BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis

Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurol...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Li, Xiaoxiao, Zhou, Yuan, Gao, Siyuan, Dvornek, Nicha, Zhang, Muhan, Zhuang, Juntang, Gu, Shi, Scheinost, Dustin, Staib, Lawrence, Ventola, Pamela, Duncan, James
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 23.10.2020
Cold Spring Harbor Laboratory
Edition1.4
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2020.05.16.100057

Cover

Abstract Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms - unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss - on pooling results to encourage reasonable ROI-selection and provide flexibility to preserve either individual- or group-level patterns. We apply the BrainGNN framework on two independent fMRI datasets: Autism Spectral Disorder (ASD) fMRI dataset and Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyperparameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. Competing Interest Statement The authors have declared no competing interest. Footnotes * Updated experimental results and polished writing.
AbstractList Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms - unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss - on pooling results to encourage reasonable ROI-selection and provide flexibility to preserve either individual- or group-level patterns. We apply the BrainGNN framework on two independent fMRI datasets: Autism Spectral Disorder (ASD) fMRI dataset and Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyperparameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. Competing Interest Statement The authors have declared no competing interest. Footnotes * Updated experimental results and polished writing.
Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms—unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss—on pooling results to encourage reasonable ROI-selection and provide flexibility to encourage either fully individual- or patterns that agree with group-level data. We apply the BrainGNN framework on two independent fMRI datasets: an Autism Spectrum Disorder (ASD) fMRI dataset and data from the Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyper-parameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show a high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. We will make BrainGNN codes public available after acceptance.
Author Gao, Siyuan
Zhuang, Juntang
Staib, Lawrence
Li, Xiaoxiao
Duncan, James
Dvornek, Nicha
Zhou, Yuan
Scheinost, Dustin
Zhang, Muhan
Gu, Shi
Ventola, Pamela
Author_xml – sequence: 1
  givenname: Xiaoxiao
  surname: Li
  fullname: Li, Xiaoxiao
– sequence: 2
  givenname: Yuan
  surname: Zhou
  fullname: Zhou, Yuan
– sequence: 3
  givenname: Siyuan
  surname: Gao
  fullname: Gao, Siyuan
– sequence: 4
  givenname: Nicha
  surname: Dvornek
  fullname: Dvornek, Nicha
– sequence: 5
  givenname: Muhan
  surname: Zhang
  fullname: Zhang, Muhan
– sequence: 6
  givenname: Juntang
  surname: Zhuang
  fullname: Zhuang, Juntang
– sequence: 7
  givenname: Shi
  surname: Gu
  fullname: Gu, Shi
– sequence: 8
  givenname: Dustin
  surname: Scheinost
  fullname: Scheinost, Dustin
– sequence: 9
  givenname: Lawrence
  surname: Staib
  fullname: Staib, Lawrence
– sequence: 10
  givenname: Pamela
  surname: Ventola
  fullname: Ventola, Pamela
– sequence: 11
  givenname: James
  surname: Duncan
  fullname: Duncan, James
BookMark eNpNkDFPwzAUhC1UJErpD2CzxMKS8GzHjsNWCpRIpUgIZstOX0RKSIKdAv33BMrAdKfTp9PpjsmoaRsk5JRBzBiwCw4cYpAxUzEDAJkekDFXGY80Bzn654_INITNgPBMMZEmY3J95W3VLFarS5o3PfrOY29djfQ3pwtvuxe6wq239SD9Z-tfadl6Wt4_5nTW2HoXqnBCDktbB5z-6YQ83948ze-i5cMin8-WkWOQpFEhbKHXsnSpTjUruYIC18xJlShmM8e0FIiSF6XlCBJTnWRoCyVdghatU2JCzve9rmr9V_VhOl-9Wb8zPwcYkIYpsz9gQM_2aOfb9y2G3mzarR_2BsMTEJqLjHHxDWEyWw0
ContentType Paper
Copyright 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2020.05.16.100057v3
2021, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2020.05.16.100057v3
– notice: 2021, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2020.05.16.100057
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.4
ExternalDocumentID 2020.05.16.100057v4
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1047-c3ac8d5fb78781f260ced1b56461a9b1853ee52cfa2e05e7849eac65b4eaeab63
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 18:52:59 EST 2025
Fri Jul 25 09:20:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1047-c3ac8d5fb78781f260ced1b56461a9b1853ee52cfa2e05e7849eac65b4eaeab63
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.proquest.com/docview/2403823912?pq-origsite=%requestingapplication%
PQID 2403823912
PQPubID 2050091
PageCount 29
ParticipantIDs biorxiv_primary_2020_05_16_100057
proquest_journals_2403823912
PublicationCentury 2000
PublicationDate 20201023
20210607
PublicationDateYYYYMMDD 2020-10-23
2021-06-07
PublicationDate_xml – month: 10
  year: 2020
  text: 20201023
  day: 23
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2020
2021
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Cangea (2020.05.16.100057v4.11) 2018
Cai, Wang (2020.05.16.100057v4.10) 2020
Boucher, Bowler (2020.05.16.100057v4.7) 2008
Buckner, Andrews-Hanna, Schacter (2020.05.16.100057v4.9) 2008
Brennan, Wang, Li, Perriello, Ren, Elias, Van Kirk, Krompinger, Pope, Haber (2020.05.16.100057v4.8) 2019; 4
Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (2020.05.16.100057v4.33) 2017; 146
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (2020.05.16.100057v4.54) 2013; 80
Hancox-Li (2020.05.16.100057v4.27) 2020
Hull, Petrides, Mandy (2020.05.16.100057v4.28) 2020
Kazi, Shekarforoush, Krishna, Burwinkel, Vivar, Kortüim, Ahmadi, Albarqouni, Navab (2020.05.16.100057v4.34) 2019
Gan, Zhu, Hu, Zhu, Ma, Peng, Wu (2020.05.16.100057v4.20) 2020
Nandakumar, Manzoor, Pillai, Gujar, Sair, Venkataraman (2020.05.16.100057v4.45) 2019
Baker, Holmes, Masters, Yeo, Krienen, Buckner, Öngür (2020.05.16.100057v4.5) 2014; 71
Gopinath, Desrosiers, Lombaert (2020.05.16.100057v4.24) 2019
Adeli, Zhao, Zahr, Goldstone, Pfefferbaum, Sullivan, Pohl (2020.05.16.100057v4.3) 2020; 223
Venkataraman, Yang, Pelphrey, Duncan (2020.05.16.100057v4.56) 2016; 35
Beykikhoshk, Quinn, Lee, Tran, Venkatesh (2020.05.16.100057v4.6) 2020; 13
Karwowski, Vasheghani Farahani, Lighthall (2020.05.16.100057v4.32) 2019; 13
Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (2020.05.16.100057v4.47) 2018; 48
Kim, Ye (2020.05.16.100057v4.35) 2020
Greene, Gao, Scheinost, Constable (2020.05.16.100057v4.25) 2018; 9
Dakka, Bashivan, Gheiratmand, Rish, Jha, Greiner (2020.05.16.100057v4.13) 2017
Jie, Liu, Lian, Shi, Shen (2020.05.16.100057v4.30) 2020
Li, Dvornek, Zhou, Zhuang, Ventola, Duncan (2020.05.16.100057v4.37) 2019
Von Luxburg (2020.05.16.100057v4.57) 2007; 17
Yan, Zhu, Duda, Solarz, Sripada, Koutra (2020.05.16.100057v4.61) 2019
Moğultay, Alkan, Yarman-Vural (2020.05.16.100057v4.44) 2015
Mar (2020.05.16.100057v4.42) 2011; 62
Robertson, Kravitz, Freyberg, Baron-Cohen, Baker (2020.05.16.100057v4.48) 2013; 33
McClure, Moraczewski, Lam, Thomas, Pereira (2020.05.16.100057v4.43) 2020
Li, Dvornek, Zhuang, Ventola, Duncan (2020.05.16.100057v4.38) 2018
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman (2020.05.16.100057v4.14) 2006; 31
Gao, Ji (2020.05.16.100057v4.21) 2019
Yang, Jin, Chen, Zhang, Li, Shen (2020.05.16.100057v4.63) 2016
Turkeltaub, Flowers, Verbalis, Miranda, Gareau, Eden (2020.05.16.100057v4.53) 2004; 41
Du, Fu, Calhoun (2020.05.16.100057v4.15) 2018; 12
Dvornek, Yang, Ventola, Duncan (2020.05.16.100057v4.16) 2018
Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (2020.05.16.100057v4.52) 2017; 12
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (2020.05.16.100057v4.1) 2017; 147
Gong, Cheng (2020.05.16.100057v4.23) 2019
Gao, Greene, Constable, Scheinost (2020.05.16.100057v4.22) 2019; 201
Veličković (2020.05.16.100057v4.55) 2018
Mahowald, Fedorenko (2020.05.16.100057v4.41) 2016; 139
Fombonne (2020.05.16.100057v4.18) 2009; 65
Kipf, Welling (2020.05.16.100057v4.36) 2016
Wei, Warfield, Zou, Wu, Li, Guimond, Mugler, Benson, Wolfson, Weiner (2020.05.16.100057v4.60) 2002; 15
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (2020.05.16.100057v4.17) 2015; 18
Salman, Du, Lin, Fu, Fedorov, Damaraju, Sui, Chen, Mayer, Posse (2020.05.16.100057v4.50) 2019; 22
Li, Zhou, Dvornek, Zhang, Zhuang, Ventola, Duncan (2020.05.16.100057v4.39) 2020
Oono, Suzuki (2020.05.16.100057v4.46) 2019
Yang, Li, Wu, Li, Lu, Duncan, Gee, Gu (2020.05.16.100057v4.62) 2019
Iuculano, Rosenberg-Lee, Supekar, Lynch, Khouzam, Phillips, Uddin, Menon (2020.05.16.100057v4.29) 2014; 75
Adebayo, Gilmer, Muelly, Goodfellow, Hardt, Kim (2020.05.16.100057v4.2) 2018
Ross, Olson (2020.05.16.100057v4.49) 2010; 49
Bai, Calhoun, Wang (2020.05.16.100057v4.4) 2020; 11317
Gadgil, Zhao, Pfefferbaum, Sullivan, Adeli, Pohl (2020.05.16.100057v4.19) 2020
Kaiser, Hudac, Shultz, Lee, Cheung, Berken, Deen, Pitskel, Sugrue, Voos (2020.05.16.100057v4.31) 2010; 107
Yarkoni, Poldrack, Nichols, Van Essen, Wager (2020.05.16.100057v4.64) 2011; 8
Loe, Jensen (2020.05.16.100057v4.40) 2015; 431
Wang, Liang, Jiang, Nguchu, Zhou, Wang, Wang, Li, Zhu, Wu (2020.05.16.100057v4.59) 2019
Schlichtkrull, Kipf, Bloem, Van Den Berg, Titov, Welling (2020.05.16.100057v4.51) 2018
Hamilton, Ying, Leskovec (2020.05.16.100057v4.26) 2017
Dadi, Rahim, Abraham, Chyzhyk, Milham, Thirion, Varo-quaux, Initiative (2020.05.16.100057v4.12) 2019; 192
Wang, Zuo, He (2020.05.16.100057v4.58) 2010; 4
References_xml – start-page: 329
  year: 2018
  end-page: 337
  ident: 2020.05.16.100057v4.16
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 580
  year: 2020
  end-page: 586
  ident: 2020.05.16.100057v4.20
  article-title: Multi-graph fusion for functional neuroimaging biomarker detection
  publication-title: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20
– start-page: 10
  year: 2019
  end-page: 20
  ident: 2020.05.16.100057v4.45
  publication-title: International Workshop on Connectomics in Neuroimaging
– start-page: 1024
  year: 2017
  end-page: 1034
  ident: 2020.05.16.100057v4.26
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in neural information processing systems
– year: 2019
  ident: 2020.05.16.100057v4.46
  article-title: Graph neural networks exponentially lose expressive power for node classification
  publication-title: arXiv preprint
– volume: 65
  start-page: 591
  issue: 6
  year: 2009
  end-page: 598
  ident: 2020.05.16.100057v4.18
  article-title: Epidemiology of pervasive developmental disorders
  publication-title: Pediatric research
– start-page: 73
  year: 2019
  end-page: 85
  ident: 2020.05.16.100057v4.34
  publication-title: International Conference on Information Processing in Medical Imaging
– volume: 33
  start-page: 6776
  issue: 16
  year: 2013
  end-page: 6781
  ident: 2020.05.16.100057v4.48
  article-title: Tunnel vision: sharper gradient of spatial attention in autism
  publication-title: Journal of Neuroscience
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  end-page: 980
  ident: 2020.05.16.100057v4.14
  article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 8
  start-page: 665
  issue: 8
  year: 2011
  ident: 2020.05.16.100057v4.64
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nature methods
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: 2020.05.16.100057v4.1
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
– volume: 71
  start-page: 109
  issue: 2
  year: 2014
  end-page: 118
  ident: 2020.05.16.100057v4.5
  article-title: Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder
  publication-title: JAMA psychiatry
– volume: 12
  start-page: 525
  year: 2018
  ident: 2020.05.16.100057v4.15
  article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging
  publication-title: Frontiers in neuroscience
– year: 2018
  ident: 2020.05.16.100057v4.2
  article-title: Sanity checks for saliency maps
  publication-title: Advances in Neural Information Processing Systems
– volume: 4
  start-page: 27
  issue: 1
  year: 2019
  end-page: 38
  ident: 2020.05.16.100057v4.8
  article-title: Use of an individuallevel approach to identify cortical connectivity biomarkers in obsessive-compulsive disorder
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
– year: 2018
  ident: 2020.05.16.100057v4.11
  article-title: Towards sparse hierarchical graph classifiers
  publication-title: arXiv preprint
– start-page: 86
  year: 2019
  end-page: 98
  ident: 2020.05.16.100057v4.24
  publication-title: International Conference on Information Processing in Medical Imaging
– year: 2018
  ident: 2020.05.16.100057v4.55
  article-title: Graph attention networks
  publication-title: ICLR
– year: 2019
  ident: 2020.05.16.100057v4.59
  article-title: Decoding and mapping task states of the human brain via deep learning
  publication-title: Human Brain Mapping
– start-page: 593
  year: 2018
  end-page: 607
  ident: 2020.05.16.100057v4.51
  publication-title: European Semantic Web Conference
– start-page: 485
  year: 2019
  end-page: 493
  ident: 2020.05.16.100057v4.37
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 62
  start-page: 103
  year: 2011
  end-page: 134
  ident: 2020.05.16.100057v4.42
  article-title: The neural bases of social cognition and story comprehension
  publication-title: Annual review of psychology
– volume: 11317
  start-page: 1131722
  year: 2020
  ident: 2020.05.16.100057v4.4
  publication-title: Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  end-page: 13
  ident: 2020.05.16.100057v4.25
  article-title: Task-induced brain state ma-nipulation improves prediction of individual traits
  publication-title: Nature communications
– volume: 431
  start-page: 29
  year: 2015
  end-page: 45
  ident: 2020.05.16.100057v4.40
  article-title: Comparison of communities detection algorithms for multiplex
  publication-title: Physica A: Statistical Mechanics and its Applications
– year: 2020
  ident: 2020.05.16.100057v4.10
  article-title: A note on over-smoothing for graph neural networks
  publication-title: arXiv preprint
– year: 2017
  ident: 2020.05.16.100057v4.13
  article-title: Learning neural markers of schizophrenia disorder using recurrent neural networks
  publication-title: arXiv preprint
– volume: 201
  start-page: 116038
  year: 2019
  ident: 2020.05.16.100057v4.22
  article-title: Combining multiple connectomes improves predictive modeling of phenotypic measures
  publication-title: Neuroimage
– year: 2008
  ident: 2020.05.16.100057v4.7
  article-title: Memory in autism
  publication-title: Citeseer
– start-page: 772
  year: 2019
  end-page: 782
  ident: 2020.05.16.100057v4.61
  article-title: Groupinn: Grouping-based interpretable neural network for classification of limited, noisy brain data
– start-page: 9211
  year: 2019
  end-page: 9219
  ident: 2020.05.16.100057v4.23
  article-title: Exploiting edge features for graph neural networks
– volume: 75
  start-page: 223
  issue: 3
  year: 2014
  end-page: 230
  ident: 2020.05.16.100057v4.29
  article-title: Brain organization underlying superior mathematical abilities in children with autism
  publication-title: Biological Psychiatry
– volume: 139
  start-page: 74
  year: 2016
  end-page: 93
  ident: 2020.05.16.100057v4.41
  article-title: Reliable individual-level neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability
  publication-title: Neuroimage
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  end-page: 416
  ident: 2020.05.16.100057v4.57
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and computing
– year: 2019
  ident: 2020.05.16.100057v4.21
  article-title: Graph u-nets
  publication-title: arXiv preprint
– start-page: 799
  year: 2019
  end-page: 807
  ident: 2020.05.16.100057v4.62
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 15
  start-page: 203
  issue: 2
  year: 2002
  end-page: 209
  ident: 2020.05.16.100057v4.60
  article-title: Quantitative analysis of mri signal abnormalities of brain white matter with high reproducibility and accuracy
  publication-title: Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine
– start-page: 2381
  year: 2015
  end-page: 2383
  ident: 2020.05.16.100057v4.44
  publication-title: 2015 23nd Signal Processing and Communications Applications Conference (SIU)
– volume: 49
  start-page: 3452
  issue: 4
  year: 2010
  end-page: 3462
  ident: 2020.05.16.100057v4.49
  article-title: Social cognition and the anterior temporal lobes
  publication-title: Neuroimage
– volume: 13
  start-page: 1
  issue: 3
  year: 2020
  end-page: 10
  ident: 2020.05.16.100057v4.6
  article-title: Deeptriage: interpretable and individualised biomarker scores using attention mechanism for the classification of breast cancer sub-types
  publication-title: BMC medical genomics
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 2020.05.16.100057v4.17
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nature neuroscience
– volume: 107
  start-page: 21223
  issue: 49
  year: 2010
  end-page: 21228
  ident: 2020.05.16.100057v4.31
  article-title: Neural signatures of autism
  publication-title: Proceedings of the National Academy of Sciences
– volume: 4
  start-page: 16
  year: 2010
  ident: 2020.05.16.100057v4.58
  article-title: Graph-based network analysis of resting-state functional mri
  publication-title: Frontiers in systems neuroscience
– volume: 12
  start-page: 506
  issue: 3
  year: 2017
  ident: 2020.05.16.100057v4.52
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: nature protocols
– start-page: 246
  year: 2016
  end-page: 253
  ident: 2020.05.16.100057v4.63
  publication-title: International Workshop on Machine Learning in Medical Imaging
– start-page: 1
  year: 2020
  end-page: 12
  ident: 2020.05.16.100057v4.28
  article-title: The female autism phenotype and camouflaging: A narrative review
  publication-title: Review Journal of Autism and Developmental Disorders
– volume: 48
  start-page: 117
  year: 2018
  end-page: 130
  ident: 2020.05.16.100057v4.47
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease
  publication-title: Medical image analysis
– volume: 192
  start-page: 115
  year: 2019
  end-page: 134
  ident: 2020.05.16.100057v4.12
  article-title: Benchmarking functional connectome-based predictive models for resting-state fmri
  publication-title: Neuroimage
– volume: 146
  start-page: 1038
  year: 2017
  end-page: 1049
  ident: 2020.05.16.100057v4.33
  article-title: Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: NeuroImage
– year: 2020
  ident: 2020.05.16.100057v4.43
  article-title: Evaluating adversarial robustness for deep neural network interpretability using fmri decoding
  publication-title: arXiv preprint
– start-page: 528
  year: 2020
  end-page: 538
  ident: 2020.05.16.100057v4.19
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 101709
  year: 2020
  ident: 2020.05.16.100057v4.30
  article-title: Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis
  publication-title: Medical Image Analysis
– start-page: 625
  year: 2020
  end-page: 635
  ident: 2020.05.16.100057v4.39
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2016
  ident: 2020.05.16.100057v4.36
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv preprint
– volume: 41
  start-page: 11
  issue: 1
  year: 2004
  end-page: 25
  ident: 2020.05.16.100057v4.53
  article-title: The neural basis of hyperlexic reading: An fmri case study
  publication-title: Neuron
– start-page: 206
  year: 2018
  end-page: 214
  ident: 2020.05.16.100057v4.38
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2008
  ident: 2020.05.16.100057v4.9
  article-title: The brain’s default network: anatomy, function, and relevance to disease
– volume: 13
  start-page: 585
  year: 2019
  ident: 2020.05.16.100057v4.32
  article-title: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review
  publication-title: frontiers in Neuroscience
– volume: 223
  start-page: 117293
  year: 2020
  ident: 2020.05.16.100057v4.3
  article-title: Deep learning identifies morphological determinants of sex differences in the pre-adolescent brain
  publication-title: NeuroImage
– start-page: 640
  year: 2020
  end-page: 647
  ident: 2020.05.16.100057v4.27
  article-title: Robustness in machine learning explanations: does it matter?
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: 2020.05.16.100057v4.54
  article-title: The wu-minn human connectome project: an overview
  publication-title: Neuroimage
– year: 2020
  ident: 2020.05.16.100057v4.35
  article-title: Understanding graph isomorphism network for brain mr functional connectivity analysis
  publication-title: arXiv preprint
– volume: 22
  start-page: 101747
  year: 2019
  ident: 2020.05.16.100057v4.50
  article-title: Group ica for identifying biomarkers in schizophrenia:’adaptive’ networks via spatially constrained ica show more sensitivity to group differences than spatio-temporal regression
  publication-title: NeuroImage: Clinical
– volume: 35
  start-page: 1866
  issue: 8
  year: 2016
  end-page: 1882
  ident: 2020.05.16.100057v4.56
  article-title: Bayesian community detection in the space of group-level functional differences
  publication-title: IEEE transactions on medical imaging
SSID ssj0002961374
Score 1.6257141
SecondaryResourceType preprint
Snippet Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging...
Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Autism
Biomarkers
Brain mapping
Cognitive ability
Functional magnetic resonance imaging
Image processing
Medical imaging
Neural networks
Neuroimaging
Neuroscience
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aInjzidUqEbyubNIkTTz6aKvQImKhtyXZTqBQ2lKr6L93Znergh48LSxsFr5kXpmPbxi7ENJocDpPrFEmUVHJxLWcSEjpCCNUiGkhVt0fmN5QPYz06MeoL6JVhsl8-T55K_r4RNhG71sadyqoVk9JalMY6u9jsrHJ6nikJE1t6Iwuv65XpMM41VZVH_PPLzHjrf70yw8XwaWzw-qPfgHLXbYBsz22VU6H_Nhnt9c0vqE7GFzxb2pgmAIv3vMuSU1zEtfwU3wUbG6OKSiP_ad7vhYbOWDDzt3zTS-phh4gPKSakLd8bsc6BrQkKyKWGzmMRdAIpfAuUHgF0DKPXkKqoW2VQ99pdFDgwQfTOmS12XwGR4yDBh-tDWO0WuW9clibeKeCVQqzlpg32HkFQLYopS0yAilLdSZMVoLUYM01NFl1ul8y0vCzErdUHv9jiRO2LYkIQlcX7SarrZavcIqRfBXOij37BExjlc4
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis
URI https://www.proquest.com/docview/2403823912
https://www.biorxiv.org/content/10.1101/2020.05.16.100057
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62peDNJz5qWcHr6m42iYkXodqHQpdSLPS2JLsJFEpb2yr6753ZpvYgeFrIQg5fZr7JTIZvCLmJqeBW8TyUgomQOUZDlag4RKUjiFDGRaVYdT8VvRF7HfOxL7itfFvllhNLoi7mOdbI71A3TlLYhj4u3kOcGoWvq36ERoXUgIIl2Hmt1U4Hw98qC1UQrkopZioUuD6NuH_aBFPExD9C3c5YYLNAhCGqbibz5dfk8w81l_Gmc0BqA72wy0OyZ2dHpL4ZGPl9TJ5bONGhm6YPwa5b0ExtUK4HXVSfDlBvQ0_hUzZ4B3ArDVx_-BJs9UdOyKjTfnvqhX4OAiCGQgp5onNZcGfAuWTsIAPJbREbDujGWhmMuNZymjtNbcTtvWQK6FRww6y22ojklFRn85k9I4HlVjspTQGOzLRmCtIVrZiRjMFFxuXn5NoDkC02ahcZgpRFPItFtgHpnDS20GTe4FfZ7ngu_v99SfZxR6R_mjRIdb38sFcQ19em6Q-vSSqd8e0PfQ2eLQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED90Q_TNT5xOjaCPxTZLYiOIoE43dUVEwbeatCkIss1tfuyf8m_0rmvdg-CbT4UUruFyvd_lcvkdwF7AlXRaJl6ohPJEJrinGzrwiOkIEcpmfk5W3YlU60FcPcrHGfgq78JQWWXpE3NHnfYSypEfEG9cyFEMP-m_etQ1ik5XyxYaE7O4duMP3LINj9vnuL77nF80789aXtFVAL9PtARJwyRhKjOLphoGGcbziUsDK3GugdGW8Ms5yZPMcOdLdxgKjc5JSSucccaqBsqdhaqgG60VqJ42o9u7n6wO1wiPOfUzVxpdDfdlcZSKpk-JBp94QgNFxQk-QeKcfe4NPp_ff0FBjm8Xi1C9NX03WIIZ112GuUmDyvEKnJ9SB4nLKDpi0-pE--JYPs4uie2aEb-HecFHXlDOMApmWeeuzUq-k1V4-BcNrUGl2-u6dWBOOpOFoU3RcQhjhMbtkdHChkJg4JQlNdgtFBD3J-waMSkp9mUcqHiipBrUS9XExQ82jKfmsPH36x2Yb913buKbdnS9CQsknaCHN-pQGQ3e3BbGFCO7XSwkg6f_tp1vnq3bTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6oXjzE6dTI3jtaLIkaz3q7DZ1ZYiD3ULSJTAY25hT9L_3vbZTQQ-eCj2k8Mv7fq-_R8gV40q6WGZBpIQKhBc8iJsxC5DpCDyU9WFOVt1PVXco7kdy9ONfGByrtJP58n3ylvfxcWAbrG-h3CHDXD1Eqk2msL8PwUYDy9SNxdhvkirIFkPJTkaNrzoLj8FhtUTZ0PzzCAh9y0_-Msi5l0l2SXVgFm65RzbcbJ9sFWsiPw5I-wb3OHTS9Jp-zwjaqaP5e9pBzmmKLBtmCo98rJtCLEp9_6lH16wjh2SY3D3fdoNy-wHghPQJWdNk0Vh6CyoVMQ95R-bGzErAlJnYop91TvLMG-5C6VqRiMGIKmmFM85Y1Twildl85o4JddIZH0V2DOorjBExJCkmFjYSAsIXn9XIZQmAXhQcFxpB0qHUTOkCpBqpr6HRpZi_aCTzizjcLT_5xxEXZHvQTvRjL304JTsch0OwnNGqk8pq-erOwLuv7Hl-fZ_ygJu2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainGNN%3A+Interpretable+Brain+Graph+Neural+Network+for+fMRI+Analysis&rft.jtitle=bioRxiv&rft.au=Li%2C+Xiaoxiao&rft.au=Zhou%2C+Yuan&rft.au=Gao%2C+Siyuan&rft.au=Dvornek%2C+Nicha&rft.date=2020-10-23&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.05.16.100057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon