BIRDMAn: A Bayesian differential abundance framework that enables robust inference of host-microbe associations
Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn ( ayesia...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
02.02.2023
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2023.01.30.526328 |
Cover
Abstract | Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (
ayesian
nferential
egression for
ifferential
icrobiome
alysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches. |
---|---|
AbstractList | Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches. Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn ( ayesian nferential egression for ifferential icrobiome alysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches. Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.Competing Interest StatementG.D.S.-P. and R.K. are inventors on a US patent application (PCT/US2019/059647) submitted by The Regents of the University of California and licensed by Micronoma; that application covers methods of diagnosing and treating cancer using multi-domain microbial biomarkers in blood and cancer tissues. G.D.S.-P. and R.K. are founders of and report stock interest in Micronoma. G.D.S.-P. has filed several additional US patent applications on cancer bacteriome and mycobiome diagnostics that are owned by The Regents of the University of California or Micronoma. R.K. additionally is a member of the scientific advisory board for GenCirq, holds an equity interest in GenCirq, and can receive reimbursements for expenses up to US $5,000 per year.Footnotes* https://birdman.readthedocs.io/en/stable/ Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches.Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g., compositionality, sparsity) and specific study designs (e.g., repeated measures, meta-analysis, cross-over). Here we present BIRDMAn (Bayesian Inferential Regression for Differential Microbiome Analysis), a flexible DA method that can account for microbiome data characteristics and diverse experimental designs. Simulations show that BIRDMAn models are robust to uneven sequencing depth and provide a >20-fold improvement in statistical power over existing methods. We then use BIRDMAn to identify antibiotic-mediated perturbations undetected by other DA methods due to subject-level heterogeneity. Finally, we demonstrate how BIRDMAn can construct state-of-the-art cancer-type classifiers using The Cancer Genome Atlas (TCGA) dataset, with substantial accuracy improvements over random forests and existing DA tools across multiple sequencing centers. Collectively, BIRDMAn extracts more informative biological signals while accounting for study-specific experimental conditions than existing approaches. |
Author | Sepich-Poore, Gregory D Estaki, Mehrbod Morton, James T Rahman, Gibraan Allaband, Celeste Chen, Yang Hakim, Daniel Knight, Rob Martino, Cameron Guccione, Caitlin |
Author_xml | – sequence: 1 givenname: Gibraan surname: Rahman fullname: Rahman, Gibraan organization: Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA – sequence: 2 givenname: James T surname: Morton fullname: Morton, James T organization: Biostatistics & Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA – sequence: 3 givenname: Cameron surname: Martino fullname: Martino, Cameron organization: Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA – sequence: 4 givenname: Gregory D surname: Sepich-Poore fullname: Sepich-Poore, Gregory D organization: Micronoma, San Diego, CA, USA – sequence: 5 givenname: Celeste surname: Allaband fullname: Allaband, Celeste organization: Department of Pediatrics, University of California San Diego, La Jolla, CA, USA – sequence: 6 givenname: Caitlin surname: Guccione fullname: Guccione, Caitlin organization: Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA – sequence: 7 givenname: Yang surname: Chen fullname: Chen, Yang organization: Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA – sequence: 8 givenname: Daniel surname: Hakim fullname: Hakim, Daniel organization: Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA – sequence: 9 givenname: Mehrbod surname: Estaki fullname: Estaki, Mehrbod organization: Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada – sequence: 10 givenname: Rob surname: Knight fullname: Knight, Rob organization: Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36778470$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkE1LHjEQgIMo1ao_wEsJ9OJlX_O5SXp7tVYFS0G8L8lmgtHdxCa7Wv-9a7W2lDnMwDwzwzwf0WbKCRA6oGRFKaFHjDC-InTFyUqyljO9gXZYa1ijGZGb_9TbaL_WW0IIMy3lSnxA27xVSgtFdlA-vrj6-n2dvuA1PrZPUKNN2McQoECaoh2wdXPyNvWAQ7EjPOZyh6cbO2FI1g1QcclurhOO6ffMwuWAb3KdmjH2Sw-wrTX30U4xp7qHtoIdKuy_5V10_e30-uS8ufxxdnGyvmwco1I3UhivNciWCheoV4QbS3TwxPnAgqTCLGF7Ca1W1CjTKwJCO-Fb6almfBcdvq51MZdf8aG7L3G05al7sdYR2nHSvVr7i96X_HOGOnVjrD0Mg02Q59oxpaSRUjKxoJ__Q2_zXNLyxwtFNWm1MAv16Y2a3Qj-_fQf6fwZ8gWDuQ |
Cites_doi | 10.1101/2021.05.10.443486 |
ContentType | Journal Article Paper |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 FX. |
DOI | 10.1101/2023.01.30.526328 |
DatabaseName | PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic bioRxiv |
DatabaseTitle | PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2023.01.30.526328v1 36778470 |
Genre | Preprint Working Paper/Pre-Print |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007198 – fundername: NIA NIH HHS grantid: U24 AG021886 – fundername: NCI NIH HHS grantid: U24 CA248454 |
GroupedDBID | NPM 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI 7X8 PUEGO FX. |
ID | FETCH-LOGICAL-b2158-549d88e5614bf1d7039a08fd0bdf2f5149494ac5e6871979c70e48b4d65d1823 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:57:04 EST 2025 Fri Sep 05 06:41:18 EDT 2025 Fri Jul 25 09:18:11 EDT 2025 Wed Feb 19 02:06:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b2158-549d88e5614bf1d7039a08fd0bdf2f5149494ac5e6871979c70e48b4d65d1823 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 Competing Interest Statement: G.D.S.-P. and R.K. are inventors on a US patent application (PCT/US2019/059647) submitted by The Regents of the University of California and licensed by Micronoma; that application covers methods of diagnosing and treating cancer using multi-domain microbial biomarkers in blood and cancer tissues. G.D.S.-P. and R.K. are founders of and report stock interest in Micronoma. G.D.S.-P. has filed several additional US patent applications on cancer bacteriome and mycobiome diagnostics that are owned by The Regents of the University of California or Micronoma. R.K. additionally is a member of the scientific advisory board for GenCirq, holds an equity interest in GenCirq, and can receive reimbursements for expenses up to US $5,000 per year. |
ORCID | 0000-0003-1832-4858 0000-0002-8843-0229 0000-0003-0511-6240 0000-0002-3443-3715 0000-0002-0164-8971 0000-0003-4556-8444 0000-0002-0975-9019 0000-0001-9334-1258 |
OpenAccessLink | https://www.proquest.com/docview/2771806849?pq-origsite=%requestingapplication% |
PMID | 36778470 |
PQID | 2771806849 |
PQPubID | 2050091 |
PageCount | 28 |
ParticipantIDs | biorxiv_primary_2023_01_30_526328 proquest_miscellaneous_2775955524 proquest_journals_2771806849 pubmed_primary_36778470 |
PublicationCentury | 2000 |
PublicationDate | 2023-Feb-02 20230202 |
PublicationDateYYYYMMDD | 2023-02-02 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-Feb-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2023 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Silverman, Durand, Bloom, Mukherjee, David (2023.01.30.526328v1.23) 2018; 6 Lau (2023.01.30.526328v1.63) 2017; 77 Hawinkel, Rayner, Bijnens, Thas (2023.01.30.526328v1.53) 2020; 15 Lindén, Mäntyniemi (2023.01.30.526328v1.56) 2011; 92 Waskom (2023.01.30.526328v1.74) 2021; 6 Hoffman, Gelman (2023.01.30.526328v1.20) 2011 Townes (2023.01.30.526328v1.54) 2020 Pedregosa (2023.01.30.526328v1.73) 2011; 12 Gibbons (2023.01.30.526328v1.29) 2020; 5 Fouquier (2023.01.30.526328v1.2) 2021; 6 Narunsky-Haziza (2023.01.30.526328v1.62) 2022; 185 Hawinkel, Mattiello, Bijnens, Thas (2023.01.30.526328v1.49) 2019; 20 Wickham (2023.01.30.526328v1.76) 2019; 4 McDonald (2023.01.30.526328v1.59) 2012; 6 Brumfield, Huq, Colwell, Olds, Leddy (2023.01.30.526328v1.47) 2020; 15 Taddy (2023.01.30.526328v1.55) 2015; 9 Proctor (2023.01.30.526328v1.9) 2019; 569 Nixon, Letourneau, David, Mukherjee, Silverman (2023.01.30.526328v1.18) 2022 Lin, Peddada (2023.01.30.526328v1.33) 2020; 11 Shenhav (2023.01.30.526328v1.26) 2019; 15 Wirbel (2023.01.30.526328v1.3) 2019; 25 Kumar, Carroll, Hartikainen, Martin (2023.01.30.526328v1.58) 2019; 4 Oliphant, Green (2023.01.30.526328v1.35) 2002; 65 Nejman (2023.01.30.526328v1.40) 2020; 368 Ramirez (2023.01.30.526328v1.38) 2020; 10 Poore (2023.01.30.526328v1.4) 2020; 579 Morton (2023.01.30.526328v1.31) 2019; 10 Spencer (2023.01.30.526328v1.11) 2021; 374 Yu, Smith, Zhu, Guan, Lam (2023.01.30.526328v1.78) 2017; 8 Dethlefsen, Relman (2023.01.30.526328v1.27) 2011; 108 Ward (2023.01.30.526328v1.61) 2017 Zuo (2023.01.30.526328v1.6) 2020; 159 Love, Huber, Anders (2023.01.30.526328v1.34) 2014; 15 Lo (2023.01.30.526328v1.42) 2022; 29 McDonald (2023.01.30.526328v1.57) 2012; 1 Williamson, Hughes, Willis (2023.01.30.526328v1.52) 2022; 78 Kostic (2023.01.30.526328v1.8) 2015; 17 Flemer (2023.01.30.526328v1.43) 2017; 66 Villapol (2023.01.30.526328v1.5) 2020; 226 Chen (2023.01.30.526328v1.15) 2020; 18 Hunter (2023.01.30.526328v1.75) 2007; 9 Wang, LêCao (2023.01.30.526328v1.14) 2020; 21 Peterson, Sharma, Elmén, Peterson (2023.01.30.526328v1.37) 2015; 179 Lambiase (2023.01.30.526328v1.46) 2009; 2 Kumar (2023.01.30.526328v1.17) 2018; 19 Lee (2023.01.30.526328v1.12) 2022; 28 Gloor, Macklaim, Pawlowsky-Glahn, Egozcue (2023.01.30.526328v1.51) 2017; 8 McKinney (2023.01.30.526328v1.69) 2010 Joseph, Pasarkar, Pe’er (2023.01.30.526328v1.25) 2020; 10 Laroumagne (2023.01.30.526328v1.45) 2013; 42 Luo (2023.01.30.526328v1.68) 2022; 40 Zhu (2023.01.30.526328v1.65) 2021 Sochocka (2023.01.30.526328v1.1) 2019; 56 Nearing (2023.01.30.526328v1.19) 2021 Bullman (2023.01.30.526328v1.41) 2017; 358 Fernandes (2023.01.30.526328v1.32) 2014; 2 Wang (2023.01.30.526328v1.77) 2020; 37 Card (2023.01.30.526328v1.36) 2015; 59 Nunley (2023.01.30.526328v1.44) 1998; 113 Hoyer, Hamman (2023.01.30.526328v1.72) 2017; 5 Pruitt, Tatusova, Maglott (2023.01.30.526328v1.66) 2007; 35 Gonzalez (2023.01.30.526328v1.64) 2018; 15 McMurdie, Holmes (2023.01.30.526328v1.21) 2014; 10 Chng (2023.01.30.526328v1.30) 2020; 4 Davis, Proctor, Holmes, Relman, Callahan (2023.01.30.526328v1.67) 2018; 6 Hiergeist, Reischl, Gessner (2023.01.30.526328v1.13) 2016; 306 Äijö, Müller, Bonneau (2023.01.30.526328v1.22) 2018; 34 Joseph, Shenhav, Xavier, Halperin, Pe’er (2023.01.30.526328v1.24) 2020; 16 Yang, Chen (2023.01.30.526328v1.50) 2022; 10 Vandeputte (2023.01.30.526328v1.16) 2017; 551 Durazzi (2023.01.30.526328v1.48) 2021; 11 Virtanen (2023.01.30.526328v1.71) 2020; 17 Harris (2023.01.30.526328v1.70) 2020; 585 Kopylova, Noé, Touzet (2023.01.30.526328v1.60) 2012; 28 Poyet (2023.01.30.526328v1.7) 2019; 25 Martino (2023.01.30.526328v1.28) 2021; 39 Weinstein (2023.01.30.526328v1.39) 2013; 45 Gopalakrishnan (2023.01.30.526328v1.10) 2018; 359 |
References_xml | – volume: 56 start-page: 1841 year: 2019 end-page: 1851 ident: 2023.01.30.526328v1.1 article-title: The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—a Critical Review publication-title: Mol. Neurobiol. – volume: 569 start-page: 641 year: 2019 end-page: 648 ident: 2023.01.30.526328v1.9 article-title: The Integrative Human Microbiome Project publication-title: Nature – volume: 15 start-page: 796 year: 2018 end-page: 798 ident: 2023.01.30.526328v1.64 article-title: Qiita: rapid, web-enabled microbiome meta-analysis publication-title: Nat. Methods – volume: 21 start-page: 1954 year: 2020 end-page: 1970 ident: 2023.01.30.526328v1.14 article-title: Managing batch effects in microbiome data publication-title: Brief. Bioinform – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: 2023.01.30.526328v1.71 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods – volume: 551 start-page: 507 year: 2017 end-page: 511 ident: 2023.01.30.526328v1.16 article-title: Quantitative microbiome profiling links gut community variation to microbial load publication-title: Nature – volume: 15 start-page: e0224909 year: 2020 ident: 2023.01.30.526328v1.53 article-title: Sequence count data are poorly fit by the negative binomial distribution publication-title: PLOS ONE – volume: 92 start-page: 1414 year: 2011 end-page: 1421 ident: 2023.01.30.526328v1.56 article-title: Using the negative binomial distribution to model overdispersion in ecological count data publication-title: Ecology – volume: 29 start-page: 88 year: 2022 ident: 2023.01.30.526328v1.42 article-title: Enrichment of Prevotella intermedia in human colorectal cancer and its additive effects with Fusobacterium nucleatum on the malignant transformation of colorectal adenomas publication-title: J. Biomed. Sci. – volume: 4 start-page: 1686 year: 2019 ident: 2023.01.30.526328v1.76 article-title: Welcome to the Tidyverse publication-title: J. Open Source Softw. – volume: 10 start-page: 2719 year: 2019 ident: 2023.01.30.526328v1.31 article-title: Establishing microbial composition measurement standards with reference frames publication-title: Nat. Commun. – volume: 35 start-page: D61 year: 2007 end-page: D65 ident: 2023.01.30.526328v1.66 article-title: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins publication-title: Nucleic Acids Res. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: 2023.01.30.526328v1.73 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 372 year: 2018 end-page: 380 ident: 2023.01.30.526328v1.22 article-title: Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing publication-title: Bioinforma. Oxf. Engl. – volume: 39 start-page: 165 year: 2021 end-page: 168 ident: 2023.01.30.526328v1.28 article-title: Context-aware dimensionality reduction deconvolutes gut microbial community dynamics publication-title: Nat. Biotechnol. – volume: 6 start-page: 226 year: 2018 ident: 2023.01.30.526328v1.67 article-title: Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data publication-title: Microbiome – volume: 15 start-page: e1006960 year: 2019 ident: 2023.01.30.526328v1.26 article-title: Modeling the temporal dynamics of the gut microbial community in adults and infants publication-title: PLOS Comput. Biol. – volume: 59 start-page: 4410 year: 2015 end-page: 4416 ident: 2023.01.30.526328v1.36 article-title: Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor publication-title: Antimicrob. Agents Chemother. – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: 2023.01.30.526328v1.70 article-title: Array programming with NumPy publication-title: Nature – volume: 11 start-page: 3514 year: 2020 ident: 2023.01.30.526328v1.33 article-title: Analysis of compositions of microbiomes with bias correction publication-title: Nat. Commun. – volume: 4 start-page: 1256 year: 2020 end-page: 1267 ident: 2023.01.30.526328v1.30 article-title: Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut publication-title: Nat. Ecol. Evol. – volume: 226 start-page: 57 year: 2020 end-page: 69 ident: 2023.01.30.526328v1.5 article-title: Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome publication-title: Transl. Res. – volume: 358 start-page: 1443 year: 2017 end-page: 1448 ident: 2023.01.30.526328v1.41 article-title: Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer publication-title: Science – volume: 179 start-page: 363 year: 2015 end-page: 377 ident: 2023.01.30.526328v1.37 article-title: Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota publication-title: Clin. Exp. Immunol. – volume: 11 start-page: 3030 year: 2021 ident: 2023.01.30.526328v1.48 article-title: Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota publication-title: Sci. Rep. – year: 2021 ident: 2023.01.30.526328v1.19 article-title: Microbiome differential abundance methods produce disturbingly different results across 38 datasets doi: 10.1101/2021.05.10.443486 – volume: 5 start-page: 10 year: 2017 ident: 2023.01.30.526328v1.72 article-title: xarray: N-D labeled Arrays and Datasets in Python publication-title: J. Open Res. Softw. – volume: 28 start-page: 3211 year: 2012 end-page: 3217 ident: 2023.01.30.526328v1.60 article-title: SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data publication-title: Bioinformatics – volume: 77 start-page: e3 year: 2017 end-page: e6 ident: 2023.01.30.526328v1.63 article-title: The Cancer Genomics Cloud: Collaborative, Reproducible, and Democratized-A New Paradigm in Large-Scale Computational Research publication-title: Cancer Res. – volume: 10 year: 2020 ident: 2023.01.30.526328v1.38 article-title: Antibiotics as Major Disruptors of Gut Microbiota publication-title: Front. Cell. Infect. Microbiol. – volume: 42 start-page: 220 year: 2013 end-page: 229 ident: 2023.01.30.526328v1.45 article-title: Bronchial colonisation in patients with lung cancer: a prospective study publication-title: Eur. Respir. J. – year: 2021 ident: 2023.01.30.526328v1.65 article-title: OGUs enable effective, phylogeny-aware analysis of even shallow metagenome community structures – volume: 19 start-page: 799 year: 2018 ident: 2023.01.30.526328v1.17 article-title: Analysis and correction of compositional bias in sparse sequencing count data publication-title: BMC Genomics – volume: 4 start-page: 1143 year: 2019 ident: 2023.01.30.526328v1.58 article-title: ArviZ a unified library for exploratory analysis of Bayesian models in Python publication-title: J. Open Source Softw. – volume: 2 start-page: 262 year: 2009 ident: 2023.01.30.526328v1.46 article-title: Sphingobacterium respiratory tract infection in patients with cystic fibrosis publication-title: BMC Res. Notes – volume: 6 start-page: 610 year: 2012 end-page: 618 ident: 2023.01.30.526328v1.59 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME J. – volume: 368 start-page: 973 year: 2020 end-page: 980 ident: 2023.01.30.526328v1.40 article-title: The human tumor microbiome is composed of tumor type-specific intracellular bacteria publication-title: Science – volume: 28 start-page: 535 year: 2022 end-page: 544 ident: 2023.01.30.526328v1.12 article-title: Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma publication-title: Nat. Med. – volume: 113 start-page: 1235 year: 1998 end-page: 1243 ident: 2023.01.30.526328v1.44 article-title: Allograft Colonization and Infections With Pseudomonas in Cystic Fibrosis Lung Transplant Recipients publication-title: Chest – volume: 65 start-page: 455 year: 2002 end-page: 465 ident: 2023.01.30.526328v1.35 article-title: Quinolones: A Comprehensive Review publication-title: Am. Fam. Physician – volume: 359 start-page: 97 year: 2018 end-page: 103 ident: 2023.01.30.526328v1.10 article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients publication-title: Science – volume: 6 start-page: 202 year: 2018 ident: 2023.01.30.526328v1.23 article-title: Dynamic linear models guide design and analysis of microbiota studies within artificial human guts publication-title: Microbiome – year: 2020 ident: 2023.01.30.526328v1.54 article-title: Review of Probability Distributions for Modeling Count Data publication-title: ArXiv200104343 Stat – volume: 108 start-page: 4554 year: 2011 end-page: 4561 ident: 2023.01.30.526328v1.27 article-title: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation publication-title: Proc. Natl. Acad. Sci. – volume: 37 start-page: 599 year: 2020 end-page: 603 ident: 2023.01.30.526328v1.77 article-title: Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data publication-title: Mol. Biol. Evol. – year: 2022 ident: 2023.01.30.526328v1.18 article-title: A Statistical Analysis of Compositional Surveys – volume: 15 start-page: 550 year: 2014 ident: 2023.01.30.526328v1.34 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 25 start-page: 679 year: 2019 end-page: 689 ident: 2023.01.30.526328v1.3 article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer publication-title: Nat. Med. – volume: 16 start-page: e1007917 year: 2020 ident: 2023.01.30.526328v1.24 article-title: Compositional Lotka-Volterra describes microbial dynamics in the simplex publication-title: PLOS Comput. Biol. – start-page: 133462 year: 2017 ident: 2023.01.30.526328v1.61 article-title: BugBase predicts organism-level microbiome phenotypes – volume: 8 start-page: 28 year: 2017 end-page: 36 ident: 2023.01.30.526328v1.78 article-title: ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data publication-title: Methods Ecol. Evol. – volume: 10 start-page: 130 year: 2022 ident: 2023.01.30.526328v1.50 article-title: A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions publication-title: Microbiome – volume: 579 start-page: 567 year: 2020 end-page: 574 ident: 2023.01.30.526328v1.4 article-title: Microbiome analyses of blood and tissues suggest cancer diagnostic approach publication-title: Nature – volume: 18 start-page: 861 year: 2020 end-page: 873 ident: 2023.01.30.526328v1.15 article-title: A comparison of methods accounting for batch effects in differential expression analysis of UMI count based single cell RNA sequencing publication-title: Comput. Struct. Biotechnol. J. – volume: 40 start-page: 901 year: 2022 end-page: 902 ident: 2023.01.30.526328v1.68 article-title: Race is a key determinant of the human intratumor microbiome publication-title: Cancer Cell – volume: 10 start-page: 463 year: 2020 end-page: 469 ident: 2023.01.30.526328v1.25 article-title: Efficient and Accurate Inference of Mixed Microbial Population Trajectories from Longitudinal Count Data publication-title: Cell Syst. – volume: 159 start-page: 1302 year: 2020 end-page: 1310 ident: 2023.01.30.526328v1.6 article-title: Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge publication-title: Gastroenterology – start-page: 6 year: 2010 ident: 2023.01.30.526328v1.69 article-title: Data Structures for Statistical Computing in Python – volume: 6 start-page: 3021 year: 2021 ident: 2023.01.30.526328v1.74 article-title: seaborn: statistical data visualization publication-title: J. Open Source Softw. – volume: 6 start-page: e00848 year: 2021 end-page: 20 ident: 2023.01.30.526328v1.2 article-title: The Gut Microbiome in Autism: Study-Site Effects and Longitudinal Analysis of Behavior Change publication-title: mSystems – volume: 78 start-page: 1181 year: 2022 end-page: 1194 ident: 2023.01.30.526328v1.52 article-title: A multiview model for relative and absolute microbial abundances publication-title: Biometrics – volume: 25 start-page: 1442 year: 2019 end-page: 1452 ident: 2023.01.30.526328v1.7 article-title: A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research publication-title: Nat. Med. – volume: 66 start-page: 633 year: 2017 end-page: 643 ident: 2023.01.30.526328v1.43 article-title: Tumour-associated and non-tumour-associated microbiota in colorectal cancer publication-title: Gut – volume: 5 start-page: 1067 year: 2020 end-page: 1068 ident: 2023.01.30.526328v1.29 article-title: Keystone taxa indispensable for microbiome recovery publication-title: Nat. Microbiol. – volume: 2 start-page: 15 year: 2014 ident: 2023.01.30.526328v1.32 article-title: Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis publication-title: Microbiome – volume: 15 start-page: e0228899 year: 2020 ident: 2023.01.30.526328v1.47 article-title: Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data publication-title: PLOS ONE – volume: 17 start-page: 260 year: 2015 end-page: 273 ident: 2023.01.30.526328v1.8 article-title: The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes publication-title: Cell Host Microbe – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: 2023.01.30.526328v1.75 article-title: Matplotlib: A 2D Graphics Environment publication-title: Comput. Sci. Eng. – year: 2011 ident: 2023.01.30.526328v1.20 article-title: The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo – volume: 1 start-page: 7 year: 2012 ident: 2023.01.30.526328v1.57 article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome publication-title: GigaScience – volume: 374 start-page: 1632 year: 2021 end-page: 1640 ident: 2023.01.30.526328v1.11 article-title: Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response publication-title: Science – volume: 10 start-page: e1003531 year: 2014 ident: 2023.01.30.526328v1.21 article-title: Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible publication-title: PLOS Comput. Biol. – volume: 9 year: 2015 ident: 2023.01.30.526328v1.55 article-title: Distributed multinomial regression publication-title: Ann. Appl. Stat. – volume: 45 start-page: 1113 year: 2013 end-page: 1120 ident: 2023.01.30.526328v1.39 article-title: The Cancer Genome Atlas Pan-Cancer analysis project publication-title: Nat. Genet. – volume: 8 year: 2017 ident: 2023.01.30.526328v1.51 article-title: Microbiome Datasets Are Compositional: And This Is Not Optional publication-title: Front. Microbiol. – volume: 20 start-page: 210 year: 2019 end-page: 221 ident: 2023.01.30.526328v1.49 article-title: A broken promise: microbiome differential abundance methods do not control the false discovery rate publication-title: Brief. Bioinform. – volume: 185 start-page: 3789 year: 2022 end-page: 3806 ident: 2023.01.30.526328v1.62 article-title: Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions publication-title: Cell – volume: 306 start-page: 334 year: 2016 end-page: 342 ident: 2023.01.30.526328v1.13 article-title: Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability publication-title: Int. J. Med. Microbiol. |
SSID | ssj0002961374 |
Score | 1.8232661 |
SecondaryResourceType | preprint |
Snippet | Quantifying the differential abundance (DA) of specific taxa among experimental groups in microbiome studies is challenging due to data characteristics (e.g.,... |
SourceID | biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Bayesian analysis Bioinformatics Cancer Genomes Mathematical models Microbiomes Patent applications |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6Ifjmt9MpEXytpGnTpr5t6pjCRGTC3krSpDjQdqyduP_eu7abPihI3_qVch-9u9z97gi5NCxhPHHBc7O-wq0b7ujUtY4SyjBhtAwMgpNHj8HwxX-YiMmPUV9YVqmn-fxz-lHl8bFgG_6-tXIzF2N1D_tseuxKYKtxuUnaIFIcpzYMJlfr7RUegZ0K_SaP-euT4PE2K_3tXVZWZrBD2k9qZue7ZMNme2SrHhO53Cd5__75dtTLrmmP9tXSIu6RriabgIa-UaUR0AH8o-mq2IqWr6qktoJGFXSe60VR0ukK3kfzlCK-w3nHgjxtqfpmU3FAxoO78c3QaQYlOBostnQgxjNSWmzqCYQ2oMSRYjI1TJuUp-ASRXCoRNgAwqMojJKQWV9q3wTCQHzhHZJWlmf2mNDQGvAXdKIRNSJVqETC0iDy3NRaHii3Qy4amsWzuhtGjHSNmRt7LK7p2iHdFTXjRiGKmIdgBFkg_Qhesb4Mooz5CZXZfFHdIyIhBPc75KjmwnoVDxvd-SE7-ccHnJJtPFfVVvMuaZXzhT0D16HU55WQfAGgt71s priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | BIRDMAn: A Bayesian differential abundance framework that enables robust inference of host-microbe associations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36778470 https://www.proquest.com/docview/2771806849 https://www.proquest.com/docview/2775955524 https://www.biorxiv.org/content/10.1101/2023.01.30.526328 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qEHzz2_lFBF-radq0qS-y6YYKG0MU9laSJsWBtnPtxP333nXtfFIKfWlJy93lvnK_O0IuDUsYT1zw3KyvMHXDHZ261lFCGSaMloFBcPJgGDy8-k9jMa4TbkVdVtnoxEpRmzzBHPk1D0GLskD60e3008GpUXi6Wo_QWCctUMES5LzV7Q1Hz6ssC4_AXFWtmHkAvwHmTtRHmyCKGPh72LTTY1cC-5ZLcIL1JJ99T77-djgrw9PfJq2RmtrZDlmz2S7ZXE6OXOyRvPv4fD_oZDe0Q7tqYREKSZthJ7Bp36nSiPEAltK0qb-i5Zsqqa3QUgWd5XpelHTSIP5onlKEfDgfWKOnLVW_nCv2yUu_93L34NSzExwNRlw6EPYZKS32-QTaG9jXkWIyNUyblKfgJUVwqUTYACKmKIySkFlfat8EwkDI4R2QjSzP7BGhoTXgQuhEI5BEqlCJhKVB5LmptTxQbptc1DSLp8sGGTHSNWZu7LF4Sdc2OW2oGdd7pIh_OQpLrB6DdOORhcpsPq_eEZEQgvttcrjkwuorHva-80N2_P_iJ2QL_6eqtOanZKOcze0ZOBKlPq-l5Zys98dXcB-OBj-TVcbz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVgje-F7HACPBY8Bx4sRBQmhlm1q2VtNUpL1FduyISpB0TQr0j-J_5C4f3RO8TXlM5CTnn-_O5_vdAbyxPOMi89Fzc6Gm0I3wTO47T0ttubRGRZbIybN5NPkafrmSV3vwp-fCUFplrxMbRW3LjGLk70WMWpRHKkw-ra496hpFp6t9C40WFmdu-wu3bNXH6THO71shTk8Wnyde11XAM2jelIcbIquUowqY-FUWEZ9ornLLjc1Fjv5DgpfOpItwL5HESRZzFyoT2khadMYDHPYODEMitA5gOD6ZX1zugjoiQevYVH4WEf41WlfZnaQi8inOEFCN0IC_k1QmXaHPbZbl-vfy57_928bOnT6A4YVeufVD2HPFI7jbNqrcPoZyPL08nh0VH9gRG-utI-Yl63uroI74zrQhSgkiiOV9uherv-mauYacVbF1aTZVzZY9wZCVOSOGifeDUgKNY_oGKNUTWNyGUJ_CoCgLtw8sdhY9FpMZ4q0oHWuZ8TxKAj93TkTaH8HrTmbpqq3HkZJcU-6nAU9buY7gsJdm2i3JKr0BEA6xu42LiU5IdOHKTfMMTquUIhzBs3YWdm8JqNReGPOD_w_-Cu5NFrPz9Hw6P3sO9-nbmiRvcQiDer1xL9CHqc3LDjkM0lvG6l8vOP-D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmt9OpEXztSD_Spr45dWx-IaKwt5I0CQ60HVsn-t9713bTBwXpY0pS7qN3l7vfHSGnmqXMS13w3Ewg8erGc5R1jSO51IxrJUKN4OS7-7D_HFwP-fAHFgbLKtUon3yM3ss8PhZsw9-3Um7mYqzuY59Nn3U4thoXHbym7oy1XSZNkC0XJbs37CzuWbwYDFYU1AnNX7cA17c-8m83szQ3vXXSfJBjM9kgSybbJCvVvMjPLZJ3B4-Xd-fZGT2nXflpEABJ5yNOQFVfqVSI7ABGUjuvuqLFiyyoKTFSUzrJ1Wxa0NEc50dzSxHo4bxhZZ4yVH7za7pNnnpXTxd9p56Y4Cgw3cKBYE8LYbC7J1BcgzbHkgmrmdLWs-AbxfDIlJsQ4qQ4itOImUCoQIdcQ6Dh75BGlmdmj9DIaHAcVKoQPiJkJHnKbBj7rjXGC6XbIic1zZJx1RYjQbomzE18llR0bZH2nJpJrRnTxIvAGrJQBDFssVgGmcZEhcxMPivf4THn3AtaZLfiwuIUHzveBRHb_8cHHJPVh8tecju4vzkga7hc1lt7bdIoJjNzCO5EoY5KefkChB7DVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BIRDMAn%3A+A+Bayesian+differential+abundance+framework+that+enables+robust+inference+of+host-microbe+associations&rft.jtitle=bioRxiv&rft.au=Rahman%2C+Gibraan&rft.au=Morton%2C+James+T&rft.au=Martino%2C+Cameron&rft.au=Sepich-Poore%2C+Gregory+D&rft.date=2023-02-02&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.01.30.526328&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |