Morphogenesis of bullet-shaped rabies virus particles requires a functional interplay between the viral matrix protein and ESCRT-I component TSG101
Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host ESCRT (endosomal sorting complex required for transport) machinery, which contributes to th...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Paper |
Language | English Japanese |
Published |
Cold Spring Harbor Laboratory
16.12.2022
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host ESCRT (endosomal sorting complex required for transport) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection, and specifically the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a siRNA screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late-domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology.
Enveloped-viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT (endosomal sorting complex required for transport) complexes. Some enveloped-viruses utilize their late (L)-domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped-virions, but the underlying molecular mechanisms involved remain elusive. Herein, we showed that TSG101, one of ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein. |
---|---|
AbstractList | Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host ESCRT (endosomal sorting complex required for transport) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection, and specifically the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a siRNA screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late-domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology.
Enveloped-viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT (endosomal sorting complex required for transport) complexes. Some enveloped-viruses utilize their late (L)-domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped-virions, but the underlying molecular mechanisms involved remain elusive. Herein, we showed that TSG101, one of ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein. |
Author | Tabata, Koshiro Inoue, Satoshi Intaruck, Kittiya Ito, Naoto Kishimoto, Mai Kawaguchi, Nijiho Takada, Ayato Sasaki, Michihito Saito, Takeshi Kobayashi, Shintaro Torii, Shiho Itakura, Yukari Orba, Yasuko Harada, Michiko Sawa, Hirofumi Hall, William W. Maeda, Ken |
Author_xml | – sequence: 1 givenname: Yukari surname: Itakura fullname: Itakura, Yukari organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University – sequence: 2 givenname: Koshiro surname: Tabata fullname: Tabata, Koshiro organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University – sequence: 3 givenname: Takeshi surname: Saito fullname: Saito, Takeshi organization: Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University – sequence: 4 givenname: Kittiya surname: Intaruck fullname: Intaruck, Kittiya organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University – sequence: 5 givenname: Nijiho surname: Kawaguchi fullname: Kawaguchi, Nijiho organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University – sequence: 6 givenname: Mai surname: Kishimoto fullname: Kishimoto, Mai organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University – sequence: 7 givenname: Shiho surname: Torii fullname: Torii, Shiho organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University – sequence: 8 givenname: Shintaro surname: Kobayashi fullname: Kobayashi, Shintaro organization: Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University – sequence: 9 givenname: Naoto surname: Ito fullname: Ito, Naoto organization: Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University – sequence: 10 givenname: Michiko surname: Harada fullname: Harada, Michiko organization: Department of Veterinary Science, National Institute of Infectious Diseases – sequence: 11 givenname: Satoshi surname: Inoue fullname: Inoue, Satoshi organization: Department of Veterinary Science, National Institute of Infectious Diseases – sequence: 12 givenname: Ken surname: Maeda fullname: Maeda, Ken organization: Department of Veterinary Science, National Institute of Infectious Diseases – sequence: 13 givenname: Ayato surname: Takada fullname: Takada, Ayato organization: One Health Research Center, Hokkaido University – sequence: 14 givenname: William W. surname: Hall fullname: Hall, William W. organization: Global Virus Network – sequence: 15 givenname: Yasuko surname: Orba fullname: Orba, Yasuko organization: International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University – sequence: 16 givenname: Hirofumi surname: Sawa fullname: Sawa, Hirofumi organization: Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University – sequence: 17 givenname: Michihito orcidid: 0000-0003-1607-2175 surname: Sasaki fullname: Sasaki, Michihito email: m-sasaki@czc.hokudai.ac.jp organization: Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University |
BookMark | eNotkFFLwzAUhYMoOOd-gG959KUzSdu0eZQxt8FEcPO5JO2Ni3RJTdK5_Q7_sB0TDtx7ONwL37lD19ZZQOiBkimlhD4xwtiUDuLTnBEusis0YlywpGQkv0WTEL4IIUxwmhbZCP2-Ot_t3CdYCCZgp7Hq2xZiEnaygwZ7qQwEfDC-D7iTPpq6HbyH7974YZFY97aOxlnZYmMj-K6VJ6wg_gBYHHdwvh2yvYzeHHHnXQRjsbQNnm9m79tkhWu37wYIG_F2sxgY7tGNlm2Ayf8co4-X-Xa2TNZvi9XseZ0omrEsYbxJdSEyrjSRqig1AM_SGgohhExJ2ZSKCWhyyFkmc1XqQimuqYCC6bpu8nSMHi9_lXH-aA5V581e-lN17rCig3h16TD9A9RVa9M |
ContentType | Paper |
Copyright | 2022, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2022, Posted by Cold Spring Harbor Laboratory |
DBID | FX. |
DOI | 10.1101/2022.12.16.520694 |
DatabaseName | bioRxiv |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2022.12.16.520694v1 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
ID | FETCH-LOGICAL-b1424-26d3f7946bf0ab78fee643ce7999a308d8b29ed5e524a5b8f7bb6f19e72fccd53 |
IEDL.DBID | FX. |
IngestDate | Tue Jan 07 18:53:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1424-26d3f7946bf0ab78fee643ce7999a308d8b29ed5e524a5b8f7bb6f19e72fccd53 |
Notes | Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0003-1607-2175 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2022.12.16.520694 |
PageCount | 36 |
ParticipantIDs | biorxiv_primary_2022_12_16_520694 |
PublicationCentury | 2000 |
PublicationDate | 20221216 |
PublicationDateYYYYMMDD | 2022-12-16 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221216 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Mebatsion, Weiland, Conzelmann (2022.12.16.520694v1.2) 1999; 73 Pornillos (2022.12.16.520694v1.23) 2002; 21 Lyles, McKenzie, Parce (2022.12.16.520694v1.7) 1992; 66 Ito (2022.12.16.520694v1.31) 2003; 47 Newcomb, Brown (2022.12.16.520694v1.6) 1981; 39 Finke, Conzelmann (2022.12.16.520694v1.1) 2005; 111 Colombo (2022.12.16.520694v1.10) 2013; 126 Urata (2022.12.16.520694v1.13) 2007; 81 Cadd, Skoging, Liljeström (2022.12.16.520694v1.3) 1997; 19 Timmins (2022.12.16.520694v1.14) 2003; 326 Hurley, Emr (2022.12.16.520694v1.11) 2006; 35 Leis, Luan, Audia, Dunne, Heath (2022.12.16.520694v1.17) 2021; 95 Yasuda, Nakao, Kawaoka, Shida (2022.12.16.520694v1.30) 2003; 77 Harty (2022.12.16.520694v1.29) 2001; 75 Chen, Lamb (2022.12.16.520694v1.21) 2008; 372 Hurley, Hanson (2022.12.16.520694v1.9) 2010; 11 Garrus (2022.12.16.520694v1.12) 2001; 107 Zhang (2022.12.16.520694v1.15) 2020; 35 Park (2022.12.16.520694v1.18) 2016; 12 Kaptur, Rhodes, Lyles (2022.12.16.520694v1.4) 1991; 65 Nickerson, Russell, Odorizzi (2022.12.16.520694v1.24) 2007; 8 Sabino, Bender, Herrlein, Hildt (2022.12.16.520694v1.35) 2021; 95 Strous, Govers (2022.12.16.520694v1.26) 1999; 112 Noda (2022.12.16.520694v1.37) 2002; 76 Irie, Licata, McGettigan, Schnell, Harty (2022.12.16.520694v1.22) 2004; 78 Justice (2022.12.16.520694v1.20) 1995; 69 Sette, Jadwin, Dussupt, Bello, Bouamr (2022.12.16.520694v1.28) 2010; 84 Itakura (2022.12.16.520694v1.32) 2022; 25 Anindita (2022.12.16.520694v1.33) 2016; 215 Mebatsion, König, Conzelmann (2022.12.16.520694v1.8) 1996; 84 Ferraiuolo, Manthey, Stanton, Triplett, Wagner (2022.12.16.520694v1.25) 2020; 12 Harty, Paragas, Palese (2022.12.16.520694v1.27) 1999; 73 Nosaki (2022.12.16.520694v1.34) 2021; 28 Wirblich (2022.12.16.520694v1.16) 2008; 82 Lyles, McKenzie (2022.12.16.520694v1.5) 1997; 37 Tabata (2022.12.16.520694v1.19) 2016; 16 Anindita (2022.12.16.520694v1.36) 2018; 154 |
References_xml | – volume: 47 start-page: 613 year: 2003 end-page: 617 ident: 2022.12.16.520694v1.31 article-title: Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system publication-title: Microbiol. Immunol – volume: 73 start-page: 242 year: 1999 end-page: 250 ident: 2022.12.16.520694v1.2 article-title: Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G publication-title: J. Virol – volume: 107 start-page: 55 year: 2001 end-page: 65 ident: 2022.12.16.520694v1.12 article-title: Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding publication-title: Cell – volume: 95 start-page: e00190 year: 2021 end-page: 21 ident: 2022.12.16.520694v1.17 article-title: Ilaprazole and other novel prazole-based compounds that bind TSG101 inhibit viral budding of Herpes Simplex Virus 1 and 2 and Human Immunodeficiency Virus from Cells publication-title: J Virol – volume: 16 start-page: 2339 year: 2016 end-page: 2347 ident: 2022.12.16.520694v1.19 article-title: Unique requirement for ESCRT factors in flavivirus particle formation on the endoplasmic reticulum publication-title: Cell Rep – volume: 326 start-page: 493 year: 2003 end-page: 502 ident: 2022.12.16.520694v1.14 article-title: Ebola virus matrix protein VP40 interaction with human cellular factors TSG101 and Nedd4 publication-title: J Mol Biol – volume: 8 start-page: 644 year: 2007 end-page: 650 ident: 2022.12.16.520694v1.24 article-title: A concentric circle model of multivesicular body cargo sorting publication-title: EMBO Rep – volume: 35 start-page: 277 year: 2006 end-page: 298 ident: 2022.12.16.520694v1.11 article-title: The ESCRT complexes: Structure and mechanism of a membrane-trafficking network publication-title: Annu Rev Biophys Biomol Struct – volume: 75 start-page: 10623 year: 2001 end-page: 10629 ident: 2022.12.16.520694v1.29 article-title: Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction publication-title: J Virol – volume: 19 start-page: 993 year: 1997 end-page: 1000 ident: 2022.12.16.520694v1.3 article-title: Budding of enveloped viruses from the plasma membrane publication-title: Bioessays – volume: 111 start-page: 120 year: 2005 end-page: 131 ident: 2022.12.16.520694v1.1 article-title: Replication strategies of rabies virus publication-title: Virus Res – volume: 12 start-page: e1005659 year: 2016 ident: 2022.12.16.520694v1.18 article-title: Nipah Virus C Protein recruits TSG101 to promote the efficient release of virus in an ESCRT-dependent pathway publication-title: PLoS Pathog – volume: 11 start-page: 556 year: 2010 end-page: 566 ident: 2022.12.16.520694v1.9 article-title: Membrane budding and scission by the ESCRT machinery: It’s all in the neck publication-title: Nat Rev Mol Cell Biol – volume: 154 start-page: 1 year: 2018 end-page: 9 ident: 2022.12.16.520694v1.36 article-title: Ribavirin-related compounds exert in vitro inhibitory effects toward rabies virus publication-title: Antiviral Res – volume: 82 start-page: 9730 year: 2008 end-page: 9738 ident: 2022.12.16.520694v1.16 article-title: PPEY motif within the rabies virus (RV) matrix protein. is essential for efficient virion release and RV pathogenicity publication-title: J Virol – volume: 73 start-page: 2921 year: 1999 end-page: 2929 ident: 2022.12.16.520694v1.27 article-title: A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding publication-title: J. Virol – volume: 69 start-page: 3156 year: 1995 end-page: 3160 ident: 2022.12.16.520694v1.20 article-title: Membrane vesiculation function and exocytosis of wild-type and mutant matrix proteins of vesicular stomatitis virus publication-title: J. Virol – volume: 78 start-page: 2657 year: 2004 end-page: 2665 ident: 2022.12.16.520694v1.22 article-title: Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A publication-title: J Virol – volume: 84 start-page: 941 year: 1996 end-page: 951 ident: 2022.12.16.520694v1.8 article-title: Budding of rabies virus particles in the absence of the spike glycoprotein publication-title: Cell – volume: 35 start-page: 143 year: 2020 end-page: 155 ident: 2022.12.16.520694v1.15 article-title: Proteomic Profiling of Purified Rabies Virus Particles publication-title: Virol Sin – volume: 66 start-page: 349 year: 1992 end-page: 358 ident: 2022.12.16.520694v1.7 article-title: Subunit interactions of vesicular stomatitis virus envelope glycoprotein stabilized by binding to viral matrix protein publication-title: J. Virol – volume: 25 year: 2022 ident: 2022.12.16.520694v1.32 article-title: Glu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responses publication-title: iScience – volume: 112 start-page: 1417 year: 1999 end-page: 1423 ident: 2022.12.16.520694v1.26 article-title: The ubiquitin-proteasome system and endocytosis publication-title: J Cell Sci – volume: 215 start-page: 121 year: 2016 end-page: 128 ident: 2022.12.16.520694v1.33 article-title: Generation of recombinant rabies viruses encoding NanoLuc luciferase for antiviral activity assays publication-title: Virus Res – volume: 84 start-page: 8181 year: 2010 end-page: 8192 ident: 2022.12.16.520694v1.28 article-title: The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif publication-title: J Virol – volume: 37 start-page: 439 year: 1997 end-page: 450 ident: 2022.12.16.520694v1.5 article-title: Reversible and irreversible steps in assembly and disassembly of vesicular stomatitis virus: equilibria and kinetics of dissociation of nucleocapsid-M protein complexes assembled in vivo publication-title: Biochemistry – volume: 65 start-page: 1057 year: 1991 end-page: 1065 ident: 2022.12.16.520694v1.4 article-title: Sequences of the vesicular stomatitis virus matrix protein involved in binding to nucleocapsids publication-title: J. Virol – volume: 77 start-page: 9987 year: 2003 end-page: 9992 ident: 2022.12.16.520694v1.30 article-title: Nedd4 regulates egress of Ebola virus-like particles from host cells publication-title: J Virol – volume: 28 start-page: 1 year: 2021 end-page: 4 ident: 2022.12.16.520694v1.34 article-title: Fourth imported rabies case since the eradication of rabies in Japan in 1957 publication-title: J Travel Med – volume: 76 start-page: 4855 year: 2002 end-page: 4865 ident: 2022.12.16.520694v1.37 article-title: Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP publication-title: J Virol – volume: 126 start-page: 5553 year: 2013 end-page: 5565 ident: 2022.12.16.520694v1.10 article-title: Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles publication-title: J Cell Sci – volume: 12 year: 2020 ident: 2022.12.16.520694v1.25 article-title: The multifaceted roles of the tumor susceptibility gene 101 (TSG101) in normal development and disease publication-title: Cancers – volume: 39 start-page: 295 year: 1981 end-page: 299 ident: 2022.12.16.520694v1.6 article-title: Role of the vesicular stomatitis virus matrix protein in maintaining the viral nucleocapsid in the condensed form found in native virions publication-title: J. Virol – volume: 372 start-page: 221 year: 2008 end-page: 232 ident: 2022.12.16.520694v1.21 article-title: Mechanisms for enveloped virus budding: Can some viruses do without an ESCRT? publication-title: Virology – volume: 81 start-page: 4895 year: 2007 end-page: 4899 ident: 2022.12.16.520694v1.13 article-title: Interaction of TSG101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the cse of Ebola virus, and TSG101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP publication-title: J Virol – volume: 21 start-page: 2397 year: 2002 end-page: 2406 ident: 2022.12.16.520694v1.23 article-title: Structure and functional interactions of the TSG101 UEV domain publication-title: EMBO J – volume: 95 start-page: e01195 year: 2021 end-page: 21 ident: 2022.12.16.520694v1.35 article-title: The epidermal growth factor receptor is a relevant host factor in the early stages of the Zika virus life cycle in vitro publication-title: J. Virol |
SSID | ssj0002961374 |
Score | 1.8191936 |
SecondaryResourceType | preprint |
Snippet | Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle,... |
SourceID | biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Microbiology |
Title | Morphogenesis of bullet-shaped rabies virus particles requires a functional interplay between the viral matrix protein and ESCRT-I component TSG101 |
URI | https://www.biorxiv.org/content/10.1101/2022.12.16.520694 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba4MwFA5by2Bvu7JryWCvFo2J0deVdt2gpfQCfROjySZsWuyF9nfsD-8cdaMPexj4ICYh5Ghyvpzz-YWQR2OYtGPftoSWyuKccUvFxgcg5xvOjRQixoD-YOj1Z_x1LuZ7R30hrVKlebFNN2UeHwnbsPpWk9t2cK_OMH7neG3B8KfNQ9KET4rjnOzN27_hFRaAn5K8zmP-2RIQb93TnkfpnZDmKFro4pQc6OyMHFVHQu7Oydcgh5Hnb7gEpUuaG6pKgWxr-Q71E1pECva2dJMW6yVd_NDaaKGR0Qs3EUVPVQX4aFoyCj-iHa3pWBTgHraFsk_U5t_SUqchzWiUJbQ76Yyn1gtFmnmegT3odPIMg7ogs1532ulb9cEJFoZ0uMW8xDWoHK-MHSmwutYAPGItAQ1Gru0nvmKBToQWjEdC-UYq5Rkn0JKZOE6Ee0kaGfRzRWggbS4B9cTat7nGtGTCJEBGF2WAhNbX5KE2Yrio5DFCNHTowOWFlaFv_lHnlhzjMySKON4daayKtb4Hd79SLdJ86g5H41b5gr8BXYmoIw |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQCMGNVewMEhxTJa4dpwdOQGmBIgRF6i3EiQ2RIKnSsvQ7-A--kZkkIA4cuCDlEMmOYo-XeTN-nmFs31qu3DhwHWmUdoTgwtGxDRDIBVYIq6SMyaHfu_Q7t-JsIAdT7OPrLgzRKnWaF2_pS3mOT4Rt3H2rxe16ZKtz8t95fkNyurTZIDd1Tao8N5NXNNlGh91jHN8Dztsn_aOOU2cVcMjfIRzuJ01LYdW1dSONTTIGtXJsFEKlqOkGSaB5yyTSSC4iqQOrtPat1zKK2zhOKEsEbvkzFFiNVlF70Pj26fAWKkcl6sPTX5uLMLvu3g811l5gM1fR0BSLbMpkS2y2ykM5WWbvvRzFnd_TvpeOILegy6jczugB6ydQRBoNanhJi-cRDL-4dFAYohHjSwSkHiuvIqQljfExmkDNAQPEmPQtlj1RQoA3KINDpBlEWQInN0fXfacLxG3PMxwE6N-cYqdW2O2_yHWVTWf4nzUGLeUKhVArNoErDJ2FJlwhTm1S7CFpzDrbq4UYDquYHCEJOvTw8cNK0Bt_qLPL5jr93kV40b0832TzVE5MFc_fYtPj4tlsI94Y651ykIHd_fes-gRu9OZ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQCMSNVewMEhxTJa4dpwdOtIWyCUGRegtxYkMkSKq0LP0O_oQvZCYJiAMHLkg5RLKd2OPE82b8PMPYvrVcuXHgOtIo7QjBhaNjGyCQC6wQVkkZk0P_4tI_uRWnAzmYYh9fZ2GIVqnTvHhLX8p9fCJs4-pb_dyuR7Y6J_-d5zckp0ObDXJTN4aJrYmVZ2byimbb6LDXxjk-4Lzb6R-dOHVmAYd8HsLhftK0FFpdWzfS2C1jUDPHRiFcippukASat0wijeQikjqwSmvfei2juI3jhDJF4LI_g08QlC6iO2h8-3V4CxWkEvUG6q9dRqhdD_GHKususJmraGiKRTZlsiU2W-WinCyz94scRZ7f09qXjiC3oMvI3M7oAesnUEQajWp4SYvnEQy_-HRQGKIS400EpCIrzyKkJZXxMZpAzQMDxJnUFsueKCnAG5QBItIMoiyBzs3Rdd_pAfHb8wwnAvo3xzioFXb7L3JdZdMZvmeNQUu5QiHcik3gCkP7oQlXiFWbFH9IGrPO9mohhsMqLkdIgg49vPywEvTGH-rssrmrdjc8712ebbJ5Kiayiudvselx8Wy2EXKM9U45x8Du_vuj-gTboueE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphogenesis+of+bullet-shaped+rabies+virus+particles+requires+a+functional+interplay+between+the+viral+matrix+protein+and+ESCRT-I+component+TSG101&rft.jtitle=bioRxiv&rft.au=Itakura%2C+Yukari&rft.au=Tabata%2C+Koshiro&rft.au=Saito%2C+Takeshi&rft.au=Intaruck%2C+Kittiya&rft.date=2022-12-16&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.12.16.520694&rft.externalDocID=2022.12.16.520694v1 |