Morphogenesis of bullet-shaped rabies virus particles requires a functional interplay between the viral matrix protein and ESCRT-I component TSG101

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host ESCRT (endosomal sorting complex required for transport) machinery, which contributes to th...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Itakura, Yukari, Tabata, Koshiro, Saito, Takeshi, Intaruck, Kittiya, Kawaguchi, Nijiho, Kishimoto, Mai, Torii, Shiho, Kobayashi, Shintaro, Ito, Naoto, Harada, Michiko, Inoue, Satoshi, Maeda, Ken, Takada, Ayato, Hall, William W., Orba, Yasuko, Sawa, Hirofumi, Sasaki, Michihito
Format Paper
LanguageEnglish
Japanese
Published Cold Spring Harbor Laboratory 16.12.2022
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host ESCRT (endosomal sorting complex required for transport) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection, and specifically the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a siRNA screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late-domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. Enveloped-viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT (endosomal sorting complex required for transport) complexes. Some enveloped-viruses utilize their late (L)-domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped-virions, but the underlying molecular mechanisms involved remain elusive. Herein, we showed that TSG101, one of ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.
AbstractList Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host ESCRT (endosomal sorting complex required for transport) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection, and specifically the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a siRNA screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late-domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. Enveloped-viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT (endosomal sorting complex required for transport) complexes. Some enveloped-viruses utilize their late (L)-domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped-virions, but the underlying molecular mechanisms involved remain elusive. Herein, we showed that TSG101, one of ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.
Author Tabata, Koshiro
Inoue, Satoshi
Intaruck, Kittiya
Ito, Naoto
Kishimoto, Mai
Kawaguchi, Nijiho
Takada, Ayato
Sasaki, Michihito
Saito, Takeshi
Kobayashi, Shintaro
Torii, Shiho
Itakura, Yukari
Orba, Yasuko
Harada, Michiko
Sawa, Hirofumi
Hall, William W.
Maeda, Ken
Author_xml – sequence: 1
  givenname: Yukari
  surname: Itakura
  fullname: Itakura, Yukari
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
– sequence: 2
  givenname: Koshiro
  surname: Tabata
  fullname: Tabata, Koshiro
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
– sequence: 3
  givenname: Takeshi
  surname: Saito
  fullname: Saito, Takeshi
  organization: Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University
– sequence: 4
  givenname: Kittiya
  surname: Intaruck
  fullname: Intaruck, Kittiya
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
– sequence: 5
  givenname: Nijiho
  surname: Kawaguchi
  fullname: Kawaguchi, Nijiho
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
– sequence: 6
  givenname: Mai
  surname: Kishimoto
  fullname: Kishimoto, Mai
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
– sequence: 7
  givenname: Shiho
  surname: Torii
  fullname: Torii, Shiho
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
– sequence: 8
  givenname: Shintaro
  surname: Kobayashi
  fullname: Kobayashi, Shintaro
  organization: Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University
– sequence: 9
  givenname: Naoto
  surname: Ito
  fullname: Ito, Naoto
  organization: Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University
– sequence: 10
  givenname: Michiko
  surname: Harada
  fullname: Harada, Michiko
  organization: Department of Veterinary Science, National Institute of Infectious Diseases
– sequence: 11
  givenname: Satoshi
  surname: Inoue
  fullname: Inoue, Satoshi
  organization: Department of Veterinary Science, National Institute of Infectious Diseases
– sequence: 12
  givenname: Ken
  surname: Maeda
  fullname: Maeda, Ken
  organization: Department of Veterinary Science, National Institute of Infectious Diseases
– sequence: 13
  givenname: Ayato
  surname: Takada
  fullname: Takada, Ayato
  organization: One Health Research Center, Hokkaido University
– sequence: 14
  givenname: William W.
  surname: Hall
  fullname: Hall, William W.
  organization: Global Virus Network
– sequence: 15
  givenname: Yasuko
  surname: Orba
  fullname: Orba, Yasuko
  organization: International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
– sequence: 16
  givenname: Hirofumi
  surname: Sawa
  fullname: Sawa, Hirofumi
  organization: Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University
– sequence: 17
  givenname: Michihito
  orcidid: 0000-0003-1607-2175
  surname: Sasaki
  fullname: Sasaki, Michihito
  email: m-sasaki@czc.hokudai.ac.jp
  organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
BookMark eNotkFFLwzAUhYMoOOd-gG959KUzSdu0eZQxt8FEcPO5JO2Ni3RJTdK5_Q7_sB0TDtx7ONwL37lD19ZZQOiBkimlhD4xwtiUDuLTnBEusis0YlywpGQkv0WTEL4IIUxwmhbZCP2-Ot_t3CdYCCZgp7Hq2xZiEnaygwZ7qQwEfDC-D7iTPpq6HbyH7974YZFY97aOxlnZYmMj-K6VJ6wg_gBYHHdwvh2yvYzeHHHnXQRjsbQNnm9m79tkhWu37wYIG_F2sxgY7tGNlm2Ayf8co4-X-Xa2TNZvi9XseZ0omrEsYbxJdSEyrjSRqig1AM_SGgohhExJ2ZSKCWhyyFkmc1XqQimuqYCC6bpu8nSMHi9_lXH-aA5V581e-lN17rCig3h16TD9A9RVa9M
ContentType Paper
Copyright 2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2022.12.16.520694
DatabaseName bioRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2022.12.16.520694v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b1424-26d3f7946bf0ab78fee643ce7999a308d8b29ed5e524a5b8f7bb6f19e72fccd53
IEDL.DBID FX.
IngestDate Tue Jan 07 18:53:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
Japanese
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1424-26d3f7946bf0ab78fee643ce7999a308d8b29ed5e524a5b8f7bb6f19e72fccd53
Notes Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0003-1607-2175
OpenAccessLink https://www.biorxiv.org/content/10.1101/2022.12.16.520694
PageCount 36
ParticipantIDs biorxiv_primary_2022_12_16_520694
PublicationCentury 2000
PublicationDate 20221216
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 20221216
  day: 16
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Mebatsion, Weiland, Conzelmann (2022.12.16.520694v1.2) 1999; 73
Pornillos (2022.12.16.520694v1.23) 2002; 21
Lyles, McKenzie, Parce (2022.12.16.520694v1.7) 1992; 66
Ito (2022.12.16.520694v1.31) 2003; 47
Newcomb, Brown (2022.12.16.520694v1.6) 1981; 39
Finke, Conzelmann (2022.12.16.520694v1.1) 2005; 111
Colombo (2022.12.16.520694v1.10) 2013; 126
Urata (2022.12.16.520694v1.13) 2007; 81
Cadd, Skoging, Liljeström (2022.12.16.520694v1.3) 1997; 19
Timmins (2022.12.16.520694v1.14) 2003; 326
Hurley, Emr (2022.12.16.520694v1.11) 2006; 35
Leis, Luan, Audia, Dunne, Heath (2022.12.16.520694v1.17) 2021; 95
Yasuda, Nakao, Kawaoka, Shida (2022.12.16.520694v1.30) 2003; 77
Harty (2022.12.16.520694v1.29) 2001; 75
Chen, Lamb (2022.12.16.520694v1.21) 2008; 372
Hurley, Hanson (2022.12.16.520694v1.9) 2010; 11
Garrus (2022.12.16.520694v1.12) 2001; 107
Zhang (2022.12.16.520694v1.15) 2020; 35
Park (2022.12.16.520694v1.18) 2016; 12
Kaptur, Rhodes, Lyles (2022.12.16.520694v1.4) 1991; 65
Nickerson, Russell, Odorizzi (2022.12.16.520694v1.24) 2007; 8
Sabino, Bender, Herrlein, Hildt (2022.12.16.520694v1.35) 2021; 95
Strous, Govers (2022.12.16.520694v1.26) 1999; 112
Noda (2022.12.16.520694v1.37) 2002; 76
Irie, Licata, McGettigan, Schnell, Harty (2022.12.16.520694v1.22) 2004; 78
Justice (2022.12.16.520694v1.20) 1995; 69
Sette, Jadwin, Dussupt, Bello, Bouamr (2022.12.16.520694v1.28) 2010; 84
Itakura (2022.12.16.520694v1.32) 2022; 25
Anindita (2022.12.16.520694v1.33) 2016; 215
Mebatsion, König, Conzelmann (2022.12.16.520694v1.8) 1996; 84
Ferraiuolo, Manthey, Stanton, Triplett, Wagner (2022.12.16.520694v1.25) 2020; 12
Harty, Paragas, Palese (2022.12.16.520694v1.27) 1999; 73
Nosaki (2022.12.16.520694v1.34) 2021; 28
Wirblich (2022.12.16.520694v1.16) 2008; 82
Lyles, McKenzie (2022.12.16.520694v1.5) 1997; 37
Tabata (2022.12.16.520694v1.19) 2016; 16
Anindita (2022.12.16.520694v1.36) 2018; 154
References_xml – volume: 47
  start-page: 613
  year: 2003
  end-page: 617
  ident: 2022.12.16.520694v1.31
  article-title: Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system
  publication-title: Microbiol. Immunol
– volume: 73
  start-page: 242
  year: 1999
  end-page: 250
  ident: 2022.12.16.520694v1.2
  article-title: Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G
  publication-title: J. Virol
– volume: 107
  start-page: 55
  year: 2001
  end-page: 65
  ident: 2022.12.16.520694v1.12
  article-title: Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding
  publication-title: Cell
– volume: 95
  start-page: e00190
  year: 2021
  end-page: 21
  ident: 2022.12.16.520694v1.17
  article-title: Ilaprazole and other novel prazole-based compounds that bind TSG101 inhibit viral budding of Herpes Simplex Virus 1 and 2 and Human Immunodeficiency Virus from Cells
  publication-title: J Virol
– volume: 16
  start-page: 2339
  year: 2016
  end-page: 2347
  ident: 2022.12.16.520694v1.19
  article-title: Unique requirement for ESCRT factors in flavivirus particle formation on the endoplasmic reticulum
  publication-title: Cell Rep
– volume: 326
  start-page: 493
  year: 2003
  end-page: 502
  ident: 2022.12.16.520694v1.14
  article-title: Ebola virus matrix protein VP40 interaction with human cellular factors TSG101 and Nedd4
  publication-title: J Mol Biol
– volume: 8
  start-page: 644
  year: 2007
  end-page: 650
  ident: 2022.12.16.520694v1.24
  article-title: A concentric circle model of multivesicular body cargo sorting
  publication-title: EMBO Rep
– volume: 35
  start-page: 277
  year: 2006
  end-page: 298
  ident: 2022.12.16.520694v1.11
  article-title: The ESCRT complexes: Structure and mechanism of a membrane-trafficking network
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 75
  start-page: 10623
  year: 2001
  end-page: 10629
  ident: 2022.12.16.520694v1.29
  article-title: Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction
  publication-title: J Virol
– volume: 19
  start-page: 993
  year: 1997
  end-page: 1000
  ident: 2022.12.16.520694v1.3
  article-title: Budding of enveloped viruses from the plasma membrane
  publication-title: Bioessays
– volume: 111
  start-page: 120
  year: 2005
  end-page: 131
  ident: 2022.12.16.520694v1.1
  article-title: Replication strategies of rabies virus
  publication-title: Virus Res
– volume: 12
  start-page: e1005659
  year: 2016
  ident: 2022.12.16.520694v1.18
  article-title: Nipah Virus C Protein recruits TSG101 to promote the efficient release of virus in an ESCRT-dependent pathway
  publication-title: PLoS Pathog
– volume: 11
  start-page: 556
  year: 2010
  end-page: 566
  ident: 2022.12.16.520694v1.9
  article-title: Membrane budding and scission by the ESCRT machinery: It’s all in the neck
  publication-title: Nat Rev Mol Cell Biol
– volume: 154
  start-page: 1
  year: 2018
  end-page: 9
  ident: 2022.12.16.520694v1.36
  article-title: Ribavirin-related compounds exert in vitro inhibitory effects toward rabies virus
  publication-title: Antiviral Res
– volume: 82
  start-page: 9730
  year: 2008
  end-page: 9738
  ident: 2022.12.16.520694v1.16
  article-title: PPEY motif within the rabies virus (RV) matrix protein. is essential for efficient virion release and RV pathogenicity
  publication-title: J Virol
– volume: 73
  start-page: 2921
  year: 1999
  end-page: 2929
  ident: 2022.12.16.520694v1.27
  article-title: A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding
  publication-title: J. Virol
– volume: 69
  start-page: 3156
  year: 1995
  end-page: 3160
  ident: 2022.12.16.520694v1.20
  article-title: Membrane vesiculation function and exocytosis of wild-type and mutant matrix proteins of vesicular stomatitis virus
  publication-title: J. Virol
– volume: 78
  start-page: 2657
  year: 2004
  end-page: 2665
  ident: 2022.12.16.520694v1.22
  article-title: Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A
  publication-title: J Virol
– volume: 84
  start-page: 941
  year: 1996
  end-page: 951
  ident: 2022.12.16.520694v1.8
  article-title: Budding of rabies virus particles in the absence of the spike glycoprotein
  publication-title: Cell
– volume: 35
  start-page: 143
  year: 2020
  end-page: 155
  ident: 2022.12.16.520694v1.15
  article-title: Proteomic Profiling of Purified Rabies Virus Particles
  publication-title: Virol Sin
– volume: 66
  start-page: 349
  year: 1992
  end-page: 358
  ident: 2022.12.16.520694v1.7
  article-title: Subunit interactions of vesicular stomatitis virus envelope glycoprotein stabilized by binding to viral matrix protein
  publication-title: J. Virol
– volume: 25
  year: 2022
  ident: 2022.12.16.520694v1.32
  article-title: Glu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responses
  publication-title: iScience
– volume: 112
  start-page: 1417
  year: 1999
  end-page: 1423
  ident: 2022.12.16.520694v1.26
  article-title: The ubiquitin-proteasome system and endocytosis
  publication-title: J Cell Sci
– volume: 215
  start-page: 121
  year: 2016
  end-page: 128
  ident: 2022.12.16.520694v1.33
  article-title: Generation of recombinant rabies viruses encoding NanoLuc luciferase for antiviral activity assays
  publication-title: Virus Res
– volume: 84
  start-page: 8181
  year: 2010
  end-page: 8192
  ident: 2022.12.16.520694v1.28
  article-title: The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif
  publication-title: J Virol
– volume: 37
  start-page: 439
  year: 1997
  end-page: 450
  ident: 2022.12.16.520694v1.5
  article-title: Reversible and irreversible steps in assembly and disassembly of vesicular stomatitis virus: equilibria and kinetics of dissociation of nucleocapsid-M protein complexes assembled in vivo
  publication-title: Biochemistry
– volume: 65
  start-page: 1057
  year: 1991
  end-page: 1065
  ident: 2022.12.16.520694v1.4
  article-title: Sequences of the vesicular stomatitis virus matrix protein involved in binding to nucleocapsids
  publication-title: J. Virol
– volume: 77
  start-page: 9987
  year: 2003
  end-page: 9992
  ident: 2022.12.16.520694v1.30
  article-title: Nedd4 regulates egress of Ebola virus-like particles from host cells
  publication-title: J Virol
– volume: 28
  start-page: 1
  year: 2021
  end-page: 4
  ident: 2022.12.16.520694v1.34
  article-title: Fourth imported rabies case since the eradication of rabies in Japan in 1957
  publication-title: J Travel Med
– volume: 76
  start-page: 4855
  year: 2002
  end-page: 4865
  ident: 2022.12.16.520694v1.37
  article-title: Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP
  publication-title: J Virol
– volume: 126
  start-page: 5553
  year: 2013
  end-page: 5565
  ident: 2022.12.16.520694v1.10
  article-title: Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles
  publication-title: J Cell Sci
– volume: 12
  year: 2020
  ident: 2022.12.16.520694v1.25
  article-title: The multifaceted roles of the tumor susceptibility gene 101 (TSG101) in normal development and disease
  publication-title: Cancers
– volume: 39
  start-page: 295
  year: 1981
  end-page: 299
  ident: 2022.12.16.520694v1.6
  article-title: Role of the vesicular stomatitis virus matrix protein in maintaining the viral nucleocapsid in the condensed form found in native virions
  publication-title: J. Virol
– volume: 372
  start-page: 221
  year: 2008
  end-page: 232
  ident: 2022.12.16.520694v1.21
  article-title: Mechanisms for enveloped virus budding: Can some viruses do without an ESCRT?
  publication-title: Virology
– volume: 81
  start-page: 4895
  year: 2007
  end-page: 4899
  ident: 2022.12.16.520694v1.13
  article-title: Interaction of TSG101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the cse of Ebola virus, and TSG101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP
  publication-title: J Virol
– volume: 21
  start-page: 2397
  year: 2002
  end-page: 2406
  ident: 2022.12.16.520694v1.23
  article-title: Structure and functional interactions of the TSG101 UEV domain
  publication-title: EMBO J
– volume: 95
  start-page: e01195
  year: 2021
  end-page: 21
  ident: 2022.12.16.520694v1.35
  article-title: The epidermal growth factor receptor is a relevant host factor in the early stages of the Zika virus life cycle in vitro
  publication-title: J. Virol
SSID ssj0002961374
Score 1.8191936
SecondaryResourceType preprint
Snippet Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle,...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Microbiology
Title Morphogenesis of bullet-shaped rabies virus particles requires a functional interplay between the viral matrix protein and ESCRT-I component TSG101
URI https://www.biorxiv.org/content/10.1101/2022.12.16.520694
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba4MwFA5by2Bvu7JryWCvFo2J0deVdt2gpfQCfROjySZsWuyF9nfsD-8cdaMPexj4ICYh5Ghyvpzz-YWQR2OYtGPftoSWyuKccUvFxgcg5xvOjRQixoD-YOj1Z_x1LuZ7R30hrVKlebFNN2UeHwnbsPpWk9t2cK_OMH7neG3B8KfNQ9KET4rjnOzN27_hFRaAn5K8zmP-2RIQb93TnkfpnZDmKFro4pQc6OyMHFVHQu7Oydcgh5Hnb7gEpUuaG6pKgWxr-Q71E1pECva2dJMW6yVd_NDaaKGR0Qs3EUVPVQX4aFoyCj-iHa3pWBTgHraFsk_U5t_SUqchzWiUJbQ76Yyn1gtFmnmegT3odPIMg7ogs1532ulb9cEJFoZ0uMW8xDWoHK-MHSmwutYAPGItAQ1Gru0nvmKBToQWjEdC-UYq5Rkn0JKZOE6Ee0kaGfRzRWggbS4B9cTat7nGtGTCJEBGF2WAhNbX5KE2Yrio5DFCNHTowOWFlaFv_lHnlhzjMySKON4daayKtb4Hd79SLdJ86g5H41b5gr8BXYmoIw
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQCMGNVewMEhxTJa4dpwdOQGmBIgRF6i3EiQ2RIKnSsvQ7-A--kZkkIA4cuCDlEMmOYo-XeTN-nmFs31qu3DhwHWmUdoTgwtGxDRDIBVYIq6SMyaHfu_Q7t-JsIAdT7OPrLgzRKnWaF2_pS3mOT4Rt3H2rxe16ZKtz8t95fkNyurTZIDd1Tao8N5NXNNlGh91jHN8Dztsn_aOOU2cVcMjfIRzuJ01LYdW1dSONTTIGtXJsFEKlqOkGSaB5yyTSSC4iqQOrtPat1zKK2zhOKEsEbvkzFFiNVlF70Pj26fAWKkcl6sPTX5uLMLvu3g811l5gM1fR0BSLbMpkS2y2ykM5WWbvvRzFnd_TvpeOILegy6jczugB6ydQRBoNanhJi-cRDL-4dFAYohHjSwSkHiuvIqQljfExmkDNAQPEmPQtlj1RQoA3KINDpBlEWQInN0fXfacLxG3PMxwE6N-cYqdW2O2_yHWVTWf4nzUGLeUKhVArNoErDJ2FJlwhTm1S7CFpzDrbq4UYDquYHCEJOvTw8cNK0Bt_qLPL5jr93kV40b0832TzVE5MFc_fYtPj4tlsI94Y651ykIHd_fes-gRu9OZ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQCMSNVewMEhxTJa4dpwdOtIWyCUGRegtxYkMkSKq0LP0O_oQvZCYJiAMHLkg5RLKd2OPE82b8PMPYvrVcuXHgOtIo7QjBhaNjGyCQC6wQVkkZk0P_4tI_uRWnAzmYYh9fZ2GIVqnTvHhLX8p9fCJs4-pb_dyuR7Y6J_-d5zckp0ObDXJTN4aJrYmVZ2byimbb6LDXxjk-4Lzb6R-dOHVmAYd8HsLhftK0FFpdWzfS2C1jUDPHRiFcippukASat0wijeQikjqwSmvfei2juI3jhDJF4LI_g08QlC6iO2h8-3V4CxWkEvUG6q9dRqhdD_GHKususJmraGiKRTZlsiU2W-WinCyz94scRZ7f09qXjiC3oMvI3M7oAesnUEQajWp4SYvnEQy_-HRQGKIS400EpCIrzyKkJZXxMZpAzQMDxJnUFsueKCnAG5QBItIMoiyBzs3Rdd_pAfHb8wwnAvo3xzioFXb7L3JdZdMZvmeNQUu5QiHcik3gCkP7oQlXiFWbFH9IGrPO9mohhsMqLkdIgg49vPywEvTGH-rssrmrdjc8712ebbJ5Kiayiudvselx8Wy2EXKM9U45x8Du_vuj-gTboueE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphogenesis+of+bullet-shaped+rabies+virus+particles+requires+a+functional+interplay+between+the+viral+matrix+protein+and+ESCRT-I+component+TSG101&rft.jtitle=bioRxiv&rft.au=Itakura%2C+Yukari&rft.au=Tabata%2C+Koshiro&rft.au=Saito%2C+Takeshi&rft.au=Intaruck%2C+Kittiya&rft.date=2022-12-16&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.12.16.520694&rft.externalDocID=2022.12.16.520694v1