Direct Relationship between Protein Expression and Progeny Yield of Herpes Simplex Virus 1 Unveils a Rate-limiting Step for Virus Production

Although viral protein expression and progeny virus production were independently shown to be highly heterogenous in individual cells, their direct relationship, analyzed by considering their heterogeneities, has not been investigated to date. This study established a system to fractionate cells inf...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Nobe, Moeka, Maruzuru, Yuhei, Takeshima, Kosuke, Maeda, Fumio, Kusano, Hideo, Yoshimura, Raiki, Nishiyama, Takara, Park, Hyeongki, Kozaki, Yoshitaka, Iwami, Shingo, Koyanagi, Naoto, Kato, Akihisa, Natsume, Tohru, Adachi, Shungo, Kawaguchi, Yasushi
Format Paper
LanguageJapanese
Published Cold Spring Harbor Laboratory 08.06.2023
Edition1.2
Subjects
Online AccessGet full text
ISSN2692-8205
DOI10.1101/2023.06.07.544155

Cover

Loading…
Abstract Although viral protein expression and progeny virus production were independently shown to be highly heterogenous in individual cells, their direct relationship, analyzed by considering their heterogeneities, has not been investigated to date. This study established a system to fractionate cells infected with a herpesvirus based on the levels of the global expression of viral late proteins, which are largely virion structural proteins, and to titrate virus yields in these fractions. This system demonstrated a direct relationship and indicated there was a threshold for the levels of viral late protein expression for progeny virus production and suggested that viral DNA cleavage/packaging was a rate-limiting step for progeny virus production. These findings, which were masked in previous studies performed at the entire population level, have uncovered a sophisticated viral strategy for efficient progeny virus production and shed new light on an effective target for the development of anti-viral drugs.
AbstractList Although viral protein expression and progeny virus production were independently shown to be highly heterogenous in individual cells, their direct relationship, analyzed by considering their heterogeneities, has not been investigated to date. This study established a system to fractionate cells infected with a herpesvirus based on the levels of the global expression of viral late proteins, which are largely virion structural proteins, and to titrate virus yields in these fractions. This system demonstrated a direct relationship and indicated there was a threshold for the levels of viral late protein expression for progeny virus production and suggested that viral DNA cleavage/packaging was a rate-limiting step for progeny virus production. These findings, which were masked in previous studies performed at the entire population level, have uncovered a sophisticated viral strategy for efficient progeny virus production and shed new light on an effective target for the development of anti-viral drugs.
Author Kusano, Hideo
Yoshimura, Raiki
Adachi, Shungo
Kawaguchi, Yasushi
Maruzuru, Yuhei
Kozaki, Yoshitaka
Nobe, Moeka
Nishiyama, Takara
Koyanagi, Naoto
Kato, Akihisa
Iwami, Shingo
Park, Hyeongki
Maeda, Fumio
Takeshima, Kosuke
Natsume, Tohru
Author_xml – sequence: 1
  givenname: Moeka
  surname: Nobe
  fullname: Nobe, Moeka
  organization: Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo
– sequence: 2
  givenname: Yuhei
  surname: Maruzuru
  fullname: Maruzuru, Yuhei
  organization: Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo
– sequence: 3
  givenname: Kosuke
  surname: Takeshima
  fullname: Takeshima, Kosuke
  organization: Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo
– sequence: 4
  givenname: Fumio
  surname: Maeda
  fullname: Maeda, Fumio
  organization: Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 5
  givenname: Hideo
  surname: Kusano
  fullname: Kusano, Hideo
  organization: Japan
– sequence: 6
  givenname: Raiki
  surname: Yoshimura
  fullname: Yoshimura, Raiki
  organization: Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University
– sequence: 7
  givenname: Takara
  surname: Nishiyama
  fullname: Nishiyama, Takara
  organization: Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University
– sequence: 8
  givenname: Hyeongki
  surname: Park
  fullname: Park, Hyeongki
  organization: Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University
– sequence: 9
  givenname: Yoshitaka
  surname: Kozaki
  fullname: Kozaki, Yoshitaka
  organization: Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University
– sequence: 10
  givenname: Shingo
  surname: Iwami
  fullname: Iwami, Shingo
  organization: Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University
– sequence: 11
  givenname: Naoto
  surname: Koyanagi
  fullname: Koyanagi, Naoto
  organization: Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo
– sequence: 12
  givenname: Akihisa
  surname: Kato
  fullname: Kato, Akihisa
  organization: Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo
– sequence: 13
  givenname: Tohru
  surname: Natsume
  fullname: Natsume, Tohru
  organization: Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 14
  givenname: Shungo
  surname: Adachi
  fullname: Adachi, Shungo
  organization: Japan
– sequence: 15
  givenname: Yasushi
  surname: Kawaguchi
  fullname: Kawaguchi, Yasushi
  email: ykawagu@ims.u-tokyo.ac.jp
  organization: Infection and Advanced Research Center
BookMark eNotUM1OwkAY3BhNROQBvH1HL8X96W7bo0EUExINoImnZrv9imvKttktCO_gQ1sCp0lmJjOZuSGXrnFIyB2jY8Yoe-CUizFVY5qMZRwzKS_IgKuMRymn8pqMQvihlPJMMZHEA_L3ZD2aDhZY6842LnzbFgrsfhEdvPumQ-tgum89htDLoF15pNfoDvBlsS6hqWCGvsUAS7tpa9zDp_XbAAw-3A5tHUDDQncY1XZjO-vWsOywharxZ2MfV27NsfyWXFW6Djg645CsnqerySyav728Th7nUcESJqOEKYb9iJgKESvNkVf9FjQplkzqWJZUJiI1piyzOFYmMwUaUaWJVLTiphBDcn-KLWzj93aXt95utD_kx-9yqnKa5KfvxD89PGfL
Cites_doi 10.1128/JVI.03175-13
10.4049/jimmunol.1202749
10.1128/jvi.77.2.1382-1391.2003
10.1038/ncomms9938
10.1099/00221287-20-1-105
10.1038/nrmicro2559
10.1128/JVI.71.4.2666-2673.1997
10.1038/nmeth1062
10.1126/science.1244040
10.1007/978-1-4614-0980-9_19
10.1038/s41467-021-25361-5
10.1073/pnas.1203447109
10.1371/journal.pone.0146021
10.1073/pnas.1910537117
10.1016/j.cell.2009.06.015
10.1038/s42003-023-04522-w
10.3389/fmicb.2016.01503
10.1126/science.aav0758
10.1016/j.virol.2011.12.005
10.1007/978-3-319-53168-7_6
10.1128/JVI.67.6.3470-3480.1993
10.1128/JVI.01290-19
10.2144/000112096
10.1002/etc.7
10.1016/j.cell.2016.03.014
10.1038/s41467-020-18718-9
10.3390/v14040826
10.1021/bi0516273
10.1016/j.ijbiomac.2021.01.076
10.1038/nature06013
10.1126/science.1232458
10.1128/JVI.00103-09
10.1084/jem.100.2.195
10.1016/0092-8674(88)90141-9
10.1128/JVI.01582-17
10.1006/viro.1996.0098
10.1128/JB.50.2.131-135.1945
10.1038/s41467-020-15992-5
10.1128/JVI.72.3.2463-2473.1998
10.1128/JVI.00854-17
10.1128/JVI.06913-11
10.1128/JVI.71.10.7328-7336.1997
10.7554/eLife.46339
10.1016/j.tim.2011.09.001
10.1038/s41586-021-03875-8
10.1371/journal.ppat.1007331
10.1126/sciadv.aba4137
10.1128/jvi.01429-22
10.1073/pnas.1211302109
10.1073/pnas.1108564108
10.3390/v13081568
10.1128/JVI.03043-15
10.1128/JVI.03539-13
10.7554/eLife.86852
10.1016/j.virol.2011.01.016
10.1016/j.virol.2008.10.031
10.1128/JVI.01035-18
10.1016/j.chom.2015.09.009
10.1073/pnas.2025546118
10.1128/JVI.01704-21
10.1128/jvi.78.3.1344-1351.2004
10.3389/fmicb.2020.01179
10.1016/j.chom.2017.12.014
10.1128/JVI.02245-07
10.1128/JVI.69.9.5401-5413.1995
10.1128/JVI.72.5.3779-3788.1998
ContentType Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2023.06.07.544155
DatabaseName bioRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.2
ExternalDocumentID 2023.06.07.544155v2
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b1715-7161e000403346a2e2f374ec8ed15a45d05738ccdd9446c9cbec3f87560f2cb3
IEDL.DBID FX.
IngestDate Tue Jan 07 18:54:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Japanese
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1715-7161e000403346a2e2f374ec8ed15a45d05738ccdd9446c9cbec3f87560f2cb3
Notes Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.biorxiv.org/content/10.1101/2023.06.07.544155
PageCount 61
ParticipantIDs biorxiv_primary_2023_06_07_544155
PublicationCentury 2000
PublicationDate 2023-06-08
PublicationDateYYYYMMDD 2023-06-08
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-08
  day: 08
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Schulte, Andino (2023.06.07.544155v2.10) 2014; 88
Duffy, Mbong, Baines (2023.06.07.544155v2.56) 2009; 83
Heldt, Kupke, Dorl, Reichl, Frensing (2023.06.07.544155v2.12) 2015; 6
Takaoka, Wang, Choi, Yanai, Negishi, Ban, Lu, Miyagishi, Kodama, Honda (2023.06.07.544155v2.45) 2007; 448
Khadivjam, Bonneil, Thibault, Lippe (2023.06.07.544155v2.30) 2023; 6
Wildy, Stoker, Ross (2023.06.07.544155v2.13) 1959; 20
Sagou, Imai, Sagara, Uema, Kawaguchi (2023.06.07.544155v2.68) 2009; 83
Ritz, Baty, Streibig, Gerhard (2023.06.07.544155v2.70) 2015; 10
Patel, Rixon, Cunningham, Davison (2023.06.07.544155v2.32) 1996; 217
Horan, Hansen, Jakobsen, Holm, Soby, Unterholzner, Thompson, West, Iversen, Rasmussen (2023.06.07.544155v2.43) 2013; 190
Johnson, Baines (2023.06.07.544155v2.29) 2011; 9
Ouwendijk, Dekker, van den Ham, Lenac Rovis, Haefner, Jonjic, Haas, Luider, Verjans (2023.06.07.544155v2.5) 2020; 11
Takeshima, Maruzuru, Koyanagi, Kato, Kawaguchi (2023.06.07.544155v2.41) 2022; 96
Cohen, Avital, Shamay, Kobiler (2023.06.07.544155v2.22) 2020; 117
Ahi, Mittal (2023.06.07.544155v2.39) 2016; 7
Li, Wu, Gao, Wang, Sun, Chen (2023.06.07.544155v2.47) 2013; 341
Tanaka, Kato, Satoh, Ide, Sagou, Kimura, Hasegawa, Kawaguchi (2023.06.07.544155v2.57) 2012; 86
Ku, Sheyn, Sebe-Pedros, Ben-Dor, Schatz, Tanay, Rosenwasser, Vardi (2023.06.07.544155v2.16) 2020; 6
Roizman, Knipe, Whitley (2023.06.07.544155v2.19) 2013
Tanaka, Kagawa, Yamanashi, Sata, Kawaguchi (2023.06.07.544155v2.61) 2003; 77
Lee, Karki, Wang, Nguyen, Kalathur, Kanneganti (2023.06.07.544155v2.49) 2021; 597
Whisnant, Jurges, Hennig, Wyler, Prusty, Rutkowski, L’Hernault, Djakovic, Gobel, Doring (2023.06.07.544155v2.21) 2020; 11
Bacsik, Dadonaite, Butler, Greaney, Heaton, Bloom (2023.06.07.544155v2.14) 2023; 12
Lymberopoulos, Bourget, Ben Abdeljelil, Pearson (2023.06.07.544155v2.40) 2011; 412
Kim, Kim, Park, Chang, Chang, Ahn, Park, Park, Son, Kang (2023.06.07.544155v2.3) 2021; 12
Salmon, Cunningham, Davison, Harris, Baines (2023.06.07.544155v2.35) 1998; 72
Combe, Garijo, Geller, Cuevas, Sanjuan (2023.06.07.544155v2.11) 2015; 18
de Bruyn Kops, Knipe (2023.06.07.544155v2.54) 1988; 55
Baines, Cunningham, Nalwanga, Davison (2023.06.07.544155v2.33) 1997; 71
Lloyd, Yee, Flot, Liu, Geiler, Kinchington, Moffat (2023.06.07.544155v2.4) 2022; 14
Ritz (2023.06.07.544155v2.69) 2010; 29
Drayman, Patel, Vistain, Tay (2023.06.07.544155v2.15) 2019; 8
Cardone, Heymann, Cheng, Trus, Steven (2023.06.07.544155v2.23) 2012; 726
Baines (2023.06.07.544155v2.25) 2011; 19
Suomalainen, Greber (2023.06.07.544155v2.17) 2021; 13
Tompa, Immanuel, Srikanth, Kadhirvel (2023.06.07.544155v2.38) 2021; 172
Pheasant, Moller-Levet, Jones, Depledge, Breuer, Elliott (2023.06.07.544155v2.59) 2018; 14
Kremers, Goedhart, van Munster, Gadella (2023.06.07.544155v2.63) 2006; 45
Li, Diner, Chen, Cristea (2023.06.07.544155v2.51) 2012; 109
Sun, Wu, Du, Chen, Chen (2023.06.07.544155v2.46) 2013; 339
Maruzuru, Ichinohe, Sato, Miyake, Okano, Suzuki, Koshiba, Koyanagi, Tsuda, Watanabe (2023.06.07.544155v2.48) 2018; 23
Arii, Takeshima, Maruzuru, Koyanagi, Nakayama, Kato, Mori, Kawaguchi (2023.06.07.544155v2.65) 2022; 96
Timm, Yin (2023.06.07.544155v2.9) 2012; 424
Morgan, Ellison, Rose, Moore (2023.06.07.544155v2.53) 1954; 100
Merzlyak, Goedhart, Shcherbo, Bulina, Shcheglov, Fradkov, Gaintzeva, Lukyanov, Lukyanov, Gadella, Chudakov (2023.06.07.544155v2.62) 2007; 4
Orzalli, DeLuca, Knipe (2023.06.07.544155v2.50) 2012; 109
Homa (2023.06.07.544155v2.24) 1997; 7
Whelan (2023.06.07.544155v2.1) 2013
Hutchinson, Johnson (2023.06.07.544155v2.42) 1995; 69
Liu, Beyer, Aebersold (2023.06.07.544155v2.55) 2016; 165
Tischer, von Einem, Kaufer, Osterrieder (2023.06.07.544155v2.66) 2006; 40
Vink, Andrews, Duffy, Mohr (2023.06.07.544155v2.58) 2021; 118
Heming, Conway, Homa (2023.06.07.544155v2.31) 2017; 223
Lamberti, Weller (2023.06.07.544155v2.37) 1998; 72
Chiu, Macmillan, Chen (2023.06.07.544155v2.44) 2009; 138
Knipe, Heldwein, Mohr, Sodroski, Whitley, Johnston (2023.06.07.544155v2.18) 2022
Tengelsen, Pederson, Shaver, Wathen, Homa (2023.06.07.544155v2.36) 1993; 67
Kato, Oda, Watanabe, Oyama, Kozuka-Hata, Koyanagi, Maruzuru, Arii, Kawaguchi (2023.06.07.544155v2.64) 2018; 92
Yang, Baines (2023.06.07.544155v2.27) 2011; 108
Kato, Adachi, Kawano, Takeshima, Watanabe, Kitazume, Sato, Kusano, Koyanagi, Maruzuru (2023.06.07.544155v2.20) 2020; 11
Zhu, Yongky, Yin (2023.06.07.544155v2.8) 2009; 385
Delbruck (2023.06.07.544155v2.7) 1945; 50
Kawaguchi, Van Sant, Roizman (2023.06.07.544155v2.67) 1997; 71
Takeshima, Arii, Maruzuru, Koyanagi, Kato, Kawaguchi (2023.06.07.544155v2.26) 2019; 93
Sato, Kato, Maruzuru, Oyama, Kozuka-Hata, Arii, Kawaguchi (2023.06.07.544155v2.60) 2016; 90
Wang, Wen, Cao (2023.06.07.544155v2.52) 2019; 365
Tamura, Fukuhara, Uchida, Ono, Mori, Sato, Fauzyah, Okamoto, Kurosu, Setoh (2023.06.07.544155v2.6) 2018; 92
Yang, Dang, Baines (2023.06.07.544155v2.34) 2017; 91
Yang, Wills, Lim, Zhou, Baines (2023.06.07.544155v2.28) 2014; 88
Brown, Kauder, Cornell, Jang, Racaniello, Semler (2023.06.07.544155v2.2) 2004; 78
References_xml – volume: 88
  start-page: 3815
  year: 2014
  end-page: 3825
  ident: 2023.06.07.544155v2.28
  article-title: Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex
  publication-title: J Virol
  doi: 10.1128/JVI.03175-13
– volume: 190
  start-page: 2311
  year: 2013
  end-page: 2319
  ident: 2023.06.07.544155v2.43
  article-title: Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1202749
– start-page: 105
  year: 2013
  end-page: 126
  ident: 2023.06.07.544155v2.1
  publication-title: Fields virology
– start-page: 297
  year: 2022
  end-page: 323
  ident: 2023.06.07.544155v2.18
  publication-title: Fields virology
– volume: 77
  start-page: 1382
  year: 2003
  end-page: 1391
  ident: 2023.06.07.544155v2.61
  article-title: Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo
  publication-title: J Virol
  doi: 10.1128/jvi.77.2.1382-1391.2003
– volume: 6
  issue: 8938
  year: 2015
  ident: 2023.06.07.544155v2.12
  article-title: Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection
  publication-title: Nat Commun
  doi: 10.1038/ncomms9938
– volume: 20
  start-page: 105
  year: 1959
  end-page: 112
  ident: 2023.06.07.544155v2.13
  article-title: Release of Herpes Virus from Solitary HeLa Cells
  publication-title: Journal of General Microbiology
  doi: 10.1099/00221287-20-1-105
– volume: 9
  start-page: 382
  year: 2011
  end-page: 394
  ident: 2023.06.07.544155v2.29
  article-title: Herpesviruses remodel host membranes for virus egress
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2559
– volume: 71
  start-page: 2666
  year: 1997
  end-page: 2673
  ident: 2023.06.07.544155v2.33
  article-title: The U(L)15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the U(L)15 gene product
  publication-title: J Virol
  doi: 10.1128/JVI.71.4.2666-2673.1997
– volume: 4
  start-page: 555
  year: 2007
  end-page: 557
  ident: 2023.06.07.544155v2.62
  article-title: Bright monomeric red fluorescent protein with an extended fluorescence lifetime
  publication-title: Nat Methods
  doi: 10.1038/nmeth1062
– volume: 341
  start-page: 1390
  year: 2013
  end-page: 1394
  ident: 2023.06.07.544155v2.47
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
  doi: 10.1126/science.1244040
– volume: 726
  start-page: 423
  year: 2012
  end-page: 439
  ident: 2023.06.07.544155v2.23
  article-title: Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpesvirions
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4614-0980-9_19
– volume: 12
  issue: 5120
  year: 2021
  ident: 2023.06.07.544155v2.3
  article-title: A high-resolution temporal atlas of the SARS-CoV-2 translatome and transcriptome
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25361-5
– volume: 109
  start-page: 10558
  year: 2012
  end-page: 10563
  ident: 2023.06.07.544155v2.51
  article-title: Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1203447109
– volume: 10
  start-page: e0146021
  year: 2015
  ident: 2023.06.07.544155v2.70
  article-title: Dose-Response Analysis Using R
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0146021
– volume: 117
  start-page: 635
  year: 2020
  end-page: 640
  ident: 2023.06.07.544155v2.22
  article-title: Abortive herpes simplex virus infection of nonneuronal cells results in quiescent viral genomes that can reactivate
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1910537117
– volume: 138
  start-page: 576
  year: 2009
  end-page: 591
  ident: 2023.06.07.544155v2.44
  article-title: RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.015
– volume: 6
  issue: 134
  year: 2023
  ident: 2023.06.07.544155v2.30
  article-title: RNA helicase DDX3X modulates herpes simplex virus 1 nuclear egress
  publication-title: Commun Biol
  doi: 10.1038/s42003-023-04522-w
– volume: 7
  issue: 1503
  year: 2016
  ident: 2023.06.07.544155v2.39
  article-title: Components of Adenovirus Genome Packaging
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.01503
– volume: 365
  year: 2019
  ident: 2023.06.07.544155v2.52
  article-title: Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses
  publication-title: Science
  doi: 10.1126/science.aav0758
– volume: 424
  start-page: 11
  year: 2012
  end-page: 17
  ident: 2023.06.07.544155v2.9
  article-title: Kinetics of virus production from single cells
  publication-title: Virology
  doi: 10.1016/j.virol.2011.12.005
– volume: 223
  start-page: 119
  year: 2017
  end-page: 142
  ident: 2023.06.07.544155v2.31
  article-title: Herpesvirus Capsid Assembly and DNA Packaging
  publication-title: Adv Anat Embryol Cell Biol
  doi: 10.1007/978-3-319-53168-7_6
– volume: 67
  start-page: 3470
  year: 1993
  end-page: 3480
  ident: 2023.06.07.544155v2.36
  article-title: Herpes simplex virus type 1 DNA cleavage and encapsidation require the product of the UL28 gene: isolation and characterization of two UL28 deletion mutants
  publication-title: J Virol
  doi: 10.1128/JVI.67.6.3470-3480.1993
– volume: 93
  year: 2019
  ident: 2023.06.07.544155v2.26
  article-title: Identification of the Capsid Binding Site in the Herpes Simplex Virus 1 Nuclear Egress Complex and Its Role in Viral Primary Envelopment and Replication
  publication-title: J Virol
  doi: 10.1128/JVI.01290-19
– volume: 7
  start-page: 107
  year: 1997
  end-page: 122
  ident: 2023.06.07.544155v2.24
  article-title: Capsid assembly and DNA packaging in herpes simplex virus
  publication-title: Reviews in medical virology
– volume: 40
  start-page: 191
  year: 2006
  end-page: 197
  ident: 2023.06.07.544155v2.66
  article-title: Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli
  publication-title: Biotechniques
  doi: 10.2144/000112096
– volume: 29
  start-page: 220
  year: 2010
  end-page: 229
  ident: 2023.06.07.544155v2.69
  article-title: Toward a unified approach to dose-response modeling in ecotoxicology
  publication-title: Environmental Toxicology and Chemistry
  doi: 10.1002/etc.7
– volume: 165
  start-page: 535
  year: 2016
  end-page: 550
  ident: 2023.06.07.544155v2.55
  article-title: On the Dependency of Cellular Protein Levels on mRNA Abundance
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.014
– volume: 11
  issue: 4894
  year: 2020
  ident: 2023.06.07.544155v2.20
  article-title: Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18718-9
– volume: 14
  year: 2022
  ident: 2023.06.07.544155v2.4
  article-title: Development of Robust Varicella Zoster Virus Luciferase Reporter Viruses for In Vivo Monitoring of Virus Growth and Its Antiviral Inhibition in Culture, Skin, and Humanized Mice
  publication-title: Viruses
  doi: 10.3390/v14040826
– volume: 45
  start-page: 6570
  year: 2006
  end-page: 6580
  ident: 2023.06.07.544155v2.63
  article-title: Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius
  publication-title: Biochemistry
  doi: 10.1021/bi0516273
– start-page: 1823
  year: 2013
  end-page: 1897
  ident: 2023.06.07.544155v2.19
  publication-title: Fields virology
– volume: 172
  start-page: 524
  year: 2021
  end-page: 541
  ident: 2023.06.07.544155v2.38
  article-title: Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2021.01.076
– volume: 448
  start-page: 501
  year: 2007
  end-page: 505
  ident: 2023.06.07.544155v2.45
  article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
  publication-title: Nature
  doi: 10.1038/nature06013
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: 2023.06.07.544155v2.46
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 83
  start-page: 5773
  year: 2009
  end-page: 5783
  ident: 2023.06.07.544155v2.68
  article-title: Regulation of the catalytic activity of herpes simplex virus 1 protein kinase Us3 by autophosphorylation and its role in pathogenesis
  publication-title: J Virol
  doi: 10.1128/JVI.00103-09
– volume: 100
  start-page: 195
  year: 1954
  end-page: 202
  ident: 2023.06.07.544155v2.53
  article-title: Structure and development of viruses as observed in the electron microscope
  publication-title: I. Herpes simplex virus. J Exp Med
  doi: 10.1084/jem.100.2.195
– volume: 55
  start-page: 857
  year: 1988
  end-page: 868
  ident: 2023.06.07.544155v2.54
  article-title: Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90141-9
– volume: 92
  year: 2018
  ident: 2023.06.07.544155v2.6
  article-title: Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag
  publication-title: J Virol
  doi: 10.1128/JVI.01582-17
– volume: 217
  start-page: 111
  year: 1996
  end-page: 123
  ident: 2023.06.07.544155v2.32
  article-title: Isolation and characterization of herpes simplex virus type 1 mutants defective in the UL6 gene
  publication-title: Virology
  doi: 10.1006/viro.1996.0098
– volume: 50
  start-page: 131
  year: 1945
  end-page: 135
  ident: 2023.06.07.544155v2.7
  article-title: The burst size distribution in the growth of bacterial viruses (bacteriophages)
  publication-title: J Bacteriol
  doi: 10.1128/JB.50.2.131-135.1945
– volume: 11
  issue: 2038
  year: 2020
  ident: 2023.06.07.544155v2.21
  article-title: Integrative functional genomics decodes herpes simplex virus 1
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15992-5
– volume: 72
  start-page: 2463
  year: 1998
  end-page: 2473
  ident: 2023.06.07.544155v2.37
  article-title: The herpes simplex virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments
  publication-title: J Virol
  doi: 10.1128/JVI.72.3.2463-2473.1998
– volume: 91
  year: 2017
  ident: 2023.06.07.544155v2.34
  article-title: A Domain of Herpes Simplex Virus pU(L)33 Required To Release Monomeric Viral Genomes from Cleaved Concatemeric DNA
  publication-title: J Virol
  doi: 10.1128/JVI.00854-17
– volume: 86
  start-page: 5264
  year: 2012
  end-page: 5277
  ident: 2023.06.07.544155v2.57
  article-title: Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence
  publication-title: J Virol
  doi: 10.1128/JVI.06913-11
– volume: 71
  start-page: 7328
  year: 1997
  end-page: 7336
  ident: 2023.06.07.544155v2.67
  article-title: Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3
  publication-title: J Virol
  doi: 10.1128/JVI.71.10.7328-7336.1997
– volume: 8
  year: 2019
  ident: 2023.06.07.544155v2.15
  article-title: HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations
  publication-title: Elife
  doi: 10.7554/eLife.46339
– volume: 19
  start-page: 606
  year: 2011
  end-page: 613
  ident: 2023.06.07.544155v2.25
  article-title: Herpes simplex virus capsid assembly and DNA packaging: a present and future antiviral drug target
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2011.09.001
– volume: 597
  start-page: 415
  year: 2021
  end-page: 419
  ident: 2023.06.07.544155v2.49
  article-title: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence
  publication-title: Nature
  doi: 10.1038/s41586-021-03875-8
– volume: 14
  start-page: e1007331
  year: 2018
  ident: 2023.06.07.544155v2.59
  article-title: Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007331
– volume: 6
  year: 2020
  ident: 2023.06.07.544155v2.16
  article-title: A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aba4137
– volume: 96
  start-page: e0142922
  year: 2022
  ident: 2023.06.07.544155v2.41
  article-title: Redundant and Specific Roles of A-Type Lamins and Lamin B Receptor in Herpes Simplex Virus 1 Infection
  publication-title: J Virol
  doi: 10.1128/jvi.01429-22
– volume: 109
  start-page: E3008
  year: 2012
  end-page: 3017
  ident: 2023.06.07.544155v2.50
  article-title: Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1211302109
– volume: 108
  start-page: 14276
  year: 2011
  end-page: 14281
  ident: 2023.06.07.544155v2.27
  article-title: Selection of HSV capsids for envelopment involves interaction between capsid surface components pUL31, pUL17, and pUL25
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1108564108
– volume: 13
  year: 2021
  ident: 2023.06.07.544155v2.17
  article-title: Virus Infection Variability by Single-Cell Profiling
  publication-title: Viruses
  doi: 10.3390/v13081568
– volume: 90
  start-page: 3173
  year: 2016
  end-page: 3186
  ident: 2023.06.07.544155v2.60
  article-title: Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication
  publication-title: J Virol
  doi: 10.1128/JVI.03043-15
– volume: 88
  start-page: 6205
  year: 2014
  end-page: 6212
  ident: 2023.06.07.544155v2.10
  article-title: Single-cell analysis uncovers extensive biological noise in poliovirus replication
  publication-title: J Virol
  doi: 10.1128/JVI.03539-13
– volume: 12
  year: 2023
  ident: 2023.06.07.544155v2.14
  article-title: Influenza virus transcription and progeny production are poorly correlated in single cells
  publication-title: Elife
  doi: 10.7554/eLife.86852
– volume: 412
  start-page: 341
  year: 2011
  end-page: 348
  ident: 2023.06.07.544155v2.40
  article-title: Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress
  publication-title: Virology
  doi: 10.1016/j.virol.2011.01.016
– volume: 385
  start-page: 39
  year: 2009
  end-page: 46
  ident: 2023.06.07.544155v2.8
  article-title: Growth of an RNA virus in single cells reveals a broad fitness distribution
  publication-title: Virology
  doi: 10.1016/j.virol.2008.10.031
– volume: 92
  year: 2018
  ident: 2023.06.07.544155v2.64
  article-title: Roles of the Phosphorylation of Herpes Simplex Virus 1 UL51 at a Specific Site in Viral Replication and Pathogenicity
  publication-title: J Virol
  doi: 10.1128/JVI.01035-18
– volume: 18
  start-page: 424
  year: 2015
  end-page: 432
  ident: 2023.06.07.544155v2.11
  article-title: Single-Cell Analysis of RNA Virus Infection Identifies Multiple Genetically Diverse Viral Genomes within Single Infectious Units
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.09.009
– volume: 118
  year: 2021
  ident: 2023.06.07.544155v2.58
  article-title: Preventing translational inhibition from ribosomal protein insufficiency by a herpes simplex virus-encoded ribosome-associated protein
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2025546118
– volume: 96
  start-page: e0170421
  year: 2022
  ident: 2023.06.07.544155v2.65
  article-title: Role of the Arginine Cluster in the Disordered Domain of Herpes Simplex Virus 1 UL34 for the Recruitment of ESCRT-III for Viral Primary Envelopment
  publication-title: J Virol
  doi: 10.1128/JVI.01704-21
– volume: 78
  start-page: 1344
  year: 2004
  end-page: 1351
  ident: 2023.06.07.544155v2.2
  article-title: Cell-dependent role for the poliovirus 3’ noncoding region in positive-strand RNA synthesis
  publication-title: J Virol
  doi: 10.1128/jvi.78.3.1344-1351.2004
– volume: 11
  issue: 1179
  year: 2020
  ident: 2023.06.07.544155v2.5
  article-title: Analysis of Virus and Host Proteomes During Productive HSV-1 and VZV Infection in Human Epithelial Cells
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.01179
– volume: 23
  start-page: 254
  year: 2018
  end-page: 265
  ident: 2023.06.07.544155v2.48
  article-title: Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.12.014
– volume: 83
  start-page: 1009
  year: 2009
  end-page: 1017
  ident: 2023.06.07.544155v2.56
  article-title: VP22 of herpes simplex virus 1 promotes protein synthesis at late times in infection and accumulation of a subset of viral mRNAs at early times in infection
  publication-title: J Virol
  doi: 10.1128/JVI.02245-07
– volume: 69
  start-page: 5401
  year: 1995
  end-page: 5413
  ident: 2023.06.07.544155v2.42
  article-title: Herpes simplex virus glycoprotein K promotes egress of virus particles
  publication-title: J Virol
  doi: 10.1128/JVI.69.9.5401-5413.1995
– volume: 72
  start-page: 3779
  year: 1998
  end-page: 3788
  ident: 2023.06.07.544155v2.35
  article-title: The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA
  publication-title: J Virol
  doi: 10.1128/JVI.72.5.3779-3788.1998
SSID ssj0002961374
Score 1.8370115
SecondaryResourceType preprint
Snippet Although viral protein expression and progeny virus production were independently shown to be highly heterogenous in individual cells, their direct...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Microbiology
Title Direct Relationship between Protein Expression and Progeny Yield of Herpes Simplex Virus 1 Unveils a Rate-limiting Step for Virus Production
URI https://www.biorxiv.org/content/10.1101/2023.06.07.544155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVtQqG3rnQNU-jVxbJlx762JIRCg0mTkp6MNlNDcYyzkPxDP7ozsQk59NCrkCwYyZo3mqc3jD0iiFee9rUTutZ1hMI4JZaGO7FWQio_0K6m-463YTiYiNdpMN0r9UW0SpXPqnW-2ubxibCNp2_9c7ucYnW_Edyk6llBcMjapHFGG7o_fdpdr3gx-qmuaPKYf45ExNvMtOdR-iesncjSVqfswBZn7KguCbk5Zz_1GQQ7ktpXXkJDpoKERBXyAnrrhr5agCwMNeM22MAnsdFglsHAVqWdw3tO0r9r-Mir5Rw4TIqVzb_nIGGECNP5prdN6LmAmF6A4LXpmNQisPj1Czbu98YvA6epmOAo3uWBg8EPtwTTXN8XofSsl6ERrI6s4YEUgSH5w0hrY2IMAzUuiNV-hiFL6GaeVv4laxWzwl4x0LGlhCVXyjXCelIKBA6h77mGmzDi_Jo9NMZLy1oWIyUDp8SS66a1gW_-0eeWHVPblnwV3bHWolrae3TzC9Vh7efeMBl1tgv7CwD_pQQ
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oxOjNZ3w7Jl5run1BzwaCCoQoGDw1-yI2IaVpgcB_8Ec7QzfEgwev7bZNZtud75v5-i1jDwjipad85USucZ1AIk-JheZOrGQgpB8qV1G9o9ePOqPgZRyObcGttLJKmc6KVbrc9PFJsI2rb_Vxu5y4um8NN2n3rDB8pDL1LquT0RmRr_b4cVtj8WJMVo3ANjP_vBxhr33cr7TSPmT1gchNccR2THbM9qp9Idcn7LtaiGCrVPtKc7CKKhiQs0KaQWtlNawZiEzTYXwX1vBJkjSYTaBjityU8J6S_-8KPtJiUQKHUbY06bQEAW8IM50p_eCE6QtI7gWIYO3AQeUEi3c_ZcN2a_jUcey2CY7kDR46yIC4Iazm-n4QCc94EwyCUU2jeSiCUJMHYlMprWPkggpnxSh_grwlcieekv4Zq2WzzJwzULGhriWX0tWB8YQIED1EvudqrqMm5xfs3gYvyStvjIQCnJBUrpFUAb78x5g7tt8Z9rpJ97n_esUO6PxGjdW8ZrV5sTA3mPfn8nYzuT_k7Kg4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfHmE9-O4DUlm1eTszbUVynaSj2FfQUDJQ3pg_Y_-KOdaYL04MFrsmxgdrPzzcy33zB2hyBeOspVVmAb2_IkximR0NyKlPSEdH1lK8p3vPaC7tB7GvmjjbswRKuU2aRcZot1HZ8I23j6Vj-3zSlWd2vBTeqe5fstSlO3Cp1usyaJnRGtKx61fvMsToQOq-3VBc0_p0DoW39yw7XE-6zZF4UpD9iWyQ_ZTtUbcnXEvqvDCH7Zal9ZATWrCvqkrpDl0FnWPNYcRK7pMe6HFXwSLQ0mKXRNWZgpvGekAbyEj6ycT4HDMF-YbDwFAW8INa0xXXJCFwZE-QJEsfXAfqUGi7Mfs0HcGdx3rbp1giV5m_sWRkHcEF6zXdcLhGOcFI1gVGg094Xna9JBDJXSOsJ4UOHKGOWmGLsEduoo6Z6wRj7JzSkDFRmqXHIpbe0ZRwgPEUTgOrbmOgg5P2O3tfGSotLHSMjACdHl2kll4PN_jLlhu_2HOHl57D1fsD16vSZkhZesMSvn5gpd_0xer9f2B3VMqUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Relationship+between+Protein+Expression+and+Progeny+Yield+of+Herpes+Simplex+Virus+1+Unveils+a+Rate-limiting+Step+for+Virus+Production&rft.jtitle=bioRxiv&rft.au=Nobe%2C+Moeka&rft.au=Maruzuru%2C+Yuhei&rft.au=Takeshima%2C+Kosuke&rft.au=Maeda%2C+Fumio&rft.date=2023-06-08&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.06.07.544155&rft.externalDocID=2023.06.07.544155v2