Regulation of gene expression by repression condensates during development

There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding transcriptional repression, despite its pervasive importance in regulating gene expression in development and disease. Here, we explore the role...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Treen, Nicholas, Shimobayashi, Shunsuke F., Eeftens, Jorine, Brangwynne, Clifford P., Levine, Michael S.
Format Paper
LanguageEnglish
Japanese
Published Cold Spring Harbor Laboratory 04.03.2020
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding transcriptional repression, despite its pervasive importance in regulating gene expression in development and disease. Here, we explore the role of liquid-liquid phase separation (LLPS) in the organization of the Groucho/TLE (Gro) family of transcriptional corepressors, which interact with a variety of sequence-specific repressors such as Hes/Hairy4. Gro-dependent repressors have been implicated in a variety of developmental processes, including segmentation of the Drosophila embryo and somitogenesis in vertebrates. These repressors bind to specific recognition sequences, but instead of interacting with coactivators (e.g., Mediator) they recruit Gro corepressors5. Gro contains a series of WD40 repeats that are thought to mediate oligomerization6. How putative Hes/Gro oligomers repress transcription has been the subject of numerous studies5, 6. Here we show that Hes/Gro complexes form discrete puncta within nuclei of living Ciona embryos. These puncta rapidly dissolve during the onset of mitosis and reappear in the ensuing cell cycle. Modified Hes/Gro complexes that are unable to bind DNA exhibit the properties of viscous liquid droplets, similar to those underlying the biogenesis of P-granules in C. elegans7 and nucleoli in Xenopus oocytes8. These observations provide vivid evidence for LLPS in the control of gene expression and suggest a simple physical exclusion mechanism for transcriptional repression. WD40 repeats have been implicated in a wide variety of cellular processes in addition to transcriptional repression9. We suggest that protein interactions using WD40 motifs might be a common feature of processes reliant on LLPS.
AbstractList There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding transcriptional repression, despite its pervasive importance in regulating gene expression in development and disease. Here, we explore the role of liquid-liquid phase separation (LLPS) in the organization of the Groucho/TLE (Gro) family of transcriptional corepressors, which interact with a variety of sequence-specific repressors such as Hes/Hairy4. Gro-dependent repressors have been implicated in a variety of developmental processes, including segmentation of the Drosophila embryo and somitogenesis in vertebrates. These repressors bind to specific recognition sequences, but instead of interacting with coactivators (e.g., Mediator) they recruit Gro corepressors5. Gro contains a series of WD40 repeats that are thought to mediate oligomerization6. How putative Hes/Gro oligomers repress transcription has been the subject of numerous studies5, 6. Here we show that Hes/Gro complexes form discrete puncta within nuclei of living Ciona embryos. These puncta rapidly dissolve during the onset of mitosis and reappear in the ensuing cell cycle. Modified Hes/Gro complexes that are unable to bind DNA exhibit the properties of viscous liquid droplets, similar to those underlying the biogenesis of P-granules in C. elegans7 and nucleoli in Xenopus oocytes8. These observations provide vivid evidence for LLPS in the control of gene expression and suggest a simple physical exclusion mechanism for transcriptional repression. WD40 repeats have been implicated in a wide variety of cellular processes in addition to transcriptional repression9. We suggest that protein interactions using WD40 motifs might be a common feature of processes reliant on LLPS.
Author Treen, Nicholas
Eeftens, Jorine
Levine, Michael S.
Shimobayashi, Shunsuke F.
Brangwynne, Clifford P.
Author_xml – sequence: 1
  givenname: Nicholas
  surname: Treen
  fullname: Treen, Nicholas
  organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University
– sequence: 2
  givenname: Shunsuke F.
  surname: Shimobayashi
  fullname: Shimobayashi, Shunsuke F.
  organization: Department of Chemical and Biological Engineering, Princeton University
– sequence: 3
  givenname: Jorine
  surname: Eeftens
  fullname: Eeftens, Jorine
  organization: Department of Chemical and Biological Engineering, Princeton University
– sequence: 4
  givenname: Clifford P.
  surname: Brangwynne
  fullname: Brangwynne, Clifford P.
  organization: Howard Hughes Medical Institute
– sequence: 5
  givenname: Michael S.
  surname: Levine
  fullname: Levine, Michael S.
  email: msl2@princeton.edu
  organization: Department of Molecular Biology, Princeton University
BookMark eNo9j1FLwzAUhYMoOOd-gG959KXzJmmS5lGGOmUgiD6XpLktlS4ZSTe2f69lIhw4nO_hwHdDLkMMSMgdgyVjwB44cFiCmGK0VBVckBlXhhcVB3lNFjl_AwA3igldzsjbB3b7wY59DDS2tMOAFI-7hDlPyJ1owv_VxOAxZDtipn6f-tBRjwcc4m6LYbwlV60dMi7-ek6-np8-V-ti8_7yunrcFI6VHApl2spxp7wUjZIoWMmUs8JY7aUqeSMqza3hkleuYVoprTQrf7lslHC-tWJO7s-_ro_p2B_qXeq3Np3qSb0GMeWsLn4A3uVQYw
Cites_doi https://doi.org/10.1101/737387
ContentType Paper
Copyright 2020, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2020, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2020.03.03.975680
DatabaseName bioRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2020.03.03.975680v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b1420-69f8b2b6d53c65e31416ba39a7d5642c3872a92528bc17667671442c5c63bdfa3
IEDL.DBID FX.
IngestDate Tue Jan 07 19:00:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
Japanese
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1420-69f8b2b6d53c65e31416ba39a7d5642c3872a92528bc17667671442c5c63bdfa3
OpenAccessLink https://www.biorxiv.org/content/10.1101/2020.03.03.975680
PageCount 40
ParticipantIDs biorxiv_primary_2020_03_03_975680
PublicationCentury 2000
PublicationDate 20200304
PublicationDateYYYYMMDD 2020-03-04
PublicationDate_xml – month: 3
  year: 2020
  text: 20200304
  day: 4
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2020
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Lieberman-Aiden (2020.03.03.975680v1.37) 2009; 326
Cisse (2020.03.03.975680v1.10) 2013; 341
Ochs, Lischwe, Spohn, Busch (2020.03.03.975680v1.19) 1985; 54
Ikeda, Matsuoka, Satou (2020.03.03.975680v1.21) 2013; 140
Larson (2020.03.03.975680v1.27) 2017; 547
Barolo (2020.03.03.975680v1.14) 1997; 15
Lachner, O’Carroll, Rea, Mechtler, Jenuwein (2020.03.03.975680v1.25) 2001; 410
Alberti, Gladfelter, Mittag (2020.03.03.975680v1.22) 2019; 176
Strezoska, Pestov, Lau (2020.03.03.975680v1.33) 2000; 20
Shin (2020.03.03.975680v1.36) 2018; 172
Wei, Chang, Shimobayashi, Shin, Brangwynne (2020.03.03.975680v1.42) 2019
Bracha (2020.03.03.975680v1.30) 2018; 175
Wagner, Levine (2020.03.03.975680v1.38) 2012; 139
Whyte (2020.03.03.975680v1.12) 2013; 153
Jennings (2020.03.03.975680v1.5) 2006; 9
Treen, Heist, Wang, Levine (2020.03.03.975680v1.40) 2018; 28
Kageyama, Ohtsuka, Kobayashi (2020.03.03.975680v1.4) 2007; 134
Sherrard, Robin, Lemaire, Munro (2020.03.03.975680v1.17) 2010; 14
Feric (2020.03.03.975680v1.32) 2016; 165
Simon, Kingston (2020.03.03.975680v1.28) 2013; 49
Stirnimann, Petsalaki, Russell, Müller (2020.03.03.975680v1.9) 2010; 35
Khoueiry (2020.03.03.975680v1.16) 2010; 11
Corbo, Levine, Zeller (2020.03.03.975680v1.15) 1997; 124
Wainwright, Ish-Horowicz (2020.03.03.975680v1.20) 1992; 12
Plys (2020.03.03.975680v1.29) 2019; 33
Cho (2020.03.03.975680v1.1) 2018; 361
Brangwynne (2020.03.03.975680v1.7) 2009; 324
Strom (2020.03.03.975680v1.26) 2017; 547
Putnam, Cassani, Smith, Seydoux (2020.03.03.975680v1.31) 2019; 26
Mir, Bickmore, Furlong, Narlikar (2020.03.03.975680v1.11) 2019; 146
Turki-Judeh, Courey (2020.03.03.975680v1.6) 2012; 98
Bannister (2020.03.03.975680v1.24) 2001; 410
McSwiggen, Mir, Darzacq, Tjian (2020.03.03.975680v1.23) 2019; 33
Sabari (2020.03.03.975680v1.2) 2018; 361
Brangwynne, Mitchison (2020.03.03.975680v1.8) 2011; 108
Chan, Zhang (2020.03.03.975680v1.34) 2012; 287
Bernadskaya, Brahmbhatt, Gline, Wang, Christiaen (2020.03.03.975680v1.41) 2019; 10
Chong (2020.03.03.975680v1.3) 2018; 361
Fisher, Ohsako, Caudy (2020.03.03.975680v1.13) 1996; 16
Hostettler (2020.03.03.975680v1.18) 2017; 9
Han (2020.03.03.975680v1.35) 2007; 15
Cao (2020.03.03.975680v1.39) 2019; 571
References_xml – volume: 361
  start-page: 412
  year: 2018
  end-page: 415
  ident: 2020.03.03.975680v1.1
  article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates
  publication-title: Science
– volume: 20
  start-page: 5516
  year: 2000
  end-page: 5528
  ident: 2020.03.03.975680v1.33
  article-title: Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis
  publication-title: Mol Cell Biol
– volume: 287
  start-page: 15024
  year: 2012
  end-page: 15033
  ident: 2020.03.03.975680v1.34
  article-title: Leucine-rich repeat and WD repeat-containing protein 1 is recruited to pericentric heterochromatin by trimethylated lysine 9 of histone H3 and maintains heterochromatin silencing
  publication-title: J. Biol. Chem
– volume: 35
  start-page: 565
  year: 2010
  end-page: 574
  ident: 2020.03.03.975680v1.9
  article-title: WD40 proteins propel cellular networks
  publication-title: Trends Biochem. Sci
– volume: 324
  start-page: 1729
  year: 2009
  end-page: 1732
  ident: 2020.03.03.975680v1.7
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
– volume: 153
  start-page: 301
  year: 2013
  end-page: 319
  ident: 2020.03.03.975680v1.12
  article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes
  publication-title: Cell
– volume: 146
  start-page: dev182766
  year: 2019
  ident: 2020.03.03.975680v1.11
  article-title: Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?
  publication-title: Development
– volume: 410
  start-page: 120
  year: 2001
  end-page: 124
  ident: 2020.03.03.975680v1.24
  article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
  publication-title: Nature
– volume: 134
  start-page: 1243
  year: 2007
  end-page: 1251
  ident: 2020.03.03.975680v1.4
  article-title: The Hes gene family: repressors and oscillators that orchestrate embryogenesis
  publication-title: Development
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  ident: 2020.03.03.975680v1.37
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
– volume: 124
  start-page: 589
  year: 1997
  end-page: 602
  ident: 2020.03.03.975680v1.15
  article-title: Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis
  publication-title: Development
– volume: 11
  start-page: 792
  year: 2010
  end-page: 802
  ident: 2020.03.03.975680v1.16
  article-title: A cis-regulatory signature in ascidians and flies, independent of transcription factor binding sites
  publication-title: Curr. Biol
– volume: 14
  start-page: 1499
  year: 2010
  end-page: 1510
  ident: 2020.03.03.975680v1.17
  article-title: Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination
  publication-title: Curr. Biol
– volume: 12
  start-page: 2475
  year: 1992
  end-page: 2483
  ident: 2020.03.03.975680v1.20
  article-title: Point mutations in the Drosophila hairy gene demonstrate in vivo requirements for basic, helix-loop-helix, and WRPW domains
  publication-title: Mol Cell Biol
– volume: 10
  issue: 57
  year: 2019
  ident: 2020.03.03.975680v1.41
  article-title: Discoidin-domain receptor coordinates cell-matrix adhesion and collective polarity in migratory cardiopharyngeal progenitors
  publication-title: Nat. Commun
– volume: 9
  start-page: 645
  year: 2006
  end-page: 655
  ident: 2020.03.03.975680v1.5
  article-title: Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor
  publication-title: Mol. Cell
– volume: 571
  start-page: 349
  year: 2019
  end-page: 354
  ident: 2020.03.03.975680v1.39
  article-title: Comprehensive Single-Cell Transcriptome Lineages of a Proto-Vertebrate
  publication-title: Nature
– volume: 9
  start-page: 607
  year: 2017
  end-page: 615
  ident: 2020.03.03.975680v1.18
  article-title: The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis In Vivo
  publication-title: G3 (Bethesda)
– volume: 341
  start-page: 664
  year: 2013
  end-page: 667
  ident: 2020.03.03.975680v1.10
  article-title: Real-time dynamics of RNA polymerase II clustering in live human cells
  publication-title: Science
– year: 2019
  ident: 2020.03.03.975680v1.42
  article-title: Nucleated transcriptional condensates amplify gene expression
  publication-title: Biorxiv
  doi: https://doi.org/10.1101/737387
– volume: 139
  start-page: 231
  year: 2012
  end-page: 2359
  ident: 2020.03.03.975680v1.38
  article-title: FGF signaling establishes the anterior border of the Ciona neural tube
  publication-title: Development
– volume: 15
  start-page: 2883
  year: 1997
  end-page: 2891
  ident: 2020.03.03.975680v1.14
  article-title: M. hairy mediates dominant repression in the Drosophila embryo
  publication-title: EMBO J
– volume: 410
  start-page: 116
  year: 2001
  end-page: 120
  ident: 2020.03.03.975680v1.25
  article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
  publication-title: Nature
– volume: 26
  start-page: 220
  year: 2019
  end-page: 226
  ident: 2020.03.03.975680v1.31
  article-title: A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos
  publication-title: Nat. Struct. Mol. Biol
– volume: 15
  start-page: 1306
  year: 2007
  end-page: 1315
  ident: 2020.03.03.975680v1.35
  article-title: Structural Basis of EZH2 Recognition by EED
  publication-title: Structure
– volume: 33
  start-page: 1619
  year: 2019
  end-page: 1634
  ident: 2020.03.03.975680v1.23
  article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences
  publication-title: Genes Dev
– volume: 547
  start-page: 236
  year: 2017
  end-page: 240
  ident: 2020.03.03.975680v1.27
  article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin
  publication-title: Nature
– volume: 361
  start-page: eaar2555
  year: 2018
  ident: 2020.03.03.975680v1.3
  article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription
  publication-title: Science
– volume: 49
  start-page: 808
  year: 2013
  end-page: 824
  ident: 2020.03.03.975680v1.28
  article-title: Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put
  publication-title: Mol. Cell
– volume: 172
  start-page: 1481
  year: 2018
  end-page: 1491
  ident: 2020.03.03.975680v1.36
  article-title: Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome
  publication-title: Cell
– volume: 16
  start-page: 2670
  year: 1996
  end-page: 2677
  ident: 2020.03.03.975680v1.13
  article-title: The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain
  publication-title: Mol. Cell Biol
– volume: 28
  start-page: 1150
  year: 2018
  end-page: 1156
  ident: 2020.03.03.975680v1.40
  article-title: Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo
  publication-title: Curr. Biol
– volume: 54
  start-page: 123
  year: 1985
  end-page: 133
  ident: 2020.03.03.975680v1.19
  article-title: Fibrillarin: a new protein of the nucleolus identified by autoimmune sera
  publication-title: Biol. Cell
– volume: 33
  start-page: 799
  year: 2019
  end-page: 813
  ident: 2020.03.03.975680v1.29
  article-title: Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2
  publication-title: Genes Dev
– volume: 140
  start-page: 4703
  year: 2013
  end-page: 4708
  ident: 2020.03.03.975680v1.21
  article-title: A time delay gene circuit is required for palp formation in the ascidian embryo
  publication-title: Development
– volume: 175
  start-page: 1467
  year: 2018
  end-page: 1480
  ident: 2020.03.03.975680v1.30
  article-title: Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds
  publication-title: Cell
– volume: 98
  start-page: 65
  year: 2012
  end-page: 96
  ident: 2020.03.03.975680v1.6
  article-title: Groucho: a corepressor with instructive roles in development
  publication-title: Curr. Top. Dev. Biol
– volume: 176
  start-page: 419
  year: 2019
  end-page: 434
  ident: 2020.03.03.975680v1.22
  article-title: Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates
  publication-title: Cell
– volume: 165
  start-page: 1686
  year: 2016
  end-page: 1697
  ident: 2020.03.03.975680v1.32
  article-title: Coexisting Liquid Phases Underlie Nucleolar Subcompartments
  publication-title: Cell
– volume: 547
  start-page: 241
  year: 2017
  end-page: 245
  ident: 2020.03.03.975680v1.26
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
– volume: 108
  start-page: 4334
  year: 2011
  end-page: 4339
  ident: 2020.03.03.975680v1.8
  article-title: Hyman Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 361
  start-page: eaar3958
  year: 2018
  ident: 2020.03.03.975680v1.2
  article-title: Coactivator condensation at super-enhancers links phase separation and gene control
  publication-title: Science
SSID ssj0002961374
Score 1.7180179
SecondaryResourceType preprint
Snippet There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Developmental Biology
Title Regulation of gene expression by repression condensates during development
URI https://www.biorxiv.org/content/10.1101/2020.03.03.975680
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba8IwFA5DGextV3aVDPZaSXPP64YiwkRkgm-SW8GXKp0b-u930hbnwx4GeWloSXrS5pwv-XI-hF6iyo1wjmYhMptx50Km89xm2nrGlDOM2HTA-X0iR3M-XojFkdRXolW61brarb7rffxE2IbZt_m5SZ6wOqmzkrK-UUJqQOtd-KR4Um0YLvqH5RVqwE8p3u5j_vkkRLxtS0ceZXiOulO7idUFOonlJTptJCH3V2g8a8ThwVx4XWAY3ojjrmWrltjtcRUPV9BtmDY-U7iIm_OGOPySgK7RfDj4eBtlrd5BllZiAMWZQjvqZBDMSxFZDsGSs8xYFQTABM-0otZQQbXzKa-jkgrgEPXCS-ZCYdkN6pTrMt4iTKxQRisTtPBcm6gZL3wkjhMdvJHiDj23777cNFktlsk-S8JSaexz_497HtBZqqtJWfwRdbbVV3wCL711PdR9HUyms149Lj8AcI4c
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7aInpzxd0IXqdksucslrG2RaSF3oZsA71My7RK--9NZobqwYOQS0hCkheSt315D4AnL1LFjMGJ80Qn1BiXyDTVidSWEGEUQTp-cB6NeTalgxmbtQa3VQurNPNFtZl_1X78CNgOr29zuVEadXVURyUlPSUYl6gXzdT7oBsDnUVIV3_W29lYsArMStDWmfnn8CD2ttP9Yiv9Y9B910tfnYA9X56CgyYv5PYMDD6aDPGBZnBRwHDGHvpNC1ktodnCyu9qYe3h7VhFmRE2nw6h-0ECnYNp_2XynCVt0oMkmmOCKqcKabDhjhHLmSdpkJiMJkoLx4KuYIkUWCvMsDQ2BncUXASdCFtmOTGu0OQCdMpF6S8BRJoJJYVyklkqlZeEFtYjQ5F0VnF2BR7bvefLJrRFHumTIxJLQ5_rf_R5AIfZZDTMh6_jtxtwFNtrlBa9BZ119envAttem_v6bL4BHteRWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfHmE9-u4DVhs-89q6FWLUUs9Bb2FfCSllil_ffuJqH24EHIZUnYJDO789pvZgC48yJTzBicOE90Qo1xicwynUhtCRFGEaRjgvPriA8mdDhl041cmAirNB-zevnx3ZzjR8B2kL7t5kZZ9NVRU5WUpEowLlEaw9Tp3JXboB-LncWVnU_TdZwFq6CwBO0ONP-cIpi-3Ss3VEu-D_pjPff1Adjy1SHYaXtDro7A8K3tEh_oBmclDHz20C872GoFzQrWfj0K3x_kx2e0G2GbeAjdLxroGEzyx_f7QdI1PkhiSCa4c6qUBhvuGLGceZIFq8loorRwLPgLlkiBtcIMS2NjgUfBRfCLsGWWE-NKTU5Ar5pV_hRApJlQUignmaVSeUloaT0yFElnFWdn4Lb792LelrcoIn0KROLV0uf8H8_cgN3xQ168PI2eL8BevN0Ategl6C3qL38VNPfCXDes-QFqwJJq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+gene+expression+by+repression+condensates+during+development&rft.jtitle=bioRxiv&rft.au=Treen%2C+Nicholas&rft.au=Shimobayashi%2C+Shunsuke+F.&rft.au=Eeftens%2C+Jorine&rft.au=Brangwynne%2C+Clifford+P.&rft.date=2020-03-04&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.03.03.975680&rft.externalDocID=2020.03.03.975680v1