Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets
Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparabl...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
05.09.2022
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness. Competing Interest Statement The authors have declared no competing interest. |
---|---|
AbstractList | Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses.
We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI.
Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality.
We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN’s subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness. Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness. Competing Interest Statement The authors have declared no competing interest. |
Author | Deramus, Thomas Patrick Rachakonda, Srinivas Duda, Marlena Liu, Sha Zhi, Dongmei Fu, Zening Belger, Aysenil Adali, Tulay Potkin, Steven G Ishizuka, Koko Preda, Adrian Du, Yuhui Calhoun, Vince Osuch, Elizabeth A d, Judith Zhuo, Chuanjun Xu, Yong Pearlson, Godfrey D Salman, Mustafa Yang, Kun Liu, Jingyu Sawa, Akira Iraji, Armin Abbott, Christopher Faghiri, Ashkan Sui, Jing Chen, Jaiyu Mueller, Bryon A Theodorus Gm Van Erp Adhikari, Bhim M Mathalon, Daniel H Kochunov, Peter Theberge, Jean Bustillo, Juan R Turner, Jessica A Hutchison, Kent |
Author_xml | – sequence: 1 givenname: Armin surname: Iraji fullname: Iraji, Armin – sequence: 2 givenname: Zening surname: Fu fullname: Fu, Zening – sequence: 3 givenname: Ashkan surname: Faghiri fullname: Faghiri, Ashkan – sequence: 4 givenname: Marlena surname: Duda fullname: Duda, Marlena – sequence: 5 givenname: Jaiyu surname: Chen fullname: Chen, Jaiyu – sequence: 6 givenname: Srinivas surname: Rachakonda fullname: Rachakonda, Srinivas – sequence: 7 givenname: Thomas surname: Deramus middlename: Patrick fullname: Deramus, Thomas Patrick – sequence: 8 givenname: Peter surname: Kochunov fullname: Kochunov, Peter – sequence: 9 givenname: Bhim surname: Adhikari middlename: M fullname: Adhikari, Bhim M – sequence: 10 givenname: Aysenil surname: Belger fullname: Belger, Aysenil – sequence: 11 givenname: Judith surname: d fullname: d, Judith – sequence: 12 givenname: Daniel surname: Mathalon middlename: H fullname: Mathalon, Daniel H – sequence: 13 givenname: Godfrey surname: Pearlson middlename: D fullname: Pearlson, Godfrey D – sequence: 14 givenname: Steven surname: Potkin middlename: G fullname: Potkin, Steven G – sequence: 15 givenname: Adrian surname: Preda fullname: Preda, Adrian – sequence: 16 givenname: Jessica surname: Turner middlename: A fullname: Turner, Jessica A – sequence: 17 fullname: Theodorus Gm Van Erp – sequence: 18 givenname: Juan surname: Bustillo middlename: R fullname: Bustillo, Juan R – sequence: 19 givenname: Kun surname: Yang fullname: Yang, Kun – sequence: 20 givenname: Koko surname: Ishizuka fullname: Ishizuka, Koko – sequence: 21 givenname: Akira surname: Sawa fullname: Sawa, Akira – sequence: 22 givenname: Kent surname: Hutchison fullname: Hutchison, Kent – sequence: 23 givenname: Elizabeth surname: Osuch middlename: A fullname: Osuch, Elizabeth A – sequence: 24 givenname: Jean surname: Theberge fullname: Theberge, Jean – sequence: 25 givenname: Christopher surname: Abbott fullname: Abbott, Christopher – sequence: 26 givenname: Bryon surname: Mueller middlename: A fullname: Mueller, Bryon A – sequence: 27 givenname: Dongmei surname: Zhi fullname: Zhi, Dongmei – sequence: 28 givenname: Chuanjun surname: Zhuo fullname: Zhuo, Chuanjun – sequence: 29 givenname: Sha surname: Liu fullname: Liu, Sha – sequence: 30 givenname: Yong surname: Xu fullname: Xu, Yong – sequence: 31 givenname: Mustafa surname: Salman fullname: Salman, Mustafa – sequence: 32 givenname: Jingyu surname: Liu fullname: Liu, Jingyu – sequence: 33 givenname: Yuhui surname: Du fullname: Du, Yuhui – sequence: 34 givenname: Jing surname: Sui fullname: Sui, Jing – sequence: 35 givenname: Tulay surname: Adali fullname: Adali, Tulay – sequence: 36 givenname: Vince surname: Calhoun fullname: Calhoun, Vince |
BookMark | eNpNUF1LwzAUDTLBOfcDfAv4IkjrzUfb5FHq12BT2PS5pG0q2Wo6m3S6f2_GfBAu94N7zuFwztHIdlYjdEkgJgTILQVKY5AxsDiBlIvsBI1pKmkkKCSjf_sZmjq3BgAqU8IyPkYmV0HMVKrFytZ4qbdtOMpW48XQehOtwkfjmfW9sc5UOO-s1ZU3O-P3-EX7767fOGwsJgCbm8B33tiPaOWV17hZLGf4XnnltHcX6LRRrdPTvzlB748Pb_lzNH99muV386gkwLNDT3mZZJyGIrSqiKACEpU0KaSCJyIruSZKyobxuq6krtOGNkxopokUQrAJuj7qlqbrf8yu2PbmU_X74pBSAbIAVhxTCtCrI3Tbd19DsF6su6G3wV1BM5ACiEgk-wUxr2cH |
ContentType | Paper |
Copyright | 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2022.09.03.506487 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2022.09.03.506487v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1047-b1064b574274212cc182805a5f60684587b4e1a99f34ddc9ed6f2f38e3e198883 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:52:58 EST 2025 Fri Jul 25 09:12:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Intrinsic Connectivity Networks (ICNs) Functional Templates Functional Connectivity (FC) Independent Component Analysis (ICA) |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1047-b1064b574274212cc182805a5f60684587b4e1a99f34ddc9ed6f2f38e3e198883 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0002-0079-8177 0000-0002-0605-593X 0000-0001-9058-0747 0000-0002-5774-2297 0000-0001-6837-5966 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2022.09.03.506487 |
PQID | 2709801859 |
PQPubID | 2050091 |
PageCount | 47 |
ParticipantIDs | biorxiv_primary_2022_09_03_506487 proquest_journals_2709801859 |
PublicationCentury | 2000 |
PublicationDate | 20220905 |
PublicationDateYYYYMMDD | 2022-09-05 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220905 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Di Martino, O’Connor, Chen, Alaerts, Anderson, Assaf, Balsters, Baxter, Beggiato, Bernaerts, Blanken, Bookheimer, Braden, Byrge, Castellanos, Dapretto, Delorme, Fair, Fishman, Fitzgerald, Gallagher, Keehn, Kennedy, Lainhart, Luna, Mostofsky, Müller, Nebel, Nigg, O’Hearn, Solomon, Toro, Vaidya, Wenderoth, White, Craddock, Lord, Leventhal, Milham (2022.09.03.506487v1.17) 2017; 4 Sui, Adali, Pearlson, Clark, Calhoun (2022.09.03.506487v1.59) 2009; 30 Durieux, Wilderjans (2022.09.03.506487v1.25) 2019; 46 DeRamus, Iraji, Fu, Silva, Stephen, Wilson, Wang, Du, Liu, Calhoun (2022.09.03.506487v1.16) 2021 Du, Ma, Fu, Calhoun, Adali (2022.09.03.506487v1.19) 2014 Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt-Drazen, Gratton, Sun, Hampton, Coalson, Nguyen, McDermott, Shimony, Snyder, Schlaggar, Petersen, Nelson, Dosenbach (2022.09.03.506487v1.31) 2017b; 95 Haak, Beckmann (2022.09.03.506487v1.32) 2020; 220 Krienen, Yeo, Buckner (2022.09.03.506487v1.46) 2014; 369 Ma, Correa, Li, Eichele, Calhoun, Adali (2022.09.03.506487v1.52) 2011; 58 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni, Fischl, Liu, Buckner (2022.09.03.506487v1.65) 2011; 106 Calhoun, Adali (2022.09.03.506487v1.8) 2012; 5 Meng, Iraji, Fu, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, van Erp, Sui, Calhoun (2022.09.03.506487v1.54) 2021 Du, Fu, Sui, Gao, Xing, Lin, Salman, Abrol, Rahaman, Chen, Hong, Kochunov, Osuch, Calhoun (2022.09.03.506487v1.22) 2020; 28 Keator, van Erp, Turner, Glover, Mueller, Liu, Voyvodic, Rasmussen, Calhoun, Lee, Toga, McEwen, Ford, Mathalon, Diaz, O’Leary, Jeremy Bockholt, Gadde, Preda, Wible, Stern, Belger, McCarthy, Ozyurt, Potkin (2022.09.03.506487v1.45) 2016; 124 Iraji, Miller, Adali, Calhoun (2022.09.03.506487v1.41) 2020; 24 Allen, Erhardt, Wei, Eichele, Calhoun (2022.09.03.506487v1.2) 2012; 59 Iraji, Deramus, Lewis, Yaesoubi, Stephen, Erhardt, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (2022.09.03.506487v1.36) 2019a; 40 Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich, Barch, Uğurbil, Van Essen (2022.09.03.506487v1.58) 2013; 17 Damoiseaux, Beckmann, Arigita, Barkhof, Scheltens, Stam, Smith, Rombouts (2022.09.03.506487v1.15) 2008; 18 Iraji, Fu, Damaraju, DeRamus, Lewis, Bustillo, Lenroot, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (2022.09.03.506487v1.40) 2019c; 40 LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko, Raichle, Cruchaga, Marcus (2022.09.03.506487v1.47) 2019 Fan, Zhong, Qin, Li, Su, Zeng, Hu, Shen (2022.09.03.506487v1.28) 2021; 42 Iraji, Faghiri, Lewis, Fu, DeRamus, Qi, Rachakonda, Du, Calhoun (2022.09.03.506487v1.38) 2019b Littlejohns, Holliday, Gibson, Garratt, Oesingmann, Alfaro-Almagro, Bell, Boultwood, Collins, Conroy, Crabtree, Doherty, Frangi, Harvey, Leeson, Miller, Neubauer, Petersen, Sellors, Sheard, Smith, Sudlow, Matthews, Allen (2022.09.03.506487v1.50) 2020; 11 Iraji, Calhoun, Wiseman, Davoodi-Bojd, Avanaki, Haacke, Kou (2022.09.03.506487v1.35) 2016; 134 Bell, Sejnowski (2022.09.03.506487v1.3) 1995; 7 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (2022.09.03.506487v1.29) 2015; 18 Calhoun, Adali, Pearlson, Pekar (2022.09.03.506487v1.10) 2001b; 14 Gordon, Laumann, Adeyemo, Petersen (2022.09.03.506487v1.30) 2017a; 27 (2022.09.03.506487v1.33) 2012; 6 Calhoun, Kiehl, Pearlson (2022.09.03.506487v1.12) 2008; 29 Calhoun, Wager, Krishnan, Rosch, Seymour, Nebel, Mostofsky, Nyalakanai, Kiehl (2022.09.03.506487v1.14) 2017; 38 Wu, Caprihan, Calhoun (2022.09.03.506487v1.64) 2021; 239 Salehi, Greene, Karbasi, Shen, Scheinost, Constable (2022.09.03.506487v1.57) 2020; 208 Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner, Eichele, Adelsheim, Bryan, Bustillo, Clark, Feldstein Ewing, Filbey, Ford, Hutchison, Jung, Kiehl, Kodituwakku, Komesu, Mayer, Pearlson, Phillips, Sadek, Stevens, Teuscher, Thoma, Calhoun (2022.09.03.506487v1.1) 2011; 5 Braga, Buckner (2022.09.03.506487v1.7) 2017; 95 Calhoun, Adali, McGinty, Pekar, Watson, Pearlson (2022.09.03.506487v1.9) 2001a; 14 Luo, Greene, Constable (2022.09.03.506487v1.51) 2021; 240 Calhoun, de Lacy (2022.09.03.506487v1.11) 2017; 27 Du, He, Calhoun (2022.09.03.506487v1.23) 2021 Lewandowski, Bouix, Ongur, Shenton (2022.09.03.506487v1.48) 2020; 5 Lin, Liu, Zheng, Liang, Calhoun (2022.09.03.506487v1.49) 2010; 31 Boukhdhir, Zhang, Mignotte, Bellec (2022.09.03.506487v1.6) 2021; 5 Bhinge, Long, Calhoun, Adali (2022.09.03.506487v1.4) 2019; 13 Esposito, Scarabino, Hyvarinen, Himberg, Formisano, Comani, Tedeschi, Goebel, Seifritz, Di Salle (2022.09.03.506487v1.27) 2005; 25 Du, Allen, He, Sui, Wu, Calhoun (2022.09.03.506487v1.20) 2016; 37 Holmes, Hollinshead, O’Keefe, Petrov, Fariello, Wald, Fischl, Rosen, Mair, Roffman, Smoller, Buckner (2022.09.03.506487v1.34) 2015; 2 Murphy, Bodurka, Bandettini (2022.09.03.506487v1.55) 2007; 34 Du, Fan (2022.09.03.506487v1.21) 2013; 69 Duda, Iraji, Ford, Lim, Mathalon, Mueller, Potkin, Preda, Van Erp, Calhoun (2022.09.03.506487v1.24) 2022 Mejia, Nebel, Wang, Caffo, Guo (2022.09.03.506487v1.53) 2020; 115 Calhoun, Liu, Adali (2022.09.03.506487v1.13) 2009; 45 Jernigan, Brown (2022.09.03.506487v1.43) 2018; 32 Tamminga, Ivleva, Keshavan, Pearlson, Clementz, Witte, Morris, Bishop, Thaker, Sweeney (2022.09.03.506487v1.60) 2013; 170 Van De Ville, Farouj, Preti, Liégeois, Amico (2022.09.03.506487v1.61) 2021; 7 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (2022.09.03.506487v1.62) 2013; 80 Iraji, Faghiri, Fu, Rachakonda, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, van Erp, Calhoun (2022.09.03.506487v1.37) 2022; 6 Wang, Buckner, Fox, Holt, Holmes, Stoecklein, Langs, Pan, Qian, Li, Baker, Stufflebeam, Wang, Wang, Hong, Liu (2022.09.03.506487v1.63) 2015; 18 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (2022.09.03.506487v1.18) 2014; 19 Birn, Molloy, Patriat, Parker, Meier, Kirk, Nair, Meyerand, Prabhakaran (2022.09.03.506487v1.5) 2013; 83 Joliot, Jobard, Naveau, Delcroix, Petit, Zago, Crivello, Mellet, Mazoyer, Tzourio-Mazoyer (2022.09.03.506487v1.44) 2015; 254 Iraji, Faghiri, Lewis, Fu, Rachakonda, Calhoun (2022.09.03.506487v1.39) 2021; 16 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (2022.09.03.506487v1.42) 2008; 27 Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (2022.09.03.506487v1.26) 2011; 32 Rachakonda, Silva, Liu, Calhoun (2022.09.03.506487v1.56) 2016; 10 |
References_xml | – volume: 239 start-page: 118310 year: 2021 ident: 2022.09.03.506487v1.64 article-title: Tracking spatial dynamics of functional connectivity during a task publication-title: Neuroimage – year: 2019 ident: 2022.09.03.506487v1.47 article-title: OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease publication-title: medRxiv, 2019.2012.2013.19014902 – start-page: 2084 year: 2014 end-page: 2088 ident: 2022.09.03.506487v1.19 article-title: A novel approach for assessing reliability of ICA for FMRI analysis publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 14 start-page: 140 year: 2001b end-page: 151 ident: 2022.09.03.506487v1.10 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum Brain Mapp – volume: 10 start-page: 17 year: 2016 ident: 2022.09.03.506487v1.56 article-title: Memory Efficient PCA Methods for Large Group ICA publication-title: Front Neurosci – start-page: 3263 year: 2021 end-page: 3266 ident: 2022.09.03.506487v1.23 article-title: SMART (splitting-merging assisted reliable) Independent Component Analysis for Brain Functional Networks publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: 2022.09.03.506487v1.29 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat Neurosci – volume: 32 start-page: 1 year: 2018 end-page: 3 ident: 2022.09.03.506487v1.43 article-title: Introduction publication-title: Developmental Cognitive Neuroscience – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: 2022.09.03.506487v1.18 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol Psychiatry – volume: 27 start-page: 561 year: 2017 end-page: 579 ident: 2022.09.03.506487v1.11 article-title: Ten Key Observations on the Analysis of Resting-state Functional MR Imaging Data Using Independent Component Analysis publication-title: Neuroimaging Clin N Am – volume: 134 start-page: 494 year: 2016 end-page: 507 ident: 2022.09.03.506487v1.35 article-title: The connectivity domain: Analyzing resting state fMRI data using feature-based data-driven and model-based methods publication-title: Neuroimage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: 2022.09.03.506487v1.62 article-title: The WU-Minn Human Connectome Project: an overview publication-title: Neuroimage – volume: 25 start-page: 193 year: 2005 end-page: 205 ident: 2022.09.03.506487v1.27 article-title: Independent component analysis of fMRI group studies by self-organizing clustering publication-title: Neuroimage – volume: 2 start-page: 150031 year: 2015 ident: 2022.09.03.506487v1.34 article-title: Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures publication-title: Sci Data – volume: 59 start-page: 4141 year: 2012 end-page: 4159 ident: 2022.09.03.506487v1.2 article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study publication-title: Neuroimage – volume: 5 year: 2020 ident: 2022.09.03.506487v1.48 article-title: Neuroprogression across the Early Course of Psychosis publication-title: J Psychiatr Brain Sci – volume: 13 start-page: 1006 year: 2019 ident: 2022.09.03.506487v1.4 article-title: Spatial Dynamic Functional Connectivity Analysis Identifies Distinctive Biomarkers in Schizophrenia publication-title: Front Neurosci – volume: 4 start-page: 170010 year: 2017 ident: 2022.09.03.506487v1.17 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci Data – volume: 58 start-page: 3406 year: 2011 end-page: 3417 ident: 2022.09.03.506487v1.52 article-title: Automatic identification of functional clusters in FMRI data using spatial dependence publication-title: IEEE Trans Biomed Eng – start-page: 111380I year: 2019b ident: 2022.09.03.506487v1.38 article-title: Ultra-high-order ICA: an exploration of highly resolved data-driven representation of intrinsic connectivity networks (sparse ICNs) publication-title: Wavelets and Sparsity XVIII. International Society for Optics and Photonics – volume: 16 start-page: 849 year: 2021 end-page: 874 ident: 2022.09.03.506487v1.39 article-title: Tools of the trade: estimating time-varying connectivity patterns from fMRI data publication-title: Soc Cogn Affect Neurosci – volume: 38 start-page: 5331 year: 2017 end-page: 5342 ident: 2022.09.03.506487v1.14 article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses publication-title: Hum Brain Mapp – volume: 69 start-page: 157 year: 2013 end-page: 197 ident: 2022.09.03.506487v1.21 article-title: Group information guided ICA for fMRI data analysis publication-title: Neuroimage – year: 2022 ident: 2022.09.03.506487v1.24 article-title: Spatially constrained ICA enables robust detection of schizophrenia from very short resting-state fMRI data publication-title: medRxiv, 2022.2003.2017.22271783 – volume: 40 start-page: 3058 year: 2019a end-page: 3077 ident: 2022.09.03.506487v1.36 article-title: The spatial chronnectome reveals a dynamic interplay between functional segregation and integration publication-title: Hum Brain Mapp – year: 2021 ident: 2022.09.03.506487v1.54 article-title: Multi-model Order ICA: A Data-driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales publication-title: Brain Connect – volume: 24 start-page: 135 year: 2020 end-page: 149 ident: 2022.09.03.506487v1.41 article-title: Space: A Missing Piece of the Dynamic Puzzle publication-title: Trends Cogn Sci – volume: 18 start-page: 1853 year: 2015 end-page: 1860 ident: 2022.09.03.506487v1.63 article-title: Parcellating cortical functional networks in individuals publication-title: Nat Neurosci – volume: 37 start-page: 1005 year: 2016 end-page: 1025 ident: 2022.09.03.506487v1.20 article-title: Artifact removal in the context of group ICA: A comparison of single-subject and group approaches publication-title: Hum Brain Mapp – volume: 30 start-page: 2953 year: 2009 end-page: 2970 ident: 2022.09.03.506487v1.59 article-title: A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework publication-title: Hum Brain Mapp – volume: 5 start-page: 28 year: 2021 end-page: 55 ident: 2022.09.03.506487v1.6 article-title: Unraveling reproducible dynamic states of individual brain functional parcellation publication-title: Netw Neurosci – volume: 6 start-page: 62 year: 2012 ident: 2022.09.03.506487v1.33 article-title: The ADHD-200 Consortium: A Model to Advance the Translational Potential of Neuroimaging in Clinical Neuroscience publication-title: Front Syst Neurosci – volume: 28 start-page: 102375 year: 2020 ident: 2022.09.03.506487v1.22 article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders publication-title: Neuroimage Clin – volume: 45 start-page: S163 year: 2009 end-page: 172 ident: 2022.09.03.506487v1.13 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: Neuroimage – volume: 32 start-page: 2075 year: 2011 end-page: 2095 ident: 2022.09.03.506487v1.26 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Hum Brain Mapp – volume: 11 start-page: 2624 year: 2020 ident: 2022.09.03.506487v1.50 article-title: The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions publication-title: Nat Commun – volume: 42 start-page: 1416 year: 2021 end-page: 1433 ident: 2022.09.03.506487v1.28 article-title: Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics publication-title: Hum Brain Mapp – volume: 40 start-page: 1969 year: 2019c end-page: 1986 ident: 2022.09.03.506487v1.40 article-title: Spatial dynamics within and between brain functional domains: A hierarchical approach to study time-varying brain function publication-title: Hum Brain Mapp – volume: 14 start-page: 1080 year: 2001a end-page: 1088 ident: 2022.09.03.506487v1.9 article-title: fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis publication-title: Neuroimage – start-page: 1 year: 2021 end-page: 6 ident: 2022.09.03.506487v1.16 article-title: Stability of functional network connectivity (FNC) values across multiple spatial normalization pipelines in spatially constrained independent component analysis publication-title: 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE) – volume: 5 start-page: 2 year: 2011 ident: 2022.09.03.506487v1.1 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front Syst Neurosci – volume: 18 start-page: 1856 year: 2008 end-page: 1864 ident: 2022.09.03.506487v1.15 article-title: Reduced resting-state brain activity in the “default network” in normal aging publication-title: Cereb Cortex – volume: 95 start-page: 791 year: 2017b end-page: 807 ident: 2022.09.03.506487v1.31 article-title: Precision Functional Mapping of Individual Human Brains publication-title: Neuron – volume: 6 start-page: 357 year: 2022 end-page: 381 ident: 2022.09.03.506487v1.37 article-title: Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia publication-title: Network Neuroscience – volume: 7 start-page: eabj0751 year: 2021 ident: 2022.09.03.506487v1.61 article-title: When makes you unique: Temporality of the human brain fingerprint publication-title: Sci Adv – volume: 240 start-page: 118332 year: 2021 ident: 2022.09.03.506487v1.51 article-title: Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain publication-title: Neuroimage – volume: 170 start-page: 1263 year: 2013 end-page: 1274 ident: 2022.09.03.506487v1.60 article-title: Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) publication-title: Am J Psychiatry – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: 2022.09.03.506487v1.65 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J Neurophysiol – volume: 46 start-page: 271 year: 2019 end-page: 311 ident: 2022.09.03.506487v1.25 article-title: Partitioning subjects based on high-dimensional fMRI data: comparison of several clustering methods and studying the influence of ICA data reduction in big data publication-title: Behaviormetrika – volume: 369 year: 2014 ident: 2022.09.03.506487v1.46 article-title: Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 27 start-page: 386 year: 2017a end-page: 399 ident: 2022.09.03.506487v1.30 article-title: Individual Variability of the System-Level Organization of the Human Brain publication-title: Cereb Cortex – volume: 254 start-page: 46 year: 2015 end-page: 59 ident: 2022.09.03.506487v1.44 article-title: AICHA: An atlas of intrinsic connectivity of homotopic areas publication-title: J Neurosci Methods – volume: 208 start-page: 116366 year: 2020 ident: 2022.09.03.506487v1.57 article-title: There is no single functional atlas even for a single individual: Functional parcel definitions change with task publication-title: Neuroimage – volume: 5 start-page: 60 year: 2012 end-page: 73 ident: 2022.09.03.506487v1.8 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev Biomed Eng – volume: 29 start-page: 828 year: 2008 end-page: 838 ident: 2022.09.03.506487v1.12 article-title: Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks publication-title: Hum Brain Mapp – volume: 17 start-page: 666 year: 2013 end-page: 682 ident: 2022.09.03.506487v1.58 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cogn Sci – volume: 124 start-page: 1074 year: 2016 end-page: 1079 ident: 2022.09.03.506487v1.45 article-title: The Function Biomedical Informatics Research Network Data Repository publication-title: Neuroimage – volume: 95 start-page: 457 year: 2017 end-page: 471 ident: 2022.09.03.506487v1.7 article-title: Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity publication-title: Neuron – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: 2022.09.03.506487v1.42 article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J Magn Reson Imaging – volume: 31 start-page: 1076 year: 2010 end-page: 1088 ident: 2022.09.03.506487v1.49 article-title: Semiblind spatial ICA of fMRI using spatial constraints publication-title: Hum Brain Mapp – volume: 34 start-page: 565 year: 2007 end-page: 574 ident: 2022.09.03.506487v1.55 article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration publication-title: Neuroimage – volume: 220 start-page: 117061 year: 2020 ident: 2022.09.03.506487v1.32 article-title: Understanding brain organisation in the face of functional heterogeneity and functional multiplicity publication-title: Neuroimage – volume: 83 start-page: 550 year: 2013 end-page: 558 ident: 2022.09.03.506487v1.5 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates publication-title: Neuroimage – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: 2022.09.03.506487v1.3 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput – volume: 115 start-page: 1151 year: 2020 end-page: 1177 ident: 2022.09.03.506487v1.53 article-title: Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks using Big Data Population Priors publication-title: J Am Stat Assoc |
SSID | ssj0002961374 |
Score | 1.6670182 |
SecondaryResourceType | preprint |
Snippet | Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Brain mapping Cognitive ability Datasets Functional magnetic resonance imaging Neural networks Neuroimaging Neuroscience Quality control Spatial discrimination |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66y4I3n_gmgjcJpo-0zUnwhSvsIurC3kqeUJTuuq2i_95JmtWD4KG9hAY6k8zkm_kyg9BploskiwwjRSpSAo8iwmpDTJFlwjKrqC-7OBpnd5P0fsqmIeDWBFrl0iZ6Q61nysXIz-OccrCmBeMX8zfiuka57GpoobGK-mCCCwBf_cub8cPjT5Ql5uCufCnmOOOw9WPKQmoTlqID_nGocurqtjla3UBWs8Vn9fHHNHt_c7uO-g9ibhYbaMXUm2jQNYz82kLVlahn_iYjFrXGcHp2MTf5arC_SEueYMTgYd0uqhrEjz2NRXUNIvC4Y3w3uKpxROnLGXzfONYz8SdObEePQ3wtWvBrbbONJrc3z1d3JDRLINJXW4B3lkoGSDd3SV6lADgUlAlmAaIUKStymZpIcG6TVGvFjc5sbJPCJCbiAIOTHdSDPzC7CHOYSeduL0cmlVSDzhLLJY-p0kraeA-dBCmV864kRukkWVJe0qTsJLmHDpfyK8OuaMpfHe7_P3yA1tyMnsvFDlGvXbybI3D-rTwOGv4GTNuq9Q priority: 102 providerName: ProQuest |
Title | Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets |
URI | https://www.proquest.com/docview/2709801859 https://www.biorxiv.org/content/10.1101/2022.09.03.506487 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66IfjmT5zOEcE3qaRt0iavzo1N2BjTwd5K0iZQlG60VfS_95JWEfTBh_ahJSm59HL35b7cIXQdxTKMfM08TiX14Eo9aTLtaR5F0jCTEpd2cTaPJiv6sGbrH6W-LK1S5ZvyPX9zcXxL2IbVt1Fu4lusHrSJSW2qNR7voi78UtRWbRivb7-3VwIBdiqmbRzzz5bg8bZf-rUOO-MyPkDdhdzq8hDt6OII7TXVIT-OUT6UxcYdW8QA9zG4ynaDTb1o7E7Neo_wRuNpUZd5AbLGjrOSNtUg8Lyhd1c4L7BPyPMNtK8sxdlz7iU2s-UU38sajFhdnaDVePQ0nHhtZQRPudQKcI-oYgBrYxvRTVNACZwwyQzgEU4ZjxXVvhTChDTLUqGzyAQm5DrUvgDMG56iDoxAnyEsoKcstorra6pIBhMUGqFEQNIsVSbooatWSsm2yX-RWEkmRCQkTBpJ9lD_S35JqwJVEsREgPnjTJz_o4sLtG-fOfYW66NOXb7qSzD3tRqg7t1ovlgO3AR_AuIapRs |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFR2VdEbT1EoYCQ4IQuvYyf2ASHRh3Zpd1WVVuotOH5IUVF2uwmP_hTfyNjJwgGJWw_JxfJImZnM-wHwOi9Mlk-8pEoYQfGx1ATnqVd5boIMlqWxi_NFPr0Qny7l5Rb82vTCxLLKjUxMgtotbYyRv-MF0yhNldQfVtc0bo2K2dXNCo2eLY79zQ902dr3swOk7xvOjw7P96d02CpAqzSWAN-5qCS6hEXMhlqLFrZi0siAtrwSUhWV8BOjdciEc1Z7lwceMuUzjw66UhnCvQNjkaErM4Lxx8PF6dmfqA7XqB7T6GeeaxQ1nMkhlYqsHwMNfJiqGufExTK-7apern_W3_9RBUm_Hd2D8alZ-fV92PLNA9juF1TePIR63zTL1DlJTOMIWusxxld99SQ17tLPeOLJrOnWdYPkJqlsxvYLKciirzBvSd2QCWNXb_F-G6usabJwSZifzciB6VCPdu0juLgVND6GEX6BfwJEIyRXRNkx8aJiDnkkC7rSnFlnq8B34dWApXLVj-AoIyZLpkuWlT0md2Fvg79y-Avb8i_PPP3_8Uu4Oz2fn5Qns8XxM9iJ0FMdmdyDUbf-5p-j4dFVLwZqE_hy2wz2G3W95WA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvBNOtI2aZvnzbKpG0Md7K0kbQJF6UZbRf97L2kVQR98aF9Cr_TSy3397g6hqyAUfuAq5kRUUAeu1BE6U46KgkBoplNi2y5OZ8F4QW-XbPmjFsbAKmW-Kt_zN5vHN4BtOH0b4Sau8dW9tjGpabUWhQMTph6sM72JuqbZmfmz4-XgO87icVBYIW0Tmn-SANO3feWvA9lqmXgXdedirco9tKGKfbTVjIn8OED5UBQrW7-Iwe_HYDObSJt8UdiWzzqPsKLwpKjLvACmYwteSZuxEHjW4LwrnBfYJeT5Gp6vDNbZsXYm1tOHCR6JGrRZXR2iRXzzNBw77YgER9oeC3APqGTg34YmtZum4C5EhAmmwTGJKItCSZUrONc-zbKUqyzQnvYj5SuXg_PrH6EOfIE6RpgDpSw0EuwqKkkGO-VrLrlH0iyV2uuhy5ZLybpphJEYTiaEJ8RPGk72UP-Lf0krC1XihYSDHowYP_kHiQu0PR_Fyf1kdneKdsyyRXSxPurU5as6AxOglud2jz8BhOupaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canonical+and+Replicable+Multi-Scale+Intrinsic+Connectivity+Networks+in+100k%2B+Resting-State+fMRI+Datasets&rft.jtitle=bioRxiv&rft.au=Iraji%2C+A.&rft.au=Fu%2C+Z.&rft.au=Faghiri%2C+A.&rft.au=Duda%2C+M.&rft.date=2022-09-05&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.09.03.506487&rft.externalDocID=2022.09.03.506487v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |