Multidimensional analysis and detection of informative features in diffusion MRI measurements of human white matter

The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Richie-Halford, Adam, Yeatman, Jason, Simon, Noah, Rokem, Ariel
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 20.12.2019
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2019.12.19.882928

Cover

Abstract The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean diffusivity (MD), etc.), along the trajectories of these connections. Statistical inference from tractometry usually either (a) averages these quantities along the length of each bundle in each individual, or (b) performs analysis point-by-point along each bundle, with group comparisons or regression models computed separately for each point along every one of the bundles. These approaches are limited in their sensitivity, in the former case, or in their statistical power, in the latter. In the present work, we developed a method based on the sparse group lasso (SGL) that takes into account tissue properties measured along all of the bundles, and selects informative features by enforcing sparsity, not only at the level of individual bundles, but also across the entire set of bundles and all of the measured tissue properties. The sparsity penalties for each of these constraints is identified using a nested cross-validation scheme that guards against over-fitting and simultaneously identifies the correct level of sparsity. We demonstrate the accuracy of the method in two settings: i) In a classification setting, patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from matched controls. Furthermore, SGL automatically identifies FA in the corticospinal tract as important for this classification -- correctly finding the parts of the white matter known to be affected by the disease. ii) In a regression setting, dMRI is used to accurately predict "brain age." In this case, the weights are distributed throughout the white matter indicating that many different regions of the white matter change with development and contribute to the prediction of age. Thus, SGL makes it possible to leverage the multivariate relationship between diffusion properties measured along multiple bundles to make accurate predictions of subject characteristics while simultaneously discovering the most relevant features of the white matter for the characteristic of interest. Footnotes * https://github.com/richford/afq-insight-paper
AbstractList The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean diffusivity (MD), etc.), along the trajectories of these connections [1]. Statistical inference from tractometry usually either (a) averages these quantities along the length of each bundle in each individual, or (b) performs analysis point-by-point along each bundle, with group comparisons or regression models computed separately for each point along every one of the bundles. These approaches are limited in their sensitivity, in the former case, or in their statistical power, in the latter. In the present work, we developed a method based on the sparse group lasso (SGL) [2] that takes into account tissue properties measured along all of the bundles, and selects informative features by enforcing sparsity, not only at the level of individual bundles, but also across the entire set of bundles and all of the measured tissue properties. The sparsity penalties for each of these constraints is identified using a nested cross-validation scheme that guards against over-fitting and simultaneously identifies the correct level of sparsity. We demonstrate the accuracy of the method in two settings: i) In a classification setting, patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from matched controls [3]. Furthermore, SGL automatically identifies FA in the corticospinal tract as important for this classification – correctly finding the parts of the white matter known to be affected by the disease. ii) In a regression setting, dMRI is used to accurately predict “brain age” [4, 5]. In this case, the weights are distributed throughout the white matter indicating that many different regions of the white matter change with development and contribute to the prediction of age. Thus, SGL makes it possible to leverage the multivariate relationship between diffusion properties measured along multiple bundles to make accurate predictions of subject characteristics while simultaneously discovering the most relevant features of the white matter for the characteristic of interest.
The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean diffusivity (MD), etc.), along the trajectories of these connections. Statistical inference from tractometry usually either (a) averages these quantities along the length of each bundle in each individual, or (b) performs analysis point-by-point along each bundle, with group comparisons or regression models computed separately for each point along every one of the bundles. These approaches are limited in their sensitivity, in the former case, or in their statistical power, in the latter. In the present work, we developed a method based on the sparse group lasso (SGL) that takes into account tissue properties measured along all of the bundles, and selects informative features by enforcing sparsity, not only at the level of individual bundles, but also across the entire set of bundles and all of the measured tissue properties. The sparsity penalties for each of these constraints is identified using a nested cross-validation scheme that guards against over-fitting and simultaneously identifies the correct level of sparsity. We demonstrate the accuracy of the method in two settings: i) In a classification setting, patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from matched controls. Furthermore, SGL automatically identifies FA in the corticospinal tract as important for this classification -- correctly finding the parts of the white matter known to be affected by the disease. ii) In a regression setting, dMRI is used to accurately predict "brain age." In this case, the weights are distributed throughout the white matter indicating that many different regions of the white matter change with development and contribute to the prediction of age. Thus, SGL makes it possible to leverage the multivariate relationship between diffusion properties measured along multiple bundles to make accurate predictions of subject characteristics while simultaneously discovering the most relevant features of the white matter for the characteristic of interest. Footnotes * https://github.com/richford/afq-insight-paper
Author Yeatman, Jason
Richie-Halford, Adam
Rokem, Ariel
Simon, Noah
Author_xml – sequence: 1
  givenname: Adam
  surname: Richie-Halford
  fullname: Richie-Halford, Adam
– sequence: 2
  givenname: Jason
  surname: Yeatman
  fullname: Yeatman, Jason
– sequence: 3
  givenname: Noah
  surname: Simon
  fullname: Simon, Noah
– sequence: 4
  givenname: Ariel
  surname: Rokem
  fullname: Rokem, Ariel
BookMark eNpNULtOwzAUtVCRKKUfwGaJhSXFvnFie0QVj0qtkBDMkdNcq66apNhOoX-PqzKwnHt1XsO5JqOu75CQW85mnDP-AIzrGYdZQqVAg7ogYyg1ZApYMfr3X5FpCFvGGOiS51KMSVgNu-ga12IXXN-ZHTUJjsGF9DS0wYjrmATaW-o62_vWRHdAatHEwWNIJG2ctcMpTVfvC9qiCUlJhTGcUpuhNR393riINIUj-htyac0u4PTvTsjn89PH_DVbvr0s5o_LrOZSqKwU67U2jbSCoYRaCdOYOreJKUEXDSCWtS1AQGlLaQsELDQIKVWeS6ukySfk_txbu97_uEO19641_lid9qo4VAnPeyXr3dm69_3XgCFW237waYlQQQ5Ky5ylwX4B_EpuUA
ContentType Paper
Copyright 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2019.12.19.882928
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2019.12.19.882928v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1748-64cc9ad7f40e72b84adab3fad76295d2ee6bf52426f67f5e2e5924778337f87a3
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 18:59:18 EST 2025
Fri Jul 25 09:23:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1748-64cc9ad7f40e72b84adab3fad76295d2ee6bf52426f67f5e2e5924778337f87a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ORCID 0000-0001-9276-9084
0000-0003-0679-1985
0000-0002-8985-2474
0000-0002-2686-1293
OpenAccessLink https://www.proquest.com/docview/2328973061?pq-origsite=%requestingapplication%
PQID 2328973061
PQPubID 2050091
PageCount 18
ParticipantIDs biorxiv_primary_2019_12_19_882928
proquest_journals_2328973061
PublicationCentury 2000
PublicationDate 20191220
PublicationDateYYYYMMDD 2019-12-20
PublicationDate_xml – month: 12
  year: 2019
  text: 20191220
  day: 20
PublicationDecade 2010
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2019
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Nichols, Holmes (2019.12.19.882928v1.25) 2002; 15
Mori, Van Zijl (2019.12.19.882928v1.10) 2002; 15
Takemura, Caiafa, Wandell, Pestilli (2019.12.19.882928v1.14) 2016; 12
Yuan, Lin (2019.12.19.882928v1.44) 2006; 68
Thomas, Ye, Irfanoglu, Modi, Saleem, Leopold (2019.12.19.882928v1.12) 2014; 111
Breiman (2019.12.19.882928v1.30) 2001; 16
Yuan, Lin (2019.12.19.882928v1.33) 2006; 68
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu (2019.12.19.882928v1.66) 2016
Bergstra, Bardenet, Bengio, Kégl (2019.12.19.882928v1.48) 2011
Simon, Friedman, Hastie, Tibshirani (2019.12.19.882928v1.2) 2013; 22
Smith, Tournier, Calamante, Connelly (2019.12.19.882928v1.15) 2013; 67
Murdoch, Singh, Kumbier, Abbasi-Asl, Yu (2019.12.19.882928v1.29) 2019; 116
Hoerl, Kennard (2019.12.19.882928v1.31) 2000; 42
O’Donnell, Westin, Golby (2019.12.19.882928v1.23) 2009; 45
Pestilli, Yeatman, Rokem, Kay, Wandell (2019.12.19.882928v1.13) 2014; 11
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (2019.12.19.882928v1.40) 2011; 12
Nichols, Hayasaka (2019.12.19.882928v1.26) 2003; 12
Jun, Steinmetz, Siegle, Denman, Bauza, Barbarits (2019.12.19.882928v1.68) 2017; 551
Kluyver, Ragan-Kelley, Pérez, Granger, Bussonnier, Frederic (2019.12.19.882928v1.72) 2016
Hua, Zhang, Wakana, Jiang, Li, Reich (2019.12.19.882928v1.39) 2008; 39
Yeatman, Wandell, Mezer (2019.12.19.882928v1.4) 2014; 5
Brown, Kuperman, Chung, Erhart, McCabe, Hagler (2019.12.19.882928v1.5) 2012; 22
Zhou, Liu, Narayan, Ye (2019.12.19.882928v1.69) 2012
Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong (2019.12.19.882928v1.11) 2017; 8
Thomason, Thompson (2019.12.19.882928v1.8) 2011; 7
Cosottini, Giannelli, Siciliano, Lazzarotti, Michelassi, Del Corona (2019.12.19.882928v1.58) 2005; 237
Colby, Soderberg, Lebel, Dinov, Thompson, Sowell (2019.12.19.882928v1.24) 2012; 59
Conturo, Lori, Cull, Akbudak, Snyder, Shimony (2019.12.19.882928v1.9) 1999; 96
Chamberland, Raven, Genc, Duffy, Descoteaux, Parker (2019.12.19.882928v1.71) 2019; 200
Abe, Takao, Gonoi, Sasaki, Murakami, Kabasawa (2019.12.19.882928v1.60) 2010; 52
Wandell (2019.12.19.882928v1.6) 2016; 39
Bergstra, Komer, Eliasmith, Yamins, Cox (2019.12.19.882928v1.47) 2015; 8
Kaufman, Rosset, Perlich, Stitelman (2019.12.19.882928v1.41) 2012; 6
van der Graaff, Sage, Caan, Akkerman, Lavini, Majoie (2019.12.19.882928v1.51) 2011; 134
Simon, Friedman, Hastie, Tibshirani (2019.12.19.882928v1.34) 2013; 22
Pedregosa (2019.12.19.882928v1.46) 2018
Bells, Cercignani, Deoni, Assaf, Pasternak, Evans (2019.12.19.882928v1.20) 2011; 678
Sarica, Cerasa, Vasta, Perrotta, Valentino, Mangone (2019.12.19.882928v1.53) 2014; 224
Sage, Peeters, Görner, Robberecht, Sunaert (2019.12.19.882928v1.54) 2007; 34
Sage, Van Hecke, Peeters, Sijbers, Robberecht, Parizel (2019.12.19.882928v1.55) 2009; 30
Richard, Kolskår, Sanders, Kaufmann, Petersen, Doan (2019.12.19.882928v1.62) 2018; 6
Jones, Knösche, Turner (2019.12.19.882928v1.7) 2013; 73
Smith, Tournier, Calamante, Connelly (2019.12.19.882928v1.17) 2015; 104
Catani, Howard, Pajevic, Jones (2019.12.19.882928v1.19) 2002; 17
Yeatman, Richie-Halford, Smith, Keshavan, Rokem (2019.12.19.882928v1.49) 2018; 9
Rheault, St-Onge, Sidhu, Maier-Hein, Tzourio-Mazoyer, Petit (2019.12.19.882928v1.18) 2018
Ellis, Simmons, Jones, Bland, Dawson, Horsfield (2019.12.19.882928v1.57) 1999; 53
Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (2019.12.19.882928v1.22) 2016; 221
Smith, Tournier, Calamante, Connelly (2019.12.19.882928v1.16) 2015; 119
Steinmetz, Zatka-Haas, Carandini, Harris (2019.12.19.882928v1.67) 2018
Parikh, Boyd (2019.12.19.882928v1.45) 2014; 1
Cole, Marioni, Harris, Deary (2019.12.19.882928v1.61) 2019; 24
Karlsborg, Rosenbaum, Wiegell, Simonsen, Larsson, Werdelin (2019.12.19.882928v1.56) 2004; 5
Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack (2019.12.19.882928v1.21) 2011; 5
Dayan, Monohan, Pandya, Kuceyeski, Nguyen, Raj (2019.12.19.882928v1.28) 2016; 37
Jernigan, Brown, Dowling (2019.12.19.882928v1.64) 2018; 28
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz (2019.12.19.882928v1.42) 2012; 62
Jernigan, Brown, Hagler, Akshoomoff, Bartsch, Newman (2019.12.19.882928v1.63) 2016; 124
Ciccarelli, Behrens, Johansen-Berg, Talbot, Orrell, Howard (2019.12.19.882928v1.59) 2009; 30
Rao, Nowak, Cox, Rogers (2019.12.19.882928v1.70) 2014
Toosy, Werring, Orrell, Howard, King, Barker (2019.12.19.882928v1.52) 2003; 74
Sarica, Cerasa, Valentino, Yeatman, Trotta, Barone (2019.12.19.882928v1.3) 2017; 38
Basser, Pajevic, Pierpaoli, Duda, Aldroubi (2019.12.19.882928v1.37) 2000; 44
McKinney (2019.12.19.882928v1.50) 2010; 445
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub (2019.12.19.882928v1.38) 2007; 36
Tibshirani (2019.12.19.882928v1.32) 1996; 58
Basser, Mattiello, LeBihan (2019.12.19.882928v1.35) 1994; 66
Yeatman, Dougherty, Myall, Wandell, Feldman (2019.12.19.882928v1.1) 2012; 7
Tibshirani (2019.12.19.882928v1.43) 1996
Huber, Donnelly, Rokem, Yeatman (2019.12.19.882928v1.27) 2018; 9
Alexander, Escalera, Ai, Andreotti, Febre, Mangone (2019.12.19.882928v1.65) 2017; 4
Chang, Jones, Pierpaoli (2019.12.19.882928v1.36) 2005; 53
References_xml – volume: 200
  start-page: 89
  year: 2019
  end-page: 100
  ident: 2019.12.19.882928v1.71
  article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain
  publication-title: Neuroimage
– volume: 5
  start-page: 4932
  year: 2014
  ident: 2019.12.19.882928v1.4
  article-title: Lifespan maturation and degeneration of human brain white matter
  publication-title: Nature communications
– volume: 445
  start-page: 51
  year: 2010
  end-page: 56
  ident: 2019.12.19.882928v1.50
  publication-title: In: Proceedings of the 9th Python in Science Conference
– volume: 678
  start-page: 1
  year: 2011
  ident: 2019.12.19.882928v1.20
  article-title: Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts
  publication-title: In: Proc. ISMRM
– volume: 104
  start-page: 253
  year: 2015
  end-page: 265
  ident: 2019.12.19.882928v1.17
  article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome
  publication-title: Neuroimage
– year: 2018
  ident: 2019.12.19.882928v1.18
  article-title: Bundle-specific tractography with incorporated anatomical and orientational priors
  publication-title: Neuroimage
– volume: 22
  start-page: 231
  issue: 2
  year: 2013
  end-page: 245
  ident: 2019.12.19.882928v1.2
  article-title: A sparse-group lasso
  publication-title: Journal of Computational and Graphical Statistics
– volume: 12
  start-page: e1004692
  issue: 2
  year: 2016
  ident: 2019.12.19.882928v1.14
  article-title: Ensemble Tractography
  publication-title: PLoS Comput Biol
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  end-page: 2231
  ident: 2019.12.19.882928v1.42
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: NeuroImage
– volume: 551
  start-page: 232
  issue: 7679
  year: 2017
  end-page: 236
  ident: 2019.12.19.882928v1.68
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature
– volume: 38
  start-page: 727
  issue: 2
  year: 2017
  end-page: 739
  ident: 2019.12.19.882928v1.3
  article-title: The corticospinal tract profile in amyotrophic lateral sclerosis
  publication-title: Human brain mapping
– volume: 34
  start-page: 486
  issue: 2
  year: 2007
  end-page: 499
  ident: 2019.12.19.882928v1.54
  article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis
  publication-title: Neuroimage
– volume: 96
  start-page: 10422
  issue: 18
  year: 1999
  end-page: 10427
  ident: 2019.12.19.882928v1.9
  article-title: Tracking neuronal fiber pathways in the living human brain
  publication-title: Proc Natl Acad Sci U S A
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  end-page: 25
  ident: 2019.12.19.882928v1.25
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum Brain Mapp
– volume: 52
  start-page: 699
  issue: 8
  year: 2010
  end-page: 710
  ident: 2019.12.19.882928v1.60
  article-title: Voxel-based analysis of the diffusion tensor
  publication-title: Neuroradiology
– volume: 67
  start-page: 298
  year: 2013
  end-page: 312
  ident: 2019.12.19.882928v1.15
  article-title: SIFT: Spherical-deconvolution informed filtering of tractograms
  publication-title: Neuroimage
– volume: 7
  start-page: e49790
  issue: 11
  year: 2012
  ident: 2019.12.19.882928v1.1
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PloS one
– volume: 53
  start-page: 1088
  issue: 5
  year: 2005
  end-page: 1095
  ident: 2019.12.19.882928v1.36
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine
– volume: 134
  start-page: 1211
  issue: 4
  year: 2011
  end-page: 1228
  ident: 2019.12.19.882928v1.51
  article-title: Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study
  publication-title: Brain
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  end-page: 22080
  ident: 2019.12.19.882928v1.29
  article-title: Definitions, methods, and applications in interpretable machine learning
  publication-title: Proc Natl Acad Sci U S A
– start-page: 87
  year: 2016
  end-page: 90
  ident: 2019.12.19.882928v1.72
  publication-title: Jupyter Notebooks-a publishing format for reproducible computational workflows
– volume: 6
  start-page: 15
  issue: 4
  year: 2012
  ident: 2019.12.19.882928v1.41
  article-title: Leakage in data mining: Formulation, detection, and avoidance
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  ident: 2019.12.19.882928v1.32
  article-title: Regression Shrinkage and Selection via the Lasso
  publication-title: J R Stat Soc Series B Stat Methodol
– volume: 30
  start-page: 615
  issue: 2
  year: 2009
  end-page: 624
  ident: 2019.12.19.882928v1.59
  article-title: Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics
  publication-title: Human brain mapping
– volume: 44
  start-page: 625
  issue: 4
  year: 2000
  end-page: 632
  ident: 2019.12.19.882928v1.37
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magnetic resonance in medicine
– year: 2018
  ident: 2019.12.19.882928v1.46
  publication-title: C-OPT: composite optimization in Python
– volume: 28
  start-page: 154
  issue: 1
  year: 2018
  end-page: 156
  ident: 2019.12.19.882928v1.64
  article-title: The Adolescent Brain Cognitive Development Study
  publication-title: J Res Adolesc
– year: 2016
  ident: 2019.12.19.882928v1.66
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat Neurosci
– volume: 7
  start-page: 63
  year: 2011
  end-page: 85
  ident: 2019.12.19.882928v1.8
  article-title: Diffusion imaging, white matter, and psychopathology
  publication-title: Annu Rev Clin Psychol
– volume: 221
  start-page: 4705
  issue: 9
  year: 2016
  end-page: 4721
  ident: 2019.12.19.882928v1.22
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct Funct
– volume: 39
  start-page: 336
  issue: 1
  year: 2008
  end-page: 347
  ident: 2019.12.19.882928v1.39
  article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification
  publication-title: Neuroimage
– volume: 53
  start-page: 1051
  issue: 5
  year: 1999
  end-page: 1051
  ident: 2019.12.19.882928v1.57
  article-title: Diffusion tensor MRI assesses corticospinal tract damage in ALS
  publication-title: Neurology
– volume: 42
  start-page: 80
  issue: 1
  year: 2000
  end-page: 86
  ident: 2019.12.19.882928v1.31
  article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems
  publication-title: Technometrics
– volume: 66
  start-page: 259
  issue: 1
  year: 1994
  end-page: 267
  ident: 2019.12.19.882928v1.35
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophysical journal
– year: 2014
  ident: 2019.12.19.882928v1.70
  publication-title: Classification with Sparse Overlapping Groups
– volume: 36
  start-page: 630
  issue: 3
  year: 2007
  end-page: 644
  ident: 2019.12.19.882928v1.38
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– volume: 4
  start-page: 170181
  year: 2017
  ident: 2019.12.19.882928v1.65
  article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders
  publication-title: Scientific Data
– volume: 24
  start-page: 266
  issue: 2
  year: 2019
  end-page: 281
  ident: 2019.12.19.882928v1.61
  article-title: Brain age and other bodily ‘ages’: implications for neuropsychiatry
  publication-title: Mol Psychiatry
– volume: 111
  start-page: 16574
  issue: 46
  year: 2014
  end-page: 16579
  ident: 2019.12.19.882928v1.12
  article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
  publication-title: Proc Natl Acad Sci U S A
– year: 2018
  ident: 2019.12.19.882928v1.67
  article-title: Distributed correlates of visually-guided behavior across the mouse brain
  publication-title: Nature
– volume: 9
  start-page: 2260
  issue: 1
  year: 2018
  ident: 2019.12.19.882928v1.27
  article-title: Rapid and widespread white matter plasticity during an intensive reading intervention
  publication-title: Nature communications
– start-page: 1095
  year: 2012
  end-page: 1103
  ident: 2019.12.19.882928v1.69
  publication-title: In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ‘12
– volume: 8
  start-page: 1349
  issue: 1
  year: 2017
  ident: 2019.12.19.882928v1.11
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat Commun
– volume: 45
  start-page: 832
  issue: 3
  year: 2009
  end-page: 844
  ident: 2019.12.19.882928v1.23
  article-title: Tract-based morphometry for white matter group analysis
  publication-title: Neuroimage
– volume: 59
  start-page: 3227
  issue: 4
  year: 2012
  end-page: 3242
  ident: 2019.12.19.882928v1.24
  article-title: Along-tract statistics allow for enhanced tractography analysis
  publication-title: Neuroimage
– volume: 30
  start-page: 3657
  issue: 11
  year: 2009
  end-page: 3675
  ident: 2019.12.19.882928v1.55
  article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited
  publication-title: Human brain mapping
– start-page: 267
  year: 1996
  end-page: 288
  ident: 2019.12.19.882928v1.43
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B (Methodological)
– volume: 17
  start-page: 77
  issue: 1
  year: 2002
  end-page: 94
  ident: 2019.12.19.882928v1.19
  article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain
  publication-title: Neuroimage
– volume: 5
  start-page: 136
  issue: 3
  year: 2004
  end-page: 140
  ident: 2019.12.19.882928v1.56
  article-title: Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging
  publication-title: Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders
– volume: 12
  start-page: 419
  issue: 5
  year: 2003
  end-page: 446
  ident: 2019.12.19.882928v1.26
  article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review
  publication-title: Stat Methods Med Res
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: 2019.12.19.882928v1.40
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: e5908
  year: 2018
  ident: 2019.12.19.882928v1.62
  article-title: Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry
  publication-title: PeerJ
– volume: 8
  start-page: 014008
  issue: 1
  year: 2015
  ident: 2019.12.19.882928v1.47
  article-title: Hyperopt: a Python library for model selection and hyperparameter optimization
  publication-title: Computational Science & Discovery
– volume: 237
  start-page: 258
  issue: 1
  year: 2005
  end-page: 264
  ident: 2019.12.19.882928v1.58
  article-title: Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy
  publication-title: Radiology
– volume: 22
  start-page: 1693
  issue: 18
  year: 2012
  end-page: 1698
  ident: 2019.12.19.882928v1.5
  article-title: Neuroanatomical assessment of biological maturity
  publication-title: Curr Biol
– volume: 11
  start-page: 1058
  issue: 10
  year: 2014
  end-page: 1063
  ident: 2019.12.19.882928v1.13
  article-title: Evaluation and statistical inference for human connectomes
  publication-title: Nat Methods
– volume: 119
  start-page: 338
  year: 2015
  end-page: 351
  ident: 2019.12.19.882928v1.16
  article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography
  publication-title: Neuroimage
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: 2019.12.19.882928v1.48
  publication-title: In: Advances in neural information processing systems
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  end-page: 239
  ident: 2019.12.19.882928v1.45
  article-title: Proximal algorithms
  publication-title: Foundations and Trends® in Optimization
– volume: 9
  start-page: 940
  issue: 1
  year: 2018
  ident: 2019.12.19.882928v1.49
  article-title: A browser-based tool for visualization and analysis of diffusion MRI data
  publication-title: Nature communications
– volume: 37
  start-page: 989
  issue: 3
  year: 2016
  end-page: 1004
  ident: 2019.12.19.882928v1.28
  article-title: Profilometry: a new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis
  publication-title: Human brain mapping
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  end-page: 67
  ident: 2019.12.19.882928v1.44
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 5
  start-page: 23
  year: 2011
  ident: 2019.12.19.882928v1.21
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front Neuroinform
– volume: 22
  start-page: 231
  issue: 2
  year: 2013
  end-page: 245
  ident: 2019.12.19.882928v1.34
  article-title: A sparse-group lasso
  publication-title: Journal of Computational and Graphical Statistics
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  end-page: 67
  ident: 2019.12.19.882928v1.33
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J R Stat Soc Series B Stat Methodol
– volume: 73
  start-page: 239
  year: 2013
  end-page: 254
  ident: 2019.12.19.882928v1.7
  article-title: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI
  publication-title: Neuroimage
– volume: 15
  start-page: 468
  issue: 7-8
  year: 2002
  end-page: 480
  ident: 2019.12.19.882928v1.10
  article-title: Fiber tracking: principles and strategies–a technical review
  publication-title: NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo
– volume: 74
  start-page: 1250
  issue: 9
  year: 2003
  end-page: 1257
  ident: 2019.12.19.882928v1.52
  article-title: Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  end-page: 231
  ident: 2019.12.19.882928v1.30
  article-title: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)
  publication-title: Stat Sci
– volume: 224
  start-page: 79
  year: 2014
  end-page: 87
  ident: 2019.12.19.882928v1.53
  article-title: Tractography in amyotrophic lateral sclerosis using a novel probabilistic tool: a study with tract-based reconstruction compared to voxel-based approach
  publication-title: Journal of neuroscience methods
– volume: 39
  start-page: 103
  year: 2016
  end-page: 128
  ident: 2019.12.19.882928v1.6
  article-title: Clarifying human white matter
  publication-title: Annual review of neuroscience
– volume: 124
  start-page: 1149
  issue: Pt B
  year: 2016
  end-page: 1154
  ident: 2019.12.19.882928v1.63
  article-title: The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository
  publication-title: Neuroimage
SSID ssj0002961374
Score 1.5813379
SecondaryResourceType preprint
Snippet The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Amyotrophic lateral sclerosis
Anisotropy
Brain architecture
Classification
Magnetic resonance imaging
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Pyramidal tracts
Regression analysis
Sparsity
Statistics
Substantia alba
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66i-DNJ66uEsFrpUmbpDmLyyqsiLiwt9K0E9jDdpd9-Pj3zqT1AXrwUspAWphkXsnk-xi78rLUUlZxBHQ9F72kjVziLFq8EkmGq0YFjqXRgx6O0_uJmvyg-qK2SjedL9-mL-Ecnxq20fs2xh0LrNWFpf07QVMsrcy2WReXlCTWhsHk-mt7RVqMUyZtzzH_HIkZb_unX344BJfBHus-FgtY7rMtqA_YTsMO-X7IVuFybEXw-w10Bi9aBBF8qXgF69BGVfO55y3-Kfku7iGAda5QyIn_ZEOj-ejpjs--NwRXNCoQ9PFXOkngswC0ecTGg9vnm2HUciREDmuJLNJpWdqiMj6NwUiXpUVVuMSjREurKgmgnVcUh702XoEEhRWXMVmSGJ-ZIjlmnXpewwnjaaliAXHhHCZROgVbeuEwwcJyG7NKAz122eorXzRIGDnpNBcyx2ej0x7rf2oyb41hlWPSlln0JFqc_uMTZ2yXZNQyIuM-66yXGzjHwL92F2GKPwDHsKkB
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Multidimensional analysis and detection of informative features in diffusion MRI measurements of human white matter
URI https://www.proquest.com/docview/2328973061
https://www.biorxiv.org/content/10.1101/2019.12.19.882928
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA9uY7CbTsXpHBG8Vtu0SZuToGxMYWMMB7uVpk1gh324bn78976XZnoQvJSSkh5eXt5n8vsRcmtYLhgrfE_j9VywktJToZKw43kQJqA13HIsjcZiOIte5nzuCm6lO1Z5sInWUBfrHGvk9-D5EwnqKIKHzZuHrFHYXXUUGjXSABOcgJ43HvvjyfSnysIkuCsLxcyEhK3PfO5am6CKkPgHEouBAeoLk8jI3lSL9fZz8f7HNFt_MzgmjUm20dsTcqRXbdKsCCO_2qSFsWEFrXxKSnt5tkB4_gpag2YOYQReClronT1mtaJrQx0-Kto2arQF8yxhkCI_yh5n09H0mS5_C4YlzrIEfvQDOw10aYE4z8hs0H99GnqOQ8FTkGsknojyXGZFbCJfx0wlUVZkKjQwIpjkBdNaKMPRTxsRG66Z5pCRxXEShrFJ4iw8J_XVeqUvCI1y7gfaz5SCIEtEWuYmUBCAQToOUWesO-TGCS_dVEgZKQo4DVgKz0rAHdI9iDV1m6VMf5f28v_PV6SFf8TTJMzvkvpuu9fXEBPsVM8tfI_UBvO7b_1HtXw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKwQ3VrFjJDhGJE7sxAeExKYWaIUQSNxCnNgSB9rStBR-im9kxknhgMSNSxQ5sg-T55nxMu8BHFieS84L3zNUnoteUnk61ApnvAjCBFEjnMZSpytbD9HVo3icgc9pLQxdq5z6ROeoi35Oe-RHGPkThXCUwcng1SPVKDpdnUpoVLC4Nh8TXLKVx-1z_L-HnF9e3J-1vFpVwNOYfSeejPJcZUVsI9_EXCdRVmQ6tNgiuRIFN0ZqKyhyWRlbYbgRuEaJ4yQMY5vEWYjjzkIzoorWBjRPL7q3d9-7OlxheHTUz1wqdDXcF_VRKkL_CIOtos3HgPDJFSnAz-nn_vD9-e1XKHDx7XIRmrfZwAyXYMb0lmGuEqj8WIYFykUrKucVKF2xbkFyABWVB8tqRhN8KVhhRu5aV4_1Lav5WMmXMmsceWiJjYz0WMbUm3Xu2uzlZ4OypF5OMJBN6GSDvTjiz1V4-BfrrkGj1--ZdWBRLvzA-JnWmNTJyKjcBhoTPlz-Y5Ybmw3Yr42XDipmjpQMnAY8xWdl4A3Ynpo1rSdnmf5AafPvz3sw37rv3KQ37e71FizQ6HSThfvb0BgNx2YH85GR3q1BwODpv3H3Bd7g8Wo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvC1o0mbpnlWy6ZuDHGwt9K0CezBbqybH_-9d2n9AH3wpZSUpHC5u9xXfkfIleV5xHnhewav54KWVJ4OtAKJFyyIgWuE67E0HEX9SXg3FdMfd2GwrFLP5su32YvL42PBNmjfWrh9Br46Uxi_Y7jFXPG4h2Hq3qKwm6QNvMWQs5Np7yvOwhUcWDJsEpp_LgGmb_PLXwrZnTLJLmmPs4VZ7pENU-6TrbpN5PsBqdwt2QJx-GsMDZo1UCLwUtDCrFw9VUnnljZAqKjEqDUOtbOCQYqNUNY4mw4fB_T5OzJY4SzXqY--YkqBPjvEzUMySW6frvte0yzB0-BUxF4U5rnKCmlD30iu4zArMh1YGIm4EgU3JtJW4IFsI2mF4UaA6yVlHATSxjILjkirnJfmmNAwFz4zfqY1WFNRaFRumQZLC_xuMC-l6ZDLhl7poobESJGmKeMpPGuadkj3k5JpIxVVCtZbrEClROzkH0tckO3xTZI-DEb3p2QHP2MZCfe7pLVars0ZGAMrfe52-wPeZa7p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+analysis+and+detection+of+informative+features+in+diffusion+MRI+measurements+of+human+white+matter&rft.jtitle=bioRxiv&rft.au=Richie-Halford%2C+Adam&rft.au=Yeatman%2C+Jason&rft.au=Simon%2C+Noah&rft.au=Rokem%2C+Ariel&rft.date=2019-12-20&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2019.12.19.882928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon