Evaluation of predators as sentinels for emerging infectious diseases
New and emerging diseases in human and animal populations appear to be predominately associated with generalist pathogens that are able to infect multiple hosts. Carnivores are susceptible to a wide range of these pathogens and can act as effective samplers of their vertebrate prey, which are import...
Saved in:
Main Author | |
---|---|
Format | Dissertation |
Language | English |
Published |
University of Edinburgh
2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | New and emerging diseases in human and animal populations appear to be predominately associated with generalist pathogens that are able to infect multiple hosts. Carnivores are susceptible to a wide range of these pathogens and can act as effective samplers of their vertebrate prey, which are important reservoirs of many emerging diseases. This thesis evaluates the utility of carnivores as sentinels for pathogens present in their prey by exploration of four selected pathogen-prey-sentinel combinations in three rural study sites of varying habitat in northern England and Scotland over a twenty-two month period (2007-2009). Selected pathogens were Coxiella burnetii, Leptospira spp., Encephalitozoon cuniculi, and rabbit haemorrhagic disease virus (RHDV), selected prey species were wild rodents and rabbits, and selected carnivores were foxes, domestic cats and corvids. Seroprevalence to C.burnetii, Leptospira spp and E.cuniculi was assessed using adapted or novel test methodologies to enable their use for multiple mammalian species, however these were not applicable to corvids. RHDV seroprevalence was not assessed due to low acquisition of rabbit samples. Overall, seroprevalence to all three pathogens was significantly higher in predators than prey, at 24.2% and 12.4 % for C.burnetii, 22.73% and 1.95% for Leptospira spp and 39.06% and 5.31% for E.cuniculi in predator and prey species respectively. A similar pattern was found in all study areas and was consistent irrespective of individual prey or predator species, although serological evidence of exposure to E.cuniculi was not detected in domestic cats in any area. A semi-quantitative assessment of the time and financial costs of the study approach and application to hypothetical examples indicates that sampling carnivores is a much more costeffective approach to pathogen detection than sampling prey. The results indicate that carnivores can act as useful sentinels for broad-scale detection of pathogen presence and relative levels of prevalence in prey and predator populations. Careful selection of predator species and methods of sample acquisition are necessary to maximise their utility, and issues associated with diagnostic test performance and validation must also be acknowledged. Suggestions are made as to how this principle might be applied to future surveillance programmes. In addition, the study is the first report on the seroprevalence of C.burnetii, Leptospira spp and E.cuniculi in multiple wildlife species (field voles, bank voles, wood mice, foxes), the first detection of antibodies to C. burnetii in wildlife and cats, the first detection of antibodies to L mini, L hardjo prajitno and L hardjo bovis in wild rodents, and to L mini in cats, and the first detection of antibodies to E.cuniculi in wild rodents and foxes in the UK. |
---|