Multidimensional analysis and detection of informative features in diffusion MRI measurements of human white matter
The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
20.12.2019
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2019.12.19.882928 |
Cover
Abstract | The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean diffusivity (MD), etc.), along the trajectories of these connections. Statistical inference from tractometry usually either (a) averages these quantities along the length of each bundle in each individual, or (b) performs analysis point-by-point along each bundle, with group comparisons or regression models computed separately for each point along every one of the bundles. These approaches are limited in their sensitivity, in the former case, or in their statistical power, in the latter. In the present work, we developed a method based on the sparse group lasso (SGL) that takes into account tissue properties measured along all of the bundles, and selects informative features by enforcing sparsity, not only at the level of individual bundles, but also across the entire set of bundles and all of the measured tissue properties. The sparsity penalties for each of these constraints is identified using a nested cross-validation scheme that guards against over-fitting and simultaneously identifies the correct level of sparsity. We demonstrate the accuracy of the method in two settings: i) In a classification setting, patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from matched controls. Furthermore, SGL automatically identifies FA in the corticospinal tract as important for this classification -- correctly finding the parts of the white matter known to be affected by the disease. ii) In a regression setting, dMRI is used to accurately predict "brain age." In this case, the weights are distributed throughout the white matter indicating that many different regions of the white matter change with development and contribute to the prediction of age. Thus, SGL makes it possible to leverage the multivariate relationship between diffusion properties measured along multiple bundles to make accurate predictions of subject characteristics while simultaneously discovering the most relevant features of the white matter for the characteristic of interest. Footnotes * https://github.com/richford/afq-insight-paper |
---|---|
AbstractList | The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean diffusivity (MD), etc.), along the trajectories of these connections [1]. Statistical inference from tractometry usually either (a) averages these quantities along the length of each bundle in each individual, or (b) performs analysis point-by-point along each bundle, with group comparisons or regression models computed separately for each point along every one of the bundles. These approaches are limited in their sensitivity, in the former case, or in their statistical power, in the latter. In the present work, we developed a method based on the sparse group lasso (SGL) [2] that takes into account tissue properties measured along all of the bundles, and selects informative features by enforcing sparsity, not only at the level of individual bundles, but also across the entire set of bundles and all of the measured tissue properties. The sparsity penalties for each of these constraints is identified using a nested cross-validation scheme that guards against over-fitting and simultaneously identifies the correct level of sparsity. We demonstrate the accuracy of the method in two settings: i) In a classification setting, patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from matched controls [3]. Furthermore, SGL automatically identifies FA in the corticospinal tract as important for this classification – correctly finding the parts of the white matter known to be affected by the disease. ii) In a regression setting, dMRI is used to accurately predict “brain age” [4, 5]. In this case, the weights are distributed throughout the white matter indicating that many different regions of the white matter change with development and contribute to the prediction of age. Thus, SGL makes it possible to leverage the multivariate relationship between diffusion properties measured along multiple bundles to make accurate predictions of subject characteristics while simultaneously discovering the most relevant features of the white matter for the characteristic of interest. The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean diffusivity (MD), etc.), along the trajectories of these connections. Statistical inference from tractometry usually either (a) averages these quantities along the length of each bundle in each individual, or (b) performs analysis point-by-point along each bundle, with group comparisons or regression models computed separately for each point along every one of the bundles. These approaches are limited in their sensitivity, in the former case, or in their statistical power, in the latter. In the present work, we developed a method based on the sparse group lasso (SGL) that takes into account tissue properties measured along all of the bundles, and selects informative features by enforcing sparsity, not only at the level of individual bundles, but also across the entire set of bundles and all of the measured tissue properties. The sparsity penalties for each of these constraints is identified using a nested cross-validation scheme that guards against over-fitting and simultaneously identifies the correct level of sparsity. We demonstrate the accuracy of the method in two settings: i) In a classification setting, patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from matched controls. Furthermore, SGL automatically identifies FA in the corticospinal tract as important for this classification -- correctly finding the parts of the white matter known to be affected by the disease. ii) In a regression setting, dMRI is used to accurately predict "brain age." In this case, the weights are distributed throughout the white matter indicating that many different regions of the white matter change with development and contribute to the prediction of age. Thus, SGL makes it possible to leverage the multivariate relationship between diffusion properties measured along multiple bundles to make accurate predictions of subject characteristics while simultaneously discovering the most relevant features of the white matter for the characteristic of interest. Footnotes * https://github.com/richford/afq-insight-paper |
Author | Yeatman, Jason Richie-Halford, Adam Rokem, Ariel Simon, Noah |
Author_xml | – sequence: 1 givenname: Adam surname: Richie-Halford fullname: Richie-Halford, Adam – sequence: 2 givenname: Jason surname: Yeatman fullname: Yeatman, Jason – sequence: 3 givenname: Noah surname: Simon fullname: Simon, Noah – sequence: 4 givenname: Ariel surname: Rokem fullname: Rokem, Ariel |
BookMark | eNpNULtOwzAUtVCRKKUfwGaJhSXFvnFie0QVj0qtkBDMkdNcq66apNhOoX-PqzKwnHt1XsO5JqOu75CQW85mnDP-AIzrGYdZQqVAg7ogYyg1ZApYMfr3X5FpCFvGGOiS51KMSVgNu-ga12IXXN-ZHTUJjsGF9DS0wYjrmATaW-o62_vWRHdAatHEwWNIJG2ctcMpTVfvC9qiCUlJhTGcUpuhNR393riINIUj-htyac0u4PTvTsjn89PH_DVbvr0s5o_LrOZSqKwU67U2jbSCoYRaCdOYOreJKUEXDSCWtS1AQGlLaQsELDQIKVWeS6ukySfk_txbu97_uEO19641_lid9qo4VAnPeyXr3dm69_3XgCFW237waYlQQQ5Ky5ylwX4B_EpuUA |
ContentType | Paper |
Copyright | 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2019.12.19.882928 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2019.12.19.882928v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1748-64cc9ad7f40e72b84adab3fad76295d2ee6bf52426f67f5e2e5924778337f87a3 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:59:18 EST 2025 Fri Jul 25 09:23:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1748-64cc9ad7f40e72b84adab3fad76295d2ee6bf52426f67f5e2e5924778337f87a3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ORCID | 0000-0001-9276-9084 0000-0003-0679-1985 0000-0002-8985-2474 0000-0002-2686-1293 |
OpenAccessLink | https://www.proquest.com/docview/2328973061?pq-origsite=%requestingapplication% |
PQID | 2328973061 |
PQPubID | 2050091 |
PageCount | 18 |
ParticipantIDs | biorxiv_primary_2019_12_19_882928 proquest_journals_2328973061 |
PublicationCentury | 2000 |
PublicationDate | 20191220 |
PublicationDateYYYYMMDD | 2019-12-20 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191220 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2019 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Nichols, Holmes (2019.12.19.882928v1.25) 2002; 15 Mori, Van Zijl (2019.12.19.882928v1.10) 2002; 15 Takemura, Caiafa, Wandell, Pestilli (2019.12.19.882928v1.14) 2016; 12 Yuan, Lin (2019.12.19.882928v1.44) 2006; 68 Thomas, Ye, Irfanoglu, Modi, Saleem, Leopold (2019.12.19.882928v1.12) 2014; 111 Breiman (2019.12.19.882928v1.30) 2001; 16 Yuan, Lin (2019.12.19.882928v1.33) 2006; 68 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu (2019.12.19.882928v1.66) 2016 Bergstra, Bardenet, Bengio, Kégl (2019.12.19.882928v1.48) 2011 Simon, Friedman, Hastie, Tibshirani (2019.12.19.882928v1.2) 2013; 22 Smith, Tournier, Calamante, Connelly (2019.12.19.882928v1.15) 2013; 67 Murdoch, Singh, Kumbier, Abbasi-Asl, Yu (2019.12.19.882928v1.29) 2019; 116 Hoerl, Kennard (2019.12.19.882928v1.31) 2000; 42 O’Donnell, Westin, Golby (2019.12.19.882928v1.23) 2009; 45 Pestilli, Yeatman, Rokem, Kay, Wandell (2019.12.19.882928v1.13) 2014; 11 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (2019.12.19.882928v1.40) 2011; 12 Nichols, Hayasaka (2019.12.19.882928v1.26) 2003; 12 Jun, Steinmetz, Siegle, Denman, Bauza, Barbarits (2019.12.19.882928v1.68) 2017; 551 Kluyver, Ragan-Kelley, Pérez, Granger, Bussonnier, Frederic (2019.12.19.882928v1.72) 2016 Hua, Zhang, Wakana, Jiang, Li, Reich (2019.12.19.882928v1.39) 2008; 39 Yeatman, Wandell, Mezer (2019.12.19.882928v1.4) 2014; 5 Brown, Kuperman, Chung, Erhart, McCabe, Hagler (2019.12.19.882928v1.5) 2012; 22 Zhou, Liu, Narayan, Ye (2019.12.19.882928v1.69) 2012 Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong (2019.12.19.882928v1.11) 2017; 8 Thomason, Thompson (2019.12.19.882928v1.8) 2011; 7 Cosottini, Giannelli, Siciliano, Lazzarotti, Michelassi, Del Corona (2019.12.19.882928v1.58) 2005; 237 Colby, Soderberg, Lebel, Dinov, Thompson, Sowell (2019.12.19.882928v1.24) 2012; 59 Conturo, Lori, Cull, Akbudak, Snyder, Shimony (2019.12.19.882928v1.9) 1999; 96 Chamberland, Raven, Genc, Duffy, Descoteaux, Parker (2019.12.19.882928v1.71) 2019; 200 Abe, Takao, Gonoi, Sasaki, Murakami, Kabasawa (2019.12.19.882928v1.60) 2010; 52 Wandell (2019.12.19.882928v1.6) 2016; 39 Bergstra, Komer, Eliasmith, Yamins, Cox (2019.12.19.882928v1.47) 2015; 8 Kaufman, Rosset, Perlich, Stitelman (2019.12.19.882928v1.41) 2012; 6 van der Graaff, Sage, Caan, Akkerman, Lavini, Majoie (2019.12.19.882928v1.51) 2011; 134 Simon, Friedman, Hastie, Tibshirani (2019.12.19.882928v1.34) 2013; 22 Pedregosa (2019.12.19.882928v1.46) 2018 Bells, Cercignani, Deoni, Assaf, Pasternak, Evans (2019.12.19.882928v1.20) 2011; 678 Sarica, Cerasa, Vasta, Perrotta, Valentino, Mangone (2019.12.19.882928v1.53) 2014; 224 Sage, Peeters, Görner, Robberecht, Sunaert (2019.12.19.882928v1.54) 2007; 34 Sage, Van Hecke, Peeters, Sijbers, Robberecht, Parizel (2019.12.19.882928v1.55) 2009; 30 Richard, Kolskår, Sanders, Kaufmann, Petersen, Doan (2019.12.19.882928v1.62) 2018; 6 Jones, Knösche, Turner (2019.12.19.882928v1.7) 2013; 73 Smith, Tournier, Calamante, Connelly (2019.12.19.882928v1.17) 2015; 104 Catani, Howard, Pajevic, Jones (2019.12.19.882928v1.19) 2002; 17 Yeatman, Richie-Halford, Smith, Keshavan, Rokem (2019.12.19.882928v1.49) 2018; 9 Rheault, St-Onge, Sidhu, Maier-Hein, Tzourio-Mazoyer, Petit (2019.12.19.882928v1.18) 2018 Ellis, Simmons, Jones, Bland, Dawson, Horsfield (2019.12.19.882928v1.57) 1999; 53 Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (2019.12.19.882928v1.22) 2016; 221 Smith, Tournier, Calamante, Connelly (2019.12.19.882928v1.16) 2015; 119 Steinmetz, Zatka-Haas, Carandini, Harris (2019.12.19.882928v1.67) 2018 Parikh, Boyd (2019.12.19.882928v1.45) 2014; 1 Cole, Marioni, Harris, Deary (2019.12.19.882928v1.61) 2019; 24 Karlsborg, Rosenbaum, Wiegell, Simonsen, Larsson, Werdelin (2019.12.19.882928v1.56) 2004; 5 Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack (2019.12.19.882928v1.21) 2011; 5 Dayan, Monohan, Pandya, Kuceyeski, Nguyen, Raj (2019.12.19.882928v1.28) 2016; 37 Jernigan, Brown, Dowling (2019.12.19.882928v1.64) 2018; 28 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz (2019.12.19.882928v1.42) 2012; 62 Jernigan, Brown, Hagler, Akshoomoff, Bartsch, Newman (2019.12.19.882928v1.63) 2016; 124 Ciccarelli, Behrens, Johansen-Berg, Talbot, Orrell, Howard (2019.12.19.882928v1.59) 2009; 30 Rao, Nowak, Cox, Rogers (2019.12.19.882928v1.70) 2014 Toosy, Werring, Orrell, Howard, King, Barker (2019.12.19.882928v1.52) 2003; 74 Sarica, Cerasa, Valentino, Yeatman, Trotta, Barone (2019.12.19.882928v1.3) 2017; 38 Basser, Pajevic, Pierpaoli, Duda, Aldroubi (2019.12.19.882928v1.37) 2000; 44 McKinney (2019.12.19.882928v1.50) 2010; 445 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub (2019.12.19.882928v1.38) 2007; 36 Tibshirani (2019.12.19.882928v1.32) 1996; 58 Basser, Mattiello, LeBihan (2019.12.19.882928v1.35) 1994; 66 Yeatman, Dougherty, Myall, Wandell, Feldman (2019.12.19.882928v1.1) 2012; 7 Tibshirani (2019.12.19.882928v1.43) 1996 Huber, Donnelly, Rokem, Yeatman (2019.12.19.882928v1.27) 2018; 9 Alexander, Escalera, Ai, Andreotti, Febre, Mangone (2019.12.19.882928v1.65) 2017; 4 Chang, Jones, Pierpaoli (2019.12.19.882928v1.36) 2005; 53 |
References_xml | – volume: 200 start-page: 89 year: 2019 end-page: 100 ident: 2019.12.19.882928v1.71 article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain publication-title: Neuroimage – volume: 5 start-page: 4932 year: 2014 ident: 2019.12.19.882928v1.4 article-title: Lifespan maturation and degeneration of human brain white matter publication-title: Nature communications – volume: 445 start-page: 51 year: 2010 end-page: 56 ident: 2019.12.19.882928v1.50 publication-title: In: Proceedings of the 9th Python in Science Conference – volume: 678 start-page: 1 year: 2011 ident: 2019.12.19.882928v1.20 article-title: Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts publication-title: In: Proc. ISMRM – volume: 104 start-page: 253 year: 2015 end-page: 265 ident: 2019.12.19.882928v1.17 article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome publication-title: Neuroimage – year: 2018 ident: 2019.12.19.882928v1.18 article-title: Bundle-specific tractography with incorporated anatomical and orientational priors publication-title: Neuroimage – volume: 22 start-page: 231 issue: 2 year: 2013 end-page: 245 ident: 2019.12.19.882928v1.2 article-title: A sparse-group lasso publication-title: Journal of Computational and Graphical Statistics – volume: 12 start-page: e1004692 issue: 2 year: 2016 ident: 2019.12.19.882928v1.14 article-title: Ensemble Tractography publication-title: PLoS Comput Biol – volume: 62 start-page: 2222 issue: 4 year: 2012 end-page: 2231 ident: 2019.12.19.882928v1.42 article-title: The Human Connectome Project: A data acquisition perspective publication-title: NeuroImage – volume: 551 start-page: 232 issue: 7679 year: 2017 end-page: 236 ident: 2019.12.19.882928v1.68 article-title: Fully integrated silicon probes for high-density recording of neural activity publication-title: Nature – volume: 38 start-page: 727 issue: 2 year: 2017 end-page: 739 ident: 2019.12.19.882928v1.3 article-title: The corticospinal tract profile in amyotrophic lateral sclerosis publication-title: Human brain mapping – volume: 34 start-page: 486 issue: 2 year: 2007 end-page: 499 ident: 2019.12.19.882928v1.54 article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis publication-title: Neuroimage – volume: 96 start-page: 10422 issue: 18 year: 1999 end-page: 10427 ident: 2019.12.19.882928v1.9 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc Natl Acad Sci U S A – volume: 15 start-page: 1 issue: 1 year: 2002 end-page: 25 ident: 2019.12.19.882928v1.25 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum Brain Mapp – volume: 52 start-page: 699 issue: 8 year: 2010 end-page: 710 ident: 2019.12.19.882928v1.60 article-title: Voxel-based analysis of the diffusion tensor publication-title: Neuroradiology – volume: 67 start-page: 298 year: 2013 end-page: 312 ident: 2019.12.19.882928v1.15 article-title: SIFT: Spherical-deconvolution informed filtering of tractograms publication-title: Neuroimage – volume: 7 start-page: e49790 issue: 11 year: 2012 ident: 2019.12.19.882928v1.1 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PloS one – volume: 53 start-page: 1088 issue: 5 year: 2005 end-page: 1095 ident: 2019.12.19.882928v1.36 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine – volume: 134 start-page: 1211 issue: 4 year: 2011 end-page: 1228 ident: 2019.12.19.882928v1.51 article-title: Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study publication-title: Brain – volume: 116 start-page: 22071 issue: 44 year: 2019 end-page: 22080 ident: 2019.12.19.882928v1.29 article-title: Definitions, methods, and applications in interpretable machine learning publication-title: Proc Natl Acad Sci U S A – start-page: 87 year: 2016 end-page: 90 ident: 2019.12.19.882928v1.72 publication-title: Jupyter Notebooks-a publishing format for reproducible computational workflows – volume: 6 start-page: 15 issue: 4 year: 2012 ident: 2019.12.19.882928v1.41 article-title: Leakage in data mining: Formulation, detection, and avoidance publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 ident: 2019.12.19.882928v1.32 article-title: Regression Shrinkage and Selection via the Lasso publication-title: J R Stat Soc Series B Stat Methodol – volume: 30 start-page: 615 issue: 2 year: 2009 end-page: 624 ident: 2019.12.19.882928v1.59 article-title: Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics publication-title: Human brain mapping – volume: 44 start-page: 625 issue: 4 year: 2000 end-page: 632 ident: 2019.12.19.882928v1.37 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magnetic resonance in medicine – year: 2018 ident: 2019.12.19.882928v1.46 publication-title: C-OPT: composite optimization in Python – volume: 28 start-page: 154 issue: 1 year: 2018 end-page: 156 ident: 2019.12.19.882928v1.64 article-title: The Adolescent Brain Cognitive Development Study publication-title: J Res Adolesc – year: 2016 ident: 2019.12.19.882928v1.66 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nat Neurosci – volume: 7 start-page: 63 year: 2011 end-page: 85 ident: 2019.12.19.882928v1.8 article-title: Diffusion imaging, white matter, and psychopathology publication-title: Annu Rev Clin Psychol – volume: 221 start-page: 4705 issue: 9 year: 2016 end-page: 4721 ident: 2019.12.19.882928v1.22 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct Funct – volume: 39 start-page: 336 issue: 1 year: 2008 end-page: 347 ident: 2019.12.19.882928v1.39 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification publication-title: Neuroimage – volume: 53 start-page: 1051 issue: 5 year: 1999 end-page: 1051 ident: 2019.12.19.882928v1.57 article-title: Diffusion tensor MRI assesses corticospinal tract damage in ALS publication-title: Neurology – volume: 42 start-page: 80 issue: 1 year: 2000 end-page: 86 ident: 2019.12.19.882928v1.31 article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems publication-title: Technometrics – volume: 66 start-page: 259 issue: 1 year: 1994 end-page: 267 ident: 2019.12.19.882928v1.35 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophysical journal – year: 2014 ident: 2019.12.19.882928v1.70 publication-title: Classification with Sparse Overlapping Groups – volume: 36 start-page: 630 issue: 3 year: 2007 end-page: 644 ident: 2019.12.19.882928v1.38 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 4 start-page: 170181 year: 2017 ident: 2019.12.19.882928v1.65 article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders publication-title: Scientific Data – volume: 24 start-page: 266 issue: 2 year: 2019 end-page: 281 ident: 2019.12.19.882928v1.61 article-title: Brain age and other bodily ‘ages’: implications for neuropsychiatry publication-title: Mol Psychiatry – volume: 111 start-page: 16574 issue: 46 year: 2014 end-page: 16579 ident: 2019.12.19.882928v1.12 article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited publication-title: Proc Natl Acad Sci U S A – year: 2018 ident: 2019.12.19.882928v1.67 article-title: Distributed correlates of visually-guided behavior across the mouse brain publication-title: Nature – volume: 9 start-page: 2260 issue: 1 year: 2018 ident: 2019.12.19.882928v1.27 article-title: Rapid and widespread white matter plasticity during an intensive reading intervention publication-title: Nature communications – start-page: 1095 year: 2012 end-page: 1103 ident: 2019.12.19.882928v1.69 publication-title: In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ‘12 – volume: 8 start-page: 1349 issue: 1 year: 2017 ident: 2019.12.19.882928v1.11 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat Commun – volume: 45 start-page: 832 issue: 3 year: 2009 end-page: 844 ident: 2019.12.19.882928v1.23 article-title: Tract-based morphometry for white matter group analysis publication-title: Neuroimage – volume: 59 start-page: 3227 issue: 4 year: 2012 end-page: 3242 ident: 2019.12.19.882928v1.24 article-title: Along-tract statistics allow for enhanced tractography analysis publication-title: Neuroimage – volume: 30 start-page: 3657 issue: 11 year: 2009 end-page: 3675 ident: 2019.12.19.882928v1.55 article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited publication-title: Human brain mapping – start-page: 267 year: 1996 end-page: 288 ident: 2019.12.19.882928v1.43 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society Series B (Methodological) – volume: 17 start-page: 77 issue: 1 year: 2002 end-page: 94 ident: 2019.12.19.882928v1.19 article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain publication-title: Neuroimage – volume: 5 start-page: 136 issue: 3 year: 2004 end-page: 140 ident: 2019.12.19.882928v1.56 article-title: Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging publication-title: Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders – volume: 12 start-page: 419 issue: 5 year: 2003 end-page: 446 ident: 2019.12.19.882928v1.26 article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review publication-title: Stat Methods Med Res – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: 2019.12.19.882928v1.40 article-title: Scikit-learn: Machine Learning in Python publication-title: Journal of Machine Learning Research – volume: 6 start-page: e5908 year: 2018 ident: 2019.12.19.882928v1.62 article-title: Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry publication-title: PeerJ – volume: 8 start-page: 014008 issue: 1 year: 2015 ident: 2019.12.19.882928v1.47 article-title: Hyperopt: a Python library for model selection and hyperparameter optimization publication-title: Computational Science & Discovery – volume: 237 start-page: 258 issue: 1 year: 2005 end-page: 264 ident: 2019.12.19.882928v1.58 article-title: Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy publication-title: Radiology – volume: 22 start-page: 1693 issue: 18 year: 2012 end-page: 1698 ident: 2019.12.19.882928v1.5 article-title: Neuroanatomical assessment of biological maturity publication-title: Curr Biol – volume: 11 start-page: 1058 issue: 10 year: 2014 end-page: 1063 ident: 2019.12.19.882928v1.13 article-title: Evaluation and statistical inference for human connectomes publication-title: Nat Methods – volume: 119 start-page: 338 year: 2015 end-page: 351 ident: 2019.12.19.882928v1.16 article-title: SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: Neuroimage – start-page: 2546 year: 2011 end-page: 2554 ident: 2019.12.19.882928v1.48 publication-title: In: Advances in neural information processing systems – volume: 1 start-page: 127 issue: 3 year: 2014 end-page: 239 ident: 2019.12.19.882928v1.45 article-title: Proximal algorithms publication-title: Foundations and Trends® in Optimization – volume: 9 start-page: 940 issue: 1 year: 2018 ident: 2019.12.19.882928v1.49 article-title: A browser-based tool for visualization and analysis of diffusion MRI data publication-title: Nature communications – volume: 37 start-page: 989 issue: 3 year: 2016 end-page: 1004 ident: 2019.12.19.882928v1.28 article-title: Profilometry: a new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis publication-title: Human brain mapping – volume: 68 start-page: 49 issue: 1 year: 2006 end-page: 67 ident: 2019.12.19.882928v1.44 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 5 start-page: 23 year: 2011 ident: 2019.12.19.882928v1.21 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front Neuroinform – volume: 22 start-page: 231 issue: 2 year: 2013 end-page: 245 ident: 2019.12.19.882928v1.34 article-title: A sparse-group lasso publication-title: Journal of Computational and Graphical Statistics – volume: 68 start-page: 49 issue: 1 year: 2006 end-page: 67 ident: 2019.12.19.882928v1.33 article-title: Model selection and estimation in regression with grouped variables publication-title: J R Stat Soc Series B Stat Methodol – volume: 73 start-page: 239 year: 2013 end-page: 254 ident: 2019.12.19.882928v1.7 article-title: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI publication-title: Neuroimage – volume: 15 start-page: 468 issue: 7-8 year: 2002 end-page: 480 ident: 2019.12.19.882928v1.10 article-title: Fiber tracking: principles and strategies–a technical review publication-title: NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo – volume: 74 start-page: 1250 issue: 9 year: 2003 end-page: 1257 ident: 2019.12.19.882928v1.52 article-title: Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis publication-title: Journal of Neurology, Neurosurgery & Psychiatry – volume: 16 start-page: 199 issue: 3 year: 2001 end-page: 231 ident: 2019.12.19.882928v1.30 article-title: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) publication-title: Stat Sci – volume: 224 start-page: 79 year: 2014 end-page: 87 ident: 2019.12.19.882928v1.53 article-title: Tractography in amyotrophic lateral sclerosis using a novel probabilistic tool: a study with tract-based reconstruction compared to voxel-based approach publication-title: Journal of neuroscience methods – volume: 39 start-page: 103 year: 2016 end-page: 128 ident: 2019.12.19.882928v1.6 article-title: Clarifying human white matter publication-title: Annual review of neuroscience – volume: 124 start-page: 1149 issue: Pt B year: 2016 end-page: 1154 ident: 2019.12.19.882928v1.63 article-title: The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository publication-title: Neuroimage |
SSID | ssj0002961374 |
Score | 1.5813379 |
SecondaryResourceType | preprint |
Snippet | The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Amyotrophic lateral sclerosis Anisotropy Brain architecture Classification Magnetic resonance imaging Neuroimaging Neuroscience NMR Nuclear magnetic resonance Pyramidal tracts Regression analysis Sparsity Statistics Substantia alba |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66i-DNJ66uEsFrpUmbpDmLyyqsiLiwt9K0E9jDdpd9-Pj3zqT1AXrwUspAWphkXsnk-xi78rLUUlZxBHQ9F72kjVziLFq8EkmGq0YFjqXRgx6O0_uJmvyg-qK2SjedL9-mL-Ecnxq20fs2xh0LrNWFpf07QVMsrcy2WReXlCTWhsHk-mt7RVqMUyZtzzH_HIkZb_unX344BJfBHus-FgtY7rMtqA_YTsMO-X7IVuFybEXw-w10Bi9aBBF8qXgF69BGVfO55y3-Kfku7iGAda5QyIn_ZEOj-ejpjs--NwRXNCoQ9PFXOkngswC0ecTGg9vnm2HUciREDmuJLNJpWdqiMj6NwUiXpUVVuMSjREurKgmgnVcUh702XoEEhRWXMVmSGJ-ZIjlmnXpewwnjaaliAXHhHCZROgVbeuEwwcJyG7NKAz122eorXzRIGDnpNBcyx2ej0x7rf2oyb41hlWPSlln0JFqc_uMTZ2yXZNQyIuM-66yXGzjHwL92F2GKPwDHsKkB priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Multidimensional analysis and detection of informative features in diffusion MRI measurements of human white matter |
URI | https://www.proquest.com/docview/2328973061 https://www.biorxiv.org/content/10.1101/2019.12.19.882928 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA9uY7CbTsXpHBG8Vtu0SZuToGxMYWMMB7uVpk1gh324bn78976XZnoQvJSSkh5eXt5n8vsRcmtYLhgrfE_j9VywktJToZKw43kQJqA13HIsjcZiOIte5nzuCm6lO1Z5sInWUBfrHGvk9-D5EwnqKIKHzZuHrFHYXXUUGjXSABOcgJ43HvvjyfSnysIkuCsLxcyEhK3PfO5am6CKkPgHEouBAeoLk8jI3lSL9fZz8f7HNFt_MzgmjUm20dsTcqRXbdKsCCO_2qSFsWEFrXxKSnt5tkB4_gpag2YOYQReClronT1mtaJrQx0-Kto2arQF8yxhkCI_yh5n09H0mS5_C4YlzrIEfvQDOw10aYE4z8hs0H99GnqOQ8FTkGsknojyXGZFbCJfx0wlUVZkKjQwIpjkBdNaKMPRTxsRG66Z5pCRxXEShrFJ4iw8J_XVeqUvCI1y7gfaz5SCIEtEWuYmUBCAQToOUWesO-TGCS_dVEgZKQo4DVgKz0rAHdI9iDV1m6VMf5f28v_PV6SFf8TTJMzvkvpuu9fXEBPsVM8tfI_UBvO7b_1HtXw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKwQ3VrFjJDhGJE7sxAeExKYWaIUQSNxCnNgSB9rStBR-im9kxknhgMSNSxQ5sg-T55nxMu8BHFieS84L3zNUnoteUnk61ApnvAjCBFEjnMZSpytbD9HVo3icgc9pLQxdq5z6ROeoi35Oe-RHGPkThXCUwcng1SPVKDpdnUpoVLC4Nh8TXLKVx-1z_L-HnF9e3J-1vFpVwNOYfSeejPJcZUVsI9_EXCdRVmQ6tNgiuRIFN0ZqKyhyWRlbYbgRuEaJ4yQMY5vEWYjjzkIzoorWBjRPL7q3d9-7OlxheHTUz1wqdDXcF_VRKkL_CIOtos3HgPDJFSnAz-nn_vD9-e1XKHDx7XIRmrfZwAyXYMb0lmGuEqj8WIYFykUrKucVKF2xbkFyABWVB8tqRhN8KVhhRu5aV4_1Lav5WMmXMmsceWiJjYz0WMbUm3Xu2uzlZ4OypF5OMJBN6GSDvTjiz1V4-BfrrkGj1--ZdWBRLvzA-JnWmNTJyKjcBhoTPlz-Y5Ybmw3Yr42XDipmjpQMnAY8xWdl4A3Ynpo1rSdnmf5AafPvz3sw37rv3KQ37e71FizQ6HSThfvb0BgNx2YH85GR3q1BwODpv3H3Bd7g8Wo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvC1o0mbpnlWy6ZuDHGwt9K0CezBbqybH_-9d2n9AH3wpZSUpHC5u9xXfkfIleV5xHnhewav54KWVJ4OtAKJFyyIgWuE67E0HEX9SXg3FdMfd2GwrFLP5su32YvL42PBNmjfWrh9Br46Uxi_Y7jFXPG4h2Hq3qKwm6QNvMWQs5Np7yvOwhUcWDJsEpp_LgGmb_PLXwrZnTLJLmmPs4VZ7pENU-6TrbpN5PsBqdwt2QJx-GsMDZo1UCLwUtDCrFw9VUnnljZAqKjEqDUOtbOCQYqNUNY4mw4fB_T5OzJY4SzXqY--YkqBPjvEzUMySW6frvte0yzB0-BUxF4U5rnKCmlD30iu4zArMh1YGIm4EgU3JtJW4IFsI2mF4UaA6yVlHATSxjILjkirnJfmmNAwFz4zfqY1WFNRaFRumQZLC_xuMC-l6ZDLhl7poobESJGmKeMpPGuadkj3k5JpIxVVCtZbrEClROzkH0tckO3xTZI-DEb3p2QHP2MZCfe7pLVars0ZGAMrfe52-wPeZa7p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+analysis+and+detection+of+informative+features+in+diffusion+MRI+measurements+of+human+white+matter&rft.jtitle=bioRxiv&rft.au=Richie-Halford%2C+Adam&rft.au=Yeatman%2C+Jason&rft.au=Simon%2C+Noah&rft.au=Rokem%2C+Ariel&rft.date=2019-12-20&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2019.12.19.882928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |