Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2

SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, incl...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Shi, Guoli, Chiramel, Abhilash I, Li, Tiansheng, Lai, Kin Kui, Kenney, Adam D, Zani, Ashley, Eddy, Adrian, Majdoul, Saliha, Zhang, Lizhi, Dempsey, Tirhas, Beare, Paul A, Kar, Swagata, Yewdell, Jonathan W, Best, Sonja M, Yount, Jacob S, Compton, Alex A
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 30.08.2022
Cold Spring Harbor Laboratory
Edition1.5
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
AbstractList SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity. Rapamycin is an immunosuppressant used in humans to treat cancer, autoimmunity, and other disease states. Here, we show that rapamycin and related compounds promote the first step of the SARS-CoV-2 infection cycle—entry into cells—by disarming cell-intrinsic immune defenses. We outline the molecular basis for this effect by identifying a rapamycin derivative that is inactive, laying the foundation for improved mTOR inhibitors that do not suppress intrinsic immunity. We find that rapamycin analogs that promote SARS-CoV-2 entry are those that activate TFEB, a transcription factor that triggers the degradation of antiviral membrane proteins inside of cells. Finally, rapamycin administration to rodents prior to SARS-CoV-2 challenge results in enhanced viral disease, revealing that its use in humans may increase susceptibility to infection.
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and the evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors in clinical settings such as cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) lacking this function, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the lysosomal degradation of IFITM2 and IFITM3. Rapalogs that promote virus entry inhibit the mTOR-mediated phosphorylation of TFEB, a transcription factor controlling lysosome biogenesis and degradative capacity. In the hamster model of infection, injection of rapamycin four hours prior to virus exposure resulted in elevated virus titers in lungs and accelerated weight loss, while ridaforolimus had milder effects. Furthermore, rapamycin significantly elevated mouse-adapted SARS-CoV-2 titers in lungs of mice. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating a lysosome-mediated suppression of intrinsic immunity. Competing Interest Statement The authors have declared no competing interest. Footnotes * Additional experiments were performed and data added, including work on understanding how rapalogs affect TFEB function, how TFEB activation contributes to enhanced Spike-mediated entry and downmodulation of IFITM proteins, and the testing of rapalogs in rodent models of SARS-CoV-2 infection. The cell line previously referred to as HeLa-ACE2-TMPRSS2 was found to be negative for TMPRSS2, and is therefore referred to as HeLa-ACE2 in the revised manuscript.
Author Zhang, Lizhi
Zani, Ashley
Best, Sonja M
Beare, Paul A
Lai, Kin Kui
Li, Tiansheng
Yewdell, Jonathan W
Shi, Guoli
Eddy, Adrian
Yount, Jacob S
Compton, Alex A
Chiramel, Abhilash I
Kenney, Adam D
Kar, Swagata
Dempsey, Tirhas
Majdoul, Saliha
Author_xml – sequence: 1
  givenname: Guoli
  surname: Shi
  fullname: Shi, Guoli
  organization: HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
– sequence: 2
  givenname: Abhilash I
  surname: Chiramel
  fullname: Chiramel, Abhilash I
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
– sequence: 3
  givenname: Tiansheng
  surname: Li
  fullname: Li, Tiansheng
  organization: Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
– sequence: 4
  givenname: Kin Kui
  surname: Lai
  fullname: Lai, Kin Kui
  organization: HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
– sequence: 5
  givenname: Adam D
  surname: Kenney
  fullname: Kenney, Adam D
  organization: Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
– sequence: 6
  givenname: Ashley
  surname: Zani
  fullname: Zani, Ashley
  organization: Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
– sequence: 7
  givenname: Adrian
  surname: Eddy
  fullname: Eddy, Adrian
  organization: Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
– sequence: 8
  givenname: Saliha
  surname: Majdoul
  fullname: Majdoul, Saliha
  organization: HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
– sequence: 9
  givenname: Lizhi
  surname: Zhang
  fullname: Zhang, Lizhi
  organization: Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
– sequence: 10
  givenname: Tirhas
  surname: Dempsey
  fullname: Dempsey, Tirhas
  organization: HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
– sequence: 11
  givenname: Paul A
  surname: Beare
  fullname: Beare, Paul A
  organization: Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
– sequence: 12
  givenname: Swagata
  surname: Kar
  fullname: Kar, Swagata
  organization: Bioqual, Rockville, MD, USA
– sequence: 13
  givenname: Jonathan W
  surname: Yewdell
  fullname: Yewdell, Jonathan W
  organization: Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
– sequence: 14
  givenname: Sonja M
  surname: Best
  fullname: Best, Sonja M
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
– sequence: 15
  givenname: Jacob S
  surname: Yount
  fullname: Yount, Jacob S
  organization: Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
– sequence: 16
  givenname: Alex A
  surname: Compton
  fullname: Compton, Alex A
  organization: HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33880473$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtOwzAQRS0EoqX0A9ggS2zYJPgdZ1lVvKQipBbYRk7tIFeJXeIE6N_jquUhVjOjezRz556AQ-edAeAMoxRjhK8IIjhFLMU8ZQwhkR2AIRE5SSRB_PBPPwDjEFYIIZILTDN2DAaUSolYRofgYa7WqvavAWr_4Rqv-1p1BlrXtdYFu4S2aXpnuw1UTsN16xsf5aWpa2gis4G-govJfJFM_UtCTsFRpepgxvs6As8310_Tu2T2eHs_ncySkmCeJRpxqYTGmgthNDGyxJLHgamoamxyrarccKp0maFKZBUjGca5RBVTQrIlHYHL3d7S-vbTvhfr1jaq3RTbUArECsyLXSi_aPT-1pvQFY0NW__KGd-HgnAsCCE5kRG9-IeufN-6-MiWoix6JzRS53uqLxujf05_Z0q_AGAud4c
ContentType Journal Article
Paper
Copyright 2022. This article is published under https://creativecommons.org/publicdomain/zero/1.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. This article is published under https://creativecommons.org/publicdomain/zero/1.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
FX.
DOI 10.1101/2021.04.15.440067
DatabaseName PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.5
ExternalDocumentID 2021.04.15.440067v5
33880473
Genre Preprint
Working Paper/Pre-Print
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL154001
– fundername: NIAID NIH HHS
  grantid: R21 AI142256
– fundername: NIAID NIH HHS
  grantid: R01 AI130110
– fundername: NIAID NIH HHS
  grantid: T32 AI165391
– fundername: NIAID NIH HHS
  grantid: R21 AI151230
GroupedDBID NPM
8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
7X8
FX.
ID FETCH-LOGICAL-b2157-d058a6d1d566ed2e8b185d564a157d1e9daf9e53adb70f67f42711980f4a684c3
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:51:16 EST 2025
Fri Jul 11 09:50:29 EDT 2025
Fri Jul 25 09:15:20 EDT 2025
Mon Jul 21 06:07:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords COVID-19
IFITM
rapalog
SARS-CoV-2
microautophagy
TFEB
mTOR inhibitor
coronavirus
interferon
membrane fusion
rapamycin
Language English
License This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2157-d058a6d1d566ed2e8b185d564a157d1e9daf9e53adb70f67f42711980f4a684c3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.biorxiv.org/content/10.1101/2021.04.15.440067
PMID 33880473
PQID 2513421523
PQPubID 2050091
PageCount 37
ParticipantIDs biorxiv_primary_2021_04_15_440067
proquest_miscellaneous_2516222928
proquest_journals_2513421523
pubmed_primary_33880473
PublicationCentury 2000
PublicationDate 2022-Aug-30
PublicationDateYYYYMMDD 2022-08-30
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References 36264642 - J Clin Invest. 2022 Dec 15;132(24)
Sun, Rha, Lee, Guo, Ueda, Qin (2021.04.15.440067v5.60) 2012; 42
Compton, Roy, Porrot, Billet, Casartelli, Yount (2021.04.15.440067v5.72) 2016; 17
Laplante, Sabatini (2021.04.15.440067v5.21) 2012; 149
Chi (2021.04.15.440067v5.29) 2012
Zhou, Hou, Shen, Huang, Martin, Cheng (2021.04.15.440067v5.10) 2020
Martina, Chen, Gucek, Puertollano (2021.04.15.440067v5.52) 2012; 8
Olsvik, Svenning, Abudu, Brech, Stenmark, Johansen (2021.04.15.440067v5.45) 2019; 15
Alsuwaidi, George, Almarzooqi, Hartwig, Varga, Souid (2021.04.15.440067v5.35) 2017; 18
Leist, Dinnon, Schafer, Tse, Okuda, Hou (2021.04.15.440067v5.90) 2020; 183
Wei, Zhao, Han, Meng, Zhou (2021.04.15.440067v5.5) 2020; 8
Mangalmurti, Hunter (2021.04.15.440067v5.30) 2020; 53
Shi, Ozog, Torbett, Compton (2021.04.15.440067v5.38) 2018; 115
Medina, Di Paola, Peluso, Armani, De Stefani, Venditti (2021.04.15.440067v5.62) 2015; 17
Compton, Bruel, Porrot, Mallet, Sachse, Euvrard (2021.04.15.440067v5.93) 2014; 16
Avanzato, Matson, Seifert, Pryce, Williamson, Anzick (2021.04.15.440067v5.8) 2020; 183
Santambrogio, Cuervo (2021.04.15.440067v5.65) 2011; 7
Abdel-Magid (2021.04.15.440067v5.25) 2019; 10
Ozog, Timberlake, Hermann, Garijo, Haworth, Shi (2021.04.15.440067v5.37) 2019; 134
Settembre, Zoncu, Medina, Vetrini, Erdin, Erdin (2021.04.15.440067v5.53) 2012; 31
Li, Rong, Chuang, Peng, Emr (2021.04.15.440067v5.70) 2015; 57
Baang, Smith, Mirabelli, Valesano, Manthei, Bachman (2021.04.15.440067v5.7) 2021; 223
Nikoloudis, Kountouras, Hiona (2021.04.15.440067v5.88) 2020; 8
Winstone, Lista, Reid, Bouton, Pickering, Galão (2021.04.15.440067v5.76) 2021
Schuck (2021.04.15.440067v5.63) 2020; 133
Zhang, Qin, Zhao, Zhang, Xu, Li (2021.04.15.440067v5.87) 2020
Hachim, Al Heialy, Hachim, Halwani, Senok, Maghazachi (2021.04.15.440067v5.84) 2020; 11
Di Fruscio, Schulz, De Cegli, Savarese, Mutarelli, Parenti (2021.04.15.440067v5.74) 2015; 11
Zhao, Guo, Liu, Cuconati, Chang, Block (2021.04.15.440067v5.75) 2014; 111
Bozzo, Nchioua, Volcic, Wettstein, Weil, Krüger (2021.04.15.440067v5.81) 2020; 1
Sahu, Kaushik, Clement, Cannizzo, Scharf, Follenzi (2021.04.15.440067v5.46) 2011; 20
Reagan-Shaw, Nihal, Ahmad (2021.04.15.440067v5.58) 2008; 22
Kolos, Voll, Bauder, Hausch (2021.04.15.440067v5.50) 2018; 9
Yang, Zhang, Wen, Bulinski, Chomchai, Arines (2021.04.15.440067v5.73) 2019; 8
Willett, Grove, MacLean, Wilkie, De Lorenzo, Furnon (2021.04.15.440067v5.48) 2022; 7
Shi, Kenney, Kudryashova, Zani, Zhang, Lai (2021.04.15.440067v5.47) 2020; 3
Bestle, Heindl, Limburg, van T, Pilgram, Moulton (2021.04.15.440067v5.41) 2020; 3
Chiramel, Meyerson, McNally, Broeckel, Montoya, Méndez-Solís (2021.04.15.440067v5.91) 2019; 27
Blanco-Melo, Nilsson-Payant, Liu, Uhl, Hoagland, Møller (2021.04.15.440067v5.85) 2020; 181
Wu, Zhao, Bin, Chen, Wang, Song (2021.04.15.440067v5.2) 2020
Omarjee, Janin, Perrot, Laviolle, Meilhac, Mahe (2021.04.15.440067v5.20) 2020; 216
Roczniak-Ferguson, Petit, Froehlich, Qian, Ky, Angarola (2021.04.15.440067v5.51) 2012; 5
Carey, Paulus, Wang, Balce, Luo, Bergman (2021.04.15.440067v5.89) 2020; 33
Gordon, Jang, Bouhaddou, Xu, Obernier, White (2021.04.15.440067v5.9) 2020
Blagosklonny (2021.04.15.440067v5.12) 2020; 12
Ziegler, Miao, Owings, Navia, Tang, Bromley (2021.04.15.440067v5.86) 2021
Alsuwaidi, George, Almarzooqi, Hartwig, Varga, Souid (2021.04.15.440067v5.56) 2017; 18
Appelberg, Gupta, Svensson Akusjärvi, Ambikan, Mikaeloff, Saccon (2021.04.15.440067v5.11) 2020; 9
Letko, Marzi, Munster (2021.04.15.440067v5.92) 2020; 11
Vignot, Faivre, Aguirre, Raymond (2021.04.15.440067v5.23) 2005; 16
Tekirdag, Cuervo (2021.04.15.440067v5.66) 2018; 293
Zhang, Chen, Gao, Yang, Yan, Zhao (2021.04.15.440067v5.54) 2019; 17
Mehta, McAuley, Brown, Sanchez, Tattersall, Manson (2021.04.15.440067v5.31) 2020; 395
Yang, Zhang, Wen, Bulinski, Chomchai, Arines (2021.04.15.440067v5.69) 2020; 219
Chesarino, McMichael, Yount (2021.04.15.440067v5.71) 2015; 11
Zhu, Zhang, Wang, Li, Yang, Song (2021.04.15.440067v5.1) 2020; 382
Zhang, Tan, Ling, Lu, Liu, Yi (2021.04.15.440067v5.3) 2020
Sasongko, Ismail, Nmana, Zabidi-Hussin (2021.04.15.440067v5.57) 2015
Cloughesy, Yoshimoto, Nghiemphu, Brown, Dang, Zhu (2021.04.15.440067v5.59) 2008; 5
Martynov, Kutashov, Ulyanova (2021.04.15.440067v5.61) 2022; 14
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen (2021.04.15.440067v5.43) 2020
Huang, Hung, Chen, Lin, Lin, Chang (2021.04.15.440067v5.36) 2017; 7
Shi, Schwartz, Compton (2021.04.15.440067v5.39) 2017; 14
Zang, Case, Yutuc, Ma, Shen, Gomez Castro (2021.04.15.440067v5.78) 2020; 32
Ciliberto, Mancini, Paggi (2021.04.15.440067v5.13) 2020
Zoncu, Efeyan, Sabatini (2021.04.15.440067v5.28) 2011; 12
Manjili, Zarei, Habibi, Manjili (2021.04.15.440067v5.32) 2020; 205
Benjamin, Colombi, Moroni, Hall (2021.04.15.440067v5.26) 2011
Zhavoronkov (2021.04.15.440067v5.18) 2020; 12
Mejlvang, Olsvik, Svenning, Bruun, Abudu, Larsen (2021.04.15.440067v5.44) 2018; 217
Oku, Sakai (2021.04.15.440067v5.64) 2018; 40
Sato, Seki, Konno, Hirai, Kurauchi, Hisatsune (2021.04.15.440067v5.68) 2019; 140
Prelli Bozzo, Nchioua, Volcic, Koepke, Kruger, Schutz (2021.04.15.440067v5.49) 2021; 12
Zhao, Sehgal, Hou, Cheng, Shu, Wu (2021.04.15.440067v5.80) 2018; 92
Zheng, Li, Liu (2021.04.15.440067v5.15) 2020; 92
Lamming, Ye, Sabatini, Baur (2021.04.15.440067v5.24) 2013; 123
Mijaljica, Prescott, Devenish (2021.04.15.440067v5.67) 2011; 7
Majdoul, Compton (2021.04.15.440067v5.40) 2021
Hoffmann, Kleine-Weber, Pöhlmann (2021.04.15.440067v5.42) 2020; 78
Zhao, Zheng, Chen, Zheng, Li, Li (2021.04.15.440067v5.77) 2020; 94
Terrazzano, Rubino, Palatucci, Giovazzino, Carriero, Ruggiero (2021.04.15.440067v5.16) 2020
Tarhini, Recoing, Bridier-Nahmias, Rahi, Lambert, Martres (2021.04.15.440067v5.6) 2021
Bertram, Zeng, Thorson, Shaw, Zheng (2021.04.15.440067v5.22) 1998; 8
Mullen, Garcia, Purkayastha, Matulionis, Schmid, Momcilovic (2021.04.15.440067v5.34) 2021
Aydillo, Babady, Kamboj (2021.04.15.440067v5.4) 2020; 383
Zani, Kenney, Kawahara, Eddy, Wang, Kc (2021.04.15.440067v5.82) 2021
Marz, Fabian, Kozany, Bracher, Hausch (2021.04.15.440067v5.27) 2013; 33
Willyard (2021.04.15.440067v5.19) 2020; 586
Husain, Byrareddy (2021.04.15.440067v5.14) 2020; 331
Beyer, Forero (2021.04.15.440067v5.83) 2021
Ramaiah (2021.04.15.440067v5.17) 2020; 20
Tostanoski, Wegmann, Martinot, Loos, McMahan, Mercado (2021.04.15.440067v5.55) 2020; 26
Huang, Bailey, Weyer, Radoshitzky, Becker, Chiang (2021.04.15.440067v5.79) 2011; 7
Bischof, Siow, Zhavoronkov, Kaeberlein (2021.04.15.440067v5.33) 2021; 2
References_xml – reference: 36264642 - J Clin Invest. 2022 Dec 15;132(24):
– start-page: 1
  year: 2020
  end-page: 18
  ident: 2021.04.15.440067v5.10
  article-title: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
  publication-title: Cell Discovery
– volume: 7
  start-page: 652
  issue: 6
  year: 2011
  end-page: 4
  ident: 2021.04.15.440067v5.65
  article-title: Chasing the elusive mammalian microautophagy
  publication-title: Autophagy
– volume: 16
  start-page: 736
  issue: 6
  year: 2014
  end-page: 47
  ident: 2021.04.15.440067v5.93
  article-title: IFITM Proteins Incorporated into HIV-1 Virions Impair Viral Fusion and Spread
  publication-title: Cell Host & Microbe
– volume: 12
  start-page: 4584
  issue: 1
  year: 2021
  ident: 2021.04.15.440067v5.49
  article-title: IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro
  publication-title: Nat Commun
– volume: 140
  start-page: 201
  issue: 2
  year: 2019
  end-page: 4
  ident: 2021.04.15.440067v5.68
  article-title: Rapamycin activates mammalian microautophagy
  publication-title: Journal of Pharmacological Science
– volume: 9
  start-page: 1748
  issue: 1
  year: 2020
  end-page: 60
  ident: 2021.04.15.440067v5.11
  article-title: Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells
  publication-title: Emerging Microbes & Infections
– volume: 15
  start-page: 182
  issue: 1
  year: 2019
  end-page: 3
  ident: 2021.04.15.440067v5.45
  article-title: Endosomal microautophagy is an integrated part of the autophagic response to amino acid starvation
  publication-title: Autophagy
– volume: 31
  start-page: 1095
  issue: 5
  year: 2012
  end-page: 108
  ident: 2021.04.15.440067v5.53
  article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
  publication-title: The EMBO journal
– volume: 219
  issue: 3
  year: 2020
  ident: 2021.04.15.440067v5.69
  article-title: TORC1 regulates vacuole membrane composition through ubiquitin-and ESCRT-dependent microautophagy
  publication-title: The Journal of Cell Biology
– volume: 216
  start-page: 108464
  year: 2020
  ident: 2021.04.15.440067v5.20
  article-title: Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19
  publication-title: Clinical immunology (Orlando, Fla)
– volume: 16
  start-page: 525
  issue: 4
  year: 2005
  end-page: 37
  ident: 2021.04.15.440067v5.23
  article-title: mTOR-targeted therapy of cancer with rapamycin derivatives
  publication-title: Annals of Oncology
– volume: 53
  start-page: 19
  issue: 1
  year: 2020
  end-page: 25
  ident: 2021.04.15.440067v5.30
  article-title: Cytokine Storms: Understanding COVID-19
  publication-title: Immunity
– start-page: 1
  year: 2020
  end-page: 19
  ident: 2021.04.15.440067v5.43
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
– volume: 331
  start-page: 109282
  year: 2020
  ident: 2021.04.15.440067v5.14
  article-title: Rapamycin as a potential repurpose drug candidate for the treatment of COVID-19
  publication-title: Chemico-Biological Interactions
– volume: 9
  start-page: 1425
  year: 2018
  ident: 2021.04.15.440067v5.50
  article-title: FKBP Ligands-Where We Are and Where to Go?
  publication-title: Frontiers in pharmacology
– volume: 12
  start-page: 10004
  issue: 11
  year: 2020
  end-page: 21
  ident: 2021.04.15.440067v5.12
  article-title: From causes of aging to death from COVID-19
  publication-title: Aging
– volume: 181
  start-page: 1036
  issue: 5
  year: 2020
  end-page: 45.e9
  ident: 2021.04.15.440067v5.85
  article-title: Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19
  publication-title: Cell
– volume: 7
  start-page: 873
  issue: 1
  year: 2017
  end-page: 8
  ident: 2021.04.15.440067v5.36
  article-title: Rapamycin adjuvant and exacerbation of severe influenza in an experimental mouse model
  publication-title: Scientific Reports
– volume: 78
  start-page: 779
  issue: 4
  year: 2020
  end-page: 84.e5
  ident: 2021.04.15.440067v5.42
  article-title: A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells
  publication-title: Molecular Cell
– volume: 8
  start-page: 1835
  year: 2019
  end-page: 53
  ident: 2021.04.15.440067v5.73
  publication-title: TORC1 regulates vacuole membrane composition through ubiquitin-and ESCRT-dependent microautophagy
– volume: 183
  start-page: 1070
  issue: 4
  year: 2020
  end-page: 85 e12
  ident: 2021.04.15.440067v5.90
  article-title: A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice
  publication-title: Cell
– volume: 223
  start-page: 23
  issue: 1
  year: 2021
  end-page: 7
  ident: 2021.04.15.440067v5.7
  article-title: Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Replication in an Immunocompromised Patient
  publication-title: The Journal of Infectious Diseases
– volume: 10
  start-page: 843
  issue: 6
  year: 2019
  end-page: 5
  ident: 2021.04.15.440067v5.25
  article-title: Rapalogs Potential as Practical Alternatives to Rapamycin
  publication-title: ACS medicinal chemistry letters
– volume: 11
  start-page: 1372
  year: 2020
  ident: 2021.04.15.440067v5.84
  article-title: Interferon-Induced Transmembrane Protein (IFITM3) Is Upregulated Explicitly in SARS-CoV-2 Infected Lung Epithelial Cells
  publication-title: Frontiers in Immunology
– volume: 205
  start-page: 12
  issue: 1
  year: 2020
  end-page: 9
  ident: 2021.04.15.440067v5.32
  article-title: COVID-19 as an Acute Inflammatory Disease
  publication-title: The Journal of Immunology
– volume: 111
  start-page: 6756
  issue: 18
  year: 2014
  end-page: 61
  ident: 2021.04.15.440067v5.75
  article-title: Interferon induction of IFITM proteins promotes infection by human coronavirus OC43
  publication-title: Proceedings of the National Academy of Sciences
– volume: 27
  start-page: 3269
  issue: 11
  year: 2019
  end-page: 83.e6
  ident: 2021.04.15.440067v5.91
  article-title: TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation
  publication-title: Cell Reports
– volume: 33
  start-page: 108371
  issue: 6
  year: 2020
  ident: 2021.04.15.440067v5.89
  article-title: TFEB Transcriptional Responses Reveal Negative Feedback by BHLHE40 and BHLHE41
  publication-title: Cell Rep
– start-page: 1
  year: 2020
  end-page: 18
  ident: 2021.04.15.440067v5.3
  article-title: Viral and host factors related to the clinical outcome of COVID-19
  publication-title: Nature
– volume: 20
  start-page: 100765
  year: 2020
  ident: 2021.04.15.440067v5.17
  article-title: mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19
  publication-title: Gene reports
– volume: 5
  start-page: ra42
  issue: 228
  year: 2012
  ident: 2021.04.15.440067v5.51
  article-title: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
  publication-title: Science signaling
– volume: 5
  start-page: e8
  issue: 1
  year: 2008
  ident: 2021.04.15.440067v5.59
  article-title: Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma
  publication-title: PLoS Med
– start-page: 2021.02.20.431155
  year: 2021
  ident: 2021.04.15.440067v5.86
  article-title: Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19
  publication-title: bioRxiv
– volume: 12
  start-page: 21
  issue: 1
  year: 2011
  end-page: 35
  ident: 2021.04.15.440067v5.28
  article-title: mTOR: from growth signal integration to cancer, diabetes and ageing
  publication-title: Nature Reviews in Molecular Cell Biology
– volume: 92
  start-page: 1495
  issue: 9
  year: 2020
  end-page: 500
  ident: 2021.04.15.440067v5.15
  article-title: Immunoregulation with mTOR inhibitors to prevent COVID-19 severity: A novel intervention strategy beyond vaccines and specific antiviral medicines
  publication-title: Journal of medical virology
– volume: 94
  issue: 18
  year: 2020
  ident: 2021.04.15.440067v5.77
  article-title: LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-CoV-2
  publication-title: Journal of Virology
– volume: 183
  start-page: 1901
  issue: 7
  year: 2020
  end-page: 12.e9
  ident: 2021.04.15.440067v5.8
  article-title: Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer
  publication-title: Cell
– volume: 383
  start-page: 2586
  issue: 26
  year: 2020
  end-page: 8
  ident: 2021.04.15.440067v5.4
  article-title: Shedding of Viable SARS-CoV-2 after Immunosuppressive Therapy for Cancer
  publication-title: New England Journal of Medicine
– volume: 17
  start-page: 1657
  issue: 11
  year: 2016
  end-page: 71
  ident: 2021.04.15.440067v5.72
  article-title: Natural mutations in IFITM3 modulate post-translational regulation and toggle antiviral specificity
  publication-title: EMBO reports
– year: 2020
  ident: 2021.04.15.440067v5.87
  article-title: Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with disease severity in COVID-19
  publication-title: The Journal of Infectious Diseases
– volume: 7
  start-page: 1161
  issue: 8
  year: 2022
  end-page: 79
  ident: 2021.04.15.440067v5.48
  article-title: SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway
  publication-title: Nat Microbiol
– volume: 40
  start-page: 1800008
  issue: 6
  year: 2018
  end-page: 6
  ident: 2021.04.15.440067v5.64
  article-title: Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries
  publication-title: BioEssays
– volume: 17
  start-page: 288
  issue: 3
  year: 2015
  end-page: 99
  ident: 2021.04.15.440067v5.62
  article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
  publication-title: Nature Cell Biology
– volume: 12
  start-page: 6492
  issue: 8
  year: 2020
  end-page: 510
  ident: 2021.04.15.440067v5.18
  article-title: Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections
  publication-title: Aging
– volume: 7
  start-page: 673
  issue: 7
  year: 2011
  end-page: 82
  ident: 2021.04.15.440067v5.67
  article-title: Microautophagy in mammalian cells: revisiting a 40-year-old conundrum
  publication-title: Autophagy
– volume: 8
  start-page: e000862
  issue: 2
  year: 2020
  ident: 2021.04.15.440067v5.5
  article-title: SARS-CoV-2 infection in immunocompromised patients: humoral versus cell-mediated immunity
  publication-title: Journal for immunotherapy of cancer
– start-page: 1
  year: 2015
  end-page: 11
  ident: 2021.04.15.440067v5.57
  article-title: Rapamycin and its analogues (rapalogs) for Tuberous Sclerosis Complex-associated tumors: a systematic review on non-randomized studies using meta-analysis
  publication-title: Orphanet Journal of Rare Diseases
– year: 2021
  ident: 2021.04.15.440067v5.40
  article-title: Lessons in self-defence: inhibition of virus entry by intrinsic immunity
  publication-title: Nature Reviews Immunology
– start-page: 1
  year: 2011
  end-page: 13
  ident: 2021.04.15.440067v5.26
  article-title: Rapamycin passes the torch: a new generation of mTOR inhibitors
  publication-title: Nature Reviews Drug Discovery
– volume: 133
  issue: 17
  year: 2020
  ident: 2021.04.15.440067v5.63
  article-title: Microautophagy - distinct molecular mechanisms handle cargoes of many sizes
  publication-title: Journal of Cell Science
– volume: 32
  start-page: 202012197
  year: 2020
  ident: 2021.04.15.440067v5.78
  article-title: Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 1
  year: 2020
  end-page: 9
  ident: 2021.04.15.440067v5.13
  publication-title: Drug repurposing against COVID-19: focus on anticancer agents
– year: 2021
  ident: 2021.04.15.440067v5.76
  article-title: The polybasic cleavage site in the SARS-CoV-2 spike modulates viral sensitivity to Type I interferon and IFITM2
  publication-title: Journal of Virology
– volume: 586
  start-page: 352
  issue: 7829
  year: 2020
  end-page: 4
  ident: 2021.04.15.440067v5.19
  article-title: Ageing and Covid Vaccines
  publication-title: Nature
– volume: 2
  start-page: e105
  issue: 2
  year: 2021
  end-page: e11
  ident: 2021.04.15.440067v5.33
  article-title: The potential of rapalogs to enhance resilience against SARS-CoV-2 infection and reduce the severity of COVID-19
  publication-title: The Lancet Healthy longevity
– start-page: 1
  year: 2021
  end-page: 10
  ident: 2021.04.15.440067v5.34
  article-title: SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition
  publication-title: Nature communications
– volume: 18
  start-page: 136
  issue: 1
  year: 2017
  ident: 2021.04.15.440067v5.35
  article-title: Sirolimus alters lung pathology and viral load following influenza A virus infection
  publication-title: Respiratory research
– volume: 217
  start-page: 3640
  issue: 10
  year: 2018
  end-page: 55
  ident: 2021.04.15.440067v5.44
  article-title: Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy
  publication-title: J Cell Biol
– volume: 123
  start-page: 980
  issue: 3
  year: 2013
  end-page: 9
  ident: 2021.04.15.440067v5.24
  article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics
  publication-title: Journal of Clinical Investigation
– volume: 20
  start-page: 131
  issue: 1
  year: 2011
  end-page: 9
  ident: 2021.04.15.440067v5.46
  article-title: Microautophagy of cytosolic proteins by late endosomes
  publication-title: Dev Cell
– volume: 293
  start-page: 5414
  issue: 15
  year: 2018
  end-page: 24
  ident: 2021.04.15.440067v5.66
  article-title: Chaperone-mediated autophagy and endosomal microautophagy: Jointed by a chaperone
  publication-title: Journal of Biological Chemistry
– start-page: 1
  year: 2012
  end-page: 14
  ident: 2021.04.15.440067v5.29
  article-title: Regulation and function of mTOR signalling in T cell fate decisions
  publication-title: Nature Reviews Immunology
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  end-page: 8
  ident: 2021.04.15.440067v5.56
  article-title: Sirolimus alters lung pathology and viral load following influenza A virus infection
  publication-title: Respiratory research
– start-page: 1
  year: 2020
  end-page: 5
  ident: 2021.04.15.440067v5.16
  publication-title: An Open Question: Is It Rational to Inhibit the mTor-Dependent Pathway as COVID-19 Therapy?
– volume: 149
  start-page: 274
  issue: 2
  year: 2012
  end-page: 93
  ident: 2021.04.15.440067v5.21
  article-title: mTOR signaling in growth control and disease
  publication-title: Cell
– volume: 115
  start-page: E10069
  issue: 43
  year: 2018
  end-page: E78
  ident: 2021.04.15.440067v5.38
  article-title: mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 1
  year: 2020
  end-page: 20
  ident: 2021.04.15.440067v5.2
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
– volume: 3
  start-page: e202000786
  issue: 9
  year: 2020
  ident: 2021.04.15.440067v5.41
  article-title: TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells
  publication-title: Life science alliance
– volume: 3
  start-page: e201900542
  year: 2020
  end-page: 12
  ident: 2021.04.15.440067v5.47
  article-title: Opposing activities of IFITM proteins in SARSLJCoVLJ2 infection
  publication-title: The EMBO journal
– volume: 8
  start-page: e10402
  year: 2020
  ident: 2021.04.15.440067v5.88
  article-title: The frequency of combined IFITM3 haplotype involving the reference alleles of both rs12252 and rs34481144 is in line with COVID-19 standardized mortality ratio of ethnic groups in England
  publication-title: PeerJ
– volume: 7
  start-page: e1001258
  issue: 1
  year: 2011
  ident: 2021.04.15.440067v5.79
  article-title: Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus
  publication-title: PLoS Pathogens
– volume: 14
  start-page: 1
  issue: 1
  year: 2017
  end-page: 11
  ident: 2021.04.15.440067v5.39
  article-title: More than meets the I: the diverse antiviral and cellular functions of interferon-induced transmembrane proteins
  publication-title: Retrovirology
– volume: 92
  start-page: 374
  issue: 6
  year: 2018
  end-page: 17
  ident: 2021.04.15.440067v5.80
  article-title: Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses
  publication-title: Journal of Virology
– volume: 11
  start-page: 1
  year: 2020
  end-page: 17
  ident: 2021.04.15.440067v5.92
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nature Microbiology
– volume: 26
  start-page: 1694
  issue: 11
  year: 2020
  end-page: 700
  ident: 2021.04.15.440067v5.55
  article-title: Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters
  publication-title: Nat Med
– volume: 8
  start-page: 1259
  issue: 23
  year: 1998
  end-page: 67
  ident: 2021.04.15.440067v5.22
  article-title: The 14-3-3 proteins positively regulate rapamycin-sensitive signaling
  publication-title: Current biology : CB
– start-page: 167265
  year: 2021
  ident: 2021.04.15.440067v5.83
  article-title: Mechanisms of Antiviral Immune Evasion of SARS-CoV-2
  publication-title: J Mol Biol
– volume: 8
  start-page: 903
  issue: 6
  year: 2012
  end-page: 14
  ident: 2021.04.15.440067v5.52
  article-title: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
  publication-title: Autophagy
– year: 2021
  ident: 2021.04.15.440067v5.82
  article-title: Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice
  publication-title: bioRxiv
– volume: 22
  start-page: 659
  issue: 3
  year: 2008
  end-page: 61
  ident: 2021.04.15.440067v5.58
  article-title: Dose translation from animal to human studies revisited
  publication-title: FASEB J
– volume: 17
  start-page: e3000252
  issue: 5
  year: 2019
  end-page: 24
  ident: 2021.04.15.440067v5.54
  article-title: Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR
  publication-title: PLoS Biology
– volume: 42
  start-page: 836
  issue: 9
  year: 2012
  end-page: 44
  ident: 2021.04.15.440067v5.60
  article-title: Phase II study of the safety and efficacy of temsirolimus in East Asian patients with advanced renal cell carcinoma
  publication-title: Jpn J Clin Oncol
– volume: 11
  start-page: e1005095
  issue: 8
  year: 2015
  ident: 2021.04.15.440067v5.71
  article-title: E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3
  publication-title: PLoS Pathogens
– volume: 57
  start-page: 467
  issue: 3
  year: 2015
  end-page: 78
  ident: 2021.04.15.440067v5.70
  article-title: Ubiquitin-Dependent Lysosomal Membrane Protein Sorting and Degradation
  publication-title: Molecular Cell
– volume: 33
  start-page: 1357
  issue: 7
  year: 2013
  end-page: 67
  ident: 2021.04.15.440067v5.27
  article-title: Large FK506-Binding Proteins Shape the Pharmacology of Rapamycin
  publication-title: Molecular and Cellular Biology
– year: 2021
  ident: 2021.04.15.440067v5.6
  article-title: Long term SARS-CoV-2 infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 superinfection
  publication-title: The Journal of Infectious Diseases
– volume: 14
  start-page: 108
  issue: 1
  year: 2022
  end-page: 14
  ident: 2021.04.15.440067v5.61
  article-title: COVID 19 in a family with rare genetic disease of the nervous system
  publication-title: Neurology, Neuropsychiatry, Psychosomatics
– volume: 382
  start-page: 727
  issue: 8
  year: 2020
  end-page: 33
  ident: 2021.04.15.440067v5.1
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: New England Journal of Medicine
– volume: 11
  start-page: 928
  issue: 6
  year: 2015
  end-page: 38
  ident: 2021.04.15.440067v5.74
  article-title: Lysoplex: An efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway
  publication-title: Autophagy
– volume: 1
  start-page: 261
  year: 2020
  end-page: 47
  ident: 2021.04.15.440067v5.81
  article-title: IFITM proteins promote SARS-CoV-2 infection of human lung cells
  publication-title: bioRxiv
– volume: 134
  start-page: 1298
  issue: 16
  year: 2019
  end-page: 311
  ident: 2021.04.15.440067v5.37
  article-title: Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes
  publication-title: Blood
– start-page: 1
  year: 2020
  end-page: 30
  ident: 2021.04.15.440067v5.9
  article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
  publication-title: Nature
– volume: 395
  start-page: 1033
  issue: 10229
  year: 2020
  end-page: 4
  ident: 2021.04.15.440067v5.31
  publication-title: Lancet
SSID ssj0002961374
Score 1.8079317
SecondaryResourceType preprint
Snippet SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs...
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and the evolution of viral variants. Rapamycin and its...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Cervix
Clinical trials
COVID-19
Epithelial cells
Immunity
Infections
Influenza
Influenza A
Interferon
Microbiology
Rapamycin
Respiratory tract
Severe acute respiratory syndrome coronavirus 2
TOR protein
Viruses
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT4MwFG90i4k3v51OUxOvKJQC7cnosmUx2bJszuxGCi0JBwEZM-6_9z3G5klvEKCEH6_vq33vR8i9ipRnpKstJgyzuISpKIWGKEUFDMRFOkxjvfNo7A_n_HXhLZqE27LZVrnVibWi1nmMOfJHsMMuRxJW96n4tJA1CldXGwqNfdIGFSwg-Gq_9MeT6S7LwiSYq7oVM_MlTH1me83SJogiBv4ONjp1vAfOUW-DExylefmdfv3tcNaGZ3BE2hNVmPKY7JnshBxsmCPXp2Q0BSMHh0uqIYz-yDWycBmaZlWZZgA8Teu6j2pNVaZpUe-5MxSz9LSmEqF5QmfP05nVy98tdkbmg_5bb2g1zAhWBBAElrY9oXztaHDGjGZGRGB24YQruKodI7VKpPFcpaPATvwg4SxwHCnshCtf8Ng9J60sz8wl1mzL2AtieC4xWCUrhG_c2MCY4AxJ7nfIXQNJWGz6X4QIW2jz0PHCDWwd0t2CFTZTYBn-_jAYYncZhBe_VWUmX9X3-EgozkSHXGxA3r3FxTY1PHCv_h_8mhwyrEjANK_dJa2qXJkb8BOq6LYRhh_wo7dI
  priority: 102
  providerName: ProQuest
Title Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2
URI https://www.ncbi.nlm.nih.gov/pubmed/33880473
https://www.proquest.com/docview/2513421523
https://www.proquest.com/docview/2516222928
https://www.biorxiv.org/content/10.1101/2021.04.15.440067
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6Ifjmt9M5Ivja0aRpmzyqbAxhY2xO9lbSJYU-2I6uE_ffe9fW4YOCL6UlTdIel9xH7u5HyIOOtW-VZxwuLXeEgqWopAErRYcc2EUxbjDfeTwJRgvxsvSXP6C-MKwyTvPiM_2ozvExYBt233pxuwxtdYa1SZnfFwK32kPSBpYSiNowXPb37hWuQE6FojnH_LUnaLzNTH9rl5WUGZ6Q9lSvbXFKDmx2Ro5qmMjdORnPQKLB7YYasJnfc4OQW5amWVmkGVCZplWSR7mjOjN0XQXYWYoueVrhhtA8ofPH2dx5zt8cfkEWw8Hr88hpYBCcGORx6BjXlzowzIDmZQ23MgYZCw9CQ6thVhmdKOt72sShmwRhInjImJJuInQgxcq7JK0sz-w1JmirlR-uoF9iMSVWysB6KwtjguajRNAh9w1JonVd7CJCskWuiJgf1WTrkO43saKG3zcRaEmeQIhcD4bYNwOn4r_qzObb6p0A0cO57JCrmsj7WTysSSNC7-YfH3BLjjnmIKBj1-2SVlls7R1oBmXcI-2nwWQ661W8ANfJdPwFEXuyjA
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCa6BMN2695pu1UDtqM3W5IfOhTD1rVI1yYo0nbozZMtGvBhdpqkj_yp_caRtpOdultvNmTREEWJD4n8AD7YzIZolPNkgtLThpaiSRx5KTaWJC4mkI7znUfjaHihf1yGlxvwZ5ULw9cqV3tis1G7OucY-WfSw0ozCKv6Mr3yGDWKT1dXEBqtWBzj8pZctvne0Xea349SHh6c7w-9DlXAy6h77Dk_TGzkAkeGDDqJSUYqi160pVYXoHG2MBgq67LYL6K40DIOyDX3C22jROeK6D6CvlbkyvSg_-1gfDpZR3WkIfXYlH6WkaGtRvphd5RKos-BhoALqwbhJ61ZT5DRnZX17K68ud_AbRTd4Sb0T-0UZ89gA6vn8LhFqly-gNGElCo9zoUjt_137Rj1C0VZLWZlRRMtyibPZLEUtnJi2tzxQ8GnAqKBLhF1Ic6-Ts68_fqnJ1_CxYPw7BX0qrrCN5wjbvIwzqlfgZyVmyQRqhyJJhlfRkcDeN-xJJ229TZSZlvq6zQI05ZtA9hZMSvtltw8_ScgRGLdTIuFx2orrK-bbyIGMJfJAF63TF7_RXFZHB2rrf8T34Unw_PRSXpyND7ehqeSsyE4xOzvQG8xu8a3ZKMssnedYAj49dCy-BcXOPOJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50i8Y3706n1sRXFloKtI9muszLlmVzZm-krCXhQVh2Me7few7g4oMmvkEKp_DltOfScyHkVsfat8ozDpeWO0LBUlTSgJWiQw7sohg3mO_c6wfdsXia-JMfuTAYVhmn-fwz_SjO8TFgG3bfcnG7DG11hrVJmd8SArfaFrqpWzOTbJM6FjtDzu5MWhs_C1cgsEJRHWj-SgJU32rKv9XMQtx09kl9oGd2fkC2bHZIdsp-kesj0huCaIPLBTVgPL_nBntvWZpmy3maAdw0LbI9lmuqM0NnRaSdpeibp0UDEZondHQ3HDnt_M3hx2TceXhtd52qH4ITg2AOHeP6UgeGGVDBrOFWxiBs4UZoGDXMKqMTZX1Pmzh0kyBMBA8ZU9JNhA6kmHonpJblmT3DTG019cMpvJdYzI2VMrDe1AJNUIGUCBrkpoIkmpVVLyKELXJFxPyohK1Bmt9gRRXjLyJQlzyBvXI9ILEZBpbFf9WZzVfFMwG2EeeyQU5LkDezeFicRoTe-T8-4JrsDu470ctj__mC7HHMS0Bnr9skteV8ZS9BW1jGVwU7fAE3HrXO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapalogs+downmodulate+intrinsic+immunity+and+promote+cell+entry+of+SARS-CoV-2&rft.jtitle=bioRxiv&rft.au=Shi%2C+Guoli&rft.au=Chiramel%2C+Abhilash+I&rft.au=Li%2C+Tiansheng&rft.au=Lai%2C+Kin+Kui&rft.date=2022-08-30&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.04.15.440067&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon