Human motion data expansion from arbitrary sparse sensors with shallow recurrent decoders

Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of senso...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Ebers, Megan R, Pitts, Mackenzie, Kutz, J Nathan, Steele, Katherine M
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory 03.06.2024
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2024.06.01.596487

Cover

Abstract Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual's unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates.
AbstractList Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual’s unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates.
Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual's unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates.Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual's unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates.
Author Pitts, Mackenzie
Kutz, J Nathan
Steele, Katherine M
Ebers, Megan R
Author_xml – sequence: 1
  givenname: Megan R
  orcidid: 0000-0001-9227-2203
  surname: Ebers
  fullname: Ebers, Megan R
– sequence: 2
  givenname: Mackenzie
  surname: Pitts
  fullname: Pitts, Mackenzie
– sequence: 3
  givenname: J Nathan
  surname: Kutz
  fullname: Kutz, J Nathan
– sequence: 4
  givenname: Katherine M
  orcidid: 0000-0002-4128-9387
  surname: Steele
  fullname: Steele, Katherine M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38895371$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAUhS1UREvpD2BBHlkSrh3HsUdUAUWqxAIDU-RX1KAkLnZCy78nVXlN91zp09HRd44mne8cQpcEUkKA3FCgLAWeAklzyZkoTtCMckkTQSGf_MtTtIjxDQCo5CQr2BmaZkLIPCvIDL2uhlZ1uPV97TtsVa-w229VFw9vFXyLVdB1H1T4xHGrQnQ4ui76EPGu7jc4blTT-B0OzgwhuK7H1hlvXYgX6LRSTXSL7ztHL_d3z8tVsn56eFzerhNNhCgSU1mbaQtau0pmkmsyLpVacWC55VpRxg3jTBpFSS64IQWpCsOkAiYsB5PN0fWxV9c-7OuPchvqdpxbHgSVwEsg5VHQH7oN_n1wsS_bOhrXNKpzfohlBgUIoCM9olff6KBbZ39Lf8xlXxr7cig
ContentType Journal Article
Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
DOI 10.1101/2024.06.01.596487
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2024.06.01.596487v1
38895371
Genre Journal Article
Preprint
GroupedDBID NPM
7X8
8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
RHI
FX.
ID FETCH-LOGICAL-b1887-cfdd3bd0bbef9396b10009ba6045d6ba246c4649ca21586c171f7c49a048d60c3
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:49:30 EST 2025
Thu Sep 04 16:51:48 EDT 2025
Mon Jul 21 05:49:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords wearable sensors
sparse sensing
machine learning
motion inference
gait analysis
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1887-cfdd3bd0bbef9396b10009ba6045d6ba246c4649ca21586c171f7c49a048d60c3
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-9227-2203
0000-0002-4128-9387
OpenAccessLink https://www.biorxiv.org/content/10.1101/2024.06.01.596487
PMID 38895371
PQID 3070802596
PQPubID 23479
PageCount 10
ParticipantIDs biorxiv_primary_2024_06_01_596487
proquest_miscellaneous_3070802596
pubmed_primary_38895371
PublicationCentury 2000
PublicationDate 2024-Jun-03
20240603
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-Jun-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References McGinley, Baker, Wolfe, Morris (2024.06.01.596487v1.47) 2009; 29
Trumble, Gilbert, Malleson, Hilton, Collomosse (2024.06.01.596487v1.65) 2017
Van Emmerik, Ducharme, Amado, Hamill (2024.06.01.596487v1.72) 2016; 5
Chen (2024.06.01.596487v1.15) 2013
Hirsh, Ichinaga, Brunton, Kutz, Brunton (2024.06.01.596487v1.80) 2021; 477
Roetenberg, Slycke, Veltink (2024.06.01.596487v1.39) 2007; 54
Basdogan, Amirouche (2024.06.01.596487v1.75) 1996
Wei, Liu, Chang, Liu (2024.06.01.596487v1.38) 2017; 12
Vlasic, Adelsberger, Vannucci, Barnwell, Gross, Matusik, Popović (2024.06.01.596487v1.44) 2007; 26
Cudejko, Button, Willott, Al-Amri (2024.06.01.596487v1.16) 2021; 10
Gurchiek, Choquette, Beynnon, Slauterbeck, Tourville, Toth, McGinnis (2024.06.01.596487v1.71) 2019
Nweke, Teh, Al-Garadi, Alo (2024.06.01.596487v1.25) 2018; 105
Del Din, Godfrey, Galna, Lord, Rochester (2024.06.01.596487v1.69) 2016; 13
Takens (2024.06.01.596487v1.82) 2006
Pitto, Kainz, Falisse, Wesseling, Van Rossom, Hoang, Papageorgiou, Hallemans, Desloovere, Molenaers (2024.06.01.596487v1.76) 2019; 13
Rosenberg, Banjanin, Burden, Steele (2024.06.01.596487v1.54) 2020; 17
Cao, Simon, Wei, Sheikh (2024.06.01.596487v1.27) 2017
Ebers, Williams, Steele, Kutz (2024.06.01.596487v1.2) 2023
Bakarji, Champion, Kutz, Brunton (2024.06.01.596487v1.81) 2022
Braveman (2024.06.01.596487v1.14) 2006; 27
Weiss, Timko, Gallagher, Yoneda, Schreiber (2024.06.01.596487v1.24) 2016
Okoro (2024.06.01.596487v1.9) 2018; 67
Zhang, Li, Zhang, Shahabi, Xia, Deng, Alshurafa (2024.06.01.596487v1.21) 2022; 22
Kingma, Ba (2024.06.01.596487v1.53) 2014
Nweke, Teh, Alo, Mujtaba (2024.06.01.596487v1.42) 2018
Rebula, Ojeda, Adamczyk, Kuo (2024.06.01.596487v1.7) 2013; 38
Mahmood, Ghorbani, Troje, Pons-Moll, Black (2024.06.01.596487v1.83) 2019
Yu, Hesthaven (2024.06.01.596487v1.51) 2019; 57
Abdi, Williams (2024.06.01.596487v1.64) 2010; 2
Von Marcard, Rosenhahn, Black, Pons-Moll (2024.06.01.596487v1.31) 2017; 36
Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (2024.06.01.596487v1.78) 2008; 28
Ramamurthy, Roy (2024.06.01.596487v1.23) 2018; 8
Rapp, Shin, Thomsen, Ferber, Halilaj (2024.06.01.596487v1.40) 2021; 116
Lu, Chang (2024.06.01.596487v1.58) 2012; 28
Hartman (2024.06.01.596487v1.79) 2002
Spomer, Yan, Schwartz, Steele (2024.06.01.596487v1.61) 2023; 129
Luštrek, Kaluža (2024.06.01.596487v1.35) 2009; 33
Mollyn, Arakawa, Goel, Harrison, Ahuja (2024.06.01.596487v1.84) 2023
Takayanagi, Sudo, Yamashiro, Lee, Kobayashi, Niki, Shimada (2024.06.01.596487v1.68) 2019; 9
van Veen, Montefiori, Modenese, Mazzà, Viceconti (2024.06.01.596487v1.4) 2019; 97
Hewett, Myer, Ford, Heidt, Colosimo, McLean, Van den Bogert, Paterno, Succop (2024.06.01.596487v1.8) 2005; 33
Biswas, Cranny, Gupta, Maharatna, Achner, Klemke, Jöbges, Ortmann (2024.06.01.596487v1.26) 2015; 40
Mathis, Mamidanna, Cury, Abe, Murthy, Mathis, Bethge (2024.06.01.596487v1.29) 2018; 21
Lopez-Nava, Munoz-Melendez (2024.06.01.596487v1.19) 2016; 16
Cieza, Causey, Kamenov, Hanson, Chatterji, Vos (2024.06.01.596487v1.10) 2020; 396
King, Villeneuve, White, Sherratt, Holderbaum, Harwin (2024.06.01.596487v1.43) 2017; 42
Williams, Zahn, Kutz (2024.06.01.596487v1.1) 2023
Ceseracciu, Sawacha, Cobelli (2024.06.01.596487v1.12) 2014; 9
Fang, Li, Tang, Xu, Zhu, Xiu, Li, Lu (2024.06.01.596487v1.28) 2022
Findlow, Goulermas, Nester, Howard, Kenney (2024.06.01.596487v1.46) 2008; 28
Myers, Laz, Shelburne, Judd, Winters, Stevens-Lapsley, Davidson (2024.06.01.596487v1.5) 2019; 93
Hussain, Hussain, Haq, Azam (2024.06.01.596487v1.37) 2019; 19
Austin (2024.06.01.596487v1.73) 2001
Hamill, van Emmerik, Heiderscheit, Li (2024.06.01.596487v1.74) 1999; 14
Inman, Ralston, Todd (2024.06.01.596487v1.3) 1981
Manohar, Brunton, Kutz, Brunton (2024.06.01.596487v1.48) 2018; 38
Hicks, Uchida, Seth, Rajagopal, Delp (2024.06.01.596487v1.56) 2015; 137
Shema-Shiratzky, Hillel, Mirelman, Regev, Hsieh, Karni, Devos, Sosnoff, Hausdorff (2024.06.01.596487v1.70) 2020; 267
Ribeiro, Matos, Santos, Cardoso (2024.06.01.596487v1.30) 2020; 20
Rajagopal, Kidziński, McGlaughlin, Hicks, Delp, Schwartz (2024.06.01.596487v1.55) 2018; 8
Rau, Disselhorst-Klug, Schmidt (2024.06.01.596487v1.57) 2000; 33
Pearson (2024.06.01.596487v1.62) 1901; 2
Van Wouwe, Lee, Falisse, Delp, Liu (2024.06.01.596487v1.66) 2023
Tsinganos, Skodras (2024.06.01.596487v1.41) 2018; 18
Wouda, Giuberti, Bellusci, Veltink (2024.06.01.596487v1.34) 2016; 16
Ingraham, Ferris, Remy (2024.06.01.596487v1.59) 2019; 126
Geissinger, Asbeck (2024.06.01.596487v1.45) 2020; 20
Homayounfar, Andrew (2024.06.01.596487v1.18) 2020; 25
Picerno (2024.06.01.596487v1.11) 2017; 51
Wold, Esbensen, Geladi (2024.06.01.596487v1.63) 1987; 2
Werling, Bianco, Raitor, Stingel, Hicks, Collins, Delp, Liu (2024.06.01.596487v1.67) 2023; 18
Attal, Mohammed, Dedabrishvili, Chamroukhi, Oukhellou, Amirat (2024.06.01.596487v1.22) 2015; 15
Erichson, Mathelin, Yao, Brunton, Mahoney, Kutz (2024.06.01.596487v1.52) 2020; 476
Hartley (2024.06.01.596487v1.13) 2004; 94
Santos, Endo, Monteiro, Rocha Silva, Lynn (2024.06.01.596487v1.36) 2019; 19
Huang, Kaufmann, Aksan, Black, Hilliges, Pons-Moll (2024.06.01.596487v1.32) 2018; 37
Benson, Räisänen, Clermont, Ferber (2024.06.01.596487v1.60) 2022; 22
Schwarz, Mateus, Navab (2024.06.01.596487v1.33) 2009
De Vries, Veeger, Baten, Van Der Helm (2024.06.01.596487v1.20) 2009; 29
Callaham, Maeda, Brunton (2024.06.01.596487v1.50) 2019; 4
Arnold, Blemker, Delp (2024.06.01.596487v1.77) 2001; 29
Bolton, Zanna (2024.06.01.596487v1.49) 2019; 11
Decker, Torry, Noonan, Sterett, Steadman (2024.06.01.596487v1.6) 2004; 85
McGrath, Stirling (2024.06.01.596487v1.17) 2022; 22
References_xml – year: 1996
  ident: 2024.06.01.596487v1.75
  article-title: Nonlinear dynamics of human locomotion: from the perspective of dynamical systems theory
  publication-title: in Engineering Systems Design and Analysis Conference
– volume: 40
  start-page: 59
  year: 2015
  end-page: 76
  ident: 2024.06.01.596487v1.26
  article-title: Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification
  publication-title: Human movement science
– year: 2022
  ident: 2024.06.01.596487v1.81
  article-title: Discovering governing equations from partial measurements with deep delay autoen-coders
  publication-title: arXiv preprint
– volume: 67
  year: 2018
  ident: 2024.06.01.596487v1.9
  article-title: Prevalence of disabilities and health care access by disability status and type among adults—united states, 2016
  publication-title: MMWR. Morbidity and mortality weekly report
– volume: 22
  start-page: 1722
  issue: 5
  year: 2022
  ident: 2024.06.01.596487v1.60
  article-title: Is this the real life, or is this just laboratory? a scoping review of imu-based running gait analysis
  publication-title: Sensors
– volume: 21
  start-page: 1281
  issue: 9
  year: 2018
  end-page: 1289
  ident: 2024.06.01.596487v1.29
  article-title: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning
  publication-title: Nature neuroscience
– start-page: 366
  year: 2006
  end-page: 381
  ident: 2024.06.01.596487v1.82
  publication-title: in Dynamical Systems and Turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80
– year: 1981
  ident: 2024.06.01.596487v1.3
  publication-title: Human walking
– volume: 116
  start-page: 110229
  year: 2021
  ident: 2024.06.01.596487v1.40
  article-title: Estimation of kinematics from inertial measurement units using a combined deep learning and optimization framework
  publication-title: Journal of Biomechanics
– start-page: 426
  year: 2016
  end-page: 429
  ident: 2024.06.01.596487v1.24
  publication-title: in 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)
– volume: 37
  start-page: 1
  issue: 6
  year: 2018
  end-page: 15
  ident: 2024.06.01.596487v1.32
  article-title: Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 26
  start-page: 35
  issue: 3
  year: 2007
  end-page: es
  ident: 2024.06.01.596487v1.44
  article-title: Practical motion capture in everyday surroundings
  publication-title: ACM transactions on graphics (TOG)
– volume: 97
  start-page: 109368
  year: 2019
  ident: 2024.06.01.596487v1.4
  article-title: Muscle recruitment strategies can reduce joint loading during level walking
  publication-title: Journal of biomechanics
– volume: 20
  start-page: 6383
  issue: 21
  year: 2020
  ident: 2024.06.01.596487v1.30
  article-title: Machine learning improvements to human motion tracking with imus
  publication-title: Sensors
– volume: 19
  start-page: 4528
  issue: 12
  year: 2019
  end-page: 4536
  ident: 2024.06.01.596487v1.37
  article-title: Activity-aware fall detection and recognition based on wearable sensors
  publication-title: IEEE Sensors Journal
– volume: 16
  start-page: 2138
  issue: 12
  year: 2016
  ident: 2024.06.01.596487v1.34
  article-title: Estimation of full-body poses using only five inertial sensors: an eager or lazy learning approach?
  publication-title: Sensors
– volume: 126
  start-page: 717
  issue: 3
  year: 2019
  end-page: 729
  ident: 2024.06.01.596487v1.59
  article-title: Evaluating physiological signal salience for estimating metabolic energy cost from wearable sensors
  publication-title: Journal of applied physiology
– volume: 267
  start-page: 1912
  year: 2020
  end-page: 1921
  ident: 2024.06.01.596487v1.70
  article-title: A wearable sensor identifies alterations in community ambulation in multiple sclerosis: contributors to real-world gait quality and physical activity
  publication-title: Journal of neurology
– start-page: 159
  year: 2009
  end-page: 172
  ident: 2024.06.01.596487v1.33
  publication-title: in Modelling the Physiological Human: 3D Physiological Human Workshop, 3DPH 2009, Zermatt, Switzerland, November 29–December 2, 2009. Proceedings
– volume: 36
  start-page: 349
  year: 2017
  end-page: 360
  ident: 2024.06.01.596487v1.31
  publication-title: in Computer graphics forum
– volume: 13
  start-page: 54
  year: 2019
  ident: 2024.06.01.596487v1.76
  article-title: Simcp: A simulation platform to predict gait performance following orthopedic intervention in children with cerebral palsy
  publication-title: Frontiers in neurorobotics
– volume: 396
  start-page: 2006
  issue: 10267
  year: 2020
  end-page: 2017
  ident: 2024.06.01.596487v1.10
  article-title: Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019
  publication-title: The Lancet
– volume: 94
  start-page: 1675
  issue: 10
  year: 2004
  end-page: 1678
  ident: 2024.06.01.596487v1.13
  article-title: Rural health disparities, population health, and rural culture
  publication-title: American journal of public health
– volume: 29
  start-page: 263
  year: 2001
  end-page: 274
  ident: 2024.06.01.596487v1.77
  article-title: Evaluation of a deformable musculoskeletal model for estimating muscle–tendon lengths during crouch gait
  publication-title: Annals of biomedical engineering
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 11
  ident: 2024.06.01.596487v1.55
  article-title: Estimating the effect size of surgery to improve walking in children with cerebral palsy from retrospective observational clinical data
  publication-title: Scientific reports
– volume: 85
  start-page: 848
  issue: 5
  year: 2004
  end-page: 856
  ident: 2024.06.01.596487v1.6
  article-title: Gait retraining after anterior cruciate ligament reconstruction
  publication-title: Archives of physical medicine and rehabilitation
– volume: 12
  start-page: e0177136
  issue: 5
  year: 2017
  ident: 2024.06.01.596487v1.38
  article-title: Gait asymmetry, ankle spasticity, and depression as independent predictors of falls in ambulatory stroke patients
  publication-title: PloS one
– volume: 4
  start-page: 103907
  issue: 10
  year: 2019
  ident: 2024.06.01.596487v1.50
  article-title: Robust flow reconstruction from limited measurements via sparse representation
  publication-title: Physical Review Fluids
– start-page: 22
  year: 2018
  end-page: 26
  ident: 2024.06.01.596487v1.42
  article-title: Analysis of multi-sensor fusion for mobile and wearable sensor based human activity recognition
  publication-title: in Proceedings of the international conference on data processing and applications
– volume: 29
  start-page: 535
  issue: 4
  year: 2009
  end-page: 541
  ident: 2024.06.01.596487v1.20
  article-title: Magnetic distortion in motion labs, implications for validating inertial magnetic sensors
  publication-title: Gait & posture
– start-page: 1
  year: 2019
  end-page: 4
  ident: 2024.06.01.596487v1.71
  publication-title: in 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN)
– volume: 137
  issue: 2
  year: 2015
  ident: 2024.06.01.596487v1.56
  article-title: Is my model good enough? best practices for verification and validation of musculoskeletal models and simulations of movement
  publication-title: Journal of biomechanical engineering
– volume: 51
  start-page: 239
  year: 2017
  end-page: 246
  ident: 2024.06.01.596487v1.11
  article-title: 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches
  publication-title: Gait & posture
– volume: 18
  start-page: e0295152
  issue: 11
  year: 2023
  ident: 2024.06.01.596487v1.67
  article-title: Addbiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization
  publication-title: Plos one
– volume: 54
  start-page: 883
  issue: 5
  year: 2007
  end-page: 890
  ident: 2024.06.01.596487v1.39
  article-title: Ambulatory position and orientation tracking fusing magnetic and inertial sensing
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 19
  start-page: 1644
  issue: 7
  year: 2019
  ident: 2024.06.01.596487v1.36
  article-title: Accelerometer-based human fall detection using convolutional neural networks
  publication-title: Sensors
– year: 2023
  ident: 2024.06.01.596487v1.1
  article-title: Sensing with shallow recurrent decoder networks
  publication-title: arXiv preprint
– volume: 16
  start-page: 7821
  issue: 22
  year: 2016
  end-page: 7834
  ident: 2024.06.01.596487v1.19
  article-title: Wearable inertial sensors for human motion analysis: A review
  publication-title: IEEE Sensors Journal
– start-page: 1
  year: 2023
  end-page: 12
  ident: 2024.06.01.596487v1.84
  article-title: Imuposer: Full-body pose estimation using imus in phones, watches, and earbuds
  publication-title: in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
– volume: 33
  start-page: 492
  issue: 4
  year: 2005
  end-page: 501
  ident: 2024.06.01.596487v1.8
  article-title: Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study
  publication-title: The American journal of sports medicine
– start-page: 5442
  year: 2019
  end-page: 5451
  ident: 2024.06.01.596487v1.83
  article-title: Amass: Archive of motion capture as surface shapes
  publication-title: in Proceedings of the IEEE/CVF international conference on computer vision
– volume: 18
  start-page: 592
  issue: 2
  year: 2018
  ident: 2024.06.01.596487v1.41
  article-title: On the comparison of wearable sensor data fusion to a single sensor machine learning technique in fall detection
  publication-title: Sensors
– volume: 105
  start-page: 233
  year: 2018
  end-page: 261
  ident: 2024.06.01.596487v1.25
  article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges
  publication-title: Expert Systems with Applications
– year: 2022
  ident: 2024.06.01.596487v1.28
  article-title: Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2013
  ident: 2024.06.01.596487v1.15
  publication-title: “Human motion analysis with wearable inertial sensors,”
– volume: 33
  issue: 2
  year: 2009
  ident: 2024.06.01.596487v1.35
  article-title: Fall detection and activity recognition with machine learning
  publication-title: Informatica
– volume: 8
  start-page: e1254
  issue: 4
  year: 2018
  ident: 2024.06.01.596487v1.23
  article-title: Recent trends in machine learning for human activity recognition—a survey
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 5
  start-page: 3
  issue: 1
  year: 2016
  end-page: 13
  ident: 2024.06.01.596487v1.72
  article-title: Comparing dynamical systems concepts and techniques for biomechanical analysis
  publication-title: Journal of sport and health science
– volume: 10
  start-page: 5645
  issue: 23
  year: 2021
  ident: 2024.06.01.596487v1.16
  article-title: Applications of wearable technology in a real-life setting in people with knee osteoarthritis: A systematic scoping review
  publication-title: Journal of Clinical Medicine
– volume: 129
  start-page: 984
  issue: 5
  year: 2023
  end-page: 998
  ident: 2024.06.01.596487v1.61
  article-title: Motor control complexity can be dynamically simplified during gait pattern exploration using motor control-based biofeedback
  publication-title: Journal of neuro-physiology
– start-page: 7291
  year: 2017
  end-page: 7299
  ident: 2024.06.01.596487v1.27
  article-title: Realtime multi-person 2d pose estimation using part affinity fields
  publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 11
  start-page: 376
  issue: 1
  year: 2019
  end-page: 399
  ident: 2024.06.01.596487v1.49
  article-title: Applications of deep learning to ocean data inference and subgrid parameterization
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 29
  start-page: 360
  issue: 3
  year: 2009
  end-page: 369
  ident: 2024.06.01.596487v1.47
  article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review
  publication-title: Gait & posture
– volume: 15
  start-page: 31 314
  issue: 12
  year: 2015
  end-page: 31 338
  ident: 2024.06.01.596487v1.22
  article-title: Physical human activity recognition using wearable sensors
  publication-title: Sensors
– volume: 17
  start-page: 20200487
  issue: 171
  year: 2020
  ident: 2024.06.01.596487v1.54
  article-title: Predicting walking response to ankle exoskeletons using data-driven models
  publication-title: Journal of the Royal Society Interface
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  end-page: 572
  ident: 2024.06.01.596487v1.62
  article-title: Liii. on lines and planes of closest fit to systems of points in space
  publication-title: The London, Edinburgh, and Dublin philosophical magazine and journal of science
– volume: 57
  start-page: 482
  issue: 2
  year: 2019
  end-page: 498
  ident: 2024.06.01.596487v1.51
  article-title: Flowfield reconstruction method using artificial neural network
  publication-title: Aiaa Journal
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  end-page: 459
  ident: 2024.06.01.596487v1.64
  article-title: Principal component analysis
  publication-title: Wiley interdisciplinary reviews: computational statistics
– volume: 14
  start-page: 297
  issue: 5
  year: 1999
  end-page: 308
  ident: 2024.06.01.596487v1.74
  article-title: A dynamical systems approach to lower extremity running injuries
  publication-title: Clinical biomechanics
– volume: 2
  start-page: 37
  issue: 1-3
  year: 1987
  end-page: 52
  ident: 2024.06.01.596487v1.63
  article-title: Principal component analysis
  publication-title: Chemometrics and intelligent laboratory systems
– volume: 20
  start-page: 6330
  issue: 21
  year: 2020
  ident: 2024.06.01.596487v1.45
  article-title: Motion inference using sparse inertial sensors, self-supervised learning, and a new dataset of unscripted human motion
  publication-title: Sensors
– volume: 42
  start-page: 1
  year: 2017
  end-page: 12
  ident: 2024.06.01.596487v1.43
  article-title: Application of data fusion techniques and technologies for wearable health monitoring
  publication-title: Medical engineering & physics
– year: 2014
  ident: 2024.06.01.596487v1.53
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint
– year: 2023
  ident: 2024.06.01.596487v1.66
  article-title: Diffusion inertial poser: Human motion reconstruction from arbitrary sparse imu configurations
  publication-title: arXiv preprint
– volume: 477
  start-page: 20210097
  issue: 2254
  year: 2021
  ident: 2024.06.01.596487v1.80
  article-title: Structured time-delay models for dynamical systems with connections to frenet–serret frame
  publication-title: Proceedings of the Royal Society A
– volume: 38
  start-page: 63
  issue: 3
  year: 2018
  end-page: 86
  ident: 2024.06.01.596487v1.48
  article-title: Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
  publication-title: IEEE Control Systems Magazine
– volume: 28
  start-page: 358
  issue: 3
  year: 2008
  end-page: 365
  ident: 2024.06.01.596487v1.78
  article-title: Personalized mr-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
  publication-title: Gait & posture
– volume: 28
  start-page: 120
  issue: 1
  year: 2008
  end-page: 126
  ident: 2024.06.01.596487v1.46
  article-title: Predicting lower limb joint kinematics using wearable motion sensors
  publication-title: Gait & posture
– year: 2023
  ident: 2024.06.01.596487v1.2
  article-title: Leveraging arbitrary mobile sensor trajectories with shallow recurrent decoder networks for full-state reconstruction
  publication-title: arXiv preprint
– volume: 33
  start-page: 1207
  issue: 10
  year: 2000
  end-page: 1216
  ident: 2024.06.01.596487v1.57
  article-title: Movement biomechanics goes upwards: from the leg to the arm
  publication-title: Journal of biomechanics
– volume: 9
  start-page: e87640
  issue: 3
  year: 2014
  ident: 2024.06.01.596487v1.12
  article-title: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept
  publication-title: PloS one
– volume: 27
  start-page: 167
  year: 2006
  end-page: 194
  ident: 2024.06.01.596487v1.14
  article-title: Health disparities and health equity: concepts and measurement
  publication-title: Annu. Rev. Public Health
– volume: 93
  start-page: 18
  year: 2019
  end-page: 27
  ident: 2024.06.01.596487v1.5
  article-title: Simulated hip abductor strengthening reduces peak joint contact forces in patients with total hip arthroplasty
  publication-title: Journal of biomechanics
– volume: 476
  start-page: 20200097
  issue: 2238
  year: 2020
  ident: 2024.06.01.596487v1.52
  article-title: Shallow neural networks for fluid flow reconstruction with limited sensors
  publication-title: Proceedings of the Royal Society A
– volume: 9
  start-page: 3496
  issue: 1
  year: 2019
  ident: 2024.06.01.596487v1.68
  article-title: Relationship between daily and in-laboratory gait speed among healthy community-dwelling older adults
  publication-title: Scientific reports
– volume: 38
  start-page: 974
  issue: 4
  year: 2013
  end-page: 980
  ident: 2024.06.01.596487v1.7
  article-title: Measurement of foot placement and its variability with inertial sensors
  publication-title: Gait & posture
– volume: 22
  start-page: 1476
  issue: 4
  year: 2022
  ident: 2024.06.01.596487v1.21
  article-title: Deep learning in human activity recognition with wearable sensors: A review on advances
  publication-title: Sensors
– volume: 28
  start-page: S13
  year: 2012
  end-page: S25
  ident: 2024.06.01.596487v1.58
  article-title: Biomechanics of human movement and its clinical applications
  publication-title: The Kaohsiung journal of medical sciences
– year: 2017
  ident: 2024.06.01.596487v1.65
  article-title: Total capture: 3d human pose estimation fusing video and inertial sensors
  publication-title: in 2017 British Machine Vision Conference (BMVC)
– year: 2002
  ident: 2024.06.01.596487v1.79
  publication-title: corrected reprint of the second (1982) edition [
– volume: 22
  start-page: 2544
  issue: 7
  year: 2022
  ident: 2024.06.01.596487v1.17
  article-title: Body-worn imu-based human hip and knee kinematics estimation during treadmill walking
  publication-title: Sensors
– volume: 13
  start-page: 1
  year: 2016
  end-page: 12
  ident: 2024.06.01.596487v1.69
  article-title: Freeliving gait characteristics in ageing and parkinson’s disease: impact of environment and ambulatory bout length
  publication-title: Journal of neuroengineering and rehabilitation
– volume: 25
  start-page: 9
  issue: 1
  year: 2020
  end-page: 24
  ident: 2024.06.01.596487v1.18
  article-title: Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges
  publication-title: SLAS TECHNOLOGY: Translating Life Sciences Innovation
– year: 2001
  ident: 2024.06.01.596487v1.73
  publication-title: “Motor control of human gait: A dynamic systems perspective,”
SSID ssj0002961374
Score 1.8736848
SecondaryResourceType preprint
Snippet Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Systems Biology
Title Human motion data expansion from arbitrary sparse sensors with shallow recurrent decoders
URI https://www.ncbi.nlm.nih.gov/pubmed/38895371
https://www.proquest.com/docview/3070802596
https://www.biorxiv.org/content/10.1101/2024.06.01.596487
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDm2_ooK3hNyeax2b0qLUVoKWKhnsK-Ar00ZdNq_ffOJFE8KHjJIWSzMLsz882bkHsrVJbyLA6KwoKBAiA3EJGygU6sioVVRoRYOzyZ8vE8eVqkix-jvjCtUi9Lv1u-1XF8TNgG6dswd8jQVk_qhptskEoOaHufdOFKRTi1YbQYfLtXIgl6KkvaOOavKwHxtjv9jS5rLTM6It2ZWjt_TPbc6oQcNGMiP07Ja-1pp83AHYo5ndTtgIvR0UWxPoQqr5d1_TwFAeErRyuwTktfUXSz0goHppTv1KNvHbsxUeuwlN1XZ2Q-Gr48joN2JEKgGYoDU1gbaxtq7QoZS67RPS-14oDMLNcqSrhJeCKNAlUuuGEZKzKTSAWManlo4nPSWZUrd0koWC6FUJFzUVTAGRmtUqa0ECxzTKcq65G7ljz5uml8kSMJc8yDY3lDQvjmi3A5XEuMNaiVK7dVjqJEAJ6SvEcuGop-_yYWQqZxxq7-scM1OcR3dXJWfEM6G791twADNrpPug_D6ey5Xx88PKezySf-M7BE
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagFYKNN-VpJNZUcZw49oyoCrQVQyuVKbJjR-qSVEkL5d9zl4ROIDHnYensu_vu8z0IebBSx5GIuZdlFgIUALmeDLT1TGg1l1an0sfa4fFEDGfhyzyat4Rb1aZVmkVRbhYf9T0-JmyD9W2U22cYq4d1w03Wj5QAtN1HmnqXdOFcMUzpGsz7W44lUOCs4rC9zPz1c4C97XJ_Q8za1QwOSfdNL115RHZcfkz2mlmRXyfkvabbaTN1h2JiJ3UbUGVkuygWiVBdmkVdRE_BSpSVoxWEqEVZUeRaaYVTU4pPWiLBji2ZqHVYz15Wp2Q2eJo-Dr12LoJnGNqENLOWG-sb4zLFlTDI0SujBcAzK4wOQpGGIlSpBn8uRcpilsVpqDRoqxV-ys9IJy9yd0EohC-Z1IFzQZDBRqVGR0wbKVnsmIl03CP3rXiSZdP9IkERJpgMx5JGhPDOj-ASOJt44aBzV6yrBO2JBFClRI-cNxLd_oZLqSIes8t_rHBH9ofT8SgZPU9er8gBPq-ztfg16azKtbsBXLAyt_XmfwM85bJ1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgFYgbO2U1EtdEcRbHPgNR2aoeqFROkR07Ui9JlbRQ_p6ZJFQcQOKcyJbG4_GbNxshN0aoOOJx4OS5AQcFQK4jfGUcHRoVCKMy4WHt8MuIDyfh4zSa_qiFwbRKPSur1ey9ieNjwjZY3_Zyewx99bBpuMncSHJA2y7S1O7c5JukD7rFULOTqbvmWXwJD1YcdgHNX5cA6Ntt-TfMbJ6bZJf0x2puqz2yYYt9stXOi_w8IG8N5U7byTsUkzupXcF1RsaLYqEIVZWeNYX0FCxFVVtag5taVjVFvpXWODml_KAVkuzYlokaizXtVX1IJsn96-3Q6WYjOJqhXchyYwJtPK1tLgPJNfL0UisOEM1wrfyQZyEPZabgTRc8YzHL4yyUCm6s4V4WHJFeURb2hFBwYXKhfGt9P4fDyrSKmNJCsNgyHal4QK478aTztgNGiiJMMSGOpa0I4Z9vwaWgnxh0UIUtl3WKNkUAsJJ8QI5bia6XCYSQURCz03_scEW2x3dJ-vwwejojO_i5SdgKzklvUS3tBUCDhb5szv4L8YGzhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+motion+data+expansion+from+arbitrary+sparse+sensors+with+shallow+recurrent+decoders&rft.jtitle=bioRxiv&rft.au=Ebers%2C+Megan+R&rft.au=Pitts%2C+Mackenzie&rft.au=Kutz%2C+J+Nathan&rft.au=Steele%2C+Katherine+M&rft.date=2024-06-03&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.06.01.596487&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon