  article-title: The Integrative Human Microbiome Project
  publication-title: Nature
– volume: 15
  start-page: 796
  year: 2018
  end-page: 798
  ident: 2023.01.30.526328v1.64
  article-title: Qiita: rapid, web-enabled microbiome meta-analysis
  publication-title: Nat. Methods
– volume: 21
  start-page: 1954
  year: 2020
  end-page: 1970
  ident: 2023.01.30.526328v1.14
  article-title: Managing batch effects in microbiome data
  publication-title: Brief. Bioinform
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: 2023.01.30.526328v1.71
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– volume: 551
  start-page: 507
  year: 2017
  end-page: 511
  ident: 2023.01.30.526328v1.16
  article-title: Quantitative microbiome profiling links gut community variation to microbial load
  publication-title: Nature
– volume: 15
  start-page: e0224909
  year: 2020
  ident: 2023.01.30.526328v1.53
  article-title: Sequence count data are poorly fit by the negative binomial distribution
  publication-title: PLOS ONE
– volume: 92
  start-page: 1414
  year: 2011
  end-page: 1421
  ident: 2023.01.30.526328v1.56
  article-title: Using the negative binomial distribution to model overdispersion in ecological count data
  publication-title: Ecology
– volume: 29
  start-page: 88
  year: 2022
  ident: 2023.01.30.526328v1.42
  article-title: Enrichment of Prevotella intermedia in human colorectal cancer and its additive effects with Fusobacterium nucleatum on the malignant transformation of colorectal adenomas
  publication-title: J. Biomed. Sci.
– volume: 4
  start-page: 1686
  year: 2019
  ident: 2023.01.30.526328v1.76
  article-title: Welcome to the Tidyverse
  publication-title: J. Open Source Softw.
– volume: 10
  start-page: 2719
  year: 2019
  ident: 2023.01.30.526328v1.31
  article-title: Establishing microbial composition measurement standards with reference frames
  publication-title: Nat. Commun.
– volume: 35
  start-page: D61
  year: 2007
  end-page: D65
  ident: 2023.01.30.526328v1.66
  article-title: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: 2023.01.30.526328v1.73
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 372
  year: 2018
  end-page: 380
  ident: 2023.01.30.526328v1.22
  article-title: Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing
  publication-title: Bioinforma. Oxf. Engl.
– volume: 39
  start-page: 165
  year: 2021
  end-page: 168
  ident: 2023.01.30.526328v1.28
  article-title: Context-aware dimensionality reduction deconvolutes gut microbial community dynamics
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 226
  year: 2018
  ident: 2023.01.30.526328v1.67
  article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data
  publication-title: Microbiome
– volume: 15
  start-page: e1006960
  year: 2019
  ident: 2023.01.30.526328v1.26
  article-title: Modeling the temporal dynamics of the gut microbial community in adults and infants
  publication-title: PLOS Comput. Biol.
– volume: 59
  start-page: 4410
  year: 2015
  end-page: 4416
  ident: 2023.01.30.526328v1.36
  article-title: Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor
  publication-title: Antimicrob. Agents Chemother.
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: 2023.01.30.526328v1.70
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 11
  start-page: 3514
  year: 2020
  ident: 2023.01.30.526328v1.33
  article-title: Analysis of compositions of microbiomes with bias correction
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1256
  year: 2020
  end-page: 1267
  ident: 2023.01.30.526328v1.30
  article-title: Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut
  publication-title: Nat. Ecol. Evol.
– volume: 226
  start-page: 57
  year: 2020
  end-page: 69
  ident: 2023.01.30.526328v1.5
  article-title: Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome
  publication-title: Transl. Res.
– volume: 358
  start-page: 1443
  year: 2017
  end-page: 1448
  ident: 2023.01.30.526328v1.41
  article-title: Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer
  publication-title: Science
– volume: 179
  start-page: 363
  year: 2015
  end-page: 377
  ident: 2023.01.30.526328v1.37
  article-title: Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota
  publication-title: Clin. Exp. Immunol.
– volume: 11
  start-page: 3030
  year: 2021
  ident: 2023.01.30.526328v1.48
  article-title: Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota
  publication-title: Sci. Rep.
– year: 2021
  ident: 2023.01.30.526328v1.19
  article-title: Microbiome differential abundance methods produce disturbingly different results across 38 datasets
  doi: 10.1101/2021.05.10.443486
– volume: 5
  start-page: 10
  year: 2017
  ident: 2023.01.30.526328v1.72
  article-title: xarray: N-D labeled Arrays and Datasets in Python
  publication-title: J. Open Res. Softw.
– volume: 28
  start-page: 3211
  year: 2012
  end-page: 3217
  ident: 2023.01.30.526328v1.60
  article-title: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data
  publication-title: Bioinformatics
– volume: 77
  start-page: e3
  year: 2017
  end-page: e6
  ident: 2023.01.30.526328v1.63
  article-title: The Cancer Genomics Cloud: Collaborative, Reproducible, and Democratized-A New Paradigm in Large-Scale Computational Research
  publication-title: Cancer Res.
– volume: 10
  year: 2020
  ident: 2023.01.30.526328v1.38
  article-title: Antibiotics as Major Disruptors of Gut Microbiota
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 42
  start-page: 220
  year: 2013
  end-page: 229
  ident: 2023.01.30.526328v1.45
  article-title: Bronchial colonisation in patients with lung cancer: a prospective study
  publication-title: Eur. Respir. J.
– year: 2021
  ident: 2023.01.30.526328v1.65
  article-title: OGUs enable effective, phylogeny-aware analysis of even shallow metagenome community structures
– volume: 19
  start-page: 799
  year: 2018
  ident: 2023.01.30.526328v1.17
  article-title: Analysis and correction of compositional bias in sparse sequencing count data
  publication-title: BMC Genomics
– volume: 4
  start-page: 1143
  year: 2019
  ident: 2023.01.30.526328v1.58
  article-title: ArviZ a unified library for exploratory analysis of Bayesian models in Python
  publication-title: J. Open Source Softw.
– volume: 2
  start-page: 262
  year: 2009
  ident: 2023.01.30.526328v1.46
  article-title: Sphingobacterium respiratory tract infection in patients with cystic fibrosis
  publication-title: BMC Res. Notes
– volume: 6
  start-page: 610
  year: 2012
  end-page: 618
  ident: 2023.01.30.526328v1.59
  article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea
  publication-title: ISME J.
– volume: 368
  start-page: 973
  year: 2020
  end-page: 980
  ident: 2023.01.30.526328v1.40
  article-title: The human tumor microbiome is composed of tumor type-specific intracellular bacteria
  publication-title: Science
– volume: 28
  start-page: 535
  year: 2022
  end-page: 544
  ident: 2023.01.30.526328v1.12
  article-title: Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma
  publication-title: Nat. Med.
– volume: 113
  start-page: 1235
  year: 1998
  end-page: 1243
  ident: 2023.01.30.526328v1.44
  article-title: Allograft Colonization and Infections With Pseudomonas in Cystic Fibrosis Lung Transplant Recipients
  publication-title: Chest
– volume: 65
  start-page: 455
  year: 2002
  end-page: 465
  ident: 2023.01.30.526328v1.35
  article-title: Quinolones: A Comprehensive Review
  publication-title: Am. Fam. Physician
– volume: 359
  start-page: 97
  year: 2018
  end-page: 103
  ident: 2023.01.30.526328v1.10
  article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients
  publication-title: Science
– volume: 6
  start-page: 202
  year: 2018
  ident: 2023.01.30.526328v1.23
  article-title: Dynamic linear models guide design and analysis of microbiota studies within artificial human guts
  publication-title: Microbiome
– year: 2020
  ident: 2023.01.30.526328v1.54
  article-title: Review of Probability Distributions for Modeling Count Data
  publication-title: ArXiv200104343 Stat
– volume: 108
  start-page: 4554
  year: 2011
  end-page: 4561
  ident: 2023.01.30.526328v1.27
  article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
  publication-title: Proc. Natl. Acad. Sci.
– volume: 37
  start-page: 599
  year: 2020
  end-page: 603
  ident: 2023.01.30.526328v1.77
  article-title: Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data
  publication-title: Mol. Biol. Evol.
– year: 2022
  ident: 2023.01.30.526328v1.18
  article-title: A Statistical Analysis of Compositional Surveys
– volume: 15
  start-page: 550
  year: 2014
  ident: 2023.01.30.526328v1.34
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 25
  start-page: 679
  year: 2019
  end-page: 689
  ident: 2023.01.30.526328v1.3
  article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer
  publication-title: Nat. Med.
– volume: 16
  start-page: e1007917
  year: 2020
  ident: 2023.01.30.526328v1.24
  article-title: Compositional Lotka-Volterra describes microbial dynamics in the simplex
  publication-title: PLOS Comput. Biol.
– start-page: 133462
  year: 2017
  ident: 2023.01.30.526328v1.61
  article-title: BugBase predicts organism-level microbiome phenotypes
– volume: 8
  start-page: 28
  year: 2017
  end-page: 36
  ident: 2023.01.30.526328v1.78
  article-title: ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data
  publication-title: Methods Ecol. Evol.
– volume: 10
  start-page: 130
  year: 2022
  ident: 2023.01.30.526328v1.50
  article-title: A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions
  publication-title: Microbiome
– volume: 579
  start-page: 567
  year: 2020
  end-page: 574
  ident: 2023.01.30.526328v1.4
  article-title: Microbiome analyses of blood and tissues suggest cancer diagnostic approach
  publication-title: Nature
– volume: 18
  start-page: 861
  year: 2020
  end-page: 873
  ident: 2023.01.30.526328v1.15
  article-title: A comparison of methods accounting for batch effects in differential expression analysis of UMI count based single cell RNA sequencing
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 40
  start-page: 901
  year: 2022
  end-page: 902
  ident: 2023.01.30.526328v1.68
  article-title: Race is a key determinant of the human intratumor microbiome
  publication-title: Cancer Cell
– volume: 10
  start-page: 463
  year: 2020
  end-page: 469
  ident: 2023.01.30.526328v1.25
  article-title: Efficient and Accurate Inference of Mixed Microbial Population Trajectories from Longitudinal Count Data
  publication-title: Cell Syst.
– volume: 159
  start-page: 1302
  year: 2020
  end-page: 1310
  ident: 2023.01.30.526328v1.6
  article-title: Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge
  publication-title: Gastroenterology
– start-page: 6
  year: 2010
  ident: 2023.01.30.526328v1.69
  article-title: Data Structures for Statistical Computing in Python
– volume: 6
  start-page: 3021
  year: 2021
  ident: 2023.01.30.526328v1.74
  article-title: seaborn: statistical data visualization
  publication-title: J. Open Source Softw.
– volume: 6
  start-page: e00848
  year: 2021
  end-page: 20
  ident: 2023.01.30.526328v1.2
  article-title: The Gut Microbiome in Autism: Study-Site Effects and Longitudinal Analysis of Behavior Change
  publication-title: mSystems
– volume: 78
  start-page: 1181
  year: 2022
  end-page: 1194
  ident: 2023.01.30.526328v1.52
  article-title: A multiview model for relative and absolute microbial abundances
  publication-title: Biometrics
– volume: 25
  start-page: 1442
  year: 2019
  end-page: 1452
  ident: 2023.01.30.526328v1.7
  article-title: A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research
  publication-title: Nat. Med.
– volume: 66
  start-page: 633
  year: 2017
  end-page: 643
  ident: 2023.01.30.526328v1.43
  article-title: Tumour-associated and non-tumour-associated microbiota in colorectal cancer
  publication-title: Gut
– volume: 5
  start-page: 1067
  year: 2020
  end-page: 1068
  ident: 2023.01.30.526328v1.29
  article-title: Keystone taxa indispensable for microbiome recovery
  publication-title: Nat. Microbiol.
– volume: 2
  start-page: 15
  year: 2014
  ident: 2023.01.30.526328v1.32
  article-title: Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis
  publication-title: Microbiome
– volume: 15
  start-page: e0228899
  year: 2020
  ident: 2023.01.30.526328v1.47
  article-title: Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data
  publication-title: PLOS ONE
– volume: 17
  start-page: 260
  year: 2015
  end-page: 273
  ident: 2023.01.30.526328v1.8
  article-title: The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes
  publication-title: Cell Host Microbe
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: 2023.01.30.526328v1.75
  article-title: Matplotlib: A 2D Graphics Environment
  publication-title: Comput. Sci. Eng.
– year: 2011
  ident: 2023.01.30.526328v1.20
  article-title: The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
– volume: 1
  start-page: 7
  year: 2012
  ident: 2023.01.30.526328v1.57
  article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome
  publication-title: GigaScience
– volume: 374
  start-page: 1632
  year: 2021
  end-page: 1640
  ident: 2023.01.30.526328v1.11
  article-title: Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response
  publication-title: Science
– volume: 10
  start-page: e1003531
  year: 2014
  ident: 2023.01.30.526328v1.21
  article-title: Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible
  publication-title: PLOS Comput. Biol.
– volume: 9
  year: 2015
  ident: 2023.01.30.526328v1.55
  article-title: Distributed multinomial regression
  publication-title: Ann. Appl. Stat.
– volume: 45
  start-page: 1113
  year: 2013
  end-page: 1120
  ident: 2023.01.30.526328v1.39
  article-title: The Cancer Genome Atlas Pan-Cancer analysis project
  publication-title: Nat. Genet.
– volume: 8
  year: 2017
  ident: 2023.01.30.526328v1.51
  article-title: Microbiome Datasets Are Compositional: And This Is Not Optional
  publication-title: Front. Microbiol.
– volume: 20
  start-page: 210
  year: 2019
  end-page: 221
  ident: 2023.01.30.526328v1.49
  article-title: A broken promise: microbiome differential abundance methods do not control the false discovery rate
  publication-title: Brief. Bioinform.
– volume: 185
  start-page: 3789
  year: 2022
  end-page: 3806
  ident: 2023.01.30.526328v1.62
  article-title: Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions
  publication-title: Cell
– volume: 306
  start-page: 334
  year: 2016
  end-page: 342
  ident: 2023.01.30.526328v1.13
  article-title: Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability
  publication-title: Int. J. Med. Microbiol.
SSID ssj0002961374
Score 1.8232661
SecondaryResourceType preprint
Snippet Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g.,...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Bayesian analysis
Bioinformatics
Cancer
Genomes
Mathematical models
Microbiomes
Patent applications
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6Ifjmt9MpEXytpGnTpr5t6pjCRGTC3krSpDjQdqyduP_eu7abPihI3_qVch-9u9z97gi5NCxhPHHBc7O-wq0b7ujUtY4SyjBhtAwMgpNHj8HwxX-YiMmPUV9YVqmn-fxz-lHl8bFgG_6-tXIzF2N1D_tseuxKYKtxuUnaIFIcpzYMJlfr7RUegZ0K_SaP-euT4PE2K_3tXVZWZrBD2k9qZue7ZMNme2SrHhO53Cd5__75dtTLrmmP9tXSIu6RriabgIa-UaUR0AH8o-mq2IqWr6qktoJGFXSe60VR0ukK3kfzlCK-w3nHgjxtqfpmU3FAxoO78c3QaQYlOBostnQgxjNSWmzqCYQ2oMSRYjI1TJuUp-ASRXCoRNgAwqMojJKQWV9q3wTCQHzhHZJWlmf2mNDQGvAXdKIRNSJVqETC0iDy3NRaHii3Qy4amsWzuhtGjHSNmRt7LK7p2iHdFTXjRiGKmIdgBFkg_Qhesb4Mooz5CZXZfFHdIyIhBPc75KjmwnoVDxvd-SE7-ccHnJJtPFfVVvMuaZXzhT0D16HU55WQfAGgt71s
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title BIRDMAn: A Bayesian differential abundance framework that enables robust inference of host-microbe associations
URI https://www.ncbi.nlm.nih.gov/pubmed/36778470
https://www.proquest.com/docview/2771806849
https://www.proquest.com/docview/2775955524
https://www.biorxiv.org/content/10.1101/2023.01.30.526328
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qEHzz2_lFBF-radq0qS-y6YYKG0MU9laSJsWBtnPtxP333nXtfFIKfWlJy93lvnK_O0IuDUsYT1zw3KyvMHXDHZ261lFCGSaMloFBcPJgGDy8-k9jMa4TbkVdVtnoxEpRmzzBHPk1D0GLskD60e3008GpUXi6Wo_QWCctUMES5LzV7Q1Hz6ssC4_AXFWtmHkAvwHmTtRHmyCKGPh72LTTY1cC-5ZLcIL1JJ99T77-djgrw9PfJq2RmtrZDlmz2S7ZXE6OXOyRvPv4fD_oZDe0Q7tqYREKSZthJ7Bp36nSiPEAltK0qb-i5Zsqqa3QUgWd5XpelHTSIP5onlKEfDgfWKOnLVW_nCv2yUu_93L34NSzExwNRlw6EPYZKS32-QTaG9jXkWIyNUyblKfgJUVwqUTYACKmKIySkFlfat8EwkDI4R2QjSzP7BGhoTXgQuhEI5BEqlCJhKVB5LmptTxQbptc1DSLp8sGGTHSNWZu7LF4Sdc2OW2oGdd7pIh_OQpLrB6DdOORhcpsPq_eEZEQgvttcrjkwuorHva-80N2_P_iJ2QL_6eqtOanZKOcze0ZOBKlPq-l5Zys98dXcB-OBj-TVcbz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVgje-F7HACPBY8Bx4sRBQmhlm1q2VtNUpL1FduyISpB0TQr0j-J_5C4f3RO8TXlM5CTnn-_O5_vdAbyxPOMi89Fzc6Gm0I3wTO47T0ttubRGRZbIybN5NPkafrmSV3vwp-fCUFplrxMbRW3LjGLk70WMWpRHKkw-ra496hpFp6t9C40WFmdu-wu3bNXH6THO71shTk8Wnyde11XAM2jelIcbIquUowqY-FUWEZ9ornLLjc1Fjv5DgpfOpItwL5HESRZzFyoT2khadMYDHPYODEMitA5gOD6ZX1zugjoiQevYVH4WEf41WlfZnaQi8inOEFCN0IC_k1QmXaHPbZbl-vfy57_928bOnT6A4YVeufVD2HPFI7jbNqrcPoZyPL08nh0VH9gRG-utI-Yl63uroI74zrQhSgkiiOV9uherv-mauYacVbF1aTZVzZY9wZCVOSOGifeDUgKNY_oGKNUTWNyGUJ_CoCgLtw8sdhY9FpMZ4q0oHWuZ8TxKAj93TkTaH8HrTmbpqq3HkZJcU-6nAU9buY7gsJdm2i3JKr0BEA6xu42LiU5IdOHKTfMMTquUIhzBs3YWdm8JqNReGPOD_w_-Cu5NFrPz9Hw6P3sO9-nbmiRvcQiDer1xL9CHqc3LDjkM0lvG6l8vOP-D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmt9OpEXztSD_Spr45dWx-IaKwt5I0CQ60HVsn-t9713bTBwXpY0pS7qN3l7vfHSGnmqXMS13w3Ewg8erGc5R1jSO51IxrJUKN4OS7-7D_HFwP-fAHFgbLKtUon3yM3ss8PhZsw9-3Um7mYqzuY59Nn3U4thoXHbym7oy1XSZNkC0XJbs37CzuWbwYDFYU1AnNX7cA17c-8m83szQ3vXXSfJBjM9kgSybbJCvVvMjPLZJ3B4-Xd-fZGT2nXflpEABJ5yNOQFVfqVSI7ABGUjuvuqLFiyyoKTFSUzrJ1Wxa0NEc50dzSxHo4bxhZZ4yVH7za7pNnnpXTxd9p56Y4Cgw3cKBYE8LYbC7J1BcgzbHkgmrmdLWs-AbxfDIlJsQ4qQ4itOImUCoQIdcQ6Dh75BGlmdmj9DIaHAcVKoQPiJkJHnKbBj7rjXGC6XbIic1zZJx1RYjQbomzE18llR0bZH2nJpJrRnTxIvAGrJQBDFssVgGmcZEhcxMPivf4THn3AtaZLfiwuIUHzveBRHb_8cHHJPVh8tecju4vzkga7hc1lt7bdIoJjNzCO5EoY5KefkChB7DVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BIRDMAn%3A+A+Bayesian+differential+abundance+framework+that+enables+robust+inference+of+host-microbe+associations&rft.jtitle=bioRxiv&rft.au=Rahman%2C+Gibraan&rft.au=Morton%2C+James+T&rft.au=Martino%2C+Cameron&rft.au=Sepich-Poore%2C+Gregory+D&rft.date=2023-02-02&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.01.30.526328&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon