Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. Howev...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
17.02.2025
Cold Spring Harbor Laboratory |
Edition | 1.3 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2024.07.02.601447 |
Cover
Loading…
Abstract | All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes. |
---|---|
AbstractList | All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.Competing Interest StatementS.R.M. is a co-founder of Travera and Affinity Biosensors, which develop technologies relevant to the research presented in this work. The other authors declare no competing interests.Footnotes* New experimental data, found in Figures 1, 4, and S4. These data support our original conclusion, but expand the experimental validations to more measured metrics. In addition, the manuscript title, abstract, and discussion have been updated. All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes. All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes. |
Author | Miettinen, Teemu P Yu, Jiaquan Wu, Weida Mankus, David Smith, Grace N Duquette, Sarah M Manalis, Scott R Lam, Alice R Suarez, Kayla Bisher, Margaret Lytton-Jean, Abigail |
Author_xml | – sequence: 1 givenname: Weida orcidid: 0009-0002-1551-6993 surname: Wu fullname: Wu, Weida organization: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 2 givenname: Alice R orcidid: 0000-0003-4332-4761 surname: Lam fullname: Lam, Alice R organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 3 givenname: Kayla surname: Suarez fullname: Suarez, Kayla organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 4 givenname: Grace N surname: Smith fullname: Smith, Grace N organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 5 givenname: Sarah M surname: Duquette fullname: Duquette, Sarah M organization: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 6 givenname: Jiaquan orcidid: 0000-0002-2998-2226 surname: Yu fullname: Yu, Jiaquan organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 7 givenname: David orcidid: 0000-0002-9979-7608 surname: Mankus fullname: Mankus, David organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 8 givenname: Margaret orcidid: 0000-0002-2536-7824 surname: Bisher fullname: Bisher, Margaret organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 9 givenname: Abigail orcidid: 0000-0002-1582-0066 surname: Lytton-Jean fullname: Lytton-Jean, Abigail organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 10 givenname: Scott R orcidid: 0000-0001-5223-9433 surname: Manalis fullname: Manalis, Scott R organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 11 givenname: Teemu P orcidid: 0000-0002-5975-200X surname: Miettinen fullname: Miettinen, Teemu P organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39005340$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkE9P3DAQxS0EKrDdD9BLZamXXrKM_8ROjhWiUGklOMA5nXjHq6DYpnYC5dt3V1Coepo5_N6bee-UHcYUibFPAlZCgDiTIPUK7ArkyoDQ2h6wE2laWTUS6sN_9mO2LOUeAGRrhLL6AztWLUCtNJywnzcjloA8UOgzRuI-jZshbjlF7Ecq3KVYJowTL3P26IhjJqymVD2mcQ7EM05D4kPk25ye9sKAIeA4YOSOxrF8ZEcex0LL17lgd98vbs-vqvX15Y_zb-uqFwZsZSQZMo1pvbS6bsk7gV6jFs6RdbX2rZOu8Rvy2llnYWMagdoBoSJraq0W7OuLbz-k_Ht47B7yEDA_d_ueOrAdyO6lp3f0IadfM5WpC0PZP7vLn-bSKWjAqFrqZod--Q-9T3OOuyCdEsbaRrZib_j5lZr7QJu3039rVn8AcCmANQ |
Cites_doi | 10.1126/sciadv.adn8356 10.1002/bies.201700058 10.1038/nature05741 10.1073/PNAS.2320769121 10.1073/pnas.1922197117 10.4161/BIOA.29069 10.1242/dev.135400 10.1016/J.DEVCEL.2017.11.013 10.1017/S1464793105006834 10.1128/MMBR.00001-06 10.1016/j.cell.2012.09.019 10.1038/s41567-019-0601-x 10.1016/j.molcel.2015.03.005 10.1016/j.cub.2014.01.071 10.1038/s41592-019-0326-x 10.1073/pnas.1105845108 10.1126/science.aal3321 10.1086/669150 10.1038/nmeth.2133 10.1038/s41467-021-22092-5 10.1182/BLOOD.V56.5.866.866 10.1186/s13059-018-1576-0 10.1073/pnas.2021416118 10.1016/j.cell.2023.10.012 10.1111/TRA.12584 10.7554/eLife.47033 10.7554/eLife.07957 10.1186/1741-7007-10-101 10.1098/rsob.150093 10.1038/s41567-019-0629-y 10.1016/j.cell.2013.12.015 10.1091/mbc.E21-12-0627 10.1038/s41467-020-18769-y 10.1083/jcb.118.5.1223 10.1016/j.cell.2018.09.054 10.1016/j.cell.2019.01.018 10.1101/CSHPERSPECT.A019067 10.15252/embj.201695050 10.1016/j.devcel.2016.09.004 10.7554/ELIFE.72316 10.1016/J.MOLCEL.2022.07.017 10.1038/s41467-023-43892-x 10.4161/cc.27767 10.1038/s41467-018-06714-z 10.1073/pnas.2303077120 10.7554/eLife.76664 10.1038/s41586-022-05563-7 10.1016/j.cub.2010.10.002 10.1093/nar/gky1056 10.1073/PNAS.1114477108 10.1038/s41567-023-02216-y 10.1016/j.celrep.2024.114268 10.1016/j.molcel.2013.09.018 10.1016/j.cub.2020.01.053 10.1016/j.cell.2016.05.045 10.1016/j.molcel.2020.03.012 10.1126/science.1225720 10.1091/mbc.E16-06-0414 10.1007/s002320010040 10.1111/CMI.13270 10.15252/embj.2022113333 10.1083/JCB.201506118 10.1091/mbc.E06-10-0973 10.1016/j.cell.2018.12.001 10.1101/2021.08.05.455193 10.1101/CSHPERSPECT.A019158 10.1101/2024.04.25.591092 10.1073/pnas.2208993119 10.1016/J.SBI.2015.07.010 10.1073/pnas.2004807117 |
ContentType | Journal Article Paper |
Copyright | 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 FX. |
DOI | 10.1101/2024.07.02.601447 |
DatabaseName | PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic bioRxiv |
DatabaseTitle | PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.3 |
ExternalDocumentID | 2024.07.02.601447v3 39005340 |
Genre | Journal Article Preprint Working Paper/Pre-Print |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM150901 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NPM NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 FX. |
ID | FETCH-LOGICAL-b1607-62e6e6869f27459efc1af4a41cce7c54f9c2c8fdef4c7c70d681a4c0ea3e76543 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Sat Feb 22 15:20:14 EST 2025 Fri Jul 11 04:42:04 EDT 2025 Fri Jul 25 09:16:08 EDT 2025 Mon Jul 21 05:55:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1607-62e6e6869f27459efc1af4a41cce7c54f9c2c8fdef4c7c70d681a4c0ea3e76543 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interest Statement: S.R.M. is a co-founder of Travera and Affinity Biosensors, which develop technologies relevant to the research presented in this work. The other authors declare no competing interests. |
ORCID | 0000-0002-9979-7608 0009-0002-1551-6993 0000-0002-2998-2226 0000-0003-4332-4761 0000-0002-1582-0066 0000-0002-5975-200X 0000-0002-2536-7824 0000-0001-5223-9433 |
OpenAccessLink | https://www.proquest.com/docview/3167782917?pq-origsite=%requestingapplication% |
PMID | 39005340 |
PQID | 3167782917 |
PQPubID | 2050091 |
PageCount | 28 |
ParticipantIDs | biorxiv_primary_2024_07_02_601447 proquest_miscellaneous_3080635248 proquest_journals_3167782917 pubmed_primary_39005340 |
PublicationCentury | 2000 |
PublicationDate | 2025-Feb-17 20250217 |
PublicationDateYYYYMMDD | 2025-02-17 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2025 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | 40101718 - Curr Biol. 2025 Apr 7;35(7):1601-1611.e5. doi: 10.1016/j.cub.2025.02.051. Figard, Sokac (2024.07.02.601447v3.6) 2014; 4 Harris, Theriot (2024.07.02.601447v3.13) 2016; 165 Miettinen, Ly, Lam, Manalis (2024.07.02.601447v3.52) 2022; 11 Chakraborty, Doktorova, Molugu, Heberle, Scott, Dzikovski, Nagao, Stingaciu, Standaert, Barrera (2024.07.02.601447v3.68) 2020; 117 Guillou, Babataheri, Saitakis, Bohineust, Dogniaux, Hivroz, Barakat, Husson (2024.07.02.601447v3.16) 2016; 27 Tanenbaum, Stern-Ginossar, Weissman, Vale (2024.07.02.601447v3.24) 2015; 4 Miettinen, Gomez, Wu, Wu, Usherwood, Hwang, Roller, Polz, Manalis (2024.07.02.601447v3.51) 2024; 10 Kang, Katsikis, Li, Sapp, Stockslager, Lim, Vander Heiden, Yaffe, Manalis, Miettinen (2024.07.02.601447v3.49) 2020; 11 Lanz, Zatulovskiy, Swaffer, Zhang, Ilerten, Zhang, You, Marinov, McAlpine, Elias (2024.07.02.601447v3.30) 2022; 82 Pöhnl, Trollmann, Böckmann (2024.07.02.601447v3.69) 2023; 14 Glazier (2024.07.02.601447v3.1) 2005; 80 Cadart, Venkova, Recho, Lagomarsino, Piel (2024.07.02.601447v3.21) 2019; 15 Scaglia, Tyekucheva, Zadra, Photopoulos, Loda (2024.07.02.601447v3.27) 2014; 13 Burg, Godin, Knudsen, Shen, Carlson, Foster, Babcock, Manalis (2024.07.02.601447v3.48) 2007; 446 Brownlee, Heald (2024.07.02.601447v3.19) 2019; 176 Sun, Bowman, Priestman, Bertaux, Martinez-Segura, Tang, Whilding, Dormann, Shahrezaei, Marguerat (2024.07.02.601447v3.38) 2020; 30 Namvar, Blanch, Dixon, Carmo, Liu, Tiash, Looker, Andrew, Chan, Tham (2024.07.02.601447v3.62) 2021; 23 Zhurinsky, Leonhard, Watt, Marguerat, Bahler, Nurse (2024.07.02.601447v3.34) 2010; 20 Dharan, Goren, Cheppali, Shendrik, Brand, Vaknin, Yu, Kozlov, Sorkin (2024.07.02.601447v3.60) 2022; 119 Oldewurtel, Kitahara, van Teeffelen (2024.07.02.601447v3.12) 2021; 118 Wang, Galli (2024.07.02.601447v3.66) 2018; 19 Alonso-Matilla, Lam, Miettinen (2024.07.02.601447v3.53) 2024; 121 Lin, Amir (2024.07.02.601447v3.37) 2018; 9 Viana, Chen, Knijnenburg, Vasan, Yan, Arakaki, Bailey, Berry, Borensztejn, Brown (2024.07.02.601447v3.35) 2023; 613 Jackson, Romeo, Mietke, Burns, Totz, Martin, Dunkel, Imran Alsous (2024.07.02.601447v3.63) 2023; 19 Thul, Akesson, Wiking, Mahdessian, Geladaki, Ait Blal, Alm, Asplund, Bjork, Breckels (2024.07.02.601447v3.45) 2017; 356 Swaffer, Marinov, Zheng, Fuentes Valenzuela, Tsui, Jones, Greenwood, Kundaje, Greenleaf, Reyes-Lamothe (2024.07.02.601447v3.40) 2023; 186 Niklas (2024.07.02.601447v3.8) 2015; 7 Basier, Nurse (2024.07.02.601447v3.39) 2023; 42 Padovan-Merhar, Nair, Biaesch, Mayer, Scarfone, Foley, Wu, Churchman, Singh, Raj (2024.07.02.601447v3.33) 2015; 58 Blank, Perez, He, Maitra, Metz, Hill, Lin, Johnson, Bankaitis, Kennedy (2024.07.02.601447v3.22) 2017; 36 Cadart, Heald (2024.07.02.601447v3.41) 2022; 33 Quiroga, Walani, Disanza, Chavero, Mittens, Tebar, Trepat, Parton, Geli, Scita (2024.07.02.601447v3.61) 2023; 12 Kang, Miettinen, Chen, Olcum, Katsikis, Doyle, Manalis (2024.07.02.601447v3.71) 2019; 16 Neurohr, Terry, Lengefeld, Bonney, Brittingham, Moretto, Miettinen, Vaites, Soares, Paulo (2024.07.02.601447v3.58) 2019; 176 Shi, Graber, Baumgart, Stone, Cohen (2024.07.02.601447v3.64) 2018; 175 Secaira-Morocho, Chede, Gonzalez-de-Salceda, Garcia-Pichel, Zhu (2024.07.02.601447v3.14) 2024; 43 Sanchez-Alvarez, Zhang, Finger, Wakelam, Bakal (2024.07.02.601447v3.26) 2015; 5 Atilla-Gokcumen, Muro, Relat-Goberna, Sasse, Bedigian, Coughlin, Garcia-Manyes, Eggert (2024.07.02.601447v3.25) 2014; 156 Cooper (2024.07.02.601447v3.46) 2000 Hubatsch, Peglion, Reich, Rodrigues, Hirani, Illukkumbura, Goehring (2024.07.02.601447v3.55) 2019; 15 Stumpf, Moreno, Olshen, Taylor, Ruggero (2024.07.02.601447v3.23) 2013; 52 Kimmerling, Prakadan, Gupta, Calistri, Stevens, Olcum, Cermak, Drake, Pelton, De Smet (2024.07.02.601447v3.44) 2018; 19 Son, Tzur, Weng, Jorgensen, Kim, Kirschner, Manalis (2024.07.02.601447v3.70) 2012; 9 Miettinen, Björklund (2024.07.02.601447v3.32) 2016; 39 Young (2024.07.02.601447v3.4) 2006; 70 Ojkic, Serbanescu, Banerjee (2024.07.02.601447v3.10) 2019; 8 Morris, Homann (2024.07.02.601447v3.5) 2001; 179 Marguerat, Schmidt, Codlin, Chen, Aebersold, Bahler (2024.07.02.601447v3.31) 2012; 151 Hecht, Sullivan, Kimmerling, Kim, Hosios, Stockslager, Stevens, Kang, Wirtz, Vander Heiden (2024.07.02.601447v3.57) 2016; 212 Shi, Hu, Odermatt, Gonzalez, Zhang, Elias, Chang, Huang (2024.07.02.601447v3.11) 2021; 12 Walton, Freddo, Wang, Gumucio (2024.07.02.601447v3.15) 2016; 143 Rafelski, Viana, Zhang, Chan, Thorn, Yam, Fung, Li, Costa, Marshall (2024.07.02.601447v3.42) 2012; 338 Cheng, Chen, Kong, Tan, Kafri, Björklund (2024.07.02.601447v3.28) 2021 Jorgensen, Edgington, Schneider, Rupes, Tyers, Futcher (2024.07.02.601447v3.29) 2007; 18 Dill, Ghosh, Schmit (2024.07.02.601447v3.18) 2011; 108 Carpen, Pallai, Staunton, Springer (2024.07.02.601447v3.56) 1992; 118 Sokac (2024.07.02.601447v3.43) 2017; 43 Kozlov, Chernomordik (2024.07.02.601447v3.67) 2015; 33 Hatton, Galbraith, Merleau, Miettinen, Smith, Shander (2024.07.02.601447v3.59) 2023; 120 Reber, Goehring (2024.07.02.601447v3.9) 2015; 7 Chen, Zhao, Zahumensky, Honey, Futcher (2024.07.02.601447v3.36) 2020; 78 Wu, Ishamuddin, Quinn, Yerrum, Zhang, Debaize, Kao, Duquette, Murakami, Mohseni (2024.07.02.601447v3.50) 2024 Gauthier, Fardin, Roca-Cusachs, Sheetz (2024.07.02.601447v3.65) 2011; 108 Schmid-Schonbein, Shih, Chien (2024.07.02.601447v3.17) 1980; 56 Kang, Miettinen, Chen, Olcum, Katsikis, Doyle, Manalis (2024.07.02.601447v3.47) 2019; 16 Okie (2024.07.02.601447v3.3) 2013; 181 Miettinen, Caldez, Kaldis, Bjorklund (2024.07.02.601447v3.2) 2017; 39 Mu, Kang, Olcum, Payer, Calistri, Kimmerling, Manalis, Miettinen (2024.07.02.601447v3.54) 2020; 117 Marshall, Young, Swaffer, Wood, Nurse, Kimura, Frankel, Wallingford, Walbot, Qu (2024.07.02.601447v3.7) 2012; 10 Miettinen, Pessa, Caldez, Fuhrer, Diril, Sauer, Kaldis, Björklund (2024.07.02.601447v3.20) 2014; 24 Bult, Blake, Smith, Kadin, Richardson, Database (2024.07.02.601447v3.72) 2019; 47 |
References_xml | – reference: 40101718 - Curr Biol. 2025 Apr 7;35(7):1601-1611.e5. doi: 10.1016/j.cub.2025.02.051. – volume: 10 start-page: 8356 year: 2024 ident: 2024.07.02.601447v3.51 article-title: Cell size, density, and nutrient dependency of unicellular algal gravitational sinking velocities publication-title: Sci Adv doi: 10.1126/sciadv.adn8356 – volume: 39 year: 2017 ident: 2024.07.02.601447v3.2 article-title: Cell size control - a mechanism for maintaining fitness and function publication-title: Bioessays doi: 10.1002/bies.201700058 – volume: 446 start-page: 1066 year: 2007 end-page: 1069 ident: 2024.07.02.601447v3.48 article-title: Weighing of biomolecules, single cells and single nanoparticles in fluid publication-title: Nature doi: 10.1038/nature05741 – volume: 121 start-page: e2320769121 year: 2024 ident: 2024.07.02.601447v3.53 article-title: Cell-intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/PNAS.2320769121 – volume: 117 start-page: 15659 year: 2020 end-page: 15665 ident: 2024.07.02.601447v3.54 article-title: Mass measurements during lymphocytic leukemia cell polyploidization decouple cell cycle- and cell size-dependent growth publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1922197117 – volume: 4 start-page: 39 year: 2014 end-page: 46 ident: 2024.07.02.601447v3.6 article-title: A membrane reservoir at the cell surface publication-title: Bioarchitecture doi: 10.4161/BIOA.29069 – volume: 143 start-page: 2261 year: 2016 end-page: 2272 ident: 2024.07.02.601447v3.15 article-title: Generation of intestinal surface: an absorbing tale publication-title: Development doi: 10.1242/dev.135400 – volume: 43 start-page: 541 year: 2017 end-page: 542 ident: 2024.07.02.601447v3.43 article-title: Seeing a Coastline Paradox in Membrane Reservoirs publication-title: Dev Cell doi: 10.1016/J.DEVCEL.2017.11.013 – volume: 80 start-page: 611 year: 2005 end-page: 662 ident: 2024.07.02.601447v3.1 article-title: Beyond the “3/4-power law”: variation in the intra- and interspecific scaling of metabolic rate in animals publication-title: Biol Rev Camb Philos Soc doi: 10.1017/S1464793105006834 – volume: 70 start-page: 660 year: 2006 end-page: 703 ident: 2024.07.02.601447v3.4 article-title: The selective value of bacterial shape publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00001-06 – volume: 151 start-page: 671 year: 2012 end-page: 683 ident: 2024.07.02.601447v3.31 article-title: Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells publication-title: Cell doi: 10.1016/j.cell.2012.09.019 – volume: 15 start-page: 1078 year: 2019 end-page: 1085 ident: 2024.07.02.601447v3.55 article-title: A cell-size threshold limits cell polarity and asymmetric division potential publication-title: Nat Phys doi: 10.1038/s41567-019-0601-x – volume: 58 start-page: 339 year: 2015 end-page: 352 ident: 2024.07.02.601447v3.33 article-title: Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms publication-title: Mol Cell doi: 10.1016/j.molcel.2015.03.005 – volume: 24 year: 2014 ident: 2024.07.02.601447v3.20 article-title: Identification of transcriptional and metabolic programs related to mammalian cell size publication-title: Current Biology doi: 10.1016/j.cub.2014.01.071 – volume: 16 start-page: 263 year: 2019 end-page: 269 ident: 2024.07.02.601447v3.47 article-title: Noninvasive monitoring of single-cell mechanics by acoustic scattering publication-title: Nat Methods doi: 10.1038/s41592-019-0326-x – volume: 108 start-page: 14467 year: 2011 end-page: 14472 ident: 2024.07.02.601447v3.65 article-title: Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1105845108 – volume: 356 year: 2017 ident: 2024.07.02.601447v3.45 article-title: A subcellular map of the human proteome publication-title: Science doi: 10.1126/science.aal3321 – volume: 181 start-page: 421 year: 2013 end-page: 439 ident: 2024.07.02.601447v3.3 article-title: General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization publication-title: Am Nat doi: 10.1086/669150 – volume: 9 start-page: 910 year: 2012 end-page: 912 ident: 2024.07.02.601447v3.70 article-title: Direct observation of mammalian cell growth and size regulation publication-title: Nat Methods doi: 10.1038/nmeth.2133 – volume: 12 year: 2021 ident: 2024.07.02.601447v3.11 article-title: Precise regulation of the relative rates of surface area and volume synthesis in bacterial cells growing in dynamic environments publication-title: Nat Commun doi: 10.1038/s41467-021-22092-5 – volume: 56 start-page: 866 year: 1980 end-page: 875 ident: 2024.07.02.601447v3.17 article-title: Morphometry of Human Leukocytes publication-title: Blood doi: 10.1182/BLOOD.V56.5.866.866 – volume: 19 start-page: 207 year: 2018 ident: 2024.07.02.601447v3.44 article-title: Linking single-cell measurements of mass, growth rate, and gene expression publication-title: Genome Biol doi: 10.1186/s13059-018-1576-0 – volume: 118 start-page: e2021416118 year: 2021 ident: 2024.07.02.601447v3.12 article-title: Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2021416118 – volume: 186 start-page: 5254 year: 2023 end-page: 5268 ident: 2024.07.02.601447v3.40 article-title: RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size publication-title: Cell doi: 10.1016/j.cell.2023.10.012 – volume: 19 start-page: 741 year: 2018 end-page: 749 ident: 2024.07.02.601447v3.66 article-title: Reciprocal link between cell biomechanics and exocytosis publication-title: Traffic doi: 10.1111/TRA.12584 – volume: 8 year: 2019 ident: 2024.07.02.601447v3.10 article-title: Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria publication-title: Elife doi: 10.7554/eLife.47033 – volume: 4 year: 2015 ident: 2024.07.02.601447v3.24 article-title: Regulation of mRNA translation during mitosis publication-title: Elife doi: 10.7554/eLife.07957 – volume: 10 start-page: 1 year: 2012 end-page: 22 ident: 2024.07.02.601447v3.7 article-title: What determines cell size? publication-title: BMC Biol doi: 10.1186/1741-7007-10-101 – volume: 5 start-page: 150093 year: 2015 ident: 2024.07.02.601447v3.26 article-title: Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis publication-title: Open Biol doi: 10.1098/rsob.150093 – volume: 15 start-page: 993 year: 2019 end-page: 1004 ident: 2024.07.02.601447v3.21 article-title: The physics of cell-size regulation across timescales publication-title: Nat Phys doi: 10.1038/s41567-019-0629-y – volume: 156 start-page: 428 year: 2014 end-page: 439 ident: 2024.07.02.601447v3.25 article-title: Dividing cells regulate their lipid composition and localization publication-title: Cell doi: 10.1016/j.cell.2013.12.015 – volume: 33 year: 2022 ident: 2024.07.02.601447v3.41 article-title: Scaling of biosynthesis and metabolism with cell size publication-title: Mol Biol Cell doi: 10.1091/mbc.E21-12-0627 – volume: 11 start-page: 4983 year: 2020 ident: 2024.07.02.601447v3.49 article-title: Monitoring and modeling of lymphocytic leukemia cell bioenergetics reveals decreased ATP synthesis during cell division publication-title: Nat Commun doi: 10.1038/s41467-020-18769-y – volume: 118 start-page: 1223 year: 1992 end-page: 1234 ident: 2024.07.02.601447v3.56 article-title: Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin publication-title: Journal of Cell Biology doi: 10.1083/jcb.118.5.1223 – volume: 175 start-page: 1769 year: 2018 end-page: 1779 ident: 2024.07.02.601447v3.64 article-title: Cell Membranes Resist Flow publication-title: Cell doi: 10.1016/j.cell.2018.09.054 – volume: 176 year: 2019 ident: 2024.07.02.601447v3.58 article-title: Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence publication-title: Cell doi: 10.1016/j.cell.2019.01.018 – volume: 7 start-page: a019067 year: 2015 ident: 2024.07.02.601447v3.9 article-title: Intracellular Scaling Mechanisms publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/CSHPERSPECT.A019067 – volume: 36 start-page: 487 year: 2017 end-page: 502 ident: 2024.07.02.601447v3.22 article-title: Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells publication-title: EMBO Journal doi: 10.15252/embj.201695050 – volume: 39 year: 2016 ident: 2024.07.02.601447v3.32 article-title: Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size publication-title: Dev Cell doi: 10.1016/j.devcel.2016.09.004 – volume: 12 year: 2023 ident: 2024.07.02.601447v3.61 article-title: A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale publication-title: Elife doi: 10.7554/ELIFE.72316 – volume: 82 start-page: 3255 year: 2022 end-page: 3269 ident: 2024.07.02.601447v3.30 article-title: Increasing cell size remodels the proteome and promotes senescence publication-title: Mol Cell doi: 10.1016/J.MOLCEL.2022.07.017 – volume: 14 start-page: 1 year: 2023 end-page: 12 ident: 2024.07.02.601447v3.69 article-title: Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity publication-title: Nat Commun doi: 10.1038/s41467-023-43892-x – volume: 13 start-page: 859 year: 2014 end-page: 868 ident: 2024.07.02.601447v3.27 article-title: De novo fatty acid synthesis at the mitotic exit is required to complete cellular division publication-title: Cell Cycle doi: 10.4161/cc.27767 – volume: 9 start-page: 1 year: 2018 end-page: 11 ident: 2024.07.02.601447v3.37 article-title: Homeostasis of protein and mRNA concentrations in growing cells publication-title: Nature Communications doi: 10.1038/s41467-018-06714-z – volume: 120 start-page: e2303077120 year: 2023 ident: 2024.07.02.601447v3.59 article-title: The human cell count and size distribution publication-title: Proceedings of the National Academy of Sciences USA doi: 10.1073/pnas.2303077120 – volume: 11 year: 2022 ident: 2024.07.02.601447v3.52 article-title: Single-cell monitoring of dry mass and dry mass density reveals exocytosis of cellular dry contents in mitosis publication-title: Elife doi: 10.7554/eLife.76664 – volume: 613 start-page: 345 year: 2023 end-page: 354 ident: 2024.07.02.601447v3.35 article-title: Integrated intracellular organization and its variations in human iPS cells publication-title: Nature doi: 10.1038/s41586-022-05563-7 – volume: 20 start-page: 2010 year: 2010 end-page: 2015 ident: 2024.07.02.601447v3.34 article-title: A coordinated global control over cellular transcription publication-title: Current Biology doi: 10.1016/j.cub.2010.10.002 – volume: 47 start-page: D801 year: 2019 end-page: D806 ident: 2024.07.02.601447v3.72 article-title: Mouse Genome Database (MGD) 2019 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1056 – volume: 108 start-page: 17876 year: 2011 end-page: 17882 ident: 2024.07.02.601447v3.18 article-title: Physical limits of cells and proteomes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/PNAS.1114477108 – volume: 19 start-page: 1927 year: 2023 end-page: 1935 ident: 2024.07.02.601447v3.63 article-title: Scaling behaviour and control of nuclear wrinkling publication-title: Nat Phys doi: 10.1038/s41567-023-02216-y – volume: 43 start-page: 114268 year: 2024 ident: 2024.07.02.601447v3.14 article-title: An evolutionary optimum amid moderate heritability in prokaryotic cell size publication-title: Cell Rep doi: 10.1016/j.celrep.2024.114268 – volume: 52 start-page: 574 year: 2013 end-page: 582 ident: 2024.07.02.601447v3.23 article-title: The translational landscape of the mammalian cell cycle publication-title: Mol Cell doi: 10.1016/j.molcel.2013.09.018 – volume: 30 start-page: 1217 year: 2020 end-page: 1230 ident: 2024.07.02.601447v3.38 article-title: Size-Dependent Increase in RNA Polymerase II Initiation Rates Mediates Gene Expression Scaling with Cell Size publication-title: Current Biology doi: 10.1016/j.cub.2020.01.053 – volume: 165 start-page: 1479 year: 2016 end-page: 1492 ident: 2024.07.02.601447v3.13 article-title: Relative Rates of Surface and Volume Synthesis Set Bacterial Cell Size publication-title: Cell doi: 10.1016/j.cell.2016.05.045 – volume: 78 start-page: 359 year: 2020 end-page: 370 ident: 2024.07.02.601447v3.36 article-title: Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast publication-title: Mol Cell doi: 10.1016/j.molcel.2020.03.012 – volume: 338 start-page: 822 year: 2012 end-page: 824 ident: 2024.07.02.601447v3.42 article-title: Mitochondrial network size scaling in budding yeast publication-title: Science doi: 10.1126/science.1225720 – volume: 16 start-page: 263 year: 2019 end-page: 269 ident: 2024.07.02.601447v3.71 article-title: Noninvasive monitoring of single-cell mechanics by acoustic scattering publication-title: Nat Methods doi: 10.1038/s41592-019-0326-x – volume: 27 start-page: 3574 year: 2016 end-page: 3582 ident: 2024.07.02.601447v3.16 article-title: T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs publication-title: Mol Biol Cell doi: 10.1091/mbc.E16-06-0414 – volume: 179 start-page: 79 year: 2001 end-page: 102 ident: 2024.07.02.601447v3.5 article-title: Cell surface area regulation and membrane tension publication-title: Journal of Membrane Biology doi: 10.1007/s002320010040 – volume: 23 start-page: e13270 year: 2021 ident: 2024.07.02.601447v3.62 article-title: Surface area-to-volume ratio, not cellular viscoelasticity, is the major determinant of red blood cell traversal through small channels publication-title: Cell Microbiol doi: 10.1111/CMI.13270 – volume: 42 year: 2023 ident: 2024.07.02.601447v3.39 article-title: The cell cycle and cell size influence the rates of global cellular translation and transcription in fission yeast publication-title: EMBO J doi: 10.15252/embj.2022113333 – volume: 212 start-page: 439 year: 2016 end-page: 447 ident: 2024.07.02.601447v3.57 article-title: Biophysical changes reduce energetic demand in growth factor–deprived lymphocytes publication-title: Journal of Cell Biology doi: 10.1083/JCB.201506118 – year: 2000 ident: 2024.07.02.601447v3.46 publication-title: The cellLJ: a molecular approach 2nd ed – volume: 18 start-page: 3523 year: 2007 end-page: 3532 ident: 2024.07.02.601447v3.29 article-title: The size of the nucleus increases as yeast cells grow publication-title: Mol Biol Cell doi: 10.1091/mbc.E06-10-0973 – volume: 176 start-page: 805 year: 2019 end-page: 815 ident: 2024.07.02.601447v3.19 article-title: Importin alpha Partitioning to the Plasma Membrane Regulates Intracellular Scaling publication-title: Cell doi: 10.1016/j.cell.2018.12.001 – year: 2021 ident: 2024.07.02.601447v3.28 article-title: Size-scaling promotes senescence-like changes in proteome and organelle content publication-title: bioRxiv doi: 10.1101/2021.08.05.455193 – volume: 7 start-page: a019158 year: 2015 ident: 2024.07.02.601447v3.8 article-title: A Phyletic Perspective on Cell Growth publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/CSHPERSPECT.A019158 – year: 2024 ident: 2024.07.02.601447v3.50 article-title: Measuring single-cell density with high throughput enables dynamic profiling of immune cell and drug response from patient samples publication-title: bioRxiv doi: 10.1101/2024.04.25.591092 – volume: 119 start-page: e2208993119 year: 2022 ident: 2024.07.02.601447v3.60 article-title: Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2208993119 – volume: 33 start-page: 61 year: 2015 end-page: 67 ident: 2024.07.02.601447v3.67 article-title: Membrane tension and membrane fusion publication-title: Curr Opin Struct Biol doi: 10.1016/J.SBI.2015.07.010 – volume: 117 start-page: 21896 year: 2020 end-page: 21905 ident: 2024.07.02.601447v3.68 article-title: How cholesterol stiffens unsaturated lipid membranes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2004807117 |
SSID | ssj0002961374 |
Score | 1.9017818 |
SecondaryResourceType | preprint |
Snippet | All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell... |
SourceID | biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Biosensors Cell Biology Cell cycle Cell division Cell lines Cell size Cell surface Cell walls Cholesterol Electron microscopy Lipids Mammalian cells Membrane proteins Monocytes Nutrient uptake Plasma Polyploidy Surface area |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gExI33gwGChLXTG2WJu0ZMU1IoB2YtFtJUwft0A7tgeDfYzdl4gAS5zZN6zrO99mxzditLqREFmAEDL0TSrpS2Fg6kVEWpi6RFpWUjfz4pMdT9TBLZj9afdGxymK-WH7M35s4Ph3YRusbFncUE1dXTbVNOdBEBswu66JKKeraMJoNtu4VmeE-ZVQbx_x1JCLedqa_0WWzy4wOWHdi32B5yHagPmJ7oU3k5zF7mSDErSyvoEJuWwP3IWTEoUl8WnEXQN6arzZLbx1wi1BQrBci2B7e_GU-r_krkm4aWNmqahwcnBz3qxM2Hd0_341F2xlBFFQQTmgJGnSqM4-kMsnAu9h6ZVXsHBiXKJ856VJfglfOOBOVOo2tchHYIRjKJj1lnXpRwznjYCVCJtDSeYPgTSE8MV4WCRUm0k4Ne-ymlVL-Fupf5CTJPDJ5JPMgyR7rf8svb5fAKqcUe4QfqAj4iO1lVF76MJTVYoP3IF5FxCNV2mNnQe7bWYYZGQgVXfzjBS7ZvqS-vNSoxfRZZ73cwBWChXVx3ajFF9gPuH0 priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39005340 https://www.proquest.com/docview/3167782917 https://www.proquest.com/docview/3080635248 https://www.biorxiv.org/content/10.1101/2024.07.02.601447 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9tADD4Nqkl7Y8BYGVSHtNdj6fVylzwhMVFVSKBqGlLfwsXxoT4k6Zp2gn8_OwndEzwncRSfz_d9dmwL8d3mWhMLcAonAZTRUCg_1qBSrsK0BdGigquR7-7t7MHcLuJFH3Br-t8qX31i66iLGjhG_oMrtuk0I7lXqz-Kp0ZxdrUfobEnBuSCEyJfg-ub-_mvXZRFp3Rcta2YtU1p6-so7lObZIpM_E3bulNfWmYW3PgpX9br5-XftwFne_BMD8Rg7le4_iw-YHUoPnaTI1-OxOOcUG_pZYkl0d0KZeiySBLbWqhGQof7NrLZroMHlJ7QodrUqnNHsl14uazkE_FwfrD0ZdnGPCTH8ptj8TC9-f1zpvphCSrnHnHKarRoE5sG4plxigHGPhhvxgDoIDYhBQ1JKDAYcOCiwiZjbyBCP0HHBaZfxH5VV_hVSPSaUBRaDcERnjOEWFzQecy9iiyYyVBc9FrKVl1LjIw1mUUui3TWaXIozl71l_W7osn-ryGJ2F0me-YPI13VW7qHICyBIG2SoTjp9L57yyRln2Gi0_eFfxOfNE_p5bEt7kzsb9ZbPCfosMlHvX2MxN50cfkPmNfA9A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VRAhufDdQYJHguOCs17vxASEBrVLaRhFqpd7c9XoW5WA7xAnQP8VvZMZ2wgluPdsey-PZ2fdmdmYAXptcKWIBVmIcvNTKF9KNlZcpV2GagmhRwdXIZzMzvdBfLpPLPfi9rYXhY5Vbn9g66qL2HCN_xxXbtJuR3A_L75KnRnF2dTtCozOLE7z-SZSteX_8mf7vG6WODs8_TWU_VUDm3ExNGoUGzcSkgQhZkmLwYxe002Pv0fpEh9QrPwkFBu2tt1FhJmOnfYQuRsuVmCT3Fgx1TFRmAMOPh7P5111UR6W0Pbatn5VJydWoKOlTqWT6HGjQbatQ9dYwk-FGU_miXv1a_Pg3wG03uqN7MJy7Ja7uwx5WD-B2N6ny-iFczQlll06UWBK9rlCELmslsK29aoTvcOZaNJtVcB6FIzQq17Xs3J9oDU0sKvGNeD8_WLqybGMsgnMHzSO4uBE1PoZBVVe4DwKdItSGRvlgCT9qQkg2qDzh3kjG63gEr3otZcuuBUfGmswim0Uq6zQ5goOt_rJ-FTbZX5shEbvLtH74w0hX9YbuIchMoEvpyQiedHrfvSVO2Ufp6On_hb-EO9Pzs9Ps9Hh28gzuKp4QzCNj7AEM1qsNPifYss5f9LYi4OqmzfMPq_f92A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gE4gbbwYDgsQ1U5tlyXoGpvGadmDSbiVNHbRDu2kPBP8euy0TB5A4t01a13G-z45txq51IiWyACOg7Z1Q0qXChtKJiLIwdYq0KKVs5OeB7o_Uw7gz_pELQ8cqk8l0_jF5L-L4dGAbrW-5uIOQuLoqqm3KliYyYFrkpm7NUr_J6lTsjDS7N26t_Swywg3LqCqg-esQCH2rKf-GmcV209tl9aGdwXyPbUC-z7bKfpGfB-x1iFg3szyDDEluDtyXsSMORQbUgrsS7S35YjX31gG3iAnFcipKI8SL380nOX9D9k0PZjbLCk8HJw_-4pCNencvN31RtUgQCVWGE1qCBt3VkUd22YnAu9B6ZVXoHBjXUT5y0nV9Cl4540yQ6m5olQvAtsFQWukRq-XTHE4YBysRO4GWzhtEcQpxivEy6VCFIu1Uu8GuKinFs7IQRkySjAMTBzIuJdlgzW_5xdVaWMSUa484BDUCh1hfRi2mD0NZTVd4DwJXhD5SdRvsuJT7epZ2RJZCBaf_eIFLtj287cVP94PHM7YjqVcvNW8xTVZbzldwjgBimVwUGvIFT-G-ZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+membrane+folding+enables+constant+surface+area-to-volume+ratio+in+growing+mammalian+cells&rft.jtitle=bioRxiv&rft.au=Wu%2C+Weida&rft.au=Lam%2C+Alice+R&rft.au=Suarez%2C+Kayla&rft.au=Smith%2C+Grace+N&rft.date=2025-02-17&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.07.02.601447&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |