Age-related declines in niche self-renewal factors controls testis aging and spermatogonial stem cell competition through Hairless, Imp, and Chinmo
Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-r...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory
03.05.2025
|
Edition | 1.2 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the
testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-repressor Hairless, which downregulates the RNA-binding protein Imp in aged germline stem cells (GSCs). Reduced Imp causes loss of Chinmo, a key factor in GSC aging and competition. Reduced Chinmo causes ectopic Perlecan secretion which accumulates in the testis lumen and causes GSC loss. Aging of the testis is reversed by increasing BMPs in the niche, or by overexpressing Imp or depleting Hairless in GSCs. Furthermore, GSC clones with reduced Imp or increased Hairless are more competitive, expelling wild-type neighbors and monopolizing the niche. Thus, BMPs regulate testicular niche aging through the Hairless-Imp-Chinmo axis and "winning" GSCs usurp these aging mechanisms.
Aged niche cells produce less BMPs, resulting in more Hairless (H) in aged GSCs Elevated H represses
, resulting in less Chinmo and in ectopic ECM secretion Aging is prevented by higher BMP in niche cells, or by higher Imp or lower H in GSCs GSCs with low
or high
exploit these aging mechanisms to colonize the GSC pool. |
---|---|
AbstractList | Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the Drosophila testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-repressor Hairless, which downregulates the RNA-binding protein Imp in aged germline stem cells (GSCs). Reduced Imp causes loss of Chinmo, a key factor in GSC aging and competition. Reduced Chinmo causes ectopic Perlecan secretion which accumulates in the testis lumen and causes GSC loss. Aging of the testis is reversed by increasing BMPs in the niche, or by overexpressing Imp or depleting Hairless in GSCs. Furthermore, GSC clones with reduced Imp or increased Hairless are more competitive, expelling wild-type neighbors and monopolizing the niche. Thus, BMPs regulate testicular niche aging through the Hairless–Imp–Chinmo axis and “winning” GSCs usurp these aging mechanisms.
Aged niche cells produce less BMPs, resulting in more Hairless (H) in aged GSCs
Elevated H represses Imp, resulting in less Chinmo and in ectopic ECM secretion
Aging is prevented by higher BMP in niche cells, or by higher Imp or lower H in GSCs
GSCs with low Imp or high H exploit these aging mechanisms to colonize the GSC pool Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the Drosophila testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-repressor Hairless, which downregulates the RNA-binding protein Imp in aged germline stem cells (GSCs). Reduced Imp causes loss of Chinmo, a key factor in GSC aging and competition. Reduced Chinmo causes ectopic Perlecan secretion which accumulates in the testis lumen and causes GSC loss. Aging of the testis is reversed by increasing BMPs in the niche, or by overexpressing Imp or depleting Hairless in GSCs. Furthermore, GSC clones with reduced Imp or increased Hairless are more competitive, expelling wild-type neighbors and monopolizing the niche. Thus, BMPs regulate testicular niche aging through the Hairless-Imp-Chinmo axis and "winning" GSCs usurp these aging mechanisms.Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the Drosophila testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-repressor Hairless, which downregulates the RNA-binding protein Imp in aged germline stem cells (GSCs). Reduced Imp causes loss of Chinmo, a key factor in GSC aging and competition. Reduced Chinmo causes ectopic Perlecan secretion which accumulates in the testis lumen and causes GSC loss. Aging of the testis is reversed by increasing BMPs in the niche, or by overexpressing Imp or depleting Hairless in GSCs. Furthermore, GSC clones with reduced Imp or increased Hairless are more competitive, expelling wild-type neighbors and monopolizing the niche. Thus, BMPs regulate testicular niche aging through the Hairless-Imp-Chinmo axis and "winning" GSCs usurp these aging mechanisms.Aged niche cells produce less BMPs, resulting in more Hairless (H) in aged GSCs Elevated H represses Imp , resulting in less Chinmo and in ectopic ECM secretion Aging is prevented by higher BMP in niche cells, or by higher Imp or lower H in GSCs GSCs with low Imp or high H exploit these aging mechanisms to colonize the GSC pool.HighlightsAged niche cells produce less BMPs, resulting in more Hairless (H) in aged GSCs Elevated H represses Imp , resulting in less Chinmo and in ectopic ECM secretion Aging is prevented by higher BMP in niche cells, or by higher Imp or lower H in GSCs GSCs with low Imp or high H exploit these aging mechanisms to colonize the GSC pool. Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the Drosophila testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-repressor Hairless, which downregulates the RNA-binding protein Imp in aged germline stem cells (GSCs). Reduced Imp causes loss of Chinmo, a key factor in GSC aging and competition. Reduced Chinmo causes ectopic Perlecan secretion which accumulates in the testis lumen and causes GSC loss. Aging of the testis is reversed by increasing BMPs in the niche, or by overexpressing Imp or depleting Hairless in GSCs. Furthermore, GSC clones with reduced Imp or increased Hairless are more competitive, expelling wild-type neighbors and monopolizing the niche. Thus, BMPs regulate testicular niche aging through the Hairless–Imp–Chinmo axis and “winning” GSCs usurp these aging mechanisms. Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly understood. Using the testis, we identify a regulatory axis in which age-related decline of niche signals (BMPs) lead to upregulation of the co-repressor Hairless, which downregulates the RNA-binding protein Imp in aged germline stem cells (GSCs). Reduced Imp causes loss of Chinmo, a key factor in GSC aging and competition. Reduced Chinmo causes ectopic Perlecan secretion which accumulates in the testis lumen and causes GSC loss. Aging of the testis is reversed by increasing BMPs in the niche, or by overexpressing Imp or depleting Hairless in GSCs. Furthermore, GSC clones with reduced Imp or increased Hairless are more competitive, expelling wild-type neighbors and monopolizing the niche. Thus, BMPs regulate testicular niche aging through the Hairless-Imp-Chinmo axis and "winning" GSCs usurp these aging mechanisms. Aged niche cells produce less BMPs, resulting in more Hairless (H) in aged GSCs Elevated H represses , resulting in less Chinmo and in ectopic ECM secretion Aging is prevented by higher BMP in niche cells, or by higher Imp or lower H in GSCs GSCs with low or high exploit these aging mechanisms to colonize the GSC pool. |
Author | Hsu, Hwei-Jan Zheng, Yu Tseng, Chen-Yuan Chang, Shao-Lun Hsu, Li-Sung Chiang, Pin-Kuan Lee, Ya-Chien Wang, Yu-Ting Bach, Erika A |
Author_xml | – sequence: 1 givenname: Yu surname: Zheng fullname: Zheng, Yu – sequence: 2 givenname: Ya-Chien surname: Lee fullname: Lee, Ya-Chien – sequence: 3 givenname: Yu-Ting surname: Wang fullname: Wang, Yu-Ting – sequence: 4 givenname: Pin-Kuan surname: Chiang fullname: Chiang, Pin-Kuan – sequence: 5 givenname: Shao-Lun surname: Chang fullname: Chang, Shao-Lun – sequence: 6 givenname: Hwei-Jan orcidid: 0000-0001-7892-2310 surname: Hsu fullname: Hsu, Hwei-Jan – sequence: 7 givenname: Li-Sung surname: Hsu fullname: Hsu, Li-Sung – sequence: 8 givenname: Erika A orcidid: 0000-0002-5997-4489 surname: Bach fullname: Bach, Erika A – sequence: 9 givenname: Chen-Yuan orcidid: 0000-0002-0383-3660 surname: Tseng fullname: Tseng, Chen-Yuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40370955$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUcFu1DAQtVARLaUfwAX5yKHZju114pxQtaK0UqUe4B45zmxi5NjB9hb6Hf1hvF0oRXrSjGbmPc3Me0uOfPBIyHsGK8aAXXDgcgUFbFVLVvCKnPC65ZXiII9e5MfkLKXvAMDbmolm_YYcr0E00Ep5Qh4vR6wiOp1xoAMaZz0maj311kxIE7ptaXv8qR3dapNDTNQEn2NwiWZM2SaqR-tHqv1A04Jx1jmMwdtCSBlnatC5QpkXzDbb4GmeYtiNE73WNjpM6ZzezMv5E38zWT-Hd-T1VruEZ3_iKfl69fnb5rq6vftys7m8rXqmFKu2aADbtpc1ctNAjVKxejAKWa_XpSZaw5BLXfeNUkpCb7iAfQpMQy9OyaeD6rLrZxwMlqO065ZoZx0fuqBt93_H26kbw33HODSNakRR-HhQ6G2Iv-z9M3dvTQcFrDtY8290ieHHrrytm23af0Z7DLvUCQ5rIbgSbRn98HKvZ9G_nonfaTGdJQ |
Cites_doi | 10.1038/ncb1058 10.1095/biolreprod36.4.939 10.1038/s41586-021-03558-4 10.1111/j.2007.0018-0661.01971.x 10.1016/j.devcel.2021.07.010 10.1634/stemcells.2005-0580 10.1038/ncomms1478 10.1126/science.aau3879 10.1016/j.devcel.2010.02.006 10.1126/science.aad1886 10.1126/science.1243148 10.1242/dev.009159 10.1146/annurev-cellbio-100913-013344 10.7554/eLife.13463 10.1128/MCB.25.23.10433-10441.2005 10.1016/s0925-4773(02)00083-7 10.1182/blood.2021012197 10.1038/nprot.2013.136 10.1016/j.stem.2022.05.006 10.1006/dbio.2001.0539 10.1371/journal.pone.0090267 10.3390/life14101251 10.1101/gad.987402 10.1016/j.ajhg.2011.12.017 10.1111/j.1474-9726.2008.00379.x 10.1038/s41467-020-17942-7 10.1038/nature11061 10.1126/science.1196236 10.1126/science.abk2432 10.1016/j.cmet.2015.05.010 10.1016/j.cell.2008.01.038 10.1038/s41586-021-03965-7 10.1016/j.devcel.2012.05.013 10.1126/science.aan4673 10.1093/humrep/dex267 10.15252/embj.201387500 10.1002/stem.1943 10.1016/j.fertnstert.2022.10.017 10.1111/j.1474-9726.2006.00221.x 10.1038/s41586-021-03525-z 10.1016/j.devcel.2021.12.004 10.1016/j.celrep.2019.05.025 10.1038/nm.3651 10.1016/j.bbcan.2017.01.005 10.1038/s41580-022-00510-w 10.1111/andr.12665 10.1242/dev.199669 10.1091/mbc.e09-01-0004 10.1095/biolreprod31.4.785 10.1242/dev.02675 10.1002/embr.201337799 10.1038/s41588-024-01891-8 10.1038/nature14602 10.1534/genetics.105.044453 10.1242/dev.01026 10.1016/j.stem.2007.08.002 10.1038/s41467-017-00322-z |
ContentType | Journal Article Paper |
Copyright | 2025, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2025, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. 5PM |
DOI | 10.1101/2025.05.01.651651 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.2 |
ExternalDocumentID | PMC12077873 2025.05.01.651651v2 40370955 |
Genre | Journal Article Preprint |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NPM NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI 7X8 FX. 5PM |
ID | FETCH-LOGICAL-b1881-fec0e99b56e2c706e5816dc8e1ba46e239c1e25a6b788850bc230788801a0b3 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Thu Aug 21 18:31:25 EDT 2025 Sat May 10 15:10:21 EDT 2025 Wed Jul 02 04:13:17 EDT 2025 Mon Jul 21 06:02:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | stem cell niche Chinmo spermatogonial stem cell BMP Dpp Gbb germline stem cell competition testis aging Hairless Imp |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1881-fec0e99b56e2c706e5816dc8e1ba46e239c1e25a6b788850bc230788801a0b3 |
Notes | ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0002-0383-3660 0000-0002-5997-4489 0000-0001-7892-2310 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2025.05.01.651651 |
PMID | 40370955 |
PQID | 3204332839 |
PQPubID | 23479 |
PageCount | 69 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12077873 biorxiv_primary_2025_05_01_651651 proquest_miscellaneous_3204332839 pubmed_primary_40370955 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-03 20250503 |
PublicationDateYYYYMMDD | 2025-05-03 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2025 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Snippert, Schepers, van Es, Simons, Clevers (2025.05.01.651651v2.15) 2014; 15 Roan, Tseng, Chen (2025.05.01.651651v2.25) 2021; 148 Zhu, Lin, Kao, Awasaki, Chiang, Lee (2025.05.01.651651v2.68) 2006; 127 Oh, Lee, Wagers (2025.05.01.651651v2.3) 2014; 20 Wu, Chen, Mercer, Sokol (2025.05.01.651651v2.42) 2012; 23 Wood, Goriely (2025.05.01.651651v2.27) 2022; 118 Jaiswal, Ebert (2025.05.01.651651v2.14) 2019; 366 Goriely, Wilkie (2025.05.01.651651v2.26) 2012; 90 Maier (2025.05.01.651651v2.50) 2006; 143 Van Doren, Williamson, Lehmann (2025.05.01.651651v2.63) 1998; 8 Li, Alls, Avancini, Koo, Godt (2025.05.01.651651v2.67) 2003; 5 Shivdasani, Ingham (2025.05.01.651651v2.40) 2003; 13 Florez, Tran, Wathan, DeGregori, Pietras, King (2025.05.01.651651v2.13) 2022; 29 Vermeulen, Morrissey, van der Heijden, Nicholson, Sottoriva, Buczacki, Kemp, Tavare, Winton (2025.05.01.651651v2.19) 2013; 342 Herms, Colom, Piedrafita, Kalogeropoulou, Banerjee, King, Abby, Murai, Caseda, Fernandez-Antoran (2025.05.01.651651v2.22) 2024; 56 Zimmerman, Peters, Altaras, Berg (2025.05.01.651651v2.72) 2013; 8 Tseng, Burel, Cammer, Harsh, Flaherty, Baumgartner, Bach (2025.05.01.651651v2.33) 2022; 57 Li, Janssens, De Waegeneer, Kolluru, Davie, Gardeux, Saelens, David, Brbic, Spanier (2025.05.01.651651v2.49) 2022; 375 Lee, Luo (2025.05.01.651651v2.54) 1999; 22 Flanagan, Pentinmikko, Luopajarvi, Willis, Gilroy, Raven, McGarry, Englund, Webb, Scharaw (2025.05.01.651651v2.21) 2021; 594 Boyle, Wong, Rocha, Jones (2025.05.01.651651v2.30) 2007; 1 Greenspan, de Cuevas, Matunis (2025.05.01.651651v2.34) 2015; 31 van Neerven, de Groot, Nijman, Scicluna, van Driel, Lecca, Warmerdam, Kakkar, Moreno, Vieira Braga (2025.05.01.651651v2.20) 2021; 594 Johannes, Preiss (2025.05.01.651651v2.60) 2002; 115 Song, Wong, Kawase, Xi, Ding, McCarthy, Xie (2025.05.01.651651v2.61) 2004; 131 Colom, Herms, Hall, Dentro, King, Sood, Alcolea, Piedrafita, Fernandez-Antoran, Ong (2025.05.01.651651v2.23) 2021; 598 Leatherman, Dinardo (2025.05.01.651651v2.36) 2010; 12 Shyu, Sun, Chung, Huang, Deng (2025.05.01.651651v2.53) 2009; 20 Silver, Montell (2025.05.01.651651v2.66) 2001; 107 Tulina, Matunis (2025.05.01.651651v2.37) 2001; 294 Lopez-Garcia, Klein, Simons, Winton (2025.05.01.651651v2.17) 2010; 330 Martincorena, Fowler, Wabik, Lawson, Abascal, Hall, Cagan, Murai, Mahbubani, Stratton (2025.05.01.651651v2.24) 2018; 362 Snippert, van der Flier, Sato, van Es, van den Born, Kroon-Veenboer, Barker, Klein, van Rheenen, Simons, Clevers (2025.05.01.651651v2.16) 2010; 143 Amoyel, Simons, Bach (2025.05.01.651651v2.18) 2014; 33 Leatherman, Dinardo (2025.05.01.651651v2.35) 2008; 3 Johnson, Zane, Petty, Neaves (2025.05.01.651651v2.6) 1984; 31 Hodge, Bach (2025.05.01.651651v2.28) 2024; 14 Nagel, Krejci, Tenin, Bravo-Patino, Bray, Maier, Preiss (2025.05.01.651651v2.51) 2005; 25 Sato, Katagiri, Yokonishi, Kubota, Inoue, Ogonuki, Matoba, Ogura, Ogawa (2025.05.01.651651v2.11) 2011; 2 Pohl, Hoffken, Schlatt, Kliesch, Gromoll, Wistuba (2025.05.01.651651v2.8) 2019; 7 Flaherty, Salis, Evans, Ekas, Marouf, Zavadil, Banerjee, Bach (2025.05.01.651651v2.44) 2010; 18 Herrera, Sainz de la Maza, Grmai, Margolis, Plessel, Burel, O’Connor, Amoyel, Bach (2025.05.01.651651v2.32) 2021; 56 Brand, Perrimon (2025.05.01.651651v2.70) 1993; 118 Morrison, Spradling (2025.05.01.651651v2.1) 2008; 132 Inaba, Buszczak, Yamashita (2025.05.01.651651v2.41) 2015 Yang, Chen, Duan, Xia, Wang, Qurashi, Jin, Chen (2025.05.01.651651v2.43) 2007; 134 Egerman, Cadena, Gilbert, Meyer, Nelson, Swalley, Mallozzi, Jacobi, Jennings, Clay (2025.05.01.651651v2.59) 2015; 22 Narbonne-Reveau, Lanet, Dillard, Foppolo, Chen, Parrinello, Rialle, Sokol, Maurange (2025.05.01.651651v2.46) 2016; 5 Zhao, Xuan, Li, Xi (2025.05.01.651651v2.56) 2008; 7 Khandwala, Zhang, Lu, Eisenberg (2025.05.01.651651v2.5) 2017; 32 Liggett, DeGregori (2025.05.01.651651v2.12) 2017; 1867 Paniagua, Nistal, Amat, Rodriguez, Martin (2025.05.01.651651v2.7) 1987; 36 Mundorf, Donohoe, McClure, Southall, Uhlirova (2025.05.01.651651v2.48) 2019; 27 Ryu, Orwig, Oatley, Avarbock, Brinster (2025.05.01.651651v2.10) 2006; 24 Yousef, Morgenthaler, Schlesinger, Bugaj, Conboy, Schaffer (2025.05.01.651651v2.57) 2015; 33 Muller, Kugler, Preiss, Maier, Nagel (2025.05.01.651651v2.47) 2005; 171 Kiger, Jones, Schulz, Rogers, Fuller (2025.05.01.651651v2.38) 2001; 294 Kawase, Wong, Ding, Xie (2025.05.01.651651v2.39) 2004; 131 Harris, Fronczak, Roth, Meacham (2025.05.01.651651v2.4) 2011; 13 Barolo, Stone, Bang, Posakony (2025.05.01.651651v2.52) 2002; 16 Wallenfang, Nayak, DiNardo (2025.05.01.651651v2.29) 2006; 5 Toledano, D’Alterio, Czech, Levine, Jones (2025.05.01.651651v2.31) 2012; 485 Ma, Wang, Do, Song, Inaba, Nishimoto, Liu, Gao, Mao, Li (2025.05.01.651651v2.55) 2014; 9 Ekas, Baeg, Flaherty, Ayala-Camargo, Bach (2025.05.01.651651v2.64) 2006; 133 Valletta, Thomas, Meng, Ren, Drissen, Sengul, Di Genua, Nerlov (2025.05.01.651651v2.58) 2020; 11 Buchwalter, Hetzer (2025.05.01.651651v2.9) 2017; 8 Liu, Yang, Sugino, Fu, Liu, Yao, Lee, Lee (2025.05.01.651651v2.45) 2015; 350 Baksa, Parke, Dobens, Dearolf (2025.05.01.651651v2.65) 2002; 243 Xu, Rubin (2025.05.01.651651v2.69) 1993; 117 Brunet, Goodell, Rando (2025.05.01.651651v2.2) 2023; 24 Suo, Rommelfanger, Chen, Amro, Han, Chen, Szafranski, Chakkarappan, Boehm, MacLean, Rudolph (2025.05.01.651651v2.62) 2022; 139 McGuire, Mao, Davis (2025.05.01.651651v2.71) 2004; 2004 |
References_xml | – volume: 5 start-page: 994 year: 2003 end-page: 1000 ident: 2025.05.01.651651v2.67 article-title: The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila publication-title: Nature cell biology doi: 10.1038/ncb1058 – volume: 36 start-page: 939 year: 1987 end-page: 947 ident: 2025.05.01.651651v2.7 article-title: Seminiferous tubule involution in elderly men publication-title: Biology of reproduction doi: 10.1095/biolreprod36.4.939 – volume: 594 start-page: 436 year: 2021 end-page: 441 ident: 2025.05.01.651651v2.20 article-title: Apc-mutant cells act as supercompetitors in intestinal tumour initiation publication-title: Nature doi: 10.1038/s41586-021-03558-4 – volume: 143 start-page: 212 year: 2006 end-page: 221 ident: 2025.05.01.651651v2.50 article-title: Hairless: the ignored antagonist of the Notch signalling pathway publication-title: Hereditas doi: 10.1111/j.2007.0018-0661.01971.x – volume: 107 start-page: 831 year: 2001 end-page: 841 ident: 2025.05.01.651651v2.66 article-title: Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila publication-title: Cell – volume: 118 start-page: 401 year: 1993 end-page: 415 ident: 2025.05.01.651651v2.70 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes publication-title: Development (Cambridge, England) – volume: 56 start-page: 2284 year: 2021 end-page: 2294 e2286 ident: 2025.05.01.651651v2.32 article-title: Proliferative stem cells maintain quiescence of their niche by secreting the Activin inhibitor Follistatin publication-title: Dev Cell doi: 10.1016/j.devcel.2021.07.010 – volume: 24 start-page: 1505 year: 2006 end-page: 1511 ident: 2025.05.01.651651v2.10 article-title: Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal publication-title: Stem cells (Dayton, Ohio) doi: 10.1634/stemcells.2005-0580 – volume: 2 start-page: 472 year: 2011 ident: 2025.05.01.651651v2.11 article-title: In vitro production of fertile sperm from murine spermatogonial stem cell lines publication-title: Nature communications doi: 10.1038/ncomms1478 – volume: 22 start-page: 451 year: 1999 end-page: 461 ident: 2025.05.01.651651v2.54 article-title: Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis publication-title: Neuron – volume: 362 start-page: 911 year: 2018 end-page: 917 ident: 2025.05.01.651651v2.24 article-title: Somatic mutant clones colonize the human esophagus with age. Science (New York publication-title: N.Y doi: 10.1126/science.aau3879 – volume: 18 start-page: 556 year: 2010 end-page: 568 ident: 2025.05.01.651651v2.44 article-title: chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila publication-title: Dev Cell doi: 10.1016/j.devcel.2010.02.006 – volume: 350 start-page: 317 year: 2015 end-page: 320 ident: 2025.05.01.651651v2.45 article-title: Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates publication-title: Science (New York, N.Y doi: 10.1126/science.aad1886 – volume: 342 start-page: 995 year: 2013 end-page: 998 ident: 2025.05.01.651651v2.19 article-title: Defining stem cell dynamics in models of intestinal tumor initiation. Science (New York publication-title: N.Y doi: 10.1126/science.1243148 – volume: 127 start-page: 409 year: 2006 end-page: 422 ident: 2025.05.01.651651v2.68 article-title: Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity publication-title: Cell – volume: 134 start-page: 4265 year: 2007 end-page: 4272 ident: 2025.05.01.651651v2.43 article-title: Argonaute 1 regulates the fate of germline stem cells in Drosophila publication-title: Development (Cambridge, England) doi: 10.1242/dev.009159 – volume: 31 start-page: 291 year: 2015 end-page: 315 ident: 2025.05.01.651651v2.34 article-title: Genetics of gonadal stem cell renewal publication-title: Annual review of cell and developmental biology doi: 10.1146/annurev-cellbio-100913-013344 – volume: 8 start-page: 243 year: 1998 end-page: 246 ident: 2025.05.01.651651v2.63 article-title: Regulation of zygotic gene expression in Drosophila primordial germ cells publication-title: Curr Biol – volume: 13 start-page: e184 year: 2011 end-page: 190 ident: 2025.05.01.651651v2.4 article-title: Fertility and the aging male publication-title: Rev Urol – volume: 5 year: 2016 ident: 2025.05.01.651651v2.46 article-title: Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila publication-title: eLife doi: 10.7554/eLife.13463 – volume: 25 start-page: 10433 year: 2005 end-page: 10441 ident: 2025.05.01.651651v2.51 article-title: Hairless-mediated repression of notch target genes requires the combined activity of Groucho and CtBP corepressors publication-title: Molecular and cellular biology doi: 10.1128/MCB.25.23.10433-10441.2005 – volume: 115 start-page: 3 year: 2002 end-page: 14 ident: 2025.05.01.651651v2.60 article-title: Wing vein formation in Drosophila melanogaster: hairless is involved in the cross-talk between Notch and EGF signaling pathways publication-title: Mechanisms of development doi: 10.1016/s0925-4773(02)00083-7 – volume: 139 start-page: 2653 year: 2022 end-page: 2665 ident: 2025.05.01.651651v2.62 article-title: Age-dependent effects of Igf2bp2 on gene regulation, function, and aging of hematopoietic stem cells in mice publication-title: Blood doi: 10.1182/blood.2021012197 – volume: 8 start-page: 2158 year: 2013 end-page: 2179 ident: 2025.05.01.651651v2.72 article-title: Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries publication-title: Nature protocols doi: 10.1038/nprot.2013.136 – volume: 29 start-page: 882 year: 2022 end-page: 904 ident: 2025.05.01.651651v2.13 article-title: Clonal hematopoiesis: Mutation-specific adaptation to environmental change publication-title: Cell stem cell doi: 10.1016/j.stem.2022.05.006 – volume: 117 start-page: 1223 year: 1993 end-page: 1237 ident: 2025.05.01.651651v2.69 article-title: Analysis of genetic mosaics in developing and adult Drosophila tissues publication-title: Development (Cambridge, England) – volume: 243 start-page: 166 year: 2002 end-page: 175 ident: 2025.05.01.651651v2.65 article-title: The Drosophila STAT protein, stat92E, regulates follicle cell differentiation during oogenesis publication-title: Developmental biology doi: 10.1006/dbio.2001.0539 – volume: 9 start-page: e90267 year: 2014 ident: 2025.05.01.651651v2.55 article-title: Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary publication-title: PloS one doi: 10.1371/journal.pone.0090267 – volume: 14 year: 2024 ident: 2025.05.01.651651v2.28 article-title: Mechanisms of Germline Stem Cell Competition across Species publication-title: Life (Basel) doi: 10.3390/life14101251 – volume: 16 start-page: 1964 year: 2002 end-page: 1976 ident: 2025.05.01.651651v2.52 article-title: Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless publication-title: Genes & development doi: 10.1101/gad.987402 – volume: 90 start-page: 175 year: 2012 end-page: 200 ident: 2025.05.01.651651v2.26 article-title: Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2011.12.017 – volume: 7 start-page: 344 year: 2008 end-page: 354 ident: 2025.05.01.651651v2.56 article-title: Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila publication-title: Aging cell doi: 10.1111/j.1474-9726.2008.00379.x – volume: 11 start-page: 4075 year: 2020 ident: 2025.05.01.651651v2.58 article-title: Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFbeta1 as regulators of hematopoietic ageing publication-title: Nature communications doi: 10.1038/s41467-020-17942-7 – volume: 485 start-page: 605 year: 2012 end-page: 610 ident: 2025.05.01.651651v2.31 article-title: The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche publication-title: Nature doi: 10.1038/nature11061 – volume: 330 start-page: 822 year: 2010 end-page: 825 ident: 2025.05.01.651651v2.17 article-title: Intestinal stem cell replacement follows a pattern of neutral drift. Science (New York publication-title: N.Y doi: 10.1126/science.1196236 – volume: 375 start-page: eabk2432 year: 2022 ident: 2025.05.01.651651v2.49 article-title: Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly publication-title: Science (New York, N.Y doi: 10.1126/science.abk2432 – volume: 22 start-page: 164 year: 2015 end-page: 174 ident: 2025.05.01.651651v2.59 article-title: GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration publication-title: Cell metabolism doi: 10.1016/j.cmet.2015.05.010 – volume: 2004 start-page: l6 year: 2004 ident: 2025.05.01.651651v2.71 article-title: Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila publication-title: Sci STKE – volume: 132 start-page: 598 year: 2008 end-page: 611 ident: 2025.05.01.651651v2.1 article-title: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life publication-title: Cell doi: 10.1016/j.cell.2008.01.038 – volume: 598 start-page: 510 year: 2021 end-page: 514 ident: 2025.05.01.651651v2.23 article-title: Mutant clones in normal epithelium outcompete and eliminate emerging tumours publication-title: Nature doi: 10.1038/s41586-021-03965-7 – volume: 13 start-page: 2065 year: 2003 end-page: 2072 ident: 2025.05.01.651651v2.40 article-title: Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in Drosophila spermatogenesis publication-title: Curr Biol – volume: 23 start-page: 202 year: 2012 end-page: 209 ident: 2025.05.01.651651v2.42 article-title: Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo publication-title: Dev Cell doi: 10.1016/j.devcel.2012.05.013 – volume: 366 year: 2019 ident: 2025.05.01.651651v2.14 article-title: Clonal hematopoiesis in human aging and disease. Science (New York publication-title: N.Y doi: 10.1126/science.aan4673 – volume: 32 start-page: 2110 year: 2017 end-page: 2116 ident: 2025.05.01.651651v2.5 article-title: The age of fathers in the USA is rising: an analysis of 168 867 480 births from 1972 to 2015 publication-title: Hum Reprod doi: 10.1093/humrep/dex267 – volume: 33 start-page: 2295 year: 2014 end-page: 2313 ident: 2025.05.01.651651v2.18 article-title: Neutral competition of stem cells is skewed by proliferative changes downstream of Hh and Hpo publication-title: The EMBO journal doi: 10.15252/embj.201387500 – volume: 33 start-page: 1577 year: 2015 end-page: 1588 ident: 2025.05.01.651651v2.57 article-title: Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis publication-title: Stem cells (Dayton, Ohio) doi: 10.1002/stem.1943 – volume: 294 start-page: 2542 year: 2001 end-page: 2545 ident: 2025.05.01.651651v2.38 article-title: Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science (New York publication-title: N.Y – volume: 118 start-page: 1001 year: 2022 end-page: 1012 ident: 2025.05.01.651651v2.27 article-title: The impact of paternal age on new mutations and disease in the next generation publication-title: Fertility and sterility doi: 10.1016/j.fertnstert.2022.10.017 – volume: 5 start-page: 297 year: 2006 end-page: 304 ident: 2025.05.01.651651v2.29 article-title: Dynamics of the male germline stem cell population during aging of Drosophila melanogaster publication-title: Aging cell doi: 10.1111/j.1474-9726.2006.00221.x – volume: 594 start-page: 430 year: 2021 end-page: 435 ident: 2025.05.01.651651v2.21 article-title: NOTUM from Apc-mutant cells biases clonal competition to initiate cancer publication-title: Nature doi: 10.1038/s41586-021-03525-z – volume: 57 start-page: 80 year: 2022 end-page: 94 e87 ident: 2025.05.01.651651v2.33 article-title: chinmo-mutant spermatogonial stem cells cause mitotic drive by evicting non-mutant neighbors from the niche publication-title: Dev Cell doi: 10.1016/j.devcel.2021.12.004 – volume: 27 start-page: 3019 year: 2019 end-page: 3033 e3015 ident: 2025.05.01.651651v2.48 article-title: Ets21c Governs Tissue Renewal, Stress Tolerance, and Aging in the Drosophila Intestine publication-title: Cell reports doi: 10.1016/j.celrep.2019.05.025 – volume: 20 start-page: 870 year: 2014 end-page: 880 ident: 2025.05.01.651651v2.3 article-title: Stem cell aging: mechanisms, regulators and therapeutic opportunities publication-title: Nature medicine doi: 10.1038/nm.3651 – volume: 1867 start-page: 84 year: 2017 end-page: 94 ident: 2025.05.01.651651v2.12 article-title: Changing mutational and adaptive landscapes and the genesis of cancer publication-title: Biochim Biophys Acta Rev Cancer doi: 10.1016/j.bbcan.2017.01.005 – volume: 131 start-page: 1365 year: 2004 end-page: 1375 ident: 2025.05.01.651651v2.39 article-title: Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis publication-title: Development (Cambridge, England) – volume: 24 start-page: 45 year: 2023 end-page: 62 ident: 2025.05.01.651651v2.2 article-title: Ageing and rejuvenation of tissue stem cells and their niches publication-title: Nature reviews. Molecular cell biology doi: 10.1038/s41580-022-00510-w – volume: 7 start-page: 827 year: 2019 end-page: 839 ident: 2025.05.01.651651v2.8 article-title: Ageing in men with normal spermatogenesis alters spermatogonial dynamics and nuclear morphology in Sertoli cells publication-title: Andrology doi: 10.1111/andr.12665 – volume: 294 start-page: 2546 year: 2001 end-page: 2549 ident: 2025.05.01.651651v2.37 article-title: Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science (New York publication-title: N.Y – volume: 143 start-page: 134 year: 2010 end-page: 144 ident: 2025.05.01.651651v2.16 article-title: Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells publication-title: Cell – volume: 148 year: 2021 ident: 2025.05.01.651651v2.25 article-title: Whole-body clonal mapping identifies giant dominant clones in zebrafish skin epidermis publication-title: Development (Cambridge, England) doi: 10.1242/dev.199669 – volume: 20 start-page: 5064 year: 2009 end-page: 5073 ident: 2025.05.01.651651v2.53 article-title: Notch signaling and developmental cell-cycle arrest in Drosophila polar follicle cells publication-title: Molecular biology of the cell doi: 10.1091/mbc.e09-01-0004 – volume: 31 start-page: 785 year: 1984 end-page: 795 ident: 2025.05.01.651651v2.6 article-title: Quantification of the human Sertoli cell population: its distribution, relation to germ cell numbers, and age-related decline publication-title: Biology of reproduction doi: 10.1095/biolreprod31.4.785 – volume: 133 start-page: 4721 year: 2006 end-page: 4729 ident: 2025.05.01.651651v2.64 article-title: JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila publication-title: Development (Cambridge, England) doi: 10.1242/dev.02675 – volume: 15 start-page: 62 year: 2014 end-page: 69 ident: 2025.05.01.651651v2.15 article-title: Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion publication-title: EMBO reports doi: 10.1002/embr.201337799 – volume: 56 start-page: 2144 year: 2024 end-page: 2157 ident: 2025.05.01.651651v2.22 article-title: Organismal metabolism regulates the expansion of oncogenic PIK3CA mutant clones in normal esophagus publication-title: Nature genetics doi: 10.1038/s41588-024-01891-8 – year: 2015 ident: 2025.05.01.651651v2.41 article-title: Nanotubes mediate niche-stem-cell signalling in the Drosophila testis publication-title: Nature doi: 10.1038/nature14602 – volume: 3 start-page: 44 year: 2008 end-page: 54 ident: 2025.05.01.651651v2.35 article-title: Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal publication-title: Cell stem cell – volume: 171 start-page: 1137 year: 2005 end-page: 1152 ident: 2025.05.01.651651v2.47 article-title: Genetic modifier screens on Hairless gain-of-function phenotypes reveal genes involved in cell differentiation, cell growth and apoptosis in Drosophila melanogaster publication-title: Genetics doi: 10.1534/genetics.105.044453 – volume: 131 start-page: 1353 year: 2004 end-page: 1364 ident: 2025.05.01.651651v2.61 article-title: Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary publication-title: Development (Cambridge, England) doi: 10.1242/dev.01026 – volume: 1 start-page: 470 year: 2007 end-page: 478 ident: 2025.05.01.651651v2.30 article-title: Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis publication-title: Cell stem cell doi: 10.1016/j.stem.2007.08.002 – volume: 12 start-page: 806 year: 2010 end-page: 811 ident: 2025.05.01.651651v2.36 article-title: Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes publication-title: Nature cell biology – volume: 8 start-page: 328 year: 2017 ident: 2025.05.01.651651v2.9 article-title: Nucleolar expansion and elevated protein translation in premature aging publication-title: Nature communications doi: 10.1038/s41467-017-00322-z |
SSID | ssj0002961374 |
Score | 1.9103681 |
SecondaryResourceType | preprint |
Snippet | Aging is associated with progressive tissue decline and shifts in stem cell clonality. The role of niche signals in driving these processes remains poorly... |
SourceID | pubmedcentral biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Genetics |
Title | Age-related declines in niche self-renewal factors controls testis aging and spermatogonial stem cell competition through Hairless, Imp, and Chinmo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40370955 https://www.proquest.com/docview/3204332839 https://www.biorxiv.org/content/10.1101/2025.05.01.651651 https://pubmed.ncbi.nlm.nih.gov/PMC12077873 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBYjYbC37p5eggZ7jIZky5L92JWGdLBSthbyZiT5JDMkdojTbf0d_cPTkb2QlDwU_GBkybejyyedT98h5LPSUQy2kMzKVDGZZIZZYzRDrGzRmegCieb7tZrcyW_TZLoT6gtplbas13_L38GPj4Rt3_u2jZsLnKsnndSmSoTCzdN9X6Uktsnx9Mt2eSXK_DilZefHPFjSI97uSYfQ5VOS5M6oMz4i_RuzgvVr8gKqN-RlGzby4S15PJ8DC5tQoKAF4OZGaGhZ0Qp5nbSBxYyhUuUfs6BdPB3aUdIbukFZjYaG4ETUVAVFqXAPW-u5b92-AAo7U1zOpy5A6kDpol04HzoxJXrnmxG9Wq5GoTxG4F7W78jP8eXtxYR1wRWYFWkq2AwchyyziYLIaa4gSYUqXArCGunT4swJiBKjLE6SE24dUsb9KReG2_g96VV1BR8JFdoKoVyBEzdZpNradCad0IVHZhlYNSCfut-cr1oBjRxNkXN_iLw1hc_z3wC5r974kaaC-r7J4ygorHkYNyAfWoNsbyN5rFFBb0DSPVNtM6B09v6VqvwVJLRFxLXvquLjZ7zcCXmFaYHlGJ-S3mZ9D2ceiWzskPS_Xl7f_BiGuvcPUq3c6A |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLagFWJvg3HpuHkSj_VkJ46dPCJE1cE2IVGkvkW2c1oidUnVdBv8Dv7wfBxTMdQHpDxEsZ3b8eXz8efvEPJe6SQFW0lmZa6YzArDrDGaIVa2uJjoAonm4lJNv8vP82weHW5dpFXaut38rG_COj4Stn3v2zduLnCunkWpTZUJf5yim_ohGaLQGdbqyfx052NJCj9YaRkXM_cW97A3Pm4fxPyXKfnX0DM5JMOvZg2bJ-QBNE_Joz525K8j8vvDEljYiQIVrQB3OEJH64Y2SO6kHawWDOUqb82KxqA6NPLSO7pFbY2OhghF1DQVRb1wj13bpW_ivgCqO1P06VMXcHXgddEY04dOTY1L9N2Ynl2tx6E8huG-ap-Rb5NPs49TFiMsMCvyXLAFOA5FYTMFidNcQZYLVbkchDXSX0sLJyDJjLI4U864dcgb96dcGG7T52TQtA28JFRoK4RyFc7eZJVra_OFdEJXHp4VYNWInMTfXK57FY0STVFyf4iyN4XP88cApa_j-JGmgfa6K9MkyKx5LDciL3qD7G4jeapRRm9E8num2mVA_ez7KU39I-hoi4Rr31-lx__xcu_I4-ns4rw8P7v88oocYHqgPaavyWC7uYY3Hpps7dtQ_-4AXqbgJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagFYgbOwMUjMSxHtmJYydHBIymLFUlQJpb5OVNidQmo8kU2t_BH-57Thi1qAckH6J4yfK8fLY_f4-xt8ZmOfiohdelEbqonPDOWUFY2dNmYkgkmq-HZv5Df1oUiytnYYhW6Ztufd78Svv4RNjG3ndo3FLRXL0YpTZNoTBMaZl6uorL22wX65Ym9w2zxXS7zpJVOGBZPW5o3lgEQt_xkTfBzH_ZkleGn9l9tnvkVrB-wG5B-5DdGfxHXjxif94dg0inUSDyCHTKEXretLwlgifv4WQpSLLytzvho2MdPnLTe74hfY2eJy9F3LWRk2Y44tfuGJs5ZiCFZ07r-jwkbJ24XXz068PnrqFt-n6fH5yu9lN-csV92j1m32Yfv7-fi9HLgvCqLJVYQpBQVb4wkAUrDRSlMjGUoLzTeC-vgoKscMbTbLmQPhB3HC-lctLnT9hO27XwjHFlvVImRJrB6Vha78ulDspGhGgVeDNhb8bfXK8GJY2aTFFLDKoeTIFp_hqgxnpOH-la6M76Os-S1BriuQl7OhhkW4yWuSUpvQkrr5lqm4A0tK_HtM3PpKWtMmmxz8qf_8fLvWZ3jz7M6i8Hh59fsHsUnZiP-Uu2s1mfwR6ik41_larfJYaL4S0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-related+declines+in+niche+self-renewal+factors+controls+testis+aging+and+spermatogonial+stem+cell+competition+through+Hairless%2C+Imp%2C+and+Chinmo&rft.jtitle=bioRxiv&rft.au=Zheng%2C+Yu&rft.au=Lee%2C+Ya-Chien&rft.au=Wang%2C+Yu-Ting&rft.au=Chiang%2C+Pin-Kuan&rft.date=2025-05-03&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.05.01.651651&rft_id=info%3Apmid%2F40370955&rft.externalDocID=40370955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |