Hypersensitivity of the vimentin cytoskeleton to net-charge states and Coulomb repulsion

As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassem...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Unger, Bret A, Wu, Chun Ying, Choi, Alexander A, He, Changdong, Xu, Ke
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory 11.07.2024
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.
AbstractList As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.
As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.
Author Unger, Bret A
Wu, Chun Ying
He, Changdong
Xu, Ke
Choi, Alexander A
Author_xml – sequence: 1
  givenname: Bret A
  surname: Unger
  fullname: Unger, Bret A
  organization: University of California, Berkeley, California 94720, United States
– sequence: 2
  givenname: Chun Ying
  surname: Wu
  fullname: Wu, Chun Ying
  organization: University of California, Berkeley, California 94720, United States
– sequence: 3
  givenname: Alexander A
  surname: Choi
  fullname: Choi, Alexander A
  organization: University of California, Berkeley, California 94720, United States
– sequence: 4
  givenname: Changdong
  surname: He
  fullname: He, Changdong
  organization: University of California, Berkeley, California 94720, United States
– sequence: 5
  givenname: Ke
  orcidid: 0000-0002-2788-194X
  surname: Xu
  fullname: Xu, Ke
  organization: University of California, Berkeley, California 94720, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39026705$$D View this record in MEDLINE/PubMed
BookMark eNpVkEtLxDAUhYMoPkZ_gBvJ0s2MN0nTtCuRwRcIbhTchaS9daJtUpt0cP69I-Nzc--Fc-7h8B2QbR88EnLMYMYYsDMOPJuBmkExy4FLKbfIPs9LPi04yO0_9x45ivEFAHiZM6GyXbInSuC5ArlPnm5WPQ4RfXTJLV1a0dDQtEC6dB365DytVinEV2wxBU9ToB7TtFqY4RlpTCZhpMbXdB7GNnSWDtiPbXTBH5KdxrQRj772hDxeXT7Mb6Z399e384u7qWVFIddTFXmVlU1mmeAGrM0Uz6xAC9Iy1uSlYFBYXjKJvMlk3SgAUYNUDEoGtZiQ801uP9oO62pdejCt7gfXmWGlg3H6v-LdQj-HpWaMSyXXRCbkdJNgXRje3fLn95OwBqWh0BvCv9Z-CG8jxqQ7FytsW-MxjFELKHguQIBaW0_-9voJ_UYvPgBw0Yfe
ContentType Journal Article
Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
5PM
DOI 10.1101/2024.07.08.602555
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID PMC11257561
2024.07.08.602555v1
39026705
Genre Journal Article
Preprint
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM149349
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
HCIFZ
LK8
M7P
NPM
NQS
PIMPY
PROAC
RHI
7X8
CCPQU
PHGZM
PHGZT
FX.
5PM
PQGLB
ID FETCH-LOGICAL-b1885-b1786c49f4b132a0bb4724b3eb05b11f693108b2915e2f45df7003d05710910d3
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Thu Aug 21 18:32:54 EDT 2025
Tue Jan 07 18:51:29 EST 2025
Thu Jul 10 18:49:44 EDT 2025
Wed Feb 19 02:09:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1885-b1786c49f4b132a0bb4724b3eb05b11f693108b2915e2f45df7003d05710910d3
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-2788-194X
OpenAccessLink https://www.biorxiv.org/content/10.1101/2024.07.08.602555
PMID 39026705
PQID 3082630307
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11257561
biorxiv_primary_2024_07_08_602555
proquest_miscellaneous_3082630307
pubmed_primary_39026705
PublicationCentury 2000
PublicationDate 2024-Jul-11
20240711
PublicationDateYYYYMMDD 2024-07-11
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Yoon, Leube (2024.07.08.602555v1.39) 2019; 63
Duarte, Viedma-Poyatos, Navarro-Carrasco, Martínez, Pajares, Pérez-Sala (2024.07.08.602555v1.52) 2019; 10
Hol, Capetanaki (2024.07.08.602555v1.4) 2017; 9
Sokolova Anna, Kreplak, Wedig, Mücke, Svergun Dmitri, Herrmann, Aebi, Sergei (2024.07.08.602555v1.28) 2006; 103
Xiang, Chen, Yan, Li, Xu (2024.07.08.602555v1.14) 2020; 17
Rust, Bates, Zhuang (2024.07.08.602555v1.11) 2006; 3
Denz, Marschall, Herrmann, Köster (2024.07.08.602555v1.33) 2021; 17
Kraxner, Lorenz, Menzel, Parfentev, Silbern, Denz, Urlaub, Schwappach, Köster (2024.07.08.602555v1.34) 2021; 13
Lowery, Kuczmarski, Herrmann, Goldman (2024.07.08.602555v1.2) 2015; 290
Xiang, Yan, Chen, Li, Xu (2024.07.08.602555v1.16) 2023; 23
Klymkowsky (2024.07.08.602555v1.40) 1982; 1
Zlotek-Zlotkiewicz, Monnier, Cappello, Le Berre, Piel (2024.07.08.602555v1.49) 2015; 211
Vallina Estrada, Zhang, Wennerström, Danielsson, Oliveberg (2024.07.08.602555v1.35) 2023; 81
Rosevear, McReynolds, Goldman (2024.07.08.602555v1.51) 1990; 17
Xu, Zhong, Zhuang (2024.07.08.602555v1.13) 2013; 339
Robert, Hookway, Gelfand (2024.07.08.602555v1.3) 2016; 38
Mücke, Wedig, Bürer, Marekov, Steinert, Langowski, Aebi, Herrmann (2024.07.08.602555v1.27) 2004; 340
Snider, Omary (2024.07.08.602555v1.43) 2014; 15
Stewart, Helenius, Toyoda, Ramanathan, Muller, Hyman (2024.07.08.602555v1.47) 2011; 469
Jacob, Coulombe, Kwan, Omary (2024.07.08.602555v1.38) 2018; 10
Schneider, Gibson, Otsuka, Spicer, Petrovic, Blaukopf, Langer, Batty, Nagaraju, Doolittle, Rosen, Gerlich (2024.07.08.602555v1.36) 2022; 609
Young, Carroad, Bell (2024.07.08.602555v1.18) 1980; 22
Moll, Franke, Schiller, Geiger, Krepler (2024.07.08.602555v1.37) 1982; 31
Wu, Shen, Wang, Herrmann, Goldman, Weitz (2024.07.08.602555v1.32) 2020; 119
Wojcik, Hauser, Li, Moon, Xu (2024.07.08.602555v1.54) 2015; 6
Liu, Poolman, Boersma (2024.07.08.602555v1.25) 2017; 12
Pan, Zhang, Hu, Yan, He, Li, Xu, Xu (2024.07.08.602555v1.9) 2019; 6
Huang, Wang, Bates, Zhuang (2024.07.08.602555v1.12) 2008; 319
Xiang, Chen, Xu (2024.07.08.602555v1.17) 2021; 15
Li, Gao, Zhang, Cheng, Eriksson, Etienne-Manneville, Jiu (2024.07.08.602555v1.8) 2019; 120
Yan, Chen, Xu (2024.07.08.602555v1.15) 2020; 142
Portet, Mücke, Kirmse, Langowski, Beil, Herrmann (2024.07.08.602555v1.29) 2009; 25
Molines, Lemière, Gazzola, Steinmark, Edrington, Hsu, Real-Calderon, Suhling, Goshima, Holt, Thery, Brouhard, Chang (2024.07.08.602555v1.24) 2022; 57
Herrmann, Aebi (2024.07.08.602555v1.10) 2016; 8
Sukenik, Ren, Gruebele (2024.07.08.602555v1.22) 2017; 114
Kuburich, den Hollander, Pietz, Mani (2024.07.08.602555v1.6) 2022; 86
Jalihal, Pitchiaya, Xiao, Bawa, Jiang, Bedi, Parolia, Cieslik, Ljungman, Chinnaiyan, Walter (2024.07.08.602555v1.23) 2020; 79
Olsen, Vermeulen, Santamaria, Kumar, Miller, Jensen, Gnad, Cox, Jensen, Nigg, Brunak, Mann (2024.07.08.602555v1.46) 2010; 3
Ip, Hartzer, Pang, Robson (2024.07.08.602555v1.26) 1985; 183
Boersma, Zuhorn, Poolman (2024.07.08.602555v1.21) 2015; 12
Taubenberger, Baum, Matthews (2024.07.08.602555v1.50) 2020; 8
Schepers, Lorenz, Köster (2024.07.08.602555v1.31) 2020; 12
Rölleke, Kumari, Meyer, Köster (2024.07.08.602555v1.7) 2023; 85
Son, Kang, Oh, Kirschner, Mitchison, Manalis (2024.07.08.602555v1.48) 2015; 211
Choi, Xiang, Li, Xu (2024.07.08.602555v1.20) 2023; 145
Yang, Wang (2024.07.08.602555v1.41) 2015; 38
Patteson, Carroll, Iwamoto, Janmey (2024.07.08.602555v1.5) 2021; 18
Tsujimura, Ogawara, Takeuchi, Imajoh-Ohmi, Ha, Inagaki (2024.07.08.602555v1.45) 1994; 269
Eriksson, He, Trejo-Skalli, Härmälä-Braskén, Hellman, Chou, Goldman (2024.07.08.602555v1.42) 2004; 117
Choi, Park, Chen, Yan, Li, Xu (2024.07.08.602555v1.19) 2022; 144
Lopez, Saldanha, Aufderhorst-Roberts, Martinez-Torres, Kuijs, Koenderink, Köster, Huber (2024.07.08.602555v1.30) 2018; 14
Herrmann, Bär, Kreplak, Strelkov, Aebi (2024.07.08.602555v1.1) 2007; 8
Kroger, Afeyan, Mraz, Eaton, Reinhardt, Khodor, Thiru, Bierie, Ye, Burge, Weinberg (2024.07.08.602555v1.53) 2019; 116
Chou, Bischoff, Beach, Goldman (2024.07.08.602555v1.44) 1990; 62
References_xml – volume: 18
  start-page: 011001
  year: 2021
  ident: 2024.07.08.602555v1.5
  article-title: The vimentin cytoskeleton: when polymer physics meets cell biology
  publication-title: Phys. Biol
– volume: 10
  start-page: a018275
  year: 2018
  ident: 2024.07.08.602555v1.38
  article-title: Types I and II keratin intermediate filaments
  publication-title: Cold Spring Harb. Perspect. Biol
– volume: 25
  start-page: 8817
  year: 2009
  end-page: 8823
  ident: 2024.07.08.602555v1.29
  article-title: Vimentin intermediate filament formation: in vitro measurement and mathematical modeling of the filament length distribution during assembly
  publication-title: Langmuir
– volume: 62
  start-page: 1063
  year: 1990
  end-page: 1071
  ident: 2024.07.08.602555v1.44
  article-title: Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin
  publication-title: Cell
– volume: 3
  start-page: ra3
  year: 2010
  ident: 2024.07.08.602555v1.46
  article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
  publication-title: Sci. Signal
– volume: 81
  start-page: 102625
  year: 2023
  ident: 2024.07.08.602555v1.35
  article-title: Diffusive intracellular interactions: On the role of protein net charge and functional adaptation
  publication-title: Curr. Opin. Struct. Biol
– volume: 211
  start-page: 765
  year: 2015
  end-page: 774
  ident: 2024.07.08.602555v1.49
  article-title: Optical volume and mass measurements show that mammalian cells swell during mitosis
  publication-title: J. Cell Biol
– volume: 23
  start-page: 1711
  year: 2023
  end-page: 1716
  ident: 2024.07.08.602555v1.16
  article-title: Single-molecule displacement mapping unveils sign-asymmetric protein charge effects on intraorganellar diffusion
  publication-title: Nano Lett
– volume: 12
  start-page: 15236
  year: 2020
  end-page: 15245
  ident: 2024.07.08.602555v1.31
  article-title: Tuning intermediate filament mechanics by variation of pH and ion charges
  publication-title: Nanoscale
– volume: 142
  start-page: 18866
  year: 2020
  end-page: 18873
  ident: 2024.07.08.602555v1.15
  article-title: Probing nanoscale diffusional heterogeneities in cellular membranes through multidimensional single-molecule and super-resolution microscopy
  publication-title: J. Am. Chem. Soc
– volume: 9
  start-page: a021642
  year: 2017
  ident: 2024.07.08.602555v1.4
  article-title: Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin
  publication-title: Cold Spring Harb. Perspect. Biol
– volume: 116
  start-page: 7353
  year: 2019
  end-page: 7362
  ident: 2024.07.08.602555v1.53
  article-title: Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 86
  start-page: 816
  year: 2022
  end-page: 826
  ident: 2024.07.08.602555v1.6
  article-title: Vimentin and cytokeratin: Good alone, bad together
  publication-title: Semin. Cancer Biol
– volume: 340
  start-page: 97
  year: 2004
  end-page: 114
  ident: 2024.07.08.602555v1.27
  article-title: Molecular and biophysical characterization of assembly-starter units of human vimentin
  publication-title: J. Mol. Biol
– volume: 3
  start-page: 793
  year: 2006
  end-page: 795
  ident: 2024.07.08.602555v1.11
  article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
  publication-title: Nat. Methods
– volume: 144
  start-page: 4839
  year: 2022
  end-page: 4844
  ident: 2024.07.08.602555v1.19
  article-title: Displacement statistics of unhindered single molecules show no enhanced diffusion in enzymatic reactions
  publication-title: J. Am. Chem. Soc
– volume: 22
  start-page: 947
  year: 1980
  end-page: 955
  ident: 2024.07.08.602555v1.18
  article-title: Estimation of diffusion coefficients of proteins
  publication-title: Biotechnol. Bioeng
– volume: 12
  start-page: 227
  year: 2015
  end-page: 229
  ident: 2024.07.08.602555v1.21
  article-title: A sensor for quantification of macromolecular crowding in living cells
  publication-title: Nat. Methods
– volume: 1
  start-page: 161
  year: 1982
  end-page: 165
  ident: 2024.07.08.602555v1.40
  article-title: Vimentin and keratin intermediate filament systems in cultured PtK2 epithelial cells are interrelated
  publication-title: EMBO J
– volume: 12
  start-page: 2510
  year: 2017
  end-page: 2514
  ident: 2024.07.08.602555v1.25
  article-title: Ionic Strength Sensing in Living Cells
  publication-title: ACS Chem. Biol
– volume: 38
  start-page: 232
  year: 2016
  end-page: 243
  ident: 2024.07.08.602555v1.3
  article-title: Intermediate filament dynamics: What we can see now and why it matters
  publication-title: Bioessays
– volume: 15
  start-page: 163
  year: 2014
  end-page: 177
  ident: 2024.07.08.602555v1.43
  article-title: Post-translational modifications of intermediate filament proteins: mechanisms and functions
  publication-title: Nat. Rev. Mol. Cell Biol
– volume: 13
  start-page: 380
  year: 2021
  end-page: 387
  ident: 2024.07.08.602555v1.34
  article-title: Post-translational modifications soften vimentin intermediate filaments
  publication-title: Nanoscale
– volume: 6
  start-page: 1900865
  year: 2019
  ident: 2024.07.08.602555v1.9
  article-title: Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release
  publication-title: Adv. Sci
– volume: 339
  start-page: 452
  year: 2013
  end-page: 456
  ident: 2024.07.08.602555v1.13
  article-title: Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons
  publication-title: Science
– volume: 469
  start-page: 226
  year: 2011
  end-page: 230
  ident: 2024.07.08.602555v1.47
  article-title: Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding
  publication-title: Nature
– volume: 17
  start-page: 524
  year: 2020
  end-page: 530
  ident: 2024.07.08.602555v1.14
  article-title: Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity
  publication-title: Nat. Methods
– volume: 57
  start-page: 466
  year: 2022
  end-page: 479
  ident: 2024.07.08.602555v1.24
  article-title: Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization
  publication-title: Dev. Cell
– volume: 114
  start-page: 6776
  year: 2017
  end-page: 6781
  ident: 2024.07.08.602555v1.22
  article-title: Weak protein-protein interactions in live cells are quantified by cell-volume modulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 79
  start-page: 978
  year: 2020
  end-page: 990
  ident: 2024.07.08.602555v1.23
  article-title: Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change
  publication-title: Molecular Cell
– volume: 63
  start-page: 521
  year: 2019
  end-page: 533
  ident: 2024.07.08.602555v1.39
  article-title: Keratin intermediate filaments: intermediaries of epithelial cell migration
  publication-title: Essays Biochem
– volume: 117
  start-page: 919
  year: 2004
  end-page: 932
  ident: 2024.07.08.602555v1.42
  article-title: Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments
  publication-title: J. Cell Sci
– volume: 290
  start-page: 17145
  year: 2015
  end-page: 17153
  ident: 2024.07.08.602555v1.2
  article-title: Intermediate filaments play a pivotal role in regulating cell architecture and function
  publication-title: J. Biol. Chem
– volume: 319
  start-page: 810
  year: 2008
  end-page: 813
  ident: 2024.07.08.602555v1.12
  article-title: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy
  publication-title: Science
– volume: 31
  start-page: 11
  year: 1982
  end-page: 24
  ident: 2024.07.08.602555v1.37
  article-title: The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells
  publication-title: Cell
– volume: 17
  start-page: 870
  year: 2021
  end-page: 878
  ident: 2024.07.08.602555v1.33
  article-title: Ion type and valency differentially drive vimentin tetramers into intermediate filaments or higher order assemblies
  publication-title: Soft Matter
– volume: 183
  start-page: 365
  year: 1985
  end-page: 375
  ident: 2024.07.08.602555v1.26
  article-title: Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments
  publication-title: J. Mol. Biol
– volume: 6
  start-page: 7384
  year: 2015
  ident: 2024.07.08.602555v1.54
  article-title: Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells
  publication-title: Nat. Commun
– volume: 609
  start-page: 183
  year: 2022
  end-page: 190
  ident: 2024.07.08.602555v1.36
  article-title: A mitotic chromatin phase transition prevents perforation by microtubules
  publication-title: Nature
– volume: 145
  start-page: 8510
  year: 2023
  end-page: 8516
  ident: 2024.07.08.602555v1.20
  article-title: Single-molecule displacement mapping indicates unhindered intracellular diffusion of small (≲1 kDa) solutes
  publication-title: J. Am. Chem. Soc
– volume: 119
  start-page: 55
  year: 2020
  end-page: 64
  ident: 2024.07.08.602555v1.32
  article-title: Effect of divalent cations on the structure and mechanics of vimentin intermediate filaments
  publication-title: Biophys. J
– volume: 85
  start-page: 102263
  year: 2023
  ident: 2024.07.08.602555v1.7
  article-title: The unique biomechanics of intermediate filaments – From single filaments to cells and tissues
  publication-title: Curr. Opin. Cell Biol
– volume: 38
  start-page: 364
  year: 2015
  end-page: 374
  ident: 2024.07.08.602555v1.41
  article-title: Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker
  publication-title: Trends Neurosci
– volume: 211
  start-page: 757
  year: 2015
  end-page: 763
  ident: 2024.07.08.602555v1.48
  article-title: Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis
  publication-title: J. Cell Biol
– volume: 15
  start-page: 12483
  year: 2021
  end-page: 12496
  ident: 2024.07.08.602555v1.17
  article-title: Single molecules are your quanta: A bottom-up approach toward multidimensional super-resolution microscopy
  publication-title: ACS Nano
– volume: 17
  start-page: 150
  year: 1990
  end-page: 166
  ident: 2024.07.08.602555v1.51
  article-title: Dynamic properties of intermediate filaments: Disassembly and reassembly during mitosis in baby hamster kidney cells
  publication-title: Cell Motility
– volume: 8
  start-page: a018242
  year: 2016
  ident: 2024.07.08.602555v1.10
  article-title: Intermediate filaments: structure and assembly
  publication-title: Cold Spring Harb. Perspect. Biol
– volume: 14
  start-page: 8445
  year: 2018
  end-page: 8454
  ident: 2024.07.08.602555v1.30
  article-title: Effect of ionic strength on the structure and elongational kinetics of vimentin filaments
  publication-title: Soft Matter
– volume: 103
  start-page: 16206
  year: 2006
  end-page: 16211
  ident: 2024.07.08.602555v1.28
  article-title: Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 8
  start-page: 562
  year: 2007
  end-page: 573
  ident: 2024.07.08.602555v1.1
  article-title: Intermediate filaments: from cell architecture to nanomechanics
  publication-title: Nat. Rev. Mol. Cell Biol
– volume: 269
  start-page: 31097
  year: 1994
  end-page: 31106
  ident: 2024.07.08.602555v1.45
  article-title: Visualization and function of vimentin phosphorylation by cdc2 kinase during mitosis
  publication-title: J Biol Chem
– volume: 8
  start-page: 687
  year: 2020
  ident: 2024.07.08.602555v1.50
  article-title: The mechanics of mitotic cell rounding
  publication-title: Front. Cell Dev. Biol
– volume: 10
  start-page: 4200
  year: 2019
  ident: 2024.07.08.602555v1.52
  article-title: Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division
  publication-title: Nat. Comm
– volume: 120
  start-page: 13168
  year: 2019
  end-page: 13176
  ident: 2024.07.08.602555v1.8
  article-title: Engagement of vimentin intermediate filaments in hypotonic stress
  publication-title: J. Cell. Biochem
SSID ssj0002961374
Score 1.8785154
SecondaryResourceType preprint
Snippet As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input....
SourceID pubmedcentral
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Biophysics
Title Hypersensitivity of the vimentin cytoskeleton to net-charge states and Coulomb repulsion
URI https://www.ncbi.nlm.nih.gov/pubmed/39026705
https://www.proquest.com/docview/3082630307
https://www.biorxiv.org/content/10.1101/2024.07.08.602555
https://pubmed.ncbi.nlm.nih.gov/PMC11257561
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Pa4MwFMfD1jLYbb_X_SgZ7GoxNsZ4XWkpg5UyVvAmRiOTbVr8Udb_fu-pK-3oYRcPmqg8krxPkpfvI-RRClPLSDMjdHhkAFKHhhKKGRq9iYwBUkM87_wyE9MFf_ZsbyvVF4ZVqiTLv5NVvY-PAdsw-jad22Q4V-e12qYcCMRh-5B0oUlxzNow8Qab5RXLBT_l8HYfc29NIN72S_vo8m-Q5JbXmZyQ7jxY6vyUHOj0jBw1aSPX58SbwuQxLzD0vMn9QLOYAsjRVS3Vn6Q0XJdZ8QEeBciOlhlNdWnUmkia1ieIChqkER1l1Wf2pWiul9UnrppdkMVk_DaaGm2GBEMxKW24OlKE3I25glllYCrFHYuroVamrRiLhQv0JpXlMltbMbej2IFeHAGjoR6oGQ0vSSfNUn1NaKyBs1EpxgbEUgGXLHal5EHIRWRZAe-Rh9Za_rLRwfDRor7p-Kb0G4tCmV87-tBKceshSHVWFT6K4oghDig9ctXYdfOaoYtZsEyoLXcsvimACti7T9LkvVbCBlgE3BTs5h8_d0uO8R6uyzJ2RzplXul7AIpS9Un3aTybv_brJvQDzGbHrw
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT4MwFMcb3WL05m_nz5p4ZaFQSjkvLlO3xcOW7EYolLg4YeHH4v573wNcnPHghUtbIC9t36evr98S8iCFqWWkmRG6PDIAqUNDCcUMjd5ExgCpIZ53Ho3FYMqfZ86sCbjlTVqlmqfZ53xV7eNjwjbMvvXgNhmu1Xmltim7AnHY6WKYepe0UegMU7r6s-4mxmJ54Kxc3mxm_tkcsLf53F-I-TtT8ofr6R-S9muw1NkR2dHJMdmr745cn5DZAFaQWY755_UFEDSNKdAcXVV6_fOEhusizd_BrQDe0SKliS6MShhJ0-oYUU6DJKK9tFykH4pmelkuMHR2Sqb9x0lvYDTXJBiKSenA05Ui5F7MFSwtA1Mp7lpc2VqZjmIsFh4gnFSWxxxtxdyJYheGcgSghqKgZmSfkVaSJvqC0FgDbKNcjAOcpQIuWexJyYOQi8iyAt4h9421_GUthuGjRX3T9U3p1xaFOt929KGr4v5DkOi0zH1UxhE2ziodcl7bdfMa28OrsExoLbcsvqmAMtjbJcn8rZLDBmIE5hTs8h8_d0f2B5PR0B8-jV-uyAGWY6CWsWvSKrJS3wBhFOq26kZfF_XK7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT4MwFMcb3aLx5m_nz5p4ZaGslHKekvlr2cEluxEKbVycsDBY3H_vezCXzXjwwqWlkJe279P29fsIuZPC1jLRzIo9nliA1LGlhGKWRm8iDUBqjPedX_uiN-RPI3e0dhcGwyrVOMu_xvPqHB8DtmH2rQe3zXCtziu1TdkWiMNuG7ep29PEbJMmip1hzw5G7dU-i-ODw_L48kDzzyYAfZef_Aszf0dLrrmfYJ80B9FU5wdkS6eHZKfOH7k4IqMerCLzGcag10kgaGYoEB2dV5r945TGiyKbfYBrAcSjRUZTXViVOJKm1VWiGY3ShHazcpJ9KprraTnB7bNjMgwe3ro9a5kqwVJMSheenhQx9w1XsLyMbKW453DV0cp2FWNG-IBxUjk-c7VjuJsYD4ZzArCGwqB20jkhjTRL9RmhRgNwo2SMC6ylIi6Z8aXkUcxF4jgRb5HbpbXCaS2IEaJFQ9sLbRnWFoU6P3YMobviGUSU6qychaiOIzo4s7TIaW3XVTMdH9Nh2fC23LD4qgJKYW-WpOP3ShIbqBG4U7Dzf_zcDdkd3Afhy2P_-YLsYTHu1TJ2SRpFXuorgIxCXVe96BscT8v9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypersensitivity+of+the+vimentin+cytoskeleton+to+net-charge+states+and+Coulomb+repulsion&rft.jtitle=bioRxiv&rft.au=Unger%2C+Bret+A&rft.au=Wu%2C+Chun+Ying&rft.au=Choi%2C+Alexander+A&rft.au=He%2C+Changdong&rft.date=2024-07-11&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.07.08.602555&rft_id=info%3Apmid%2F39026705&rft.externalDocID=39026705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon