Hypersensitivity of the vimentin cytoskeleton to net-charge states and Coulomb repulsion
As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassem...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory
11.07.2024
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions. |
---|---|
AbstractList | As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions. As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions. |
Author | Unger, Bret A Wu, Chun Ying He, Changdong Xu, Ke Choi, Alexander A |
Author_xml | – sequence: 1 givenname: Bret A surname: Unger fullname: Unger, Bret A organization: University of California, Berkeley, California 94720, United States – sequence: 2 givenname: Chun Ying surname: Wu fullname: Wu, Chun Ying organization: University of California, Berkeley, California 94720, United States – sequence: 3 givenname: Alexander A surname: Choi fullname: Choi, Alexander A organization: University of California, Berkeley, California 94720, United States – sequence: 4 givenname: Changdong surname: He fullname: He, Changdong organization: University of California, Berkeley, California 94720, United States – sequence: 5 givenname: Ke orcidid: 0000-0002-2788-194X surname: Xu fullname: Xu, Ke organization: University of California, Berkeley, California 94720, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39026705$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkEtLxDAUhYMoPkZ_gBvJ0s2MN0nTtCuRwRcIbhTchaS9daJtUpt0cP69I-Nzc--Fc-7h8B2QbR88EnLMYMYYsDMOPJuBmkExy4FLKbfIPs9LPi04yO0_9x45ivEFAHiZM6GyXbInSuC5ArlPnm5WPQ4RfXTJLV1a0dDQtEC6dB365DytVinEV2wxBU9ToB7TtFqY4RlpTCZhpMbXdB7GNnSWDtiPbXTBH5KdxrQRj772hDxeXT7Mb6Z399e384u7qWVFIddTFXmVlU1mmeAGrM0Uz6xAC9Iy1uSlYFBYXjKJvMlk3SgAUYNUDEoGtZiQ801uP9oO62pdejCt7gfXmWGlg3H6v-LdQj-HpWaMSyXXRCbkdJNgXRje3fLn95OwBqWh0BvCv9Z-CG8jxqQ7FytsW-MxjFELKHguQIBaW0_-9voJ_UYvPgBw0Yfe |
ContentType | Journal Article Paper |
Copyright | 2024, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2024, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. 5PM |
DOI | 10.1101/2024.07.08.602555 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | PMC11257561 2024.07.08.602555v1 39026705 |
Genre | Journal Article Preprint |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM149349 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI HCIFZ LK8 M7P NPM NQS PIMPY PROAC RHI 7X8 CCPQU PHGZM PHGZT FX. 5PM PQGLB |
ID | FETCH-LOGICAL-b1885-b1786c49f4b132a0bb4724b3eb05b11f693108b2915e2f45df7003d05710910d3 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Thu Aug 21 18:32:54 EDT 2025 Tue Jan 07 18:51:29 EST 2025 Thu Jul 10 18:49:44 EDT 2025 Wed Feb 19 02:09:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1885-b1786c49f4b132a0bb4724b3eb05b11f693108b2915e2f45df7003d05710910d3 |
Notes | ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0002-2788-194X |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2024.07.08.602555 |
PMID | 39026705 |
PQID | 3082630307 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11257561 biorxiv_primary_2024_07_08_602555 proquest_miscellaneous_3082630307 pubmed_primary_39026705 |
PublicationCentury | 2000 |
PublicationDate | 2024-Jul-11 20240711 |
PublicationDateYYYYMMDD | 2024-07-11 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2024 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Yoon, Leube (2024.07.08.602555v1.39) 2019; 63 Duarte, Viedma-Poyatos, Navarro-Carrasco, Martínez, Pajares, Pérez-Sala (2024.07.08.602555v1.52) 2019; 10 Hol, Capetanaki (2024.07.08.602555v1.4) 2017; 9 Sokolova Anna, Kreplak, Wedig, Mücke, Svergun Dmitri, Herrmann, Aebi, Sergei (2024.07.08.602555v1.28) 2006; 103 Xiang, Chen, Yan, Li, Xu (2024.07.08.602555v1.14) 2020; 17 Rust, Bates, Zhuang (2024.07.08.602555v1.11) 2006; 3 Denz, Marschall, Herrmann, Köster (2024.07.08.602555v1.33) 2021; 17 Kraxner, Lorenz, Menzel, Parfentev, Silbern, Denz, Urlaub, Schwappach, Köster (2024.07.08.602555v1.34) 2021; 13 Lowery, Kuczmarski, Herrmann, Goldman (2024.07.08.602555v1.2) 2015; 290 Xiang, Yan, Chen, Li, Xu (2024.07.08.602555v1.16) 2023; 23 Klymkowsky (2024.07.08.602555v1.40) 1982; 1 Zlotek-Zlotkiewicz, Monnier, Cappello, Le Berre, Piel (2024.07.08.602555v1.49) 2015; 211 Vallina Estrada, Zhang, Wennerström, Danielsson, Oliveberg (2024.07.08.602555v1.35) 2023; 81 Rosevear, McReynolds, Goldman (2024.07.08.602555v1.51) 1990; 17 Xu, Zhong, Zhuang (2024.07.08.602555v1.13) 2013; 339 Robert, Hookway, Gelfand (2024.07.08.602555v1.3) 2016; 38 Mücke, Wedig, Bürer, Marekov, Steinert, Langowski, Aebi, Herrmann (2024.07.08.602555v1.27) 2004; 340 Snider, Omary (2024.07.08.602555v1.43) 2014; 15 Stewart, Helenius, Toyoda, Ramanathan, Muller, Hyman (2024.07.08.602555v1.47) 2011; 469 Jacob, Coulombe, Kwan, Omary (2024.07.08.602555v1.38) 2018; 10 Schneider, Gibson, Otsuka, Spicer, Petrovic, Blaukopf, Langer, Batty, Nagaraju, Doolittle, Rosen, Gerlich (2024.07.08.602555v1.36) 2022; 609 Young, Carroad, Bell (2024.07.08.602555v1.18) 1980; 22 Moll, Franke, Schiller, Geiger, Krepler (2024.07.08.602555v1.37) 1982; 31 Wu, Shen, Wang, Herrmann, Goldman, Weitz (2024.07.08.602555v1.32) 2020; 119 Wojcik, Hauser, Li, Moon, Xu (2024.07.08.602555v1.54) 2015; 6 Liu, Poolman, Boersma (2024.07.08.602555v1.25) 2017; 12 Pan, Zhang, Hu, Yan, He, Li, Xu, Xu (2024.07.08.602555v1.9) 2019; 6 Huang, Wang, Bates, Zhuang (2024.07.08.602555v1.12) 2008; 319 Xiang, Chen, Xu (2024.07.08.602555v1.17) 2021; 15 Li, Gao, Zhang, Cheng, Eriksson, Etienne-Manneville, Jiu (2024.07.08.602555v1.8) 2019; 120 Yan, Chen, Xu (2024.07.08.602555v1.15) 2020; 142 Portet, Mücke, Kirmse, Langowski, Beil, Herrmann (2024.07.08.602555v1.29) 2009; 25 Molines, Lemière, Gazzola, Steinmark, Edrington, Hsu, Real-Calderon, Suhling, Goshima, Holt, Thery, Brouhard, Chang (2024.07.08.602555v1.24) 2022; 57 Herrmann, Aebi (2024.07.08.602555v1.10) 2016; 8 Sukenik, Ren, Gruebele (2024.07.08.602555v1.22) 2017; 114 Kuburich, den Hollander, Pietz, Mani (2024.07.08.602555v1.6) 2022; 86 Jalihal, Pitchiaya, Xiao, Bawa, Jiang, Bedi, Parolia, Cieslik, Ljungman, Chinnaiyan, Walter (2024.07.08.602555v1.23) 2020; 79 Olsen, Vermeulen, Santamaria, Kumar, Miller, Jensen, Gnad, Cox, Jensen, Nigg, Brunak, Mann (2024.07.08.602555v1.46) 2010; 3 Ip, Hartzer, Pang, Robson (2024.07.08.602555v1.26) 1985; 183 Boersma, Zuhorn, Poolman (2024.07.08.602555v1.21) 2015; 12 Taubenberger, Baum, Matthews (2024.07.08.602555v1.50) 2020; 8 Schepers, Lorenz, Köster (2024.07.08.602555v1.31) 2020; 12 Rölleke, Kumari, Meyer, Köster (2024.07.08.602555v1.7) 2023; 85 Son, Kang, Oh, Kirschner, Mitchison, Manalis (2024.07.08.602555v1.48) 2015; 211 Choi, Xiang, Li, Xu (2024.07.08.602555v1.20) 2023; 145 Yang, Wang (2024.07.08.602555v1.41) 2015; 38 Patteson, Carroll, Iwamoto, Janmey (2024.07.08.602555v1.5) 2021; 18 Tsujimura, Ogawara, Takeuchi, Imajoh-Ohmi, Ha, Inagaki (2024.07.08.602555v1.45) 1994; 269 Eriksson, He, Trejo-Skalli, Härmälä-Braskén, Hellman, Chou, Goldman (2024.07.08.602555v1.42) 2004; 117 Choi, Park, Chen, Yan, Li, Xu (2024.07.08.602555v1.19) 2022; 144 Lopez, Saldanha, Aufderhorst-Roberts, Martinez-Torres, Kuijs, Koenderink, Köster, Huber (2024.07.08.602555v1.30) 2018; 14 Herrmann, Bär, Kreplak, Strelkov, Aebi (2024.07.08.602555v1.1) 2007; 8 Kroger, Afeyan, Mraz, Eaton, Reinhardt, Khodor, Thiru, Bierie, Ye, Burge, Weinberg (2024.07.08.602555v1.53) 2019; 116 Chou, Bischoff, Beach, Goldman (2024.07.08.602555v1.44) 1990; 62 |
References_xml | – volume: 18 start-page: 011001 year: 2021 ident: 2024.07.08.602555v1.5 article-title: The vimentin cytoskeleton: when polymer physics meets cell biology publication-title: Phys. Biol – volume: 10 start-page: a018275 year: 2018 ident: 2024.07.08.602555v1.38 article-title: Types I and II keratin intermediate filaments publication-title: Cold Spring Harb. Perspect. Biol – volume: 25 start-page: 8817 year: 2009 end-page: 8823 ident: 2024.07.08.602555v1.29 article-title: Vimentin intermediate filament formation: in vitro measurement and mathematical modeling of the filament length distribution during assembly publication-title: Langmuir – volume: 62 start-page: 1063 year: 1990 end-page: 1071 ident: 2024.07.08.602555v1.44 article-title: Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin publication-title: Cell – volume: 3 start-page: ra3 year: 2010 ident: 2024.07.08.602555v1.46 article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis publication-title: Sci. Signal – volume: 81 start-page: 102625 year: 2023 ident: 2024.07.08.602555v1.35 article-title: Diffusive intracellular interactions: On the role of protein net charge and functional adaptation publication-title: Curr. Opin. Struct. Biol – volume: 211 start-page: 765 year: 2015 end-page: 774 ident: 2024.07.08.602555v1.49 article-title: Optical volume and mass measurements show that mammalian cells swell during mitosis publication-title: J. Cell Biol – volume: 23 start-page: 1711 year: 2023 end-page: 1716 ident: 2024.07.08.602555v1.16 article-title: Single-molecule displacement mapping unveils sign-asymmetric protein charge effects on intraorganellar diffusion publication-title: Nano Lett – volume: 12 start-page: 15236 year: 2020 end-page: 15245 ident: 2024.07.08.602555v1.31 article-title: Tuning intermediate filament mechanics by variation of pH and ion charges publication-title: Nanoscale – volume: 142 start-page: 18866 year: 2020 end-page: 18873 ident: 2024.07.08.602555v1.15 article-title: Probing nanoscale diffusional heterogeneities in cellular membranes through multidimensional single-molecule and super-resolution microscopy publication-title: J. Am. Chem. Soc – volume: 9 start-page: a021642 year: 2017 ident: 2024.07.08.602555v1.4 article-title: Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin publication-title: Cold Spring Harb. Perspect. Biol – volume: 116 start-page: 7353 year: 2019 end-page: 7362 ident: 2024.07.08.602555v1.53 article-title: Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 86 start-page: 816 year: 2022 end-page: 826 ident: 2024.07.08.602555v1.6 article-title: Vimentin and cytokeratin: Good alone, bad together publication-title: Semin. Cancer Biol – volume: 340 start-page: 97 year: 2004 end-page: 114 ident: 2024.07.08.602555v1.27 article-title: Molecular and biophysical characterization of assembly-starter units of human vimentin publication-title: J. Mol. Biol – volume: 3 start-page: 793 year: 2006 end-page: 795 ident: 2024.07.08.602555v1.11 article-title: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) publication-title: Nat. Methods – volume: 144 start-page: 4839 year: 2022 end-page: 4844 ident: 2024.07.08.602555v1.19 article-title: Displacement statistics of unhindered single molecules show no enhanced diffusion in enzymatic reactions publication-title: J. Am. Chem. Soc – volume: 22 start-page: 947 year: 1980 end-page: 955 ident: 2024.07.08.602555v1.18 article-title: Estimation of diffusion coefficients of proteins publication-title: Biotechnol. Bioeng – volume: 12 start-page: 227 year: 2015 end-page: 229 ident: 2024.07.08.602555v1.21 article-title: A sensor for quantification of macromolecular crowding in living cells publication-title: Nat. Methods – volume: 1 start-page: 161 year: 1982 end-page: 165 ident: 2024.07.08.602555v1.40 article-title: Vimentin and keratin intermediate filament systems in cultured PtK2 epithelial cells are interrelated publication-title: EMBO J – volume: 12 start-page: 2510 year: 2017 end-page: 2514 ident: 2024.07.08.602555v1.25 article-title: Ionic Strength Sensing in Living Cells publication-title: ACS Chem. Biol – volume: 38 start-page: 232 year: 2016 end-page: 243 ident: 2024.07.08.602555v1.3 article-title: Intermediate filament dynamics: What we can see now and why it matters publication-title: Bioessays – volume: 15 start-page: 163 year: 2014 end-page: 177 ident: 2024.07.08.602555v1.43 article-title: Post-translational modifications of intermediate filament proteins: mechanisms and functions publication-title: Nat. Rev. Mol. Cell Biol – volume: 13 start-page: 380 year: 2021 end-page: 387 ident: 2024.07.08.602555v1.34 article-title: Post-translational modifications soften vimentin intermediate filaments publication-title: Nanoscale – volume: 6 start-page: 1900865 year: 2019 ident: 2024.07.08.602555v1.9 article-title: Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release publication-title: Adv. Sci – volume: 339 start-page: 452 year: 2013 end-page: 456 ident: 2024.07.08.602555v1.13 article-title: Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons publication-title: Science – volume: 469 start-page: 226 year: 2011 end-page: 230 ident: 2024.07.08.602555v1.47 article-title: Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding publication-title: Nature – volume: 17 start-page: 524 year: 2020 end-page: 530 ident: 2024.07.08.602555v1.14 article-title: Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity publication-title: Nat. Methods – volume: 57 start-page: 466 year: 2022 end-page: 479 ident: 2024.07.08.602555v1.24 article-title: Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization publication-title: Dev. Cell – volume: 114 start-page: 6776 year: 2017 end-page: 6781 ident: 2024.07.08.602555v1.22 article-title: Weak protein-protein interactions in live cells are quantified by cell-volume modulation publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 79 start-page: 978 year: 2020 end-page: 990 ident: 2024.07.08.602555v1.23 article-title: Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change publication-title: Molecular Cell – volume: 63 start-page: 521 year: 2019 end-page: 533 ident: 2024.07.08.602555v1.39 article-title: Keratin intermediate filaments: intermediaries of epithelial cell migration publication-title: Essays Biochem – volume: 117 start-page: 919 year: 2004 end-page: 932 ident: 2024.07.08.602555v1.42 article-title: Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments publication-title: J. Cell Sci – volume: 290 start-page: 17145 year: 2015 end-page: 17153 ident: 2024.07.08.602555v1.2 article-title: Intermediate filaments play a pivotal role in regulating cell architecture and function publication-title: J. Biol. Chem – volume: 319 start-page: 810 year: 2008 end-page: 813 ident: 2024.07.08.602555v1.12 article-title: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy publication-title: Science – volume: 31 start-page: 11 year: 1982 end-page: 24 ident: 2024.07.08.602555v1.37 article-title: The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells publication-title: Cell – volume: 17 start-page: 870 year: 2021 end-page: 878 ident: 2024.07.08.602555v1.33 article-title: Ion type and valency differentially drive vimentin tetramers into intermediate filaments or higher order assemblies publication-title: Soft Matter – volume: 183 start-page: 365 year: 1985 end-page: 375 ident: 2024.07.08.602555v1.26 article-title: Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments publication-title: J. Mol. Biol – volume: 6 start-page: 7384 year: 2015 ident: 2024.07.08.602555v1.54 article-title: Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells publication-title: Nat. Commun – volume: 609 start-page: 183 year: 2022 end-page: 190 ident: 2024.07.08.602555v1.36 article-title: A mitotic chromatin phase transition prevents perforation by microtubules publication-title: Nature – volume: 145 start-page: 8510 year: 2023 end-page: 8516 ident: 2024.07.08.602555v1.20 article-title: Single-molecule displacement mapping indicates unhindered intracellular diffusion of small (≲1 kDa) solutes publication-title: J. Am. Chem. Soc – volume: 119 start-page: 55 year: 2020 end-page: 64 ident: 2024.07.08.602555v1.32 article-title: Effect of divalent cations on the structure and mechanics of vimentin intermediate filaments publication-title: Biophys. J – volume: 85 start-page: 102263 year: 2023 ident: 2024.07.08.602555v1.7 article-title: The unique biomechanics of intermediate filaments – From single filaments to cells and tissues publication-title: Curr. Opin. Cell Biol – volume: 38 start-page: 364 year: 2015 end-page: 374 ident: 2024.07.08.602555v1.41 article-title: Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker publication-title: Trends Neurosci – volume: 211 start-page: 757 year: 2015 end-page: 763 ident: 2024.07.08.602555v1.48 article-title: Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis publication-title: J. Cell Biol – volume: 15 start-page: 12483 year: 2021 end-page: 12496 ident: 2024.07.08.602555v1.17 article-title: Single molecules are your quanta: A bottom-up approach toward multidimensional super-resolution microscopy publication-title: ACS Nano – volume: 17 start-page: 150 year: 1990 end-page: 166 ident: 2024.07.08.602555v1.51 article-title: Dynamic properties of intermediate filaments: Disassembly and reassembly during mitosis in baby hamster kidney cells publication-title: Cell Motility – volume: 8 start-page: a018242 year: 2016 ident: 2024.07.08.602555v1.10 article-title: Intermediate filaments: structure and assembly publication-title: Cold Spring Harb. Perspect. Biol – volume: 14 start-page: 8445 year: 2018 end-page: 8454 ident: 2024.07.08.602555v1.30 article-title: Effect of ionic strength on the structure and elongational kinetics of vimentin filaments publication-title: Soft Matter – volume: 103 start-page: 16206 year: 2006 end-page: 16211 ident: 2024.07.08.602555v1.28 article-title: Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 8 start-page: 562 year: 2007 end-page: 573 ident: 2024.07.08.602555v1.1 article-title: Intermediate filaments: from cell architecture to nanomechanics publication-title: Nat. Rev. Mol. Cell Biol – volume: 269 start-page: 31097 year: 1994 end-page: 31106 ident: 2024.07.08.602555v1.45 article-title: Visualization and function of vimentin phosphorylation by cdc2 kinase during mitosis publication-title: J Biol Chem – volume: 8 start-page: 687 year: 2020 ident: 2024.07.08.602555v1.50 article-title: The mechanics of mitotic cell rounding publication-title: Front. Cell Dev. Biol – volume: 10 start-page: 4200 year: 2019 ident: 2024.07.08.602555v1.52 article-title: Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division publication-title: Nat. Comm – volume: 120 start-page: 13168 year: 2019 end-page: 13176 ident: 2024.07.08.602555v1.8 article-title: Engagement of vimentin intermediate filaments in hypotonic stress publication-title: J. Cell. Biochem |
SSID | ssj0002961374 |
Score | 1.8785154 |
SecondaryResourceType | preprint |
Snippet | As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input.... |
SourceID | pubmedcentral biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Biophysics |
Title | Hypersensitivity of the vimentin cytoskeleton to net-charge states and Coulomb repulsion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39026705 https://www.proquest.com/docview/3082630307 https://www.biorxiv.org/content/10.1101/2024.07.08.602555 https://pubmed.ncbi.nlm.nih.gov/PMC11257561 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Pa4MwFMfD1jLYbb_X_SgZ7GoxNsZ4XWkpg5UyVvAmRiOTbVr8Udb_fu-pK-3oYRcPmqg8krxPkpfvI-RRClPLSDMjdHhkAFKHhhKKGRq9iYwBUkM87_wyE9MFf_ZsbyvVF4ZVqiTLv5NVvY-PAdsw-jad22Q4V-e12qYcCMRh-5B0oUlxzNow8Qab5RXLBT_l8HYfc29NIN72S_vo8m-Q5JbXmZyQ7jxY6vyUHOj0jBw1aSPX58SbwuQxLzD0vMn9QLOYAsjRVS3Vn6Q0XJdZ8QEeBciOlhlNdWnUmkia1ieIChqkER1l1Wf2pWiul9UnrppdkMVk_DaaGm2GBEMxKW24OlKE3I25glllYCrFHYuroVamrRiLhQv0JpXlMltbMbej2IFeHAGjoR6oGQ0vSSfNUn1NaKyBs1EpxgbEUgGXLHal5EHIRWRZAe-Rh9Za_rLRwfDRor7p-Kb0G4tCmV87-tBKceshSHVWFT6K4oghDig9ctXYdfOaoYtZsEyoLXcsvimACti7T9LkvVbCBlgE3BTs5h8_d0uO8R6uyzJ2RzplXul7AIpS9Un3aTybv_brJvQDzGbHrw |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT4MwFMcb3WL05m_nz5p4ZaFQSjkvLlO3xcOW7EYolLg4YeHH4v573wNcnPHghUtbIC9t36evr98S8iCFqWWkmRG6PDIAqUNDCcUMjd5ExgCpIZ53Ho3FYMqfZ86sCbjlTVqlmqfZ53xV7eNjwjbMvvXgNhmu1Xmltim7AnHY6WKYepe0UegMU7r6s-4mxmJ54Kxc3mxm_tkcsLf53F-I-TtT8ofr6R-S9muw1NkR2dHJMdmr745cn5DZAFaQWY755_UFEDSNKdAcXVV6_fOEhusizd_BrQDe0SKliS6MShhJ0-oYUU6DJKK9tFykH4pmelkuMHR2Sqb9x0lvYDTXJBiKSenA05Ui5F7MFSwtA1Mp7lpc2VqZjmIsFh4gnFSWxxxtxdyJYheGcgSghqKgZmSfkVaSJvqC0FgDbKNcjAOcpQIuWexJyYOQi8iyAt4h9421_GUthuGjRX3T9U3p1xaFOt929KGr4v5DkOi0zH1UxhE2ziodcl7bdfMa28OrsExoLbcsvqmAMtjbJcn8rZLDBmIE5hTs8h8_d0f2B5PR0B8-jV-uyAGWY6CWsWvSKrJS3wBhFOq26kZfF_XK7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT4MwFMcb3aLx5m_nz5p4ZaGslHKekvlr2cEluxEKbVycsDBY3H_vezCXzXjwwqWlkJe279P29fsIuZPC1jLRzIo9nliA1LGlhGKWRm8iDUBqjPedX_uiN-RPI3e0dhcGwyrVOMu_xvPqHB8DtmH2rQe3zXCtziu1TdkWiMNuG7ep29PEbJMmip1hzw5G7dU-i-ODw_L48kDzzyYAfZef_Aszf0dLrrmfYJ80B9FU5wdkS6eHZKfOH7k4IqMerCLzGcag10kgaGYoEB2dV5r945TGiyKbfYBrAcSjRUZTXViVOJKm1VWiGY3ShHazcpJ9KprraTnB7bNjMgwe3ro9a5kqwVJMSheenhQx9w1XsLyMbKW453DV0cp2FWNG-IBxUjk-c7VjuJsYD4ZzArCGwqB20jkhjTRL9RmhRgNwo2SMC6ylIi6Z8aXkUcxF4jgRb5HbpbXCaS2IEaJFQ9sLbRnWFoU6P3YMobviGUSU6qychaiOIzo4s7TIaW3XVTMdH9Nh2fC23LD4qgJKYW-WpOP3ShIbqBG4U7Dzf_zcDdkd3Afhy2P_-YLsYTHu1TJ2SRpFXuorgIxCXVe96BscT8v9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypersensitivity+of+the+vimentin+cytoskeleton+to+net-charge+states+and+Coulomb+repulsion&rft.jtitle=bioRxiv&rft.au=Unger%2C+Bret+A&rft.au=Wu%2C+Chun+Ying&rft.au=Choi%2C+Alexander+A&rft.au=He%2C+Changdong&rft.date=2024-07-11&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.07.08.602555&rft_id=info%3Apmid%2F39026705&rft.externalDocID=39026705 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |