Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells

All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. Howev...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Wu, Weida, Lam, Alice R, Suarez, Kayla, Smith, Grace N, Duquette, Sarah M, Yu, Jiaquan, Mankus, David, Bisher, Margaret, Lytton-Jean, Abigail, Manalis, Scott R, Miettinen, Teemu P
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 17.02.2025
Cold Spring Harbor Laboratory
Edition1.3
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2024.07.02.601447

Cover

Loading…
Abstract All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
AbstractList All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.Competing Interest StatementS.R.M. is a co-founder of Travera and Affinity Biosensors, which develop technologies relevant to the research presented in this work. The other authors declare no competing interests.Footnotes* New experimental data, found in Figures 1, 4, and S4. These data support our original conclusion, but expand the experimental validations to more measured metrics. In addition, the manuscript title, abstract, and discussion have been updated.
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Author Miettinen, Teemu P
Yu, Jiaquan
Wu, Weida
Mankus, David
Smith, Grace N
Duquette, Sarah M
Manalis, Scott R
Lam, Alice R
Suarez, Kayla
Bisher, Margaret
Lytton-Jean, Abigail
Author_xml – sequence: 1
  givenname: Weida
  orcidid: 0009-0002-1551-6993
  surname: Wu
  fullname: Wu, Weida
  organization: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 2
  givenname: Alice R
  orcidid: 0000-0003-4332-4761
  surname: Lam
  fullname: Lam, Alice R
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Kayla
  surname: Suarez
  fullname: Suarez, Kayla
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 4
  givenname: Grace N
  surname: Smith
  fullname: Smith, Grace N
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 5
  givenname: Sarah M
  surname: Duquette
  fullname: Duquette, Sarah M
  organization: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 6
  givenname: Jiaquan
  orcidid: 0000-0002-2998-2226
  surname: Yu
  fullname: Yu, Jiaquan
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 7
  givenname: David
  orcidid: 0000-0002-9979-7608
  surname: Mankus
  fullname: Mankus, David
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 8
  givenname: Margaret
  orcidid: 0000-0002-2536-7824
  surname: Bisher
  fullname: Bisher, Margaret
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 9
  givenname: Abigail
  orcidid: 0000-0002-1582-0066
  surname: Lytton-Jean
  fullname: Lytton-Jean, Abigail
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 10
  givenname: Scott R
  orcidid: 0000-0001-5223-9433
  surname: Manalis
  fullname: Manalis, Scott R
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 11
  givenname: Teemu P
  orcidid: 0000-0002-5975-200X
  surname: Miettinen
  fullname: Miettinen, Teemu P
  organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39005340$$D View this record in MEDLINE/PubMed
BookMark eNpdkE9P3DAQxS0EKrDdD9BLZamXXrKM_8ROjhWiUGklOMA5nXjHq6DYpnYC5dt3V1Coepo5_N6bee-UHcYUibFPAlZCgDiTIPUK7ArkyoDQ2h6wE2laWTUS6sN_9mO2LOUeAGRrhLL6AztWLUCtNJywnzcjloA8UOgzRuI-jZshbjlF7Ecq3KVYJowTL3P26IhjJqymVD2mcQ7EM05D4kPk25ye9sKAIeA4YOSOxrF8ZEcex0LL17lgd98vbs-vqvX15Y_zb-uqFwZsZSQZMo1pvbS6bsk7gV6jFs6RdbX2rZOu8Rvy2llnYWMagdoBoSJraq0W7OuLbz-k_Ht47B7yEDA_d_ueOrAdyO6lp3f0IadfM5WpC0PZP7vLn-bSKWjAqFrqZod--Q-9T3OOuyCdEsbaRrZib_j5lZr7QJu3039rVn8AcCmANQ
Cites_doi 10.1126/sciadv.adn8356
10.1002/bies.201700058
10.1038/nature05741
10.1073/PNAS.2320769121
10.1073/pnas.1922197117
10.4161/BIOA.29069
10.1242/dev.135400
10.1016/J.DEVCEL.2017.11.013
10.1017/S1464793105006834
10.1128/MMBR.00001-06
10.1016/j.cell.2012.09.019
10.1038/s41567-019-0601-x
10.1016/j.molcel.2015.03.005
10.1016/j.cub.2014.01.071
10.1038/s41592-019-0326-x
10.1073/pnas.1105845108
10.1126/science.aal3321
10.1086/669150
10.1038/nmeth.2133
10.1038/s41467-021-22092-5
10.1182/BLOOD.V56.5.866.866
10.1186/s13059-018-1576-0
10.1073/pnas.2021416118
10.1016/j.cell.2023.10.012
10.1111/TRA.12584
10.7554/eLife.47033
10.7554/eLife.07957
10.1186/1741-7007-10-101
10.1098/rsob.150093
10.1038/s41567-019-0629-y
10.1016/j.cell.2013.12.015
10.1091/mbc.E21-12-0627
10.1038/s41467-020-18769-y
10.1083/jcb.118.5.1223
10.1016/j.cell.2018.09.054
10.1016/j.cell.2019.01.018
10.1101/CSHPERSPECT.A019067
10.15252/embj.201695050
10.1016/j.devcel.2016.09.004
10.7554/ELIFE.72316
10.1016/J.MOLCEL.2022.07.017
10.1038/s41467-023-43892-x
10.4161/cc.27767
10.1038/s41467-018-06714-z
10.1073/pnas.2303077120
10.7554/eLife.76664
10.1038/s41586-022-05563-7
10.1016/j.cub.2010.10.002
10.1093/nar/gky1056
10.1073/PNAS.1114477108
10.1038/s41567-023-02216-y
10.1016/j.celrep.2024.114268
10.1016/j.molcel.2013.09.018
10.1016/j.cub.2020.01.053
10.1016/j.cell.2016.05.045
10.1016/j.molcel.2020.03.012
10.1126/science.1225720
10.1091/mbc.E16-06-0414
10.1007/s002320010040
10.1111/CMI.13270
10.15252/embj.2022113333
10.1083/JCB.201506118
10.1091/mbc.E06-10-0973
10.1016/j.cell.2018.12.001
10.1101/2021.08.05.455193
10.1101/CSHPERSPECT.A019158
10.1101/2024.04.25.591092
10.1073/pnas.2208993119
10.1016/J.SBI.2015.07.010
10.1073/pnas.2004807117
ContentType Journal Article
Paper
Copyright 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
FX.
DOI 10.1101/2024.07.02.601447
DatabaseName PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.3
ExternalDocumentID 2024.07.02.601447v3
39005340
Genre Journal Article
Preprint
Working Paper/Pre-Print
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM150901
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
FX.
ID FETCH-LOGICAL-b1607-62e6e6869f27459efc1af4a41cce7c54f9c2c8fdef4c7c70d681a4c0ea3e76543
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Sat Feb 22 15:20:14 EST 2025
Fri Jul 11 04:42:04 EDT 2025
Fri Jul 25 09:16:08 EDT 2025
Mon Jul 21 05:55:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1607-62e6e6869f27459efc1af4a41cce7c54f9c2c8fdef4c7c70d681a4c0ea3e76543
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: S.R.M. is a co-founder of Travera and Affinity Biosensors, which develop technologies relevant to the research presented in this work. The other authors declare no competing interests.
ORCID 0000-0002-9979-7608
0009-0002-1551-6993
0000-0002-2998-2226
0000-0003-4332-4761
0000-0002-1582-0066
0000-0002-5975-200X
0000-0002-2536-7824
0000-0001-5223-9433
OpenAccessLink https://www.proquest.com/docview/3167782917?pq-origsite=%requestingapplication%
PMID 39005340
PQID 3167782917
PQPubID 2050091
PageCount 28
ParticipantIDs biorxiv_primary_2024_07_02_601447
proquest_miscellaneous_3080635248
proquest_journals_3167782917
pubmed_primary_39005340
PublicationCentury 2000
PublicationDate 2025-Feb-17
20250217
PublicationDateYYYYMMDD 2025-02-17
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References 40101718 - Curr Biol. 2025 Apr 7;35(7):1601-1611.e5. doi: 10.1016/j.cub.2025.02.051.
Figard, Sokac (2024.07.02.601447v3.6) 2014; 4
Harris, Theriot (2024.07.02.601447v3.13) 2016; 165
Miettinen, Ly, Lam, Manalis (2024.07.02.601447v3.52) 2022; 11
Chakraborty, Doktorova, Molugu, Heberle, Scott, Dzikovski, Nagao, Stingaciu, Standaert, Barrera (2024.07.02.601447v3.68) 2020; 117
Guillou, Babataheri, Saitakis, Bohineust, Dogniaux, Hivroz, Barakat, Husson (2024.07.02.601447v3.16) 2016; 27
Tanenbaum, Stern-Ginossar, Weissman, Vale (2024.07.02.601447v3.24) 2015; 4
Miettinen, Gomez, Wu, Wu, Usherwood, Hwang, Roller, Polz, Manalis (2024.07.02.601447v3.51) 2024; 10
Kang, Katsikis, Li, Sapp, Stockslager, Lim, Vander Heiden, Yaffe, Manalis, Miettinen (2024.07.02.601447v3.49) 2020; 11
Lanz, Zatulovskiy, Swaffer, Zhang, Ilerten, Zhang, You, Marinov, McAlpine, Elias (2024.07.02.601447v3.30) 2022; 82
Pöhnl, Trollmann, Böckmann (2024.07.02.601447v3.69) 2023; 14
Glazier (2024.07.02.601447v3.1) 2005; 80
Cadart, Venkova, Recho, Lagomarsino, Piel (2024.07.02.601447v3.21) 2019; 15
Scaglia, Tyekucheva, Zadra, Photopoulos, Loda (2024.07.02.601447v3.27) 2014; 13
Burg, Godin, Knudsen, Shen, Carlson, Foster, Babcock, Manalis (2024.07.02.601447v3.48) 2007; 446
Brownlee, Heald (2024.07.02.601447v3.19) 2019; 176
Sun, Bowman, Priestman, Bertaux, Martinez-Segura, Tang, Whilding, Dormann, Shahrezaei, Marguerat (2024.07.02.601447v3.38) 2020; 30
Namvar, Blanch, Dixon, Carmo, Liu, Tiash, Looker, Andrew, Chan, Tham (2024.07.02.601447v3.62) 2021; 23
Zhurinsky, Leonhard, Watt, Marguerat, Bahler, Nurse (2024.07.02.601447v3.34) 2010; 20
Dharan, Goren, Cheppali, Shendrik, Brand, Vaknin, Yu, Kozlov, Sorkin (2024.07.02.601447v3.60) 2022; 119
Oldewurtel, Kitahara, van Teeffelen (2024.07.02.601447v3.12) 2021; 118
Wang, Galli (2024.07.02.601447v3.66) 2018; 19
Alonso-Matilla, Lam, Miettinen (2024.07.02.601447v3.53) 2024; 121
Lin, Amir (2024.07.02.601447v3.37) 2018; 9
Viana, Chen, Knijnenburg, Vasan, Yan, Arakaki, Bailey, Berry, Borensztejn, Brown (2024.07.02.601447v3.35) 2023; 613
Jackson, Romeo, Mietke, Burns, Totz, Martin, Dunkel, Imran Alsous (2024.07.02.601447v3.63) 2023; 19
Thul, Akesson, Wiking, Mahdessian, Geladaki, Ait Blal, Alm, Asplund, Bjork, Breckels (2024.07.02.601447v3.45) 2017; 356
Swaffer, Marinov, Zheng, Fuentes Valenzuela, Tsui, Jones, Greenwood, Kundaje, Greenleaf, Reyes-Lamothe (2024.07.02.601447v3.40) 2023; 186
Niklas (2024.07.02.601447v3.8) 2015; 7
Basier, Nurse (2024.07.02.601447v3.39) 2023; 42
Padovan-Merhar, Nair, Biaesch, Mayer, Scarfone, Foley, Wu, Churchman, Singh, Raj (2024.07.02.601447v3.33) 2015; 58
Blank, Perez, He, Maitra, Metz, Hill, Lin, Johnson, Bankaitis, Kennedy (2024.07.02.601447v3.22) 2017; 36
Cadart, Heald (2024.07.02.601447v3.41) 2022; 33
Quiroga, Walani, Disanza, Chavero, Mittens, Tebar, Trepat, Parton, Geli, Scita (2024.07.02.601447v3.61) 2023; 12
Kang, Miettinen, Chen, Olcum, Katsikis, Doyle, Manalis (2024.07.02.601447v3.71) 2019; 16
Neurohr, Terry, Lengefeld, Bonney, Brittingham, Moretto, Miettinen, Vaites, Soares, Paulo (2024.07.02.601447v3.58) 2019; 176
Shi, Graber, Baumgart, Stone, Cohen (2024.07.02.601447v3.64) 2018; 175
Secaira-Morocho, Chede, Gonzalez-de-Salceda, Garcia-Pichel, Zhu (2024.07.02.601447v3.14) 2024; 43
Sanchez-Alvarez, Zhang, Finger, Wakelam, Bakal (2024.07.02.601447v3.26) 2015; 5
Atilla-Gokcumen, Muro, Relat-Goberna, Sasse, Bedigian, Coughlin, Garcia-Manyes, Eggert (2024.07.02.601447v3.25) 2014; 156
Cooper (2024.07.02.601447v3.46) 2000
Hubatsch, Peglion, Reich, Rodrigues, Hirani, Illukkumbura, Goehring (2024.07.02.601447v3.55) 2019; 15
Stumpf, Moreno, Olshen, Taylor, Ruggero (2024.07.02.601447v3.23) 2013; 52
Kimmerling, Prakadan, Gupta, Calistri, Stevens, Olcum, Cermak, Drake, Pelton, De Smet (2024.07.02.601447v3.44) 2018; 19
Son, Tzur, Weng, Jorgensen, Kim, Kirschner, Manalis (2024.07.02.601447v3.70) 2012; 9
Miettinen, Björklund (2024.07.02.601447v3.32) 2016; 39
Young (2024.07.02.601447v3.4) 2006; 70
Ojkic, Serbanescu, Banerjee (2024.07.02.601447v3.10) 2019; 8
Morris, Homann (2024.07.02.601447v3.5) 2001; 179
Marguerat, Schmidt, Codlin, Chen, Aebersold, Bahler (2024.07.02.601447v3.31) 2012; 151
Hecht, Sullivan, Kimmerling, Kim, Hosios, Stockslager, Stevens, Kang, Wirtz, Vander Heiden (2024.07.02.601447v3.57) 2016; 212
Shi, Hu, Odermatt, Gonzalez, Zhang, Elias, Chang, Huang (2024.07.02.601447v3.11) 2021; 12
Walton, Freddo, Wang, Gumucio (2024.07.02.601447v3.15) 2016; 143
Rafelski, Viana, Zhang, Chan, Thorn, Yam, Fung, Li, Costa, Marshall (2024.07.02.601447v3.42) 2012; 338
Cheng, Chen, Kong, Tan, Kafri, Björklund (2024.07.02.601447v3.28) 2021
Jorgensen, Edgington, Schneider, Rupes, Tyers, Futcher (2024.07.02.601447v3.29) 2007; 18
Dill, Ghosh, Schmit (2024.07.02.601447v3.18) 2011; 108
Carpen, Pallai, Staunton, Springer (2024.07.02.601447v3.56) 1992; 118
Sokac (2024.07.02.601447v3.43) 2017; 43
Kozlov, Chernomordik (2024.07.02.601447v3.67) 2015; 33
Hatton, Galbraith, Merleau, Miettinen, Smith, Shander (2024.07.02.601447v3.59) 2023; 120
Reber, Goehring (2024.07.02.601447v3.9) 2015; 7
Chen, Zhao, Zahumensky, Honey, Futcher (2024.07.02.601447v3.36) 2020; 78
Wu, Ishamuddin, Quinn, Yerrum, Zhang, Debaize, Kao, Duquette, Murakami, Mohseni (2024.07.02.601447v3.50) 2024
Gauthier, Fardin, Roca-Cusachs, Sheetz (2024.07.02.601447v3.65) 2011; 108
Schmid-Schonbein, Shih, Chien (2024.07.02.601447v3.17) 1980; 56
Kang, Miettinen, Chen, Olcum, Katsikis, Doyle, Manalis (2024.07.02.601447v3.47) 2019; 16
Okie (2024.07.02.601447v3.3) 2013; 181
Miettinen, Caldez, Kaldis, Bjorklund (2024.07.02.601447v3.2) 2017; 39
Mu, Kang, Olcum, Payer, Calistri, Kimmerling, Manalis, Miettinen (2024.07.02.601447v3.54) 2020; 117
Marshall, Young, Swaffer, Wood, Nurse, Kimura, Frankel, Wallingford, Walbot, Qu (2024.07.02.601447v3.7) 2012; 10
Miettinen, Pessa, Caldez, Fuhrer, Diril, Sauer, Kaldis, Björklund (2024.07.02.601447v3.20) 2014; 24
Bult, Blake, Smith, Kadin, Richardson, Database (2024.07.02.601447v3.72) 2019; 47
References_xml – reference: 40101718 - Curr Biol. 2025 Apr 7;35(7):1601-1611.e5. doi: 10.1016/j.cub.2025.02.051.
– volume: 10
  start-page: 8356
  year: 2024
  ident: 2024.07.02.601447v3.51
  article-title: Cell size, density, and nutrient dependency of unicellular algal gravitational sinking velocities
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adn8356
– volume: 39
  year: 2017
  ident: 2024.07.02.601447v3.2
  article-title: Cell size control - a mechanism for maintaining fitness and function
  publication-title: Bioessays
  doi: 10.1002/bies.201700058
– volume: 446
  start-page: 1066
  year: 2007
  end-page: 1069
  ident: 2024.07.02.601447v3.48
  article-title: Weighing of biomolecules, single cells and single nanoparticles in fluid
  publication-title: Nature
  doi: 10.1038/nature05741
– volume: 121
  start-page: e2320769121
  year: 2024
  ident: 2024.07.02.601447v3.53
  article-title: Cell-intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/PNAS.2320769121
– volume: 117
  start-page: 15659
  year: 2020
  end-page: 15665
  ident: 2024.07.02.601447v3.54
  article-title: Mass measurements during lymphocytic leukemia cell polyploidization decouple cell cycle- and cell size-dependent growth
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1922197117
– volume: 4
  start-page: 39
  year: 2014
  end-page: 46
  ident: 2024.07.02.601447v3.6
  article-title: A membrane reservoir at the cell surface
  publication-title: Bioarchitecture
  doi: 10.4161/BIOA.29069
– volume: 143
  start-page: 2261
  year: 2016
  end-page: 2272
  ident: 2024.07.02.601447v3.15
  article-title: Generation of intestinal surface: an absorbing tale
  publication-title: Development
  doi: 10.1242/dev.135400
– volume: 43
  start-page: 541
  year: 2017
  end-page: 542
  ident: 2024.07.02.601447v3.43
  article-title: Seeing a Coastline Paradox in Membrane Reservoirs
  publication-title: Dev Cell
  doi: 10.1016/J.DEVCEL.2017.11.013
– volume: 80
  start-page: 611
  year: 2005
  end-page: 662
  ident: 2024.07.02.601447v3.1
  article-title: Beyond the “3/4-power law”: variation in the intra- and interspecific scaling of metabolic rate in animals
  publication-title: Biol Rev Camb Philos Soc
  doi: 10.1017/S1464793105006834
– volume: 70
  start-page: 660
  year: 2006
  end-page: 703
  ident: 2024.07.02.601447v3.4
  article-title: The selective value of bacterial shape
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00001-06
– volume: 151
  start-page: 671
  year: 2012
  end-page: 683
  ident: 2024.07.02.601447v3.31
  article-title: Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.019
– volume: 15
  start-page: 1078
  year: 2019
  end-page: 1085
  ident: 2024.07.02.601447v3.55
  article-title: A cell-size threshold limits cell polarity and asymmetric division potential
  publication-title: Nat Phys
  doi: 10.1038/s41567-019-0601-x
– volume: 58
  start-page: 339
  year: 2015
  end-page: 352
  ident: 2024.07.02.601447v3.33
  article-title: Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.03.005
– volume: 24
  year: 2014
  ident: 2024.07.02.601447v3.20
  article-title: Identification of transcriptional and metabolic programs related to mammalian cell size
  publication-title: Current Biology
  doi: 10.1016/j.cub.2014.01.071
– volume: 16
  start-page: 263
  year: 2019
  end-page: 269
  ident: 2024.07.02.601447v3.47
  article-title: Noninvasive monitoring of single-cell mechanics by acoustic scattering
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0326-x
– volume: 108
  start-page: 14467
  year: 2011
  end-page: 14472
  ident: 2024.07.02.601447v3.65
  article-title: Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1105845108
– volume: 356
  year: 2017
  ident: 2024.07.02.601447v3.45
  article-title: A subcellular map of the human proteome
  publication-title: Science
  doi: 10.1126/science.aal3321
– volume: 181
  start-page: 421
  year: 2013
  end-page: 439
  ident: 2024.07.02.601447v3.3
  article-title: General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization
  publication-title: Am Nat
  doi: 10.1086/669150
– volume: 9
  start-page: 910
  year: 2012
  end-page: 912
  ident: 2024.07.02.601447v3.70
  article-title: Direct observation of mammalian cell growth and size regulation
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2133
– volume: 12
  year: 2021
  ident: 2024.07.02.601447v3.11
  article-title: Precise regulation of the relative rates of surface area and volume synthesis in bacterial cells growing in dynamic environments
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22092-5
– volume: 56
  start-page: 866
  year: 1980
  end-page: 875
  ident: 2024.07.02.601447v3.17
  article-title: Morphometry of Human Leukocytes
  publication-title: Blood
  doi: 10.1182/BLOOD.V56.5.866.866
– volume: 19
  start-page: 207
  year: 2018
  ident: 2024.07.02.601447v3.44
  article-title: Linking single-cell measurements of mass, growth rate, and gene expression
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1576-0
– volume: 118
  start-page: e2021416118
  year: 2021
  ident: 2024.07.02.601447v3.12
  article-title: Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2021416118
– volume: 186
  start-page: 5254
  year: 2023
  end-page: 5268
  ident: 2024.07.02.601447v3.40
  article-title: RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size
  publication-title: Cell
  doi: 10.1016/j.cell.2023.10.012
– volume: 19
  start-page: 741
  year: 2018
  end-page: 749
  ident: 2024.07.02.601447v3.66
  article-title: Reciprocal link between cell biomechanics and exocytosis
  publication-title: Traffic
  doi: 10.1111/TRA.12584
– volume: 8
  year: 2019
  ident: 2024.07.02.601447v3.10
  article-title: Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria
  publication-title: Elife
  doi: 10.7554/eLife.47033
– volume: 4
  year: 2015
  ident: 2024.07.02.601447v3.24
  article-title: Regulation of mRNA translation during mitosis
  publication-title: Elife
  doi: 10.7554/eLife.07957
– volume: 10
  start-page: 1
  year: 2012
  end-page: 22
  ident: 2024.07.02.601447v3.7
  article-title: What determines cell size?
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-10-101
– volume: 5
  start-page: 150093
  year: 2015
  ident: 2024.07.02.601447v3.26
  article-title: Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis
  publication-title: Open Biol
  doi: 10.1098/rsob.150093
– volume: 15
  start-page: 993
  year: 2019
  end-page: 1004
  ident: 2024.07.02.601447v3.21
  article-title: The physics of cell-size regulation across timescales
  publication-title: Nat Phys
  doi: 10.1038/s41567-019-0629-y
– volume: 156
  start-page: 428
  year: 2014
  end-page: 439
  ident: 2024.07.02.601447v3.25
  article-title: Dividing cells regulate their lipid composition and localization
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.015
– volume: 33
  year: 2022
  ident: 2024.07.02.601447v3.41
  article-title: Scaling of biosynthesis and metabolism with cell size
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E21-12-0627
– volume: 11
  start-page: 4983
  year: 2020
  ident: 2024.07.02.601447v3.49
  article-title: Monitoring and modeling of lymphocytic leukemia cell bioenergetics reveals decreased ATP synthesis during cell division
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18769-y
– volume: 118
  start-page: 1223
  year: 1992
  end-page: 1234
  ident: 2024.07.02.601447v3.56
  article-title: Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin
  publication-title: Journal of Cell Biology
  doi: 10.1083/jcb.118.5.1223
– volume: 175
  start-page: 1769
  year: 2018
  end-page: 1779
  ident: 2024.07.02.601447v3.64
  article-title: Cell Membranes Resist Flow
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.054
– volume: 176
  year: 2019
  ident: 2024.07.02.601447v3.58
  article-title: Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.018
– volume: 7
  start-page: a019067
  year: 2015
  ident: 2024.07.02.601447v3.9
  article-title: Intracellular Scaling Mechanisms
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/CSHPERSPECT.A019067
– volume: 36
  start-page: 487
  year: 2017
  end-page: 502
  ident: 2024.07.02.601447v3.22
  article-title: Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells
  publication-title: EMBO Journal
  doi: 10.15252/embj.201695050
– volume: 39
  year: 2016
  ident: 2024.07.02.601447v3.32
  article-title: Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2016.09.004
– volume: 12
  year: 2023
  ident: 2024.07.02.601447v3.61
  article-title: A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
  publication-title: Elife
  doi: 10.7554/ELIFE.72316
– volume: 82
  start-page: 3255
  year: 2022
  end-page: 3269
  ident: 2024.07.02.601447v3.30
  article-title: Increasing cell size remodels the proteome and promotes senescence
  publication-title: Mol Cell
  doi: 10.1016/J.MOLCEL.2022.07.017
– volume: 14
  start-page: 1
  year: 2023
  end-page: 12
  ident: 2024.07.02.601447v3.69
  article-title: Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-43892-x
– volume: 13
  start-page: 859
  year: 2014
  end-page: 868
  ident: 2024.07.02.601447v3.27
  article-title: De novo fatty acid synthesis at the mitotic exit is required to complete cellular division
  publication-title: Cell Cycle
  doi: 10.4161/cc.27767
– volume: 9
  start-page: 1
  year: 2018
  end-page: 11
  ident: 2024.07.02.601447v3.37
  article-title: Homeostasis of protein and mRNA concentrations in growing cells
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-06714-z
– volume: 120
  start-page: e2303077120
  year: 2023
  ident: 2024.07.02.601447v3.59
  article-title: The human cell count and size distribution
  publication-title: Proceedings of the National Academy of Sciences USA
  doi: 10.1073/pnas.2303077120
– volume: 11
  year: 2022
  ident: 2024.07.02.601447v3.52
  article-title: Single-cell monitoring of dry mass and dry mass density reveals exocytosis of cellular dry contents in mitosis
  publication-title: Elife
  doi: 10.7554/eLife.76664
– volume: 613
  start-page: 345
  year: 2023
  end-page: 354
  ident: 2024.07.02.601447v3.35
  article-title: Integrated intracellular organization and its variations in human iPS cells
  publication-title: Nature
  doi: 10.1038/s41586-022-05563-7
– volume: 20
  start-page: 2010
  year: 2010
  end-page: 2015
  ident: 2024.07.02.601447v3.34
  article-title: A coordinated global control over cellular transcription
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.10.002
– volume: 47
  start-page: D801
  year: 2019
  end-page: D806
  ident: 2024.07.02.601447v3.72
  article-title: Mouse Genome Database (MGD) 2019
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1056
– volume: 108
  start-page: 17876
  year: 2011
  end-page: 17882
  ident: 2024.07.02.601447v3.18
  article-title: Physical limits of cells and proteomes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/PNAS.1114477108
– volume: 19
  start-page: 1927
  year: 2023
  end-page: 1935
  ident: 2024.07.02.601447v3.63
  article-title: Scaling behaviour and control of nuclear wrinkling
  publication-title: Nat Phys
  doi: 10.1038/s41567-023-02216-y
– volume: 43
  start-page: 114268
  year: 2024
  ident: 2024.07.02.601447v3.14
  article-title: An evolutionary optimum amid moderate heritability in prokaryotic cell size
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2024.114268
– volume: 52
  start-page: 574
  year: 2013
  end-page: 582
  ident: 2024.07.02.601447v3.23
  article-title: The translational landscape of the mammalian cell cycle
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.09.018
– volume: 30
  start-page: 1217
  year: 2020
  end-page: 1230
  ident: 2024.07.02.601447v3.38
  article-title: Size-Dependent Increase in RNA Polymerase II Initiation Rates Mediates Gene Expression Scaling with Cell Size
  publication-title: Current Biology
  doi: 10.1016/j.cub.2020.01.053
– volume: 165
  start-page: 1479
  year: 2016
  end-page: 1492
  ident: 2024.07.02.601447v3.13
  article-title: Relative Rates of Surface and Volume Synthesis Set Bacterial Cell Size
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.045
– volume: 78
  start-page: 359
  year: 2020
  end-page: 370
  ident: 2024.07.02.601447v3.36
  article-title: Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.03.012
– volume: 338
  start-page: 822
  year: 2012
  end-page: 824
  ident: 2024.07.02.601447v3.42
  article-title: Mitochondrial network size scaling in budding yeast
  publication-title: Science
  doi: 10.1126/science.1225720
– volume: 16
  start-page: 263
  year: 2019
  end-page: 269
  ident: 2024.07.02.601447v3.71
  article-title: Noninvasive monitoring of single-cell mechanics by acoustic scattering
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0326-x
– volume: 27
  start-page: 3574
  year: 2016
  end-page: 3582
  ident: 2024.07.02.601447v3.16
  article-title: T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E16-06-0414
– volume: 179
  start-page: 79
  year: 2001
  end-page: 102
  ident: 2024.07.02.601447v3.5
  article-title: Cell surface area regulation and membrane tension
  publication-title: Journal of Membrane Biology
  doi: 10.1007/s002320010040
– volume: 23
  start-page: e13270
  year: 2021
  ident: 2024.07.02.601447v3.62
  article-title: Surface area-to-volume ratio, not cellular viscoelasticity, is the major determinant of red blood cell traversal through small channels
  publication-title: Cell Microbiol
  doi: 10.1111/CMI.13270
– volume: 42
  year: 2023
  ident: 2024.07.02.601447v3.39
  article-title: The cell cycle and cell size influence the rates of global cellular translation and transcription in fission yeast
  publication-title: EMBO J
  doi: 10.15252/embj.2022113333
– volume: 212
  start-page: 439
  year: 2016
  end-page: 447
  ident: 2024.07.02.601447v3.57
  article-title: Biophysical changes reduce energetic demand in growth factor–deprived lymphocytes
  publication-title: Journal of Cell Biology
  doi: 10.1083/JCB.201506118
– year: 2000
  ident: 2024.07.02.601447v3.46
  publication-title: The cellLJ: a molecular approach 2nd ed
– volume: 18
  start-page: 3523
  year: 2007
  end-page: 3532
  ident: 2024.07.02.601447v3.29
  article-title: The size of the nucleus increases as yeast cells grow
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E06-10-0973
– volume: 176
  start-page: 805
  year: 2019
  end-page: 815
  ident: 2024.07.02.601447v3.19
  article-title: Importin alpha Partitioning to the Plasma Membrane Regulates Intracellular Scaling
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.001
– year: 2021
  ident: 2024.07.02.601447v3.28
  article-title: Size-scaling promotes senescence-like changes in proteome and organelle content
  publication-title: bioRxiv
  doi: 10.1101/2021.08.05.455193
– volume: 7
  start-page: a019158
  year: 2015
  ident: 2024.07.02.601447v3.8
  article-title: A Phyletic Perspective on Cell Growth
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/CSHPERSPECT.A019158
– year: 2024
  ident: 2024.07.02.601447v3.50
  article-title: Measuring single-cell density with high throughput enables dynamic profiling of immune cell and drug response from patient samples
  publication-title: bioRxiv
  doi: 10.1101/2024.04.25.591092
– volume: 119
  start-page: e2208993119
  year: 2022
  ident: 2024.07.02.601447v3.60
  article-title: Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2208993119
– volume: 33
  start-page: 61
  year: 2015
  end-page: 67
  ident: 2024.07.02.601447v3.67
  article-title: Membrane tension and membrane fusion
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/J.SBI.2015.07.010
– volume: 117
  start-page: 21896
  year: 2020
  end-page: 21905
  ident: 2024.07.02.601447v3.68
  article-title: How cholesterol stiffens unsaturated lipid membranes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2004807117
SSID ssj0002961374
Score 1.9017818
SecondaryResourceType preprint
Snippet All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Biosensors
Cell Biology
Cell cycle
Cell division
Cell lines
Cell size
Cell surface
Cell walls
Cholesterol
Electron microscopy
Lipids
Mammalian cells
Membrane proteins
Monocytes
Nutrient uptake
Plasma
Polyploidy
Surface area
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gExI33gwGChLXTG2WJu0ZMU1IoB2YtFtJUwft0A7tgeDfYzdl4gAS5zZN6zrO99mxzditLqREFmAEDL0TSrpS2Fg6kVEWpi6RFpWUjfz4pMdT9TBLZj9afdGxymK-WH7M35s4Ph3YRusbFncUE1dXTbVNOdBEBswu66JKKeraMJoNtu4VmeE-ZVQbx_x1JCLedqa_0WWzy4wOWHdi32B5yHagPmJ7oU3k5zF7mSDErSyvoEJuWwP3IWTEoUl8WnEXQN6arzZLbx1wi1BQrBci2B7e_GU-r_krkm4aWNmqahwcnBz3qxM2Hd0_341F2xlBFFQQTmgJGnSqM4-kMsnAu9h6ZVXsHBiXKJ856VJfglfOOBOVOo2tchHYIRjKJj1lnXpRwznjYCVCJtDSeYPgTSE8MV4WCRUm0k4Ne-ymlVL-Fupf5CTJPDJ5JPMgyR7rf8svb5fAKqcUe4QfqAj4iO1lVF76MJTVYoP3IF5FxCNV2mNnQe7bWYYZGQgVXfzjBS7ZvqS-vNSoxfRZZ73cwBWChXVx3ajFF9gPuH0
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells
URI https://www.ncbi.nlm.nih.gov/pubmed/39005340
https://www.proquest.com/docview/3167782917
https://www.proquest.com/docview/3080635248
https://www.biorxiv.org/content/10.1101/2024.07.02.601447
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9tADD4Nqkl7Y8BYGVSHtNdj6fVylzwhMVFVSKBqGlLfwsXxoT4k6Zp2gn8_OwndEzwncRSfz_d9dmwL8d3mWhMLcAonAZTRUCg_1qBSrsK0BdGigquR7-7t7MHcLuJFH3Br-t8qX31i66iLGjhG_oMrtuk0I7lXqz-Kp0ZxdrUfobEnBuSCEyJfg-ub-_mvXZRFp3Rcta2YtU1p6-so7lObZIpM_E3bulNfWmYW3PgpX9br5-XftwFne_BMD8Rg7le4_iw-YHUoPnaTI1-OxOOcUG_pZYkl0d0KZeiySBLbWqhGQof7NrLZroMHlJ7QodrUqnNHsl14uazkE_FwfrD0ZdnGPCTH8ptj8TC9-f1zpvphCSrnHnHKarRoE5sG4plxigHGPhhvxgDoIDYhBQ1JKDAYcOCiwiZjbyBCP0HHBaZfxH5VV_hVSPSaUBRaDcERnjOEWFzQecy9iiyYyVBc9FrKVl1LjIw1mUUui3TWaXIozl71l_W7osn-ryGJ2F0me-YPI13VW7qHICyBIG2SoTjp9L57yyRln2Gi0_eFfxOfNE_p5bEt7kzsb9ZbPCfosMlHvX2MxN50cfkPmNfA9A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VRAhufDdQYJHguOCs17vxASEBrVLaRhFqpd7c9XoW5WA7xAnQP8VvZMZ2wgluPdsey-PZ2fdmdmYAXptcKWIBVmIcvNTKF9KNlZcpV2GagmhRwdXIZzMzvdBfLpPLPfi9rYXhY5Vbn9g66qL2HCN_xxXbtJuR3A_L75KnRnF2dTtCozOLE7z-SZSteX_8mf7vG6WODs8_TWU_VUDm3ExNGoUGzcSkgQhZkmLwYxe002Pv0fpEh9QrPwkFBu2tt1FhJmOnfYQuRsuVmCT3Fgx1TFRmAMOPh7P5111UR6W0Pbatn5VJydWoKOlTqWT6HGjQbatQ9dYwk-FGU_miXv1a_Pg3wG03uqN7MJy7Ja7uwx5WD-B2N6ny-iFczQlll06UWBK9rlCELmslsK29aoTvcOZaNJtVcB6FIzQq17Xs3J9oDU0sKvGNeD8_WLqybGMsgnMHzSO4uBE1PoZBVVe4DwKdItSGRvlgCT9qQkg2qDzh3kjG63gEr3otZcuuBUfGmswim0Uq6zQ5goOt_rJ-FTbZX5shEbvLtH74w0hX9YbuIchMoEvpyQiedHrfvSVO2Ufp6On_hb-EO9Pzs9Ps9Hh28gzuKp4QzCNj7AEM1qsNPifYss5f9LYi4OqmzfMPq_f92A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gE4gbbwYDgsQ1U5tlyXoGpvGadmDSbiVNHbRDu2kPBP8euy0TB5A4t01a13G-z45txq51IiWyACOg7Z1Q0qXChtKJiLIwdYq0KKVs5OeB7o_Uw7gz_pELQ8cqk8l0_jF5L-L4dGAbrW-5uIOQuLoqqm3KliYyYFrkpm7NUr_J6lTsjDS7N26t_Swywg3LqCqg-esQCH2rKf-GmcV209tl9aGdwXyPbUC-z7bKfpGfB-x1iFg3szyDDEluDtyXsSMORQbUgrsS7S35YjX31gG3iAnFcipKI8SL380nOX9D9k0PZjbLCk8HJw_-4pCNencvN31RtUgQCVWGE1qCBt3VkUd22YnAu9B6ZVXoHBjXUT5y0nV9Cl4540yQ6m5olQvAtsFQWukRq-XTHE4YBysRO4GWzhtEcQpxivEy6VCFIu1Uu8GuKinFs7IQRkySjAMTBzIuJdlgzW_5xdVaWMSUa484BDUCh1hfRi2mD0NZTVd4DwJXhD5SdRvsuJT7epZ2RJZCBaf_eIFLtj287cVP94PHM7YjqVcvNW8xTVZbzldwjgBimVwUGvIFT-G-ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+membrane+folding+enables+constant+surface+area-to-volume+ratio+in+growing+mammalian+cells&rft.jtitle=bioRxiv&rft.au=Wu%2C+Weida&rft.au=Lam%2C+Alice+R&rft.au=Suarez%2C+Kayla&rft.au=Smith%2C+Grace+N&rft.date=2025-02-17&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.07.02.601447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon