BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis
Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurol...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
23.10.2020
Cold Spring Harbor Laboratory |
Edition | 1.4 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2020.05.16.100057 |
Cover
Abstract | Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms - unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss - on pooling results to encourage reasonable ROI-selection and provide flexibility to preserve either individual- or group-level patterns. We apply the BrainGNN framework on two independent fMRI datasets: Autism Spectral Disorder (ASD) fMRI dataset and Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyperparameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. Competing Interest Statement The authors have declared no competing interest. Footnotes * Updated experimental results and polished writing. |
---|---|
AbstractList | Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms - unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss - on pooling results to encourage reasonable ROI-selection and provide flexibility to preserve either individual- or group-level patterns. We apply the BrainGNN framework on two independent fMRI datasets: Autism Spectral Disorder (ASD) fMRI dataset and Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyperparameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. Competing Interest Statement The authors have declared no competing interest. Footnotes * Updated experimental results and polished writing. Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms—unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss—on pooling results to encourage reasonable ROI-selection and provide flexibility to encourage either fully individual- or patterns that agree with group-level data. We apply the BrainGNN framework on two independent fMRI datasets: an Autism Spectrum Disorder (ASD) fMRI dataset and data from the Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyper-parameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show a high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. We will make BrainGNN codes public available after acceptance. |
Author | Gao, Siyuan Zhuang, Juntang Staib, Lawrence Li, Xiaoxiao Duncan, James Dvornek, Nicha Zhou, Yuan Scheinost, Dustin Zhang, Muhan Gu, Shi Ventola, Pamela |
Author_xml | – sequence: 1 givenname: Xiaoxiao surname: Li fullname: Li, Xiaoxiao – sequence: 2 givenname: Yuan surname: Zhou fullname: Zhou, Yuan – sequence: 3 givenname: Siyuan surname: Gao fullname: Gao, Siyuan – sequence: 4 givenname: Nicha surname: Dvornek fullname: Dvornek, Nicha – sequence: 5 givenname: Muhan surname: Zhang fullname: Zhang, Muhan – sequence: 6 givenname: Juntang surname: Zhuang fullname: Zhuang, Juntang – sequence: 7 givenname: Shi surname: Gu fullname: Gu, Shi – sequence: 8 givenname: Dustin surname: Scheinost fullname: Scheinost, Dustin – sequence: 9 givenname: Lawrence surname: Staib fullname: Staib, Lawrence – sequence: 10 givenname: Pamela surname: Ventola fullname: Ventola, Pamela – sequence: 11 givenname: James surname: Duncan fullname: Duncan, James |
BookMark | eNpNkDFPwzAUhC1UJErpD2CzxMKS8GzHjsNWCpRIpUgIZstOX0RKSIKdAv33BMrAdKfTp9PpjsmoaRsk5JRBzBiwCw4cYpAxUzEDAJkekDFXGY80Bzn654_INITNgPBMMZEmY3J95W3VLFarS5o3PfrOY29djfQ3pwtvuxe6wq239SD9Z-tfadl6Wt4_5nTW2HoXqnBCDktbB5z-6YQ83948ze-i5cMin8-WkWOQpFEhbKHXsnSpTjUruYIC18xJlShmM8e0FIiSF6XlCBJTnWRoCyVdghatU2JCzve9rmr9V_VhOl-9Wb8zPwcYkIYpsz9gQM_2aOfb9y2G3mzarR_2BsMTEJqLjHHxDWEyWw0 |
ContentType | Paper |
Copyright | 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2020.05.16.100057v3 2021, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2020. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2020.05.16.100057v3 – notice: 2021, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2020.05.16.100057 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.4 |
ExternalDocumentID | 2020.05.16.100057v4 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1047-c3ac8d5fb78781f260ced1b56461a9b1853ee52cfa2e05e7849eac65b4eaeab63 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:52:59 EST 2025 Fri Jul 25 09:20:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1047-c3ac8d5fb78781f260ced1b56461a9b1853ee52cfa2e05e7849eac65b4eaeab63 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
OpenAccessLink | https://www.proquest.com/docview/2403823912?pq-origsite=%requestingapplication% |
PQID | 2403823912 |
PQPubID | 2050091 |
PageCount | 29 |
ParticipantIDs | biorxiv_primary_2020_05_16_100057 proquest_journals_2403823912 |
PublicationCentury | 2000 |
PublicationDate | 20201023 20210607 |
PublicationDateYYYYMMDD | 2020-10-23 2021-06-07 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201023 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2020 2021 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Cangea (2020.05.16.100057v4.11) 2018 Cai, Wang (2020.05.16.100057v4.10) 2020 Boucher, Bowler (2020.05.16.100057v4.7) 2008 Buckner, Andrews-Hanna, Schacter (2020.05.16.100057v4.9) 2008 Brennan, Wang, Li, Perriello, Ren, Elias, Van Kirk, Krompinger, Pope, Haber (2020.05.16.100057v4.8) 2019; 4 Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (2020.05.16.100057v4.33) 2017; 146 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (2020.05.16.100057v4.54) 2013; 80 Hancox-Li (2020.05.16.100057v4.27) 2020 Hull, Petrides, Mandy (2020.05.16.100057v4.28) 2020 Kazi, Shekarforoush, Krishna, Burwinkel, Vivar, Kortüim, Ahmadi, Albarqouni, Navab (2020.05.16.100057v4.34) 2019 Gan, Zhu, Hu, Zhu, Ma, Peng, Wu (2020.05.16.100057v4.20) 2020 Nandakumar, Manzoor, Pillai, Gujar, Sair, Venkataraman (2020.05.16.100057v4.45) 2019 Baker, Holmes, Masters, Yeo, Krienen, Buckner, Öngür (2020.05.16.100057v4.5) 2014; 71 Gopinath, Desrosiers, Lombaert (2020.05.16.100057v4.24) 2019 Adeli, Zhao, Zahr, Goldstone, Pfefferbaum, Sullivan, Pohl (2020.05.16.100057v4.3) 2020; 223 Venkataraman, Yang, Pelphrey, Duncan (2020.05.16.100057v4.56) 2016; 35 Beykikhoshk, Quinn, Lee, Tran, Venkatesh (2020.05.16.100057v4.6) 2020; 13 Karwowski, Vasheghani Farahani, Lighthall (2020.05.16.100057v4.32) 2019; 13 Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (2020.05.16.100057v4.47) 2018; 48 Kim, Ye (2020.05.16.100057v4.35) 2020 Greene, Gao, Scheinost, Constable (2020.05.16.100057v4.25) 2018; 9 Dakka, Bashivan, Gheiratmand, Rish, Jha, Greiner (2020.05.16.100057v4.13) 2017 Jie, Liu, Lian, Shi, Shen (2020.05.16.100057v4.30) 2020 Li, Dvornek, Zhou, Zhuang, Ventola, Duncan (2020.05.16.100057v4.37) 2019 Von Luxburg (2020.05.16.100057v4.57) 2007; 17 Yan, Zhu, Duda, Solarz, Sripada, Koutra (2020.05.16.100057v4.61) 2019 Moğultay, Alkan, Yarman-Vural (2020.05.16.100057v4.44) 2015 Mar (2020.05.16.100057v4.42) 2011; 62 Robertson, Kravitz, Freyberg, Baron-Cohen, Baker (2020.05.16.100057v4.48) 2013; 33 McClure, Moraczewski, Lam, Thomas, Pereira (2020.05.16.100057v4.43) 2020 Li, Dvornek, Zhuang, Ventola, Duncan (2020.05.16.100057v4.38) 2018 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman (2020.05.16.100057v4.14) 2006; 31 Gao, Ji (2020.05.16.100057v4.21) 2019 Yang, Jin, Chen, Zhang, Li, Shen (2020.05.16.100057v4.63) 2016 Turkeltaub, Flowers, Verbalis, Miranda, Gareau, Eden (2020.05.16.100057v4.53) 2004; 41 Du, Fu, Calhoun (2020.05.16.100057v4.15) 2018; 12 Dvornek, Yang, Ventola, Duncan (2020.05.16.100057v4.16) 2018 Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (2020.05.16.100057v4.52) 2017; 12 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (2020.05.16.100057v4.1) 2017; 147 Gong, Cheng (2020.05.16.100057v4.23) 2019 Gao, Greene, Constable, Scheinost (2020.05.16.100057v4.22) 2019; 201 Veličković (2020.05.16.100057v4.55) 2018 Mahowald, Fedorenko (2020.05.16.100057v4.41) 2016; 139 Fombonne (2020.05.16.100057v4.18) 2009; 65 Kipf, Welling (2020.05.16.100057v4.36) 2016 Wei, Warfield, Zou, Wu, Li, Guimond, Mugler, Benson, Wolfson, Weiner (2020.05.16.100057v4.60) 2002; 15 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (2020.05.16.100057v4.17) 2015; 18 Salman, Du, Lin, Fu, Fedorov, Damaraju, Sui, Chen, Mayer, Posse (2020.05.16.100057v4.50) 2019; 22 Li, Zhou, Dvornek, Zhang, Zhuang, Ventola, Duncan (2020.05.16.100057v4.39) 2020 Oono, Suzuki (2020.05.16.100057v4.46) 2019 Yang, Li, Wu, Li, Lu, Duncan, Gee, Gu (2020.05.16.100057v4.62) 2019 Iuculano, Rosenberg-Lee, Supekar, Lynch, Khouzam, Phillips, Uddin, Menon (2020.05.16.100057v4.29) 2014; 75 Adebayo, Gilmer, Muelly, Goodfellow, Hardt, Kim (2020.05.16.100057v4.2) 2018 Ross, Olson (2020.05.16.100057v4.49) 2010; 49 Bai, Calhoun, Wang (2020.05.16.100057v4.4) 2020; 11317 Gadgil, Zhao, Pfefferbaum, Sullivan, Adeli, Pohl (2020.05.16.100057v4.19) 2020 Kaiser, Hudac, Shultz, Lee, Cheung, Berken, Deen, Pitskel, Sugrue, Voos (2020.05.16.100057v4.31) 2010; 107 Yarkoni, Poldrack, Nichols, Van Essen, Wager (2020.05.16.100057v4.64) 2011; 8 Loe, Jensen (2020.05.16.100057v4.40) 2015; 431 Wang, Liang, Jiang, Nguchu, Zhou, Wang, Wang, Li, Zhu, Wu (2020.05.16.100057v4.59) 2019 Schlichtkrull, Kipf, Bloem, Van Den Berg, Titov, Welling (2020.05.16.100057v4.51) 2018 Hamilton, Ying, Leskovec (2020.05.16.100057v4.26) 2017 Dadi, Rahim, Abraham, Chyzhyk, Milham, Thirion, Varo-quaux, Initiative (2020.05.16.100057v4.12) 2019; 192 Wang, Zuo, He (2020.05.16.100057v4.58) 2010; 4 |
References_xml | – start-page: 329 year: 2018 end-page: 337 ident: 2020.05.16.100057v4.16 publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 580 year: 2020 end-page: 586 ident: 2020.05.16.100057v4.20 article-title: Multi-graph fusion for functional neuroimaging biomarker detection publication-title: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20 – start-page: 10 year: 2019 end-page: 20 ident: 2020.05.16.100057v4.45 publication-title: International Workshop on Connectomics in Neuroimaging – start-page: 1024 year: 2017 end-page: 1034 ident: 2020.05.16.100057v4.26 article-title: Inductive representation learning on large graphs publication-title: Advances in neural information processing systems – year: 2019 ident: 2020.05.16.100057v4.46 article-title: Graph neural networks exponentially lose expressive power for node classification publication-title: arXiv preprint – volume: 65 start-page: 591 issue: 6 year: 2009 end-page: 598 ident: 2020.05.16.100057v4.18 article-title: Epidemiology of pervasive developmental disorders publication-title: Pediatric research – start-page: 73 year: 2019 end-page: 85 ident: 2020.05.16.100057v4.34 publication-title: International Conference on Information Processing in Medical Imaging – volume: 33 start-page: 6776 issue: 16 year: 2013 end-page: 6781 ident: 2020.05.16.100057v4.48 article-title: Tunnel vision: sharper gradient of spatial attention in autism publication-title: Journal of Neuroscience – volume: 31 start-page: 968 issue: 3 year: 2006 end-page: 980 ident: 2020.05.16.100057v4.14 article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest publication-title: Neuroimage – volume: 8 start-page: 665 issue: 8 year: 2011 ident: 2020.05.16.100057v4.64 article-title: Large-scale automated synthesis of human functional neuroimaging data publication-title: Nature methods – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: 2020.05.16.100057v4.1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage – volume: 71 start-page: 109 issue: 2 year: 2014 end-page: 118 ident: 2020.05.16.100057v4.5 article-title: Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder publication-title: JAMA psychiatry – volume: 12 start-page: 525 year: 2018 ident: 2020.05.16.100057v4.15 article-title: Classification and prediction of brain disorders using functional connectivity: promising but challenging publication-title: Frontiers in neuroscience – year: 2018 ident: 2020.05.16.100057v4.2 article-title: Sanity checks for saliency maps publication-title: Advances in Neural Information Processing Systems – volume: 4 start-page: 27 issue: 1 year: 2019 end-page: 38 ident: 2020.05.16.100057v4.8 article-title: Use of an individuallevel approach to identify cortical connectivity biomarkers in obsessive-compulsive disorder publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging – year: 2018 ident: 2020.05.16.100057v4.11 article-title: Towards sparse hierarchical graph classifiers publication-title: arXiv preprint – start-page: 86 year: 2019 end-page: 98 ident: 2020.05.16.100057v4.24 publication-title: International Conference on Information Processing in Medical Imaging – year: 2018 ident: 2020.05.16.100057v4.55 article-title: Graph attention networks publication-title: ICLR – year: 2019 ident: 2020.05.16.100057v4.59 article-title: Decoding and mapping task states of the human brain via deep learning publication-title: Human Brain Mapping – start-page: 593 year: 2018 end-page: 607 ident: 2020.05.16.100057v4.51 publication-title: European Semantic Web Conference – start-page: 485 year: 2019 end-page: 493 ident: 2020.05.16.100057v4.37 publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 62 start-page: 103 year: 2011 end-page: 134 ident: 2020.05.16.100057v4.42 article-title: The neural bases of social cognition and story comprehension publication-title: Annual review of psychology – volume: 11317 start-page: 1131722 year: 2020 ident: 2020.05.16.100057v4.4 publication-title: Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging – volume: 9 start-page: 1 issue: 1 year: 2018 end-page: 13 ident: 2020.05.16.100057v4.25 article-title: Task-induced brain state ma-nipulation improves prediction of individual traits publication-title: Nature communications – volume: 431 start-page: 29 year: 2015 end-page: 45 ident: 2020.05.16.100057v4.40 article-title: Comparison of communities detection algorithms for multiplex publication-title: Physica A: Statistical Mechanics and its Applications – year: 2020 ident: 2020.05.16.100057v4.10 article-title: A note on over-smoothing for graph neural networks publication-title: arXiv preprint – year: 2017 ident: 2020.05.16.100057v4.13 article-title: Learning neural markers of schizophrenia disorder using recurrent neural networks publication-title: arXiv preprint – volume: 201 start-page: 116038 year: 2019 ident: 2020.05.16.100057v4.22 article-title: Combining multiple connectomes improves predictive modeling of phenotypic measures publication-title: Neuroimage – year: 2008 ident: 2020.05.16.100057v4.7 article-title: Memory in autism publication-title: Citeseer – start-page: 772 year: 2019 end-page: 782 ident: 2020.05.16.100057v4.61 article-title: Groupinn: Grouping-based interpretable neural network for classification of limited, noisy brain data – start-page: 9211 year: 2019 end-page: 9219 ident: 2020.05.16.100057v4.23 article-title: Exploiting edge features for graph neural networks – volume: 75 start-page: 223 issue: 3 year: 2014 end-page: 230 ident: 2020.05.16.100057v4.29 article-title: Brain organization underlying superior mathematical abilities in children with autism publication-title: Biological Psychiatry – volume: 139 start-page: 74 year: 2016 end-page: 93 ident: 2020.05.16.100057v4.41 article-title: Reliable individual-level neural markers of high-level language processing: A necessary precursor for relating neural variability to behavioral and genetic variability publication-title: Neuroimage – volume: 17 start-page: 395 issue: 4 year: 2007 end-page: 416 ident: 2020.05.16.100057v4.57 article-title: A tutorial on spectral clustering publication-title: Statistics and computing – year: 2019 ident: 2020.05.16.100057v4.21 article-title: Graph u-nets publication-title: arXiv preprint – start-page: 799 year: 2019 end-page: 807 ident: 2020.05.16.100057v4.62 publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 15 start-page: 203 issue: 2 year: 2002 end-page: 209 ident: 2020.05.16.100057v4.60 article-title: Quantitative analysis of mri signal abnormalities of brain white matter with high reproducibility and accuracy publication-title: Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine – start-page: 2381 year: 2015 end-page: 2383 ident: 2020.05.16.100057v4.44 publication-title: 2015 23nd Signal Processing and Communications Applications Conference (SIU) – volume: 49 start-page: 3452 issue: 4 year: 2010 end-page: 3462 ident: 2020.05.16.100057v4.49 article-title: Social cognition and the anterior temporal lobes publication-title: Neuroimage – volume: 13 start-page: 1 issue: 3 year: 2020 end-page: 10 ident: 2020.05.16.100057v4.6 article-title: Deeptriage: interpretable and individualised biomarker scores using attention mechanism for the classification of breast cancer sub-types publication-title: BMC medical genomics – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 2020.05.16.100057v4.17 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nature neuroscience – volume: 107 start-page: 21223 issue: 49 year: 2010 end-page: 21228 ident: 2020.05.16.100057v4.31 article-title: Neural signatures of autism publication-title: Proceedings of the National Academy of Sciences – volume: 4 start-page: 16 year: 2010 ident: 2020.05.16.100057v4.58 article-title: Graph-based network analysis of resting-state functional mri publication-title: Frontiers in systems neuroscience – volume: 12 start-page: 506 issue: 3 year: 2017 ident: 2020.05.16.100057v4.52 article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity publication-title: nature protocols – start-page: 246 year: 2016 end-page: 253 ident: 2020.05.16.100057v4.63 publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 1 year: 2020 end-page: 12 ident: 2020.05.16.100057v4.28 article-title: The female autism phenotype and camouflaging: A narrative review publication-title: Review Journal of Autism and Developmental Disorders – volume: 48 start-page: 117 year: 2018 end-page: 130 ident: 2020.05.16.100057v4.47 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease publication-title: Medical image analysis – volume: 192 start-page: 115 year: 2019 end-page: 134 ident: 2020.05.16.100057v4.12 article-title: Benchmarking functional connectome-based predictive models for resting-state fmri publication-title: Neuroimage – volume: 146 start-page: 1038 year: 2017 end-page: 1049 ident: 2020.05.16.100057v4.33 article-title: Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: NeuroImage – year: 2020 ident: 2020.05.16.100057v4.43 article-title: Evaluating adversarial robustness for deep neural network interpretability using fmri decoding publication-title: arXiv preprint – start-page: 528 year: 2020 end-page: 538 ident: 2020.05.16.100057v4.19 publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 101709 year: 2020 ident: 2020.05.16.100057v4.30 article-title: Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis publication-title: Medical Image Analysis – start-page: 625 year: 2020 end-page: 635 ident: 2020.05.16.100057v4.39 publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2016 ident: 2020.05.16.100057v4.36 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv preprint – volume: 41 start-page: 11 issue: 1 year: 2004 end-page: 25 ident: 2020.05.16.100057v4.53 article-title: The neural basis of hyperlexic reading: An fmri case study publication-title: Neuron – start-page: 206 year: 2018 end-page: 214 ident: 2020.05.16.100057v4.38 publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2008 ident: 2020.05.16.100057v4.9 article-title: The brain’s default network: anatomy, function, and relevance to disease – volume: 13 start-page: 585 year: 2019 ident: 2020.05.16.100057v4.32 article-title: Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review publication-title: frontiers in Neuroscience – volume: 223 start-page: 117293 year: 2020 ident: 2020.05.16.100057v4.3 article-title: Deep learning identifies morphological determinants of sex differences in the pre-adolescent brain publication-title: NeuroImage – start-page: 640 year: 2020 end-page: 647 ident: 2020.05.16.100057v4.27 article-title: Robustness in machine learning explanations: does it matter? – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: 2020.05.16.100057v4.54 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage – year: 2020 ident: 2020.05.16.100057v4.35 article-title: Understanding graph isomorphism network for brain mr functional connectivity analysis publication-title: arXiv preprint – volume: 22 start-page: 101747 year: 2019 ident: 2020.05.16.100057v4.50 article-title: Group ica for identifying biomarkers in schizophrenia:’adaptive’ networks via spatially constrained ica show more sensitivity to group differences than spatio-temporal regression publication-title: NeuroImage: Clinical – volume: 35 start-page: 1866 issue: 8 year: 2016 end-page: 1882 ident: 2020.05.16.100057v4.56 article-title: Bayesian community detection in the space of group-level functional differences publication-title: IEEE transactions on medical imaging |
SSID | ssj0002961374 |
Score | 1.6257141 |
SecondaryResourceType | preprint |
Snippet | Abstract Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging... Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Autism Biomarkers Brain mapping Cognitive ability Functional magnetic resonance imaging Image processing Medical imaging Neural networks Neuroimaging Neuroscience |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aInjzidUqEbyubNIkTTz6aKvQImKhtyXZTqBQ2lKr6L93Znergh48LSxsFr5kXpmPbxi7ENJocDpPrFEmUVHJxLWcSEjpCCNUiGkhVt0fmN5QPYz06MeoL6JVhsl8-T55K_r4RNhG71sadyqoVk9JalMY6u9jsrHJ6nikJE1t6Iwuv65XpMM41VZVH_PPLzHjrf70yw8XwaWzw-qPfgHLXbYBsz22VU6H_Nhnt9c0vqE7GFzxb2pgmAIv3vMuSU1zEtfwU3wUbG6OKSiP_ad7vhYbOWDDzt3zTS-phh4gPKSakLd8bsc6BrQkKyKWGzmMRdAIpfAuUHgF0DKPXkKqoW2VQ99pdFDgwQfTOmS12XwGR4yDBh-tDWO0WuW9clibeKeCVQqzlpg32HkFQLYopS0yAilLdSZMVoLUYM01NFl1ul8y0vCzErdUHv9jiRO2LYkIQlcX7SarrZavcIqRfBXOij37BExjlc4 priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis |
URI | https://www.proquest.com/docview/2403823912 https://www.biorxiv.org/content/10.1101/2020.05.16.100057 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62peDNJz5qWcHr6m42iYkXodqHQpdSLPS2JLsJFEpb2yr6753ZpvYgeFrIQg5fZr7JTIZvCLmJqeBW8TyUgomQOUZDlag4RKUjiFDGRaVYdT8VvRF7HfOxL7itfFvllhNLoi7mOdbI71A3TlLYhj4u3kOcGoWvq36ERoXUgIIl2Hmt1U4Hw98qC1UQrkopZioUuD6NuH_aBFPExD9C3c5YYLNAhCGqbibz5dfk8w81l_Gmc0BqA72wy0OyZ2dHpL4ZGPl9TJ5bONGhm6YPwa5b0ExtUK4HXVSfDlBvQ0_hUzZ4B3ArDVx_-BJs9UdOyKjTfnvqhX4OAiCGQgp5onNZcGfAuWTsIAPJbREbDujGWhmMuNZymjtNbcTtvWQK6FRww6y22ojklFRn85k9I4HlVjspTQGOzLRmCtIVrZiRjMFFxuXn5NoDkC02ahcZgpRFPItFtgHpnDS20GTe4FfZ7ngu_v99SfZxR6R_mjRIdb38sFcQ19em6Q-vSSqd8e0PfQ2eLQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED90Q_TNT5xOjaCPxTZLYiOIoE43dUVEwbeatCkIss1tfuyf8m_0rmvdg-CbT4UUruFyvd_lcvkdwF7AlXRaJl6ohPJEJrinGzrwiOkIEcpmfk5W3YlU60FcPcrHGfgq78JQWWXpE3NHnfYSypEfEG9cyFEMP-m_etQ1ik5XyxYaE7O4duMP3LINj9vnuL77nF80789aXtFVAL9PtARJwyRhKjOLphoGGcbziUsDK3GugdGW8Ms5yZPMcOdLdxgKjc5JSSucccaqBsqdhaqgG60VqJ42o9u7n6wO1wiPOfUzVxpdDfdlcZSKpk-JBp94QgNFxQk-QeKcfe4NPp_ff0FBjm8Xi1C9NX03WIIZ112GuUmDyvEKnJ9SB4nLKDpi0-pE--JYPs4uie2aEb-HecFHXlDOMApmWeeuzUq-k1V4-BcNrUGl2-u6dWBOOpOFoU3RcQhjhMbtkdHChkJg4JQlNdgtFBD3J-waMSkp9mUcqHiipBrUS9XExQ82jKfmsPH36x2Yb913buKbdnS9CQsknaCHN-pQGQ3e3BbGFCO7XSwkg6f_tp1vnq3bTw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6oXjzE6dTI3jtaLIkaz3q7DZ1ZYiD3ULSJTAY25hT9L_3vbZTQQ-eCj2k8Mv7fq-_R8gV40q6WGZBpIQKhBc8iJsxC5DpCDyU9WFOVt1PVXco7kdy9ONfGByrtJP58n3ylvfxcWAbrG-h3CHDXD1Eqk2msL8PwUYDy9SNxdhvkirIFkPJTkaNrzoLj8FhtUTZ0PzzCAh9y0_-Msi5l0l2SXVgFm65RzbcbJ9sFWsiPw5I-wb3OHTS9Jp-zwjaqaP5e9pBzmmKLBtmCo98rJtCLEp9_6lH16wjh2SY3D3fdoNy-wHghPQJWdNk0Vh6CyoVMQ95R-bGzErAlJnYop91TvLMG-5C6VqRiMGIKmmFM85Y1Twildl85o4JddIZH0V2DOorjBExJCkmFjYSAsIXn9XIZQmAXhQcFxpB0qHUTOkCpBqpr6HRpZi_aCTzizjcLT_5xxEXZHvQTvRjL304JTsch0OwnNGqk8pq-erOwLuv7Hl-fZ_ygJu2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BrainGNN%3A+Interpretable+Brain+Graph+Neural+Network+for+fMRI+Analysis&rft.jtitle=bioRxiv&rft.au=Li%2C+Xiaoxiao&rft.au=Zhou%2C+Yuan&rft.au=Gao%2C+Siyuan&rft.au=Dvornek%2C+Nicha&rft.date=2020-10-23&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.05.16.100057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |