Human motion data expansion from arbitrary sparse sensors with shallow recurrent decoders
Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of senso...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory
03.06.2024
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2024.06.01.596487 |
Cover
Abstract | Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual's unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates. |
---|---|
AbstractList | Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual’s unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates. Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual's unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates.Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes. Notably, this mapping leverages sensor time histories to inform the transformation from sparse to dense sensor configurations. We apply this mapping architecture to a variety of datasets, including controlled movement tasks, gait pattern exploration, and free-moving environments. Additionally, this mapping can be subject-specific (based on an individual's unique data for deployment at home and in the community) or group-based (where data from a large group are used to learn a general movement model and predict outcomes for unknown subjects). By expanding our datasets to unmeasured or unavailable quantities, this work can impact clinical trials, robotic/device control, and human performance by improving the accuracy and availability of digital biomarker estimates. |
Author | Pitts, Mackenzie Kutz, J Nathan Steele, Katherine M Ebers, Megan R |
Author_xml | – sequence: 1 givenname: Megan R orcidid: 0000-0001-9227-2203 surname: Ebers fullname: Ebers, Megan R – sequence: 2 givenname: Mackenzie surname: Pitts fullname: Pitts, Mackenzie – sequence: 3 givenname: J Nathan surname: Kutz fullname: Kutz, J Nathan – sequence: 4 givenname: Katherine M orcidid: 0000-0002-4128-9387 surname: Steele fullname: Steele, Katherine M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38895371$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkDtPwzAUhS1UREvpD2BBHlkSrh3HsUdUAUWqxAIDU-RX1KAkLnZCy78nVXlN91zp09HRd44mne8cQpcEUkKA3FCgLAWeAklzyZkoTtCMckkTQSGf_MtTtIjxDQCo5CQr2BmaZkLIPCvIDL2uhlZ1uPV97TtsVa-w229VFw9vFXyLVdB1H1T4xHGrQnQ4ui76EPGu7jc4blTT-B0OzgwhuK7H1hlvXYgX6LRSTXSL7ztHL_d3z8tVsn56eFzerhNNhCgSU1mbaQtau0pmkmsyLpVacWC55VpRxg3jTBpFSS64IQWpCsOkAiYsB5PN0fWxV9c-7OuPchvqdpxbHgSVwEsg5VHQH7oN_n1wsS_bOhrXNKpzfohlBgUIoCM9olff6KBbZ39Lf8xlXxr7cig |
ContentType | Journal Article Paper |
Copyright | 2024, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2024, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. |
DOI | 10.1101/2024.06.01.596487 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2024.06.01.596487v1 38895371 |
Genre | Journal Article Preprint |
GroupedDBID | NPM 7X8 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PQGLB PROAC PUEGO RHI FX. |
ID | FETCH-LOGICAL-b1887-cfdd3bd0bbef9396b10009ba6045d6ba246c4649ca21586c171f7c49a048d60c3 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:49:30 EST 2025 Thu Sep 04 16:51:48 EDT 2025 Mon Jul 21 05:49:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | wearable sensors sparse sensing machine learning motion inference gait analysis |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1887-cfdd3bd0bbef9396b10009ba6045d6ba246c4649ca21586c171f7c49a048d60c3 |
Notes | ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0001-9227-2203 0000-0002-4128-9387 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2024.06.01.596487 |
PMID | 38895371 |
PQID | 3070802596 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | biorxiv_primary_2024_06_01_596487 proquest_miscellaneous_3070802596 pubmed_primary_38895371 |
PublicationCentury | 2000 |
PublicationDate | 2024-Jun-03 20240603 |
PublicationDateYYYYMMDD | 2024-06-03 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-Jun-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2024 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | McGinley, Baker, Wolfe, Morris (2024.06.01.596487v1.47) 2009; 29 Trumble, Gilbert, Malleson, Hilton, Collomosse (2024.06.01.596487v1.65) 2017 Van Emmerik, Ducharme, Amado, Hamill (2024.06.01.596487v1.72) 2016; 5 Chen (2024.06.01.596487v1.15) 2013 Hirsh, Ichinaga, Brunton, Kutz, Brunton (2024.06.01.596487v1.80) 2021; 477 Roetenberg, Slycke, Veltink (2024.06.01.596487v1.39) 2007; 54 Basdogan, Amirouche (2024.06.01.596487v1.75) 1996 Wei, Liu, Chang, Liu (2024.06.01.596487v1.38) 2017; 12 Vlasic, Adelsberger, Vannucci, Barnwell, Gross, Matusik, Popović (2024.06.01.596487v1.44) 2007; 26 Cudejko, Button, Willott, Al-Amri (2024.06.01.596487v1.16) 2021; 10 Gurchiek, Choquette, Beynnon, Slauterbeck, Tourville, Toth, McGinnis (2024.06.01.596487v1.71) 2019 Nweke, Teh, Al-Garadi, Alo (2024.06.01.596487v1.25) 2018; 105 Del Din, Godfrey, Galna, Lord, Rochester (2024.06.01.596487v1.69) 2016; 13 Takens (2024.06.01.596487v1.82) 2006 Pitto, Kainz, Falisse, Wesseling, Van Rossom, Hoang, Papageorgiou, Hallemans, Desloovere, Molenaers (2024.06.01.596487v1.76) 2019; 13 Rosenberg, Banjanin, Burden, Steele (2024.06.01.596487v1.54) 2020; 17 Cao, Simon, Wei, Sheikh (2024.06.01.596487v1.27) 2017 Ebers, Williams, Steele, Kutz (2024.06.01.596487v1.2) 2023 Bakarji, Champion, Kutz, Brunton (2024.06.01.596487v1.81) 2022 Braveman (2024.06.01.596487v1.14) 2006; 27 Weiss, Timko, Gallagher, Yoneda, Schreiber (2024.06.01.596487v1.24) 2016 Okoro (2024.06.01.596487v1.9) 2018; 67 Zhang, Li, Zhang, Shahabi, Xia, Deng, Alshurafa (2024.06.01.596487v1.21) 2022; 22 Kingma, Ba (2024.06.01.596487v1.53) 2014 Nweke, Teh, Alo, Mujtaba (2024.06.01.596487v1.42) 2018 Rebula, Ojeda, Adamczyk, Kuo (2024.06.01.596487v1.7) 2013; 38 Mahmood, Ghorbani, Troje, Pons-Moll, Black (2024.06.01.596487v1.83) 2019 Yu, Hesthaven (2024.06.01.596487v1.51) 2019; 57 Abdi, Williams (2024.06.01.596487v1.64) 2010; 2 Von Marcard, Rosenhahn, Black, Pons-Moll (2024.06.01.596487v1.31) 2017; 36 Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (2024.06.01.596487v1.78) 2008; 28 Ramamurthy, Roy (2024.06.01.596487v1.23) 2018; 8 Rapp, Shin, Thomsen, Ferber, Halilaj (2024.06.01.596487v1.40) 2021; 116 Lu, Chang (2024.06.01.596487v1.58) 2012; 28 Hartman (2024.06.01.596487v1.79) 2002 Spomer, Yan, Schwartz, Steele (2024.06.01.596487v1.61) 2023; 129 Luštrek, Kaluža (2024.06.01.596487v1.35) 2009; 33 Mollyn, Arakawa, Goel, Harrison, Ahuja (2024.06.01.596487v1.84) 2023 Takayanagi, Sudo, Yamashiro, Lee, Kobayashi, Niki, Shimada (2024.06.01.596487v1.68) 2019; 9 van Veen, Montefiori, Modenese, Mazzà, Viceconti (2024.06.01.596487v1.4) 2019; 97 Hewett, Myer, Ford, Heidt, Colosimo, McLean, Van den Bogert, Paterno, Succop (2024.06.01.596487v1.8) 2005; 33 Biswas, Cranny, Gupta, Maharatna, Achner, Klemke, Jöbges, Ortmann (2024.06.01.596487v1.26) 2015; 40 Mathis, Mamidanna, Cury, Abe, Murthy, Mathis, Bethge (2024.06.01.596487v1.29) 2018; 21 Lopez-Nava, Munoz-Melendez (2024.06.01.596487v1.19) 2016; 16 Cieza, Causey, Kamenov, Hanson, Chatterji, Vos (2024.06.01.596487v1.10) 2020; 396 King, Villeneuve, White, Sherratt, Holderbaum, Harwin (2024.06.01.596487v1.43) 2017; 42 Williams, Zahn, Kutz (2024.06.01.596487v1.1) 2023 Ceseracciu, Sawacha, Cobelli (2024.06.01.596487v1.12) 2014; 9 Fang, Li, Tang, Xu, Zhu, Xiu, Li, Lu (2024.06.01.596487v1.28) 2022 Findlow, Goulermas, Nester, Howard, Kenney (2024.06.01.596487v1.46) 2008; 28 Myers, Laz, Shelburne, Judd, Winters, Stevens-Lapsley, Davidson (2024.06.01.596487v1.5) 2019; 93 Hussain, Hussain, Haq, Azam (2024.06.01.596487v1.37) 2019; 19 Austin (2024.06.01.596487v1.73) 2001 Hamill, van Emmerik, Heiderscheit, Li (2024.06.01.596487v1.74) 1999; 14 Inman, Ralston, Todd (2024.06.01.596487v1.3) 1981 Manohar, Brunton, Kutz, Brunton (2024.06.01.596487v1.48) 2018; 38 Hicks, Uchida, Seth, Rajagopal, Delp (2024.06.01.596487v1.56) 2015; 137 Shema-Shiratzky, Hillel, Mirelman, Regev, Hsieh, Karni, Devos, Sosnoff, Hausdorff (2024.06.01.596487v1.70) 2020; 267 Ribeiro, Matos, Santos, Cardoso (2024.06.01.596487v1.30) 2020; 20 Rajagopal, Kidziński, McGlaughlin, Hicks, Delp, Schwartz (2024.06.01.596487v1.55) 2018; 8 Rau, Disselhorst-Klug, Schmidt (2024.06.01.596487v1.57) 2000; 33 Pearson (2024.06.01.596487v1.62) 1901; 2 Van Wouwe, Lee, Falisse, Delp, Liu (2024.06.01.596487v1.66) 2023 Tsinganos, Skodras (2024.06.01.596487v1.41) 2018; 18 Wouda, Giuberti, Bellusci, Veltink (2024.06.01.596487v1.34) 2016; 16 Ingraham, Ferris, Remy (2024.06.01.596487v1.59) 2019; 126 Geissinger, Asbeck (2024.06.01.596487v1.45) 2020; 20 Homayounfar, Andrew (2024.06.01.596487v1.18) 2020; 25 Picerno (2024.06.01.596487v1.11) 2017; 51 Wold, Esbensen, Geladi (2024.06.01.596487v1.63) 1987; 2 Werling, Bianco, Raitor, Stingel, Hicks, Collins, Delp, Liu (2024.06.01.596487v1.67) 2023; 18 Attal, Mohammed, Dedabrishvili, Chamroukhi, Oukhellou, Amirat (2024.06.01.596487v1.22) 2015; 15 Erichson, Mathelin, Yao, Brunton, Mahoney, Kutz (2024.06.01.596487v1.52) 2020; 476 Hartley (2024.06.01.596487v1.13) 2004; 94 Santos, Endo, Monteiro, Rocha Silva, Lynn (2024.06.01.596487v1.36) 2019; 19 Huang, Kaufmann, Aksan, Black, Hilliges, Pons-Moll (2024.06.01.596487v1.32) 2018; 37 Benson, Räisänen, Clermont, Ferber (2024.06.01.596487v1.60) 2022; 22 Schwarz, Mateus, Navab (2024.06.01.596487v1.33) 2009 De Vries, Veeger, Baten, Van Der Helm (2024.06.01.596487v1.20) 2009; 29 Callaham, Maeda, Brunton (2024.06.01.596487v1.50) 2019; 4 Arnold, Blemker, Delp (2024.06.01.596487v1.77) 2001; 29 Bolton, Zanna (2024.06.01.596487v1.49) 2019; 11 Decker, Torry, Noonan, Sterett, Steadman (2024.06.01.596487v1.6) 2004; 85 McGrath, Stirling (2024.06.01.596487v1.17) 2022; 22 |
References_xml | – year: 1996 ident: 2024.06.01.596487v1.75 article-title: Nonlinear dynamics of human locomotion: from the perspective of dynamical systems theory publication-title: in Engineering Systems Design and Analysis Conference – volume: 40 start-page: 59 year: 2015 end-page: 76 ident: 2024.06.01.596487v1.26 article-title: Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification publication-title: Human movement science – year: 2022 ident: 2024.06.01.596487v1.81 article-title: Discovering governing equations from partial measurements with deep delay autoen-coders publication-title: arXiv preprint – volume: 67 year: 2018 ident: 2024.06.01.596487v1.9 article-title: Prevalence of disabilities and health care access by disability status and type among adults—united states, 2016 publication-title: MMWR. Morbidity and mortality weekly report – volume: 22 start-page: 1722 issue: 5 year: 2022 ident: 2024.06.01.596487v1.60 article-title: Is this the real life, or is this just laboratory? a scoping review of imu-based running gait analysis publication-title: Sensors – volume: 21 start-page: 1281 issue: 9 year: 2018 end-page: 1289 ident: 2024.06.01.596487v1.29 article-title: Deeplabcut: markerless pose estimation of user-defined body parts with deep learning publication-title: Nature neuroscience – start-page: 366 year: 2006 end-page: 381 ident: 2024.06.01.596487v1.82 publication-title: in Dynamical Systems and Turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80 – year: 1981 ident: 2024.06.01.596487v1.3 publication-title: Human walking – volume: 116 start-page: 110229 year: 2021 ident: 2024.06.01.596487v1.40 article-title: Estimation of kinematics from inertial measurement units using a combined deep learning and optimization framework publication-title: Journal of Biomechanics – start-page: 426 year: 2016 end-page: 429 ident: 2024.06.01.596487v1.24 publication-title: in 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) – volume: 37 start-page: 1 issue: 6 year: 2018 end-page: 15 ident: 2024.06.01.596487v1.32 article-title: Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time publication-title: ACM Transactions on Graphics (TOG) – volume: 26 start-page: 35 issue: 3 year: 2007 end-page: es ident: 2024.06.01.596487v1.44 article-title: Practical motion capture in everyday surroundings publication-title: ACM transactions on graphics (TOG) – volume: 97 start-page: 109368 year: 2019 ident: 2024.06.01.596487v1.4 article-title: Muscle recruitment strategies can reduce joint loading during level walking publication-title: Journal of biomechanics – volume: 20 start-page: 6383 issue: 21 year: 2020 ident: 2024.06.01.596487v1.30 article-title: Machine learning improvements to human motion tracking with imus publication-title: Sensors – volume: 19 start-page: 4528 issue: 12 year: 2019 end-page: 4536 ident: 2024.06.01.596487v1.37 article-title: Activity-aware fall detection and recognition based on wearable sensors publication-title: IEEE Sensors Journal – volume: 16 start-page: 2138 issue: 12 year: 2016 ident: 2024.06.01.596487v1.34 article-title: Estimation of full-body poses using only five inertial sensors: an eager or lazy learning approach? publication-title: Sensors – volume: 126 start-page: 717 issue: 3 year: 2019 end-page: 729 ident: 2024.06.01.596487v1.59 article-title: Evaluating physiological signal salience for estimating metabolic energy cost from wearable sensors publication-title: Journal of applied physiology – volume: 267 start-page: 1912 year: 2020 end-page: 1921 ident: 2024.06.01.596487v1.70 article-title: A wearable sensor identifies alterations in community ambulation in multiple sclerosis: contributors to real-world gait quality and physical activity publication-title: Journal of neurology – start-page: 159 year: 2009 end-page: 172 ident: 2024.06.01.596487v1.33 publication-title: in Modelling the Physiological Human: 3D Physiological Human Workshop, 3DPH 2009, Zermatt, Switzerland, November 29–December 2, 2009. Proceedings – volume: 36 start-page: 349 year: 2017 end-page: 360 ident: 2024.06.01.596487v1.31 publication-title: in Computer graphics forum – volume: 13 start-page: 54 year: 2019 ident: 2024.06.01.596487v1.76 article-title: Simcp: A simulation platform to predict gait performance following orthopedic intervention in children with cerebral palsy publication-title: Frontiers in neurorobotics – volume: 396 start-page: 2006 issue: 10267 year: 2020 end-page: 2017 ident: 2024.06.01.596487v1.10 article-title: Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019 publication-title: The Lancet – volume: 94 start-page: 1675 issue: 10 year: 2004 end-page: 1678 ident: 2024.06.01.596487v1.13 article-title: Rural health disparities, population health, and rural culture publication-title: American journal of public health – volume: 29 start-page: 263 year: 2001 end-page: 274 ident: 2024.06.01.596487v1.77 article-title: Evaluation of a deformable musculoskeletal model for estimating muscle–tendon lengths during crouch gait publication-title: Annals of biomedical engineering – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 11 ident: 2024.06.01.596487v1.55 article-title: Estimating the effect size of surgery to improve walking in children with cerebral palsy from retrospective observational clinical data publication-title: Scientific reports – volume: 85 start-page: 848 issue: 5 year: 2004 end-page: 856 ident: 2024.06.01.596487v1.6 article-title: Gait retraining after anterior cruciate ligament reconstruction publication-title: Archives of physical medicine and rehabilitation – volume: 12 start-page: e0177136 issue: 5 year: 2017 ident: 2024.06.01.596487v1.38 article-title: Gait asymmetry, ankle spasticity, and depression as independent predictors of falls in ambulatory stroke patients publication-title: PloS one – volume: 4 start-page: 103907 issue: 10 year: 2019 ident: 2024.06.01.596487v1.50 article-title: Robust flow reconstruction from limited measurements via sparse representation publication-title: Physical Review Fluids – start-page: 22 year: 2018 end-page: 26 ident: 2024.06.01.596487v1.42 article-title: Analysis of multi-sensor fusion for mobile and wearable sensor based human activity recognition publication-title: in Proceedings of the international conference on data processing and applications – volume: 29 start-page: 535 issue: 4 year: 2009 end-page: 541 ident: 2024.06.01.596487v1.20 article-title: Magnetic distortion in motion labs, implications for validating inertial magnetic sensors publication-title: Gait & posture – start-page: 1 year: 2019 end-page: 4 ident: 2024.06.01.596487v1.71 publication-title: in 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN) – volume: 137 issue: 2 year: 2015 ident: 2024.06.01.596487v1.56 article-title: Is my model good enough? best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: Journal of biomechanical engineering – volume: 51 start-page: 239 year: 2017 end-page: 246 ident: 2024.06.01.596487v1.11 article-title: 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches publication-title: Gait & posture – volume: 18 start-page: e0295152 issue: 11 year: 2023 ident: 2024.06.01.596487v1.67 article-title: Addbiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization publication-title: Plos one – volume: 54 start-page: 883 issue: 5 year: 2007 end-page: 890 ident: 2024.06.01.596487v1.39 article-title: Ambulatory position and orientation tracking fusing magnetic and inertial sensing publication-title: IEEE Transactions on Biomedical Engineering – volume: 19 start-page: 1644 issue: 7 year: 2019 ident: 2024.06.01.596487v1.36 article-title: Accelerometer-based human fall detection using convolutional neural networks publication-title: Sensors – year: 2023 ident: 2024.06.01.596487v1.1 article-title: Sensing with shallow recurrent decoder networks publication-title: arXiv preprint – volume: 16 start-page: 7821 issue: 22 year: 2016 end-page: 7834 ident: 2024.06.01.596487v1.19 article-title: Wearable inertial sensors for human motion analysis: A review publication-title: IEEE Sensors Journal – start-page: 1 year: 2023 end-page: 12 ident: 2024.06.01.596487v1.84 article-title: Imuposer: Full-body pose estimation using imus in phones, watches, and earbuds publication-title: in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems – volume: 33 start-page: 492 issue: 4 year: 2005 end-page: 501 ident: 2024.06.01.596487v1.8 article-title: Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study publication-title: The American journal of sports medicine – start-page: 5442 year: 2019 end-page: 5451 ident: 2024.06.01.596487v1.83 article-title: Amass: Archive of motion capture as surface shapes publication-title: in Proceedings of the IEEE/CVF international conference on computer vision – volume: 18 start-page: 592 issue: 2 year: 2018 ident: 2024.06.01.596487v1.41 article-title: On the comparison of wearable sensor data fusion to a single sensor machine learning technique in fall detection publication-title: Sensors – volume: 105 start-page: 233 year: 2018 end-page: 261 ident: 2024.06.01.596487v1.25 article-title: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges publication-title: Expert Systems with Applications – year: 2022 ident: 2024.06.01.596487v1.28 article-title: Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2013 ident: 2024.06.01.596487v1.15 publication-title: “Human motion analysis with wearable inertial sensors,” – volume: 33 issue: 2 year: 2009 ident: 2024.06.01.596487v1.35 article-title: Fall detection and activity recognition with machine learning publication-title: Informatica – volume: 8 start-page: e1254 issue: 4 year: 2018 ident: 2024.06.01.596487v1.23 article-title: Recent trends in machine learning for human activity recognition—a survey publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 5 start-page: 3 issue: 1 year: 2016 end-page: 13 ident: 2024.06.01.596487v1.72 article-title: Comparing dynamical systems concepts and techniques for biomechanical analysis publication-title: Journal of sport and health science – volume: 10 start-page: 5645 issue: 23 year: 2021 ident: 2024.06.01.596487v1.16 article-title: Applications of wearable technology in a real-life setting in people with knee osteoarthritis: A systematic scoping review publication-title: Journal of Clinical Medicine – volume: 129 start-page: 984 issue: 5 year: 2023 end-page: 998 ident: 2024.06.01.596487v1.61 article-title: Motor control complexity can be dynamically simplified during gait pattern exploration using motor control-based biofeedback publication-title: Journal of neuro-physiology – start-page: 7291 year: 2017 end-page: 7299 ident: 2024.06.01.596487v1.27 article-title: Realtime multi-person 2d pose estimation using part affinity fields publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 11 start-page: 376 issue: 1 year: 2019 end-page: 399 ident: 2024.06.01.596487v1.49 article-title: Applications of deep learning to ocean data inference and subgrid parameterization publication-title: Journal of Advances in Modeling Earth Systems – volume: 29 start-page: 360 issue: 3 year: 2009 end-page: 369 ident: 2024.06.01.596487v1.47 article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review publication-title: Gait & posture – volume: 15 start-page: 31 314 issue: 12 year: 2015 end-page: 31 338 ident: 2024.06.01.596487v1.22 article-title: Physical human activity recognition using wearable sensors publication-title: Sensors – volume: 17 start-page: 20200487 issue: 171 year: 2020 ident: 2024.06.01.596487v1.54 article-title: Predicting walking response to ankle exoskeletons using data-driven models publication-title: Journal of the Royal Society Interface – volume: 2 start-page: 559 issue: 11 year: 1901 end-page: 572 ident: 2024.06.01.596487v1.62 article-title: Liii. on lines and planes of closest fit to systems of points in space publication-title: The London, Edinburgh, and Dublin philosophical magazine and journal of science – volume: 57 start-page: 482 issue: 2 year: 2019 end-page: 498 ident: 2024.06.01.596487v1.51 article-title: Flowfield reconstruction method using artificial neural network publication-title: Aiaa Journal – volume: 2 start-page: 433 issue: 4 year: 2010 end-page: 459 ident: 2024.06.01.596487v1.64 article-title: Principal component analysis publication-title: Wiley interdisciplinary reviews: computational statistics – volume: 14 start-page: 297 issue: 5 year: 1999 end-page: 308 ident: 2024.06.01.596487v1.74 article-title: A dynamical systems approach to lower extremity running injuries publication-title: Clinical biomechanics – volume: 2 start-page: 37 issue: 1-3 year: 1987 end-page: 52 ident: 2024.06.01.596487v1.63 article-title: Principal component analysis publication-title: Chemometrics and intelligent laboratory systems – volume: 20 start-page: 6330 issue: 21 year: 2020 ident: 2024.06.01.596487v1.45 article-title: Motion inference using sparse inertial sensors, self-supervised learning, and a new dataset of unscripted human motion publication-title: Sensors – volume: 42 start-page: 1 year: 2017 end-page: 12 ident: 2024.06.01.596487v1.43 article-title: Application of data fusion techniques and technologies for wearable health monitoring publication-title: Medical engineering & physics – year: 2014 ident: 2024.06.01.596487v1.53 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint – year: 2023 ident: 2024.06.01.596487v1.66 article-title: Diffusion inertial poser: Human motion reconstruction from arbitrary sparse imu configurations publication-title: arXiv preprint – volume: 477 start-page: 20210097 issue: 2254 year: 2021 ident: 2024.06.01.596487v1.80 article-title: Structured time-delay models for dynamical systems with connections to frenet–serret frame publication-title: Proceedings of the Royal Society A – volume: 38 start-page: 63 issue: 3 year: 2018 end-page: 86 ident: 2024.06.01.596487v1.48 article-title: Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns publication-title: IEEE Control Systems Magazine – volume: 28 start-page: 358 issue: 3 year: 2008 end-page: 365 ident: 2024.06.01.596487v1.78 article-title: Personalized mr-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths publication-title: Gait & posture – volume: 28 start-page: 120 issue: 1 year: 2008 end-page: 126 ident: 2024.06.01.596487v1.46 article-title: Predicting lower limb joint kinematics using wearable motion sensors publication-title: Gait & posture – year: 2023 ident: 2024.06.01.596487v1.2 article-title: Leveraging arbitrary mobile sensor trajectories with shallow recurrent decoder networks for full-state reconstruction publication-title: arXiv preprint – volume: 33 start-page: 1207 issue: 10 year: 2000 end-page: 1216 ident: 2024.06.01.596487v1.57 article-title: Movement biomechanics goes upwards: from the leg to the arm publication-title: Journal of biomechanics – volume: 9 start-page: e87640 issue: 3 year: 2014 ident: 2024.06.01.596487v1.12 article-title: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept publication-title: PloS one – volume: 27 start-page: 167 year: 2006 end-page: 194 ident: 2024.06.01.596487v1.14 article-title: Health disparities and health equity: concepts and measurement publication-title: Annu. Rev. Public Health – volume: 93 start-page: 18 year: 2019 end-page: 27 ident: 2024.06.01.596487v1.5 article-title: Simulated hip abductor strengthening reduces peak joint contact forces in patients with total hip arthroplasty publication-title: Journal of biomechanics – volume: 476 start-page: 20200097 issue: 2238 year: 2020 ident: 2024.06.01.596487v1.52 article-title: Shallow neural networks for fluid flow reconstruction with limited sensors publication-title: Proceedings of the Royal Society A – volume: 9 start-page: 3496 issue: 1 year: 2019 ident: 2024.06.01.596487v1.68 article-title: Relationship between daily and in-laboratory gait speed among healthy community-dwelling older adults publication-title: Scientific reports – volume: 38 start-page: 974 issue: 4 year: 2013 end-page: 980 ident: 2024.06.01.596487v1.7 article-title: Measurement of foot placement and its variability with inertial sensors publication-title: Gait & posture – volume: 22 start-page: 1476 issue: 4 year: 2022 ident: 2024.06.01.596487v1.21 article-title: Deep learning in human activity recognition with wearable sensors: A review on advances publication-title: Sensors – volume: 28 start-page: S13 year: 2012 end-page: S25 ident: 2024.06.01.596487v1.58 article-title: Biomechanics of human movement and its clinical applications publication-title: The Kaohsiung journal of medical sciences – year: 2017 ident: 2024.06.01.596487v1.65 article-title: Total capture: 3d human pose estimation fusing video and inertial sensors publication-title: in 2017 British Machine Vision Conference (BMVC) – year: 2002 ident: 2024.06.01.596487v1.79 publication-title: corrected reprint of the second (1982) edition [ – volume: 22 start-page: 2544 issue: 7 year: 2022 ident: 2024.06.01.596487v1.17 article-title: Body-worn imu-based human hip and knee kinematics estimation during treadmill walking publication-title: Sensors – volume: 13 start-page: 1 year: 2016 end-page: 12 ident: 2024.06.01.596487v1.69 article-title: Freeliving gait characteristics in ageing and parkinson’s disease: impact of environment and ambulatory bout length publication-title: Journal of neuroengineering and rehabilitation – volume: 25 start-page: 9 issue: 1 year: 2020 end-page: 24 ident: 2024.06.01.596487v1.18 article-title: Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges publication-title: SLAS TECHNOLOGY: Translating Life Sciences Innovation – year: 2001 ident: 2024.06.01.596487v1.73 publication-title: “Motor control of human gait: A dynamic systems perspective,” |
SSID | ssj0002961374 |
Score | 1.8736848 |
SecondaryResourceType | preprint |
Snippet | Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning... |
SourceID | biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Systems Biology |
Title | Human motion data expansion from arbitrary sparse sensors with shallow recurrent decoders |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38895371 https://www.proquest.com/docview/3070802596 https://www.biorxiv.org/content/10.1101/2024.06.01.596487 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDm2_ooK3hNyeax2b0qLUVoKWKhnsK-Ar00ZdNq_ffOJFE8KHjJIWSzMLsz882bkHsrVJbyLA6KwoKBAiA3EJGygU6sioVVRoRYOzyZ8vE8eVqkix-jvjCtUi9Lv1u-1XF8TNgG6dswd8jQVk_qhptskEoOaHufdOFKRTi1YbQYfLtXIgl6KkvaOOavKwHxtjv9jS5rLTM6It2ZWjt_TPbc6oQcNGMiP07Ja-1pp83AHYo5ndTtgIvR0UWxPoQqr5d1_TwFAeErRyuwTktfUXSz0goHppTv1KNvHbsxUeuwlN1XZ2Q-Gr48joN2JEKgGYoDU1gbaxtq7QoZS67RPS-14oDMLNcqSrhJeCKNAlUuuGEZKzKTSAWManlo4nPSWZUrd0koWC6FUJFzUVTAGRmtUqa0ECxzTKcq65G7ljz5uml8kSMJc8yDY3lDQvjmi3A5XEuMNaiVK7dVjqJEAJ6SvEcuGop-_yYWQqZxxq7-scM1OcR3dXJWfEM6G791twADNrpPug_D6ey5Xx88PKezySf-M7BE |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagFYKNN-VpJNZUcZw49oyoCrQVQyuVKbJjR-qSVEkL5d9zl4ROIDHnYensu_vu8z0IebBSx5GIuZdlFgIUALmeDLT1TGg1l1an0sfa4fFEDGfhyzyat4Rb1aZVmkVRbhYf9T0-JmyD9W2U22cYq4d1w03Wj5QAtN1HmnqXdOFcMUzpGsz7W44lUOCs4rC9zPz1c4C97XJ_Q8za1QwOSfdNL115RHZcfkz2mlmRXyfkvabbaTN1h2JiJ3UbUGVkuygWiVBdmkVdRE_BSpSVoxWEqEVZUeRaaYVTU4pPWiLBji2ZqHVYz15Wp2Q2eJo-Dr12LoJnGNqENLOWG-sb4zLFlTDI0SujBcAzK4wOQpGGIlSpBn8uRcpilsVpqDRoqxV-ys9IJy9yd0EohC-Z1IFzQZDBRqVGR0wbKVnsmIl03CP3rXiSZdP9IkERJpgMx5JGhPDOj-ASOJt44aBzV6yrBO2JBFClRI-cNxLd_oZLqSIes8t_rHBH9ofT8SgZPU9er8gBPq-ztfg16azKtbsBXLAyt_XmfwM85bJ1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgFYgbO2U1EtdEcRbHPgNR2aoeqFROkR07Ui9JlbRQ_p6ZJFQcQOKcyJbG4_GbNxshN0aoOOJx4OS5AQcFQK4jfGUcHRoVCKMy4WHt8MuIDyfh4zSa_qiFwbRKPSur1ey9ieNjwjZY3_Zyewx99bBpuMncSHJA2y7S1O7c5JukD7rFULOTqbvmWXwJD1YcdgHNX5cA6Ntt-TfMbJ6bZJf0x2puqz2yYYt9stXOi_w8IG8N5U7byTsUkzupXcF1RsaLYqEIVZWeNYX0FCxFVVtag5taVjVFvpXWODml_KAVkuzYlokaizXtVX1IJsn96-3Q6WYjOJqhXchyYwJtPK1tLgPJNfL0UisOEM1wrfyQZyEPZabgTRc8YzHL4yyUCm6s4V4WHJFeURb2hFBwYXKhfGt9P4fDyrSKmNJCsNgyHal4QK478aTztgNGiiJMMSGOpa0I4Z9vwaWgnxh0UIUtl3WKNkUAsJJ8QI5bia6XCYSQURCz03_scEW2x3dJ-vwwejojO_i5SdgKzklvUS3tBUCDhb5szv4L8YGzhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+motion+data+expansion+from+arbitrary+sparse+sensors+with+shallow+recurrent+decoders&rft.jtitle=bioRxiv&rft.au=Ebers%2C+Megan+R&rft.au=Pitts%2C+Mackenzie&rft.au=Kutz%2C+J+Nathan&rft.au=Steele%2C+Katherine+M&rft.date=2024-06-03&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.06.01.596487&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |