Regulation of gene expression by repression condensates during development
There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding transcriptional repression, despite its pervasive importance in regulating gene expression in development and disease. Here, we explore the role...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English Japanese |
Published |
Cold Spring Harbor Laboratory
04.03.2020
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding transcriptional repression, despite its pervasive importance in regulating gene expression in development and disease. Here, we explore the role of liquid-liquid phase separation (LLPS) in the organization of the Groucho/TLE (Gro) family of transcriptional corepressors, which interact with a variety of sequence-specific repressors such as Hes/Hairy4. Gro-dependent repressors have been implicated in a variety of developmental processes, including segmentation of the Drosophila embryo and somitogenesis in vertebrates. These repressors bind to specific recognition sequences, but instead of interacting with coactivators (e.g., Mediator) they recruit Gro corepressors5. Gro contains a series of WD40 repeats that are thought to mediate oligomerization6. How putative Hes/Gro oligomers repress transcription has been the subject of numerous studies5, 6. Here we show that Hes/Gro complexes form discrete puncta within nuclei of living Ciona embryos. These puncta rapidly dissolve during the onset of mitosis and reappear in the ensuing cell cycle. Modified Hes/Gro complexes that are unable to bind DNA exhibit the properties of viscous liquid droplets, similar to those underlying the biogenesis of P-granules in C. elegans7 and nucleoli in Xenopus oocytes8. These observations provide vivid evidence for LLPS in the control of gene expression and suggest a simple physical exclusion mechanism for transcriptional repression. WD40 repeats have been implicated in a wide variety of cellular processes in addition to transcriptional repression9. We suggest that protein interactions using WD40 motifs might be a common feature of processes reliant on LLPS. |
---|---|
AbstractList | There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding transcriptional repression, despite its pervasive importance in regulating gene expression in development and disease. Here, we explore the role of liquid-liquid phase separation (LLPS) in the organization of the Groucho/TLE (Gro) family of transcriptional corepressors, which interact with a variety of sequence-specific repressors such as Hes/Hairy4. Gro-dependent repressors have been implicated in a variety of developmental processes, including segmentation of the Drosophila embryo and somitogenesis in vertebrates. These repressors bind to specific recognition sequences, but instead of interacting with coactivators (e.g., Mediator) they recruit Gro corepressors5. Gro contains a series of WD40 repeats that are thought to mediate oligomerization6. How putative Hes/Gro oligomers repress transcription has been the subject of numerous studies5, 6. Here we show that Hes/Gro complexes form discrete puncta within nuclei of living Ciona embryos. These puncta rapidly dissolve during the onset of mitosis and reappear in the ensuing cell cycle. Modified Hes/Gro complexes that are unable to bind DNA exhibit the properties of viscous liquid droplets, similar to those underlying the biogenesis of P-granules in C. elegans7 and nucleoli in Xenopus oocytes8. These observations provide vivid evidence for LLPS in the control of gene expression and suggest a simple physical exclusion mechanism for transcriptional repression. WD40 repeats have been implicated in a wide variety of cellular processes in addition to transcriptional repression9. We suggest that protein interactions using WD40 motifs might be a common feature of processes reliant on LLPS. |
Author | Treen, Nicholas Eeftens, Jorine Levine, Michael S. Shimobayashi, Shunsuke F. Brangwynne, Clifford P. |
Author_xml | – sequence: 1 givenname: Nicholas surname: Treen fullname: Treen, Nicholas organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University – sequence: 2 givenname: Shunsuke F. surname: Shimobayashi fullname: Shimobayashi, Shunsuke F. organization: Department of Chemical and Biological Engineering, Princeton University – sequence: 3 givenname: Jorine surname: Eeftens fullname: Eeftens, Jorine organization: Department of Chemical and Biological Engineering, Princeton University – sequence: 4 givenname: Clifford P. surname: Brangwynne fullname: Brangwynne, Clifford P. organization: Howard Hughes Medical Institute – sequence: 5 givenname: Michael S. surname: Levine fullname: Levine, Michael S. email: msl2@princeton.edu organization: Department of Molecular Biology, Princeton University |
BookMark | eNo9j1FLwzAUhYMoOOd-gG959KXzJmmS5lGGOmUgiD6XpLktlS4ZSTe2f69lIhw4nO_hwHdDLkMMSMgdgyVjwB44cFiCmGK0VBVckBlXhhcVB3lNFjl_AwA3igldzsjbB3b7wY59DDS2tMOAFI-7hDlPyJ1owv_VxOAxZDtipn6f-tBRjwcc4m6LYbwlV60dMi7-ek6-np8-V-ti8_7yunrcFI6VHApl2spxp7wUjZIoWMmUs8JY7aUqeSMqza3hkleuYVoprTQrf7lslHC-tWJO7s-_ro_p2B_qXeq3Np3qSb0GMeWsLn4A3uVQYw |
Cites_doi | https://doi.org/10.1101/737387 |
ContentType | Paper |
Copyright | 2020, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2020, Posted by Cold Spring Harbor Laboratory |
DBID | FX. |
DOI | 10.1101/2020.03.03.975680 |
DatabaseName | bioRxiv |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2020.03.03.975680v1 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
ID | FETCH-LOGICAL-b1420-69f8b2b6d53c65e31416ba39a7d5642c3872a92528bc17667671442c5c63bdfa3 |
IEDL.DBID | FX. |
IngestDate | Tue Jan 07 19:00:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Japanese |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1420-69f8b2b6d53c65e31416ba39a7d5642c3872a92528bc17667671442c5c63bdfa3 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2020.03.03.975680 |
PageCount | 40 |
ParticipantIDs | biorxiv_primary_2020_03_03_975680 |
PublicationCentury | 2000 |
PublicationDate | 20200304 |
PublicationDateYYYYMMDD | 2020-03-04 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200304 day: 4 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2020 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Lieberman-Aiden (2020.03.03.975680v1.37) 2009; 326 Cisse (2020.03.03.975680v1.10) 2013; 341 Ochs, Lischwe, Spohn, Busch (2020.03.03.975680v1.19) 1985; 54 Ikeda, Matsuoka, Satou (2020.03.03.975680v1.21) 2013; 140 Larson (2020.03.03.975680v1.27) 2017; 547 Barolo (2020.03.03.975680v1.14) 1997; 15 Lachner, O’Carroll, Rea, Mechtler, Jenuwein (2020.03.03.975680v1.25) 2001; 410 Alberti, Gladfelter, Mittag (2020.03.03.975680v1.22) 2019; 176 Strezoska, Pestov, Lau (2020.03.03.975680v1.33) 2000; 20 Shin (2020.03.03.975680v1.36) 2018; 172 Wei, Chang, Shimobayashi, Shin, Brangwynne (2020.03.03.975680v1.42) 2019 Bracha (2020.03.03.975680v1.30) 2018; 175 Wagner, Levine (2020.03.03.975680v1.38) 2012; 139 Whyte (2020.03.03.975680v1.12) 2013; 153 Jennings (2020.03.03.975680v1.5) 2006; 9 Treen, Heist, Wang, Levine (2020.03.03.975680v1.40) 2018; 28 Kageyama, Ohtsuka, Kobayashi (2020.03.03.975680v1.4) 2007; 134 Sherrard, Robin, Lemaire, Munro (2020.03.03.975680v1.17) 2010; 14 Feric (2020.03.03.975680v1.32) 2016; 165 Simon, Kingston (2020.03.03.975680v1.28) 2013; 49 Stirnimann, Petsalaki, Russell, Müller (2020.03.03.975680v1.9) 2010; 35 Khoueiry (2020.03.03.975680v1.16) 2010; 11 Corbo, Levine, Zeller (2020.03.03.975680v1.15) 1997; 124 Wainwright, Ish-Horowicz (2020.03.03.975680v1.20) 1992; 12 Plys (2020.03.03.975680v1.29) 2019; 33 Cho (2020.03.03.975680v1.1) 2018; 361 Brangwynne (2020.03.03.975680v1.7) 2009; 324 Strom (2020.03.03.975680v1.26) 2017; 547 Putnam, Cassani, Smith, Seydoux (2020.03.03.975680v1.31) 2019; 26 Mir, Bickmore, Furlong, Narlikar (2020.03.03.975680v1.11) 2019; 146 Turki-Judeh, Courey (2020.03.03.975680v1.6) 2012; 98 Bannister (2020.03.03.975680v1.24) 2001; 410 McSwiggen, Mir, Darzacq, Tjian (2020.03.03.975680v1.23) 2019; 33 Sabari (2020.03.03.975680v1.2) 2018; 361 Brangwynne, Mitchison (2020.03.03.975680v1.8) 2011; 108 Chan, Zhang (2020.03.03.975680v1.34) 2012; 287 Bernadskaya, Brahmbhatt, Gline, Wang, Christiaen (2020.03.03.975680v1.41) 2019; 10 Chong (2020.03.03.975680v1.3) 2018; 361 Fisher, Ohsako, Caudy (2020.03.03.975680v1.13) 1996; 16 Hostettler (2020.03.03.975680v1.18) 2017; 9 Han (2020.03.03.975680v1.35) 2007; 15 Cao (2020.03.03.975680v1.39) 2019; 571 |
References_xml | – volume: 361 start-page: 412 year: 2018 end-page: 415 ident: 2020.03.03.975680v1.1 article-title: Mediator and RNA polymerase II clusters associate in transcription-dependent condensates publication-title: Science – volume: 20 start-page: 5516 year: 2000 end-page: 5528 ident: 2020.03.03.975680v1.33 article-title: Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis publication-title: Mol Cell Biol – volume: 287 start-page: 15024 year: 2012 end-page: 15033 ident: 2020.03.03.975680v1.34 article-title: Leucine-rich repeat and WD repeat-containing protein 1 is recruited to pericentric heterochromatin by trimethylated lysine 9 of histone H3 and maintains heterochromatin silencing publication-title: J. Biol. Chem – volume: 35 start-page: 565 year: 2010 end-page: 574 ident: 2020.03.03.975680v1.9 article-title: WD40 proteins propel cellular networks publication-title: Trends Biochem. Sci – volume: 324 start-page: 1729 year: 2009 end-page: 1732 ident: 2020.03.03.975680v1.7 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science – volume: 153 start-page: 301 year: 2013 end-page: 319 ident: 2020.03.03.975680v1.12 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell – volume: 146 start-page: dev182766 year: 2019 ident: 2020.03.03.975680v1.11 article-title: Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? publication-title: Development – volume: 410 start-page: 120 year: 2001 end-page: 124 ident: 2020.03.03.975680v1.24 article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain publication-title: Nature – volume: 134 start-page: 1243 year: 2007 end-page: 1251 ident: 2020.03.03.975680v1.4 article-title: The Hes gene family: repressors and oscillators that orchestrate embryogenesis publication-title: Development – volume: 326 start-page: 289 year: 2009 end-page: 293 ident: 2020.03.03.975680v1.37 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science – volume: 124 start-page: 589 year: 1997 end-page: 602 ident: 2020.03.03.975680v1.15 article-title: Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis publication-title: Development – volume: 11 start-page: 792 year: 2010 end-page: 802 ident: 2020.03.03.975680v1.16 article-title: A cis-regulatory signature in ascidians and flies, independent of transcription factor binding sites publication-title: Curr. Biol – volume: 14 start-page: 1499 year: 2010 end-page: 1510 ident: 2020.03.03.975680v1.17 article-title: Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination publication-title: Curr. Biol – volume: 12 start-page: 2475 year: 1992 end-page: 2483 ident: 2020.03.03.975680v1.20 article-title: Point mutations in the Drosophila hairy gene demonstrate in vivo requirements for basic, helix-loop-helix, and WRPW domains publication-title: Mol Cell Biol – volume: 10 issue: 57 year: 2019 ident: 2020.03.03.975680v1.41 article-title: Discoidin-domain receptor coordinates cell-matrix adhesion and collective polarity in migratory cardiopharyngeal progenitors publication-title: Nat. Commun – volume: 9 start-page: 645 year: 2006 end-page: 655 ident: 2020.03.03.975680v1.5 article-title: Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor publication-title: Mol. Cell – volume: 571 start-page: 349 year: 2019 end-page: 354 ident: 2020.03.03.975680v1.39 article-title: Comprehensive Single-Cell Transcriptome Lineages of a Proto-Vertebrate publication-title: Nature – volume: 9 start-page: 607 year: 2017 end-page: 615 ident: 2020.03.03.975680v1.18 article-title: The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis In Vivo publication-title: G3 (Bethesda) – volume: 341 start-page: 664 year: 2013 end-page: 667 ident: 2020.03.03.975680v1.10 article-title: Real-time dynamics of RNA polymerase II clustering in live human cells publication-title: Science – year: 2019 ident: 2020.03.03.975680v1.42 article-title: Nucleated transcriptional condensates amplify gene expression publication-title: Biorxiv doi: https://doi.org/10.1101/737387 – volume: 139 start-page: 231 year: 2012 end-page: 2359 ident: 2020.03.03.975680v1.38 article-title: FGF signaling establishes the anterior border of the Ciona neural tube publication-title: Development – volume: 15 start-page: 2883 year: 1997 end-page: 2891 ident: 2020.03.03.975680v1.14 article-title: M. hairy mediates dominant repression in the Drosophila embryo publication-title: EMBO J – volume: 410 start-page: 116 year: 2001 end-page: 120 ident: 2020.03.03.975680v1.25 article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins publication-title: Nature – volume: 26 start-page: 220 year: 2019 end-page: 226 ident: 2020.03.03.975680v1.31 article-title: A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos publication-title: Nat. Struct. Mol. Biol – volume: 15 start-page: 1306 year: 2007 end-page: 1315 ident: 2020.03.03.975680v1.35 article-title: Structural Basis of EZH2 Recognition by EED publication-title: Structure – volume: 33 start-page: 1619 year: 2019 end-page: 1634 ident: 2020.03.03.975680v1.23 article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences publication-title: Genes Dev – volume: 547 start-page: 236 year: 2017 end-page: 240 ident: 2020.03.03.975680v1.27 article-title: Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin publication-title: Nature – volume: 361 start-page: eaar2555 year: 2018 ident: 2020.03.03.975680v1.3 article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription publication-title: Science – volume: 49 start-page: 808 year: 2013 end-page: 824 ident: 2020.03.03.975680v1.28 article-title: Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put publication-title: Mol. Cell – volume: 172 start-page: 1481 year: 2018 end-page: 1491 ident: 2020.03.03.975680v1.36 article-title: Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome publication-title: Cell – volume: 16 start-page: 2670 year: 1996 end-page: 2677 ident: 2020.03.03.975680v1.13 article-title: The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain publication-title: Mol. Cell Biol – volume: 28 start-page: 1150 year: 2018 end-page: 1156 ident: 2020.03.03.975680v1.40 article-title: Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo publication-title: Curr. Biol – volume: 54 start-page: 123 year: 1985 end-page: 133 ident: 2020.03.03.975680v1.19 article-title: Fibrillarin: a new protein of the nucleolus identified by autoimmune sera publication-title: Biol. Cell – volume: 33 start-page: 799 year: 2019 end-page: 813 ident: 2020.03.03.975680v1.29 article-title: Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2 publication-title: Genes Dev – volume: 140 start-page: 4703 year: 2013 end-page: 4708 ident: 2020.03.03.975680v1.21 article-title: A time delay gene circuit is required for palp formation in the ascidian embryo publication-title: Development – volume: 175 start-page: 1467 year: 2018 end-page: 1480 ident: 2020.03.03.975680v1.30 article-title: Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds publication-title: Cell – volume: 98 start-page: 65 year: 2012 end-page: 96 ident: 2020.03.03.975680v1.6 article-title: Groucho: a corepressor with instructive roles in development publication-title: Curr. Top. Dev. Biol – volume: 176 start-page: 419 year: 2019 end-page: 434 ident: 2020.03.03.975680v1.22 article-title: Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates publication-title: Cell – volume: 165 start-page: 1686 year: 2016 end-page: 1697 ident: 2020.03.03.975680v1.32 article-title: Coexisting Liquid Phases Underlie Nucleolar Subcompartments publication-title: Cell – volume: 547 start-page: 241 year: 2017 end-page: 245 ident: 2020.03.03.975680v1.26 article-title: Phase separation drives heterochromatin domain formation publication-title: Nature – volume: 108 start-page: 4334 year: 2011 end-page: 4339 ident: 2020.03.03.975680v1.8 article-title: Hyman Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 361 start-page: eaar3958 year: 2018 ident: 2020.03.03.975680v1.2 article-title: Coactivator condensation at super-enhancers links phase separation and gene control publication-title: Science |
SSID | ssj0002961374 |
Score | 1.7180179 |
SecondaryResourceType | preprint |
Snippet | There is emerging evidence for transcription condensates in the activation of gene expression1–3. However, there is considerably less information regarding... |
SourceID | biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Developmental Biology |
Title | Regulation of gene expression by repression condensates during development |
URI | https://www.biorxiv.org/content/10.1101/2020.03.03.975680 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba8IwFA5DGextV3aVDPZaSXPP64YiwkRkgm-SW8GXKp0b-u930hbnwx4GeWloSXrS5pwv-XI-hF6iyo1wjmYhMptx50Km89xm2nrGlDOM2HTA-X0iR3M-XojFkdRXolW61brarb7rffxE2IbZt_m5SZ6wOqmzkrK-UUJqQOtd-KR4Um0YLvqH5RVqwE8p3u5j_vkkRLxtS0ceZXiOulO7idUFOonlJTptJCH3V2g8a8ThwVx4XWAY3ojjrmWrltjtcRUPV9BtmDY-U7iIm_OGOPySgK7RfDj4eBtlrd5BllZiAMWZQjvqZBDMSxFZDsGSs8xYFQTABM-0otZQQbXzKa-jkgrgEPXCS-ZCYdkN6pTrMt4iTKxQRisTtPBcm6gZL3wkjhMdvJHiDj23777cNFktlsk-S8JSaexz_497HtBZqqtJWfwRdbbVV3wCL711PdR9HUyms149Lj8AcI4c |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7aInpzxd0IXqdksucslrG2RaSF3oZsA71My7RK--9NZobqwYOQS0hCkheSt315D4AnL1LFjMGJ80Qn1BiXyDTVidSWEGEUQTp-cB6NeTalgxmbtQa3VQurNPNFtZl_1X78CNgOr29zuVEadXVURyUlPSUYl6gXzdT7oBsDnUVIV3_W29lYsArMStDWmfnn8CD2ttP9Yiv9Y9B910tfnYA9X56CgyYv5PYMDD6aDPGBZnBRwHDGHvpNC1ktodnCyu9qYe3h7VhFmRE2nw6h-0ECnYNp_2XynCVt0oMkmmOCKqcKabDhjhHLmSdpkJiMJkoLx4KuYIkUWCvMsDQ2BncUXASdCFtmOTGu0OQCdMpF6S8BRJoJJYVyklkqlZeEFtYjQ5F0VnF2BR7bvefLJrRFHumTIxJLQ5_rf_R5AIfZZDTMh6_jtxtwFNtrlBa9BZ119envAttem_v6bL4BHteRWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfHmE9-u4DVhs-89q6FWLUUs9Bb2FfCSllil_ffuJqH24EHIZUnYJDO789pvZgC48yJTzBicOE90Qo1xicwynUhtCRFGEaRjgvPriA8mdDhl041cmAirNB-zevnx3ZzjR8B2kL7t5kZZ9NVRU5WUpEowLlEaw9Tp3JXboB-LncWVnU_TdZwFq6CwBO0ONP-cIpi-3Ss3VEu-D_pjPff1Adjy1SHYaXtDro7A8K3tEh_oBmclDHz20C872GoFzQrWfj0K3x_kx2e0G2GbeAjdLxroGEzyx_f7QdI1PkhiSCa4c6qUBhvuGLGceZIFq8loorRwLPgLlkiBtcIMS2NjgUfBRfCLsGWWE-NKTU5Ar5pV_hRApJlQUignmaVSeUloaT0yFElnFWdn4Lb792LelrcoIn0KROLV0uf8H8_cgN3xQ168PI2eL8BevN0Ategl6C3qL38VNPfCXDes-QFqwJJq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+gene+expression+by+repression+condensates+during+development&rft.jtitle=bioRxiv&rft.au=Treen%2C+Nicholas&rft.au=Shimobayashi%2C+Shunsuke+F.&rft.au=Eeftens%2C+Jorine&rft.au=Brangwynne%2C+Clifford+P.&rft.date=2020-03-04&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.03.03.975680&rft.externalDocID=2020.03.03.975680v1 |