Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets

Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparabl...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Iraji, Armin, Fu, Zening, Faghiri, Ashkan, Duda, Marlena, Chen, Jaiyu, Rachakonda, Srinivas, Deramus, Thomas Patrick, Kochunov, Peter, Adhikari, Bhim M, Belger, Aysenil, d, Judith, Mathalon, Daniel H, Pearlson, Godfrey D, Potkin, Steven G, Preda, Adrian, Turner, Jessica A, Theodorus Gm Van Erp, Bustillo, Juan R, Yang, Kun, Ishizuka, Koko, Sawa, Akira, Hutchison, Kent, Osuch, Elizabeth A, Theberge, Jean, Abbott, Christopher, Mueller, Bryon A, Zhi, Dongmei, Zhuo, Chuanjun, Liu, Sha, Xu, Yong, Salman, Mustafa, Liu, Jingyu, Du, Yuhui, Sui, Jing, Adali, Tulay, Calhoun, Vince
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 05.09.2022
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness. Competing Interest Statement The authors have declared no competing interest.
AbstractList Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN’s subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness.
Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and characterizing various mental and cognitive states in the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. We posit that using reliable network templates and advanced group-informed network estimation approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject correspondence while maintaining subject-specific information is one potential solution to overcome the aforementioned barrier when considering cross-study comparability, independence of subject-level estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data of over 100k individuals across private and public datasets and selected around 58k that meet quality control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template to data quality. We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-spatially constrained ICA as an example of group-informed network estimation approaches. The results highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less data to achieve a specific level of spatial similarity with their templates (as well as within- and between-subject spatial similarity). Moreover, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, and the positive linear relationship we observed between data length and spatial smoothness (we posit that it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the importance of considering this factor in studies such as those focused on optimizing data length. Finally, the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as we increase the data length, the result approaches the average (also known as static) ICN pattern, and therefore loses its distinctiveness. Competing Interest Statement The authors have declared no competing interest.
Author Deramus, Thomas Patrick
Rachakonda, Srinivas
Duda, Marlena
Liu, Sha
Zhi, Dongmei
Fu, Zening
Belger, Aysenil
Adali, Tulay
Potkin, Steven G
Ishizuka, Koko
Preda, Adrian
Du, Yuhui
Calhoun, Vince
Osuch, Elizabeth A
d, Judith
Zhuo, Chuanjun
Xu, Yong
Pearlson, Godfrey D
Salman, Mustafa
Yang, Kun
Liu, Jingyu
Sawa, Akira
Iraji, Armin
Abbott, Christopher
Faghiri, Ashkan
Sui, Jing
Chen, Jaiyu
Mueller, Bryon A
Theodorus Gm Van Erp
Adhikari, Bhim M
Mathalon, Daniel H
Kochunov, Peter
Theberge, Jean
Bustillo, Juan R
Turner, Jessica A
Hutchison, Kent
Author_xml – sequence: 1
  givenname: Armin
  surname: Iraji
  fullname: Iraji, Armin
– sequence: 2
  givenname: Zening
  surname: Fu
  fullname: Fu, Zening
– sequence: 3
  givenname: Ashkan
  surname: Faghiri
  fullname: Faghiri, Ashkan
– sequence: 4
  givenname: Marlena
  surname: Duda
  fullname: Duda, Marlena
– sequence: 5
  givenname: Jaiyu
  surname: Chen
  fullname: Chen, Jaiyu
– sequence: 6
  givenname: Srinivas
  surname: Rachakonda
  fullname: Rachakonda, Srinivas
– sequence: 7
  givenname: Thomas
  surname: Deramus
  middlename: Patrick
  fullname: Deramus, Thomas Patrick
– sequence: 8
  givenname: Peter
  surname: Kochunov
  fullname: Kochunov, Peter
– sequence: 9
  givenname: Bhim
  surname: Adhikari
  middlename: M
  fullname: Adhikari, Bhim M
– sequence: 10
  givenname: Aysenil
  surname: Belger
  fullname: Belger, Aysenil
– sequence: 11
  givenname: Judith
  surname: d
  fullname: d, Judith
– sequence: 12
  givenname: Daniel
  surname: Mathalon
  middlename: H
  fullname: Mathalon, Daniel H
– sequence: 13
  givenname: Godfrey
  surname: Pearlson
  middlename: D
  fullname: Pearlson, Godfrey D
– sequence: 14
  givenname: Steven
  surname: Potkin
  middlename: G
  fullname: Potkin, Steven G
– sequence: 15
  givenname: Adrian
  surname: Preda
  fullname: Preda, Adrian
– sequence: 16
  givenname: Jessica
  surname: Turner
  middlename: A
  fullname: Turner, Jessica A
– sequence: 17
  fullname: Theodorus Gm Van Erp
– sequence: 18
  givenname: Juan
  surname: Bustillo
  middlename: R
  fullname: Bustillo, Juan R
– sequence: 19
  givenname: Kun
  surname: Yang
  fullname: Yang, Kun
– sequence: 20
  givenname: Koko
  surname: Ishizuka
  fullname: Ishizuka, Koko
– sequence: 21
  givenname: Akira
  surname: Sawa
  fullname: Sawa, Akira
– sequence: 22
  givenname: Kent
  surname: Hutchison
  fullname: Hutchison, Kent
– sequence: 23
  givenname: Elizabeth
  surname: Osuch
  middlename: A
  fullname: Osuch, Elizabeth A
– sequence: 24
  givenname: Jean
  surname: Theberge
  fullname: Theberge, Jean
– sequence: 25
  givenname: Christopher
  surname: Abbott
  fullname: Abbott, Christopher
– sequence: 26
  givenname: Bryon
  surname: Mueller
  middlename: A
  fullname: Mueller, Bryon A
– sequence: 27
  givenname: Dongmei
  surname: Zhi
  fullname: Zhi, Dongmei
– sequence: 28
  givenname: Chuanjun
  surname: Zhuo
  fullname: Zhuo, Chuanjun
– sequence: 29
  givenname: Sha
  surname: Liu
  fullname: Liu, Sha
– sequence: 30
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
– sequence: 31
  givenname: Mustafa
  surname: Salman
  fullname: Salman, Mustafa
– sequence: 32
  givenname: Jingyu
  surname: Liu
  fullname: Liu, Jingyu
– sequence: 33
  givenname: Yuhui
  surname: Du
  fullname: Du, Yuhui
– sequence: 34
  givenname: Jing
  surname: Sui
  fullname: Sui, Jing
– sequence: 35
  givenname: Tulay
  surname: Adali
  fullname: Adali, Tulay
– sequence: 36
  givenname: Vince
  surname: Calhoun
  fullname: Calhoun, Vince
BookMark eNpNUF1LwzAUDTLBOfcDfAv4IkjrzUfb5FHq12BT2PS5pG0q2Wo6m3S6f2_GfBAu94N7zuFwztHIdlYjdEkgJgTILQVKY5AxsDiBlIvsBI1pKmkkKCSjf_sZmjq3BgAqU8IyPkYmV0HMVKrFytZ4qbdtOMpW48XQehOtwkfjmfW9sc5UOO-s1ZU3O-P3-EX7767fOGwsJgCbm8B33tiPaOWV17hZLGf4XnnltHcX6LRRrdPTvzlB748Pb_lzNH99muV386gkwLNDT3mZZJyGIrSqiKACEpU0KaSCJyIruSZKyobxuq6krtOGNkxopokUQrAJuj7qlqbrf8yu2PbmU_X74pBSAbIAVhxTCtCrI3Tbd19DsF6su6G3wV1BM5ACiEgk-wUxr2cH
ContentType Paper
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2022.09.03.506487
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2022.09.03.506487v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1047-b1064b574274212cc182805a5f60684587b4e1a99f34ddc9ed6f2f38e3e198883
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:52:58 EST 2025
Fri Jul 25 09:12:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Intrinsic Connectivity Networks (ICNs)
Functional Templates
Functional Connectivity (FC)
Independent Component Analysis (ICA)
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1047-b1064b574274212cc182805a5f60684587b4e1a99f34ddc9ed6f2f38e3e198883
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-0079-8177
0000-0002-0605-593X
0000-0001-9058-0747
0000-0002-5774-2297
0000-0001-6837-5966
OpenAccessLink https://www.biorxiv.org/content/10.1101/2022.09.03.506487
PQID 2709801859
PQPubID 2050091
PageCount 47
ParticipantIDs biorxiv_primary_2022_09_03_506487
proquest_journals_2709801859
PublicationCentury 2000
PublicationDate 20220905
PublicationDateYYYYMMDD 2022-09-05
PublicationDate_xml – month: 09
  year: 2022
  text: 20220905
  day: 05
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Di Martino, O’Connor, Chen, Alaerts, Anderson, Assaf, Balsters, Baxter, Beggiato, Bernaerts, Blanken, Bookheimer, Braden, Byrge, Castellanos, Dapretto, Delorme, Fair, Fishman, Fitzgerald, Gallagher, Keehn, Kennedy, Lainhart, Luna, Mostofsky, Müller, Nebel, Nigg, O’Hearn, Solomon, Toro, Vaidya, Wenderoth, White, Craddock, Lord, Leventhal, Milham (2022.09.03.506487v1.17) 2017; 4
Sui, Adali, Pearlson, Clark, Calhoun (2022.09.03.506487v1.59) 2009; 30
Durieux, Wilderjans (2022.09.03.506487v1.25) 2019; 46
DeRamus, Iraji, Fu, Silva, Stephen, Wilson, Wang, Du, Liu, Calhoun (2022.09.03.506487v1.16) 2021
Du, Ma, Fu, Calhoun, Adali (2022.09.03.506487v1.19) 2014
Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt-Drazen, Gratton, Sun, Hampton, Coalson, Nguyen, McDermott, Shimony, Snyder, Schlaggar, Petersen, Nelson, Dosenbach (2022.09.03.506487v1.31) 2017b; 95
Haak, Beckmann (2022.09.03.506487v1.32) 2020; 220
Krienen, Yeo, Buckner (2022.09.03.506487v1.46) 2014; 369
Ma, Correa, Li, Eichele, Calhoun, Adali (2022.09.03.506487v1.52) 2011; 58
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni, Fischl, Liu, Buckner (2022.09.03.506487v1.65) 2011; 106
Calhoun, Adali (2022.09.03.506487v1.8) 2012; 5
Meng, Iraji, Fu, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, van Erp, Sui, Calhoun (2022.09.03.506487v1.54) 2021
Du, Fu, Sui, Gao, Xing, Lin, Salman, Abrol, Rahaman, Chen, Hong, Kochunov, Osuch, Calhoun (2022.09.03.506487v1.22) 2020; 28
Keator, van Erp, Turner, Glover, Mueller, Liu, Voyvodic, Rasmussen, Calhoun, Lee, Toga, McEwen, Ford, Mathalon, Diaz, O’Leary, Jeremy Bockholt, Gadde, Preda, Wible, Stern, Belger, McCarthy, Ozyurt, Potkin (2022.09.03.506487v1.45) 2016; 124
Iraji, Miller, Adali, Calhoun (2022.09.03.506487v1.41) 2020; 24
Allen, Erhardt, Wei, Eichele, Calhoun (2022.09.03.506487v1.2) 2012; 59
Iraji, Deramus, Lewis, Yaesoubi, Stephen, Erhardt, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (2022.09.03.506487v1.36) 2019a; 40
Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich, Barch, Uğurbil, Van Essen (2022.09.03.506487v1.58) 2013; 17
Damoiseaux, Beckmann, Arigita, Barkhof, Scheltens, Stam, Smith, Rombouts (2022.09.03.506487v1.15) 2008; 18
Iraji, Fu, Damaraju, DeRamus, Lewis, Bustillo, Lenroot, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (2022.09.03.506487v1.40) 2019c; 40
LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko, Raichle, Cruchaga, Marcus (2022.09.03.506487v1.47) 2019
Fan, Zhong, Qin, Li, Su, Zeng, Hu, Shen (2022.09.03.506487v1.28) 2021; 42
Iraji, Faghiri, Lewis, Fu, DeRamus, Qi, Rachakonda, Du, Calhoun (2022.09.03.506487v1.38) 2019b
Littlejohns, Holliday, Gibson, Garratt, Oesingmann, Alfaro-Almagro, Bell, Boultwood, Collins, Conroy, Crabtree, Doherty, Frangi, Harvey, Leeson, Miller, Neubauer, Petersen, Sellors, Sheard, Smith, Sudlow, Matthews, Allen (2022.09.03.506487v1.50) 2020; 11
Iraji, Calhoun, Wiseman, Davoodi-Bojd, Avanaki, Haacke, Kou (2022.09.03.506487v1.35) 2016; 134
Bell, Sejnowski (2022.09.03.506487v1.3) 1995; 7
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (2022.09.03.506487v1.29) 2015; 18
Calhoun, Adali, Pearlson, Pekar (2022.09.03.506487v1.10) 2001b; 14
Gordon, Laumann, Adeyemo, Petersen (2022.09.03.506487v1.30) 2017a; 27
(2022.09.03.506487v1.33) 2012; 6
Calhoun, Kiehl, Pearlson (2022.09.03.506487v1.12) 2008; 29
Calhoun, Wager, Krishnan, Rosch, Seymour, Nebel, Mostofsky, Nyalakanai, Kiehl (2022.09.03.506487v1.14) 2017; 38
Wu, Caprihan, Calhoun (2022.09.03.506487v1.64) 2021; 239
Salehi, Greene, Karbasi, Shen, Scheinost, Constable (2022.09.03.506487v1.57) 2020; 208
Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner, Eichele, Adelsheim, Bryan, Bustillo, Clark, Feldstein Ewing, Filbey, Ford, Hutchison, Jung, Kiehl, Kodituwakku, Komesu, Mayer, Pearlson, Phillips, Sadek, Stevens, Teuscher, Thoma, Calhoun (2022.09.03.506487v1.1) 2011; 5
Braga, Buckner (2022.09.03.506487v1.7) 2017; 95
Calhoun, Adali, McGinty, Pekar, Watson, Pearlson (2022.09.03.506487v1.9) 2001a; 14
Luo, Greene, Constable (2022.09.03.506487v1.51) 2021; 240
Calhoun, de Lacy (2022.09.03.506487v1.11) 2017; 27
Du, He, Calhoun (2022.09.03.506487v1.23) 2021
Lewandowski, Bouix, Ongur, Shenton (2022.09.03.506487v1.48) 2020; 5
Lin, Liu, Zheng, Liang, Calhoun (2022.09.03.506487v1.49) 2010; 31
Boukhdhir, Zhang, Mignotte, Bellec (2022.09.03.506487v1.6) 2021; 5
Bhinge, Long, Calhoun, Adali (2022.09.03.506487v1.4) 2019; 13
Esposito, Scarabino, Hyvarinen, Himberg, Formisano, Comani, Tedeschi, Goebel, Seifritz, Di Salle (2022.09.03.506487v1.27) 2005; 25
Du, Allen, He, Sui, Wu, Calhoun (2022.09.03.506487v1.20) 2016; 37
Holmes, Hollinshead, O’Keefe, Petrov, Fariello, Wald, Fischl, Rosen, Mair, Roffman, Smoller, Buckner (2022.09.03.506487v1.34) 2015; 2
Murphy, Bodurka, Bandettini (2022.09.03.506487v1.55) 2007; 34
Du, Fan (2022.09.03.506487v1.21) 2013; 69
Duda, Iraji, Ford, Lim, Mathalon, Mueller, Potkin, Preda, Van Erp, Calhoun (2022.09.03.506487v1.24) 2022
Mejia, Nebel, Wang, Caffo, Guo (2022.09.03.506487v1.53) 2020; 115
Calhoun, Liu, Adali (2022.09.03.506487v1.13) 2009; 45
Jernigan, Brown (2022.09.03.506487v1.43) 2018; 32
Tamminga, Ivleva, Keshavan, Pearlson, Clementz, Witte, Morris, Bishop, Thaker, Sweeney (2022.09.03.506487v1.60) 2013; 170
Van De Ville, Farouj, Preti, Liégeois, Amico (2022.09.03.506487v1.61) 2021; 7
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (2022.09.03.506487v1.62) 2013; 80
Iraji, Faghiri, Fu, Rachakonda, Kochunov, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, van Erp, Calhoun (2022.09.03.506487v1.37) 2022; 6
Wang, Buckner, Fox, Holt, Holmes, Stoecklein, Langs, Pan, Qian, Li, Baker, Stufflebeam, Wang, Wang, Hong, Liu (2022.09.03.506487v1.63) 2015; 18
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O’Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (2022.09.03.506487v1.18) 2014; 19
Birn, Molloy, Patriat, Parker, Meier, Kirk, Nair, Meyerand, Prabhakaran (2022.09.03.506487v1.5) 2013; 83
Joliot, Jobard, Naveau, Delcroix, Petit, Zago, Crivello, Mellet, Mazoyer, Tzourio-Mazoyer (2022.09.03.506487v1.44) 2015; 254
Iraji, Faghiri, Lewis, Fu, Rachakonda, Calhoun (2022.09.03.506487v1.39) 2021; 16
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (2022.09.03.506487v1.42) 2008; 27
Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (2022.09.03.506487v1.26) 2011; 32
Rachakonda, Silva, Liu, Calhoun (2022.09.03.506487v1.56) 2016; 10
References_xml – volume: 239
  start-page: 118310
  year: 2021
  ident: 2022.09.03.506487v1.64
  article-title: Tracking spatial dynamics of functional connectivity during a task
  publication-title: Neuroimage
– year: 2019
  ident: 2022.09.03.506487v1.47
  article-title: OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease
  publication-title: medRxiv, 2019.2012.2013.19014902
– start-page: 2084
  year: 2014
  end-page: 2088
  ident: 2022.09.03.506487v1.19
  article-title: A novel approach for assessing reliability of ICA for FMRI analysis
  publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 14
  start-page: 140
  year: 2001b
  end-page: 151
  ident: 2022.09.03.506487v1.10
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum Brain Mapp
– volume: 10
  start-page: 17
  year: 2016
  ident: 2022.09.03.506487v1.56
  article-title: Memory Efficient PCA Methods for Large Group ICA
  publication-title: Front Neurosci
– start-page: 3263
  year: 2021
  end-page: 3266
  ident: 2022.09.03.506487v1.23
  article-title: SMART (splitting-merging assisted reliable) Independent Component Analysis for Brain Functional Networks
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: 2022.09.03.506487v1.29
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat Neurosci
– volume: 32
  start-page: 1
  year: 2018
  end-page: 3
  ident: 2022.09.03.506487v1.43
  article-title: Introduction
  publication-title: Developmental Cognitive Neuroscience
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: 2022.09.03.506487v1.18
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol Psychiatry
– volume: 27
  start-page: 561
  year: 2017
  end-page: 579
  ident: 2022.09.03.506487v1.11
  article-title: Ten Key Observations on the Analysis of Resting-state Functional MR Imaging Data Using Independent Component Analysis
  publication-title: Neuroimaging Clin N Am
– volume: 134
  start-page: 494
  year: 2016
  end-page: 507
  ident: 2022.09.03.506487v1.35
  article-title: The connectivity domain: Analyzing resting state fMRI data using feature-based data-driven and model-based methods
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: 2022.09.03.506487v1.62
  article-title: The WU-Minn Human Connectome Project: an overview
  publication-title: Neuroimage
– volume: 25
  start-page: 193
  year: 2005
  end-page: 205
  ident: 2022.09.03.506487v1.27
  article-title: Independent component analysis of fMRI group studies by self-organizing clustering
  publication-title: Neuroimage
– volume: 2
  start-page: 150031
  year: 2015
  ident: 2022.09.03.506487v1.34
  article-title: Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures
  publication-title: Sci Data
– volume: 59
  start-page: 4141
  year: 2012
  end-page: 4159
  ident: 2022.09.03.506487v1.2
  article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study
  publication-title: Neuroimage
– volume: 5
  year: 2020
  ident: 2022.09.03.506487v1.48
  article-title: Neuroprogression across the Early Course of Psychosis
  publication-title: J Psychiatr Brain Sci
– volume: 13
  start-page: 1006
  year: 2019
  ident: 2022.09.03.506487v1.4
  article-title: Spatial Dynamic Functional Connectivity Analysis Identifies Distinctive Biomarkers in Schizophrenia
  publication-title: Front Neurosci
– volume: 4
  start-page: 170010
  year: 2017
  ident: 2022.09.03.506487v1.17
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Sci Data
– volume: 58
  start-page: 3406
  year: 2011
  end-page: 3417
  ident: 2022.09.03.506487v1.52
  article-title: Automatic identification of functional clusters in FMRI data using spatial dependence
  publication-title: IEEE Trans Biomed Eng
– start-page: 111380I
  year: 2019b
  ident: 2022.09.03.506487v1.38
  article-title: Ultra-high-order ICA: an exploration of highly resolved data-driven representation of intrinsic connectivity networks (sparse ICNs)
  publication-title: Wavelets and Sparsity XVIII. International Society for Optics and Photonics
– volume: 16
  start-page: 849
  year: 2021
  end-page: 874
  ident: 2022.09.03.506487v1.39
  article-title: Tools of the trade: estimating time-varying connectivity patterns from fMRI data
  publication-title: Soc Cogn Affect Neurosci
– volume: 38
  start-page: 5331
  year: 2017
  end-page: 5342
  ident: 2022.09.03.506487v1.14
  article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses
  publication-title: Hum Brain Mapp
– volume: 69
  start-page: 157
  year: 2013
  end-page: 197
  ident: 2022.09.03.506487v1.21
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: Neuroimage
– year: 2022
  ident: 2022.09.03.506487v1.24
  article-title: Spatially constrained ICA enables robust detection of schizophrenia from very short resting-state fMRI data
  publication-title: medRxiv, 2022.2003.2017.22271783
– volume: 40
  start-page: 3058
  year: 2019a
  end-page: 3077
  ident: 2022.09.03.506487v1.36
  article-title: The spatial chronnectome reveals a dynamic interplay between functional segregation and integration
  publication-title: Hum Brain Mapp
– year: 2021
  ident: 2022.09.03.506487v1.54
  article-title: Multi-model Order ICA: A Data-driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales
  publication-title: Brain Connect
– volume: 24
  start-page: 135
  year: 2020
  end-page: 149
  ident: 2022.09.03.506487v1.41
  article-title: Space: A Missing Piece of the Dynamic Puzzle
  publication-title: Trends Cogn Sci
– volume: 18
  start-page: 1853
  year: 2015
  end-page: 1860
  ident: 2022.09.03.506487v1.63
  article-title: Parcellating cortical functional networks in individuals
  publication-title: Nat Neurosci
– volume: 37
  start-page: 1005
  year: 2016
  end-page: 1025
  ident: 2022.09.03.506487v1.20
  article-title: Artifact removal in the context of group ICA: A comparison of single-subject and group approaches
  publication-title: Hum Brain Mapp
– volume: 30
  start-page: 2953
  year: 2009
  end-page: 2970
  ident: 2022.09.03.506487v1.59
  article-title: A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework
  publication-title: Hum Brain Mapp
– volume: 5
  start-page: 28
  year: 2021
  end-page: 55
  ident: 2022.09.03.506487v1.6
  article-title: Unraveling reproducible dynamic states of individual brain functional parcellation
  publication-title: Netw Neurosci
– volume: 6
  start-page: 62
  year: 2012
  ident: 2022.09.03.506487v1.33
  article-title: The ADHD-200 Consortium: A Model to Advance the Translational Potential of Neuroimaging in Clinical Neuroscience
  publication-title: Front Syst Neurosci
– volume: 28
  start-page: 102375
  year: 2020
  ident: 2022.09.03.506487v1.22
  article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: Neuroimage Clin
– volume: 45
  start-page: S163
  year: 2009
  end-page: 172
  ident: 2022.09.03.506487v1.13
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: Neuroimage
– volume: 32
  start-page: 2075
  year: 2011
  end-page: 2095
  ident: 2022.09.03.506487v1.26
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Hum Brain Mapp
– volume: 11
  start-page: 2624
  year: 2020
  ident: 2022.09.03.506487v1.50
  article-title: The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions
  publication-title: Nat Commun
– volume: 42
  start-page: 1416
  year: 2021
  end-page: 1433
  ident: 2022.09.03.506487v1.28
  article-title: Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics
  publication-title: Hum Brain Mapp
– volume: 40
  start-page: 1969
  year: 2019c
  end-page: 1986
  ident: 2022.09.03.506487v1.40
  article-title: Spatial dynamics within and between brain functional domains: A hierarchical approach to study time-varying brain function
  publication-title: Hum Brain Mapp
– volume: 14
  start-page: 1080
  year: 2001a
  end-page: 1088
  ident: 2022.09.03.506487v1.9
  article-title: fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis
  publication-title: Neuroimage
– start-page: 1
  year: 2021
  end-page: 6
  ident: 2022.09.03.506487v1.16
  article-title: Stability of functional network connectivity (FNC) values across multiple spatial normalization pipelines in spatially constrained independent component analysis
  publication-title: 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)
– volume: 5
  start-page: 2
  year: 2011
  ident: 2022.09.03.506487v1.1
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Front Syst Neurosci
– volume: 18
  start-page: 1856
  year: 2008
  end-page: 1864
  ident: 2022.09.03.506487v1.15
  article-title: Reduced resting-state brain activity in the “default network” in normal aging
  publication-title: Cereb Cortex
– volume: 95
  start-page: 791
  year: 2017b
  end-page: 807
  ident: 2022.09.03.506487v1.31
  article-title: Precision Functional Mapping of Individual Human Brains
  publication-title: Neuron
– volume: 6
  start-page: 357
  year: 2022
  end-page: 381
  ident: 2022.09.03.506487v1.37
  article-title: Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia
  publication-title: Network Neuroscience
– volume: 7
  start-page: eabj0751
  year: 2021
  ident: 2022.09.03.506487v1.61
  article-title: When makes you unique: Temporality of the human brain fingerprint
  publication-title: Sci Adv
– volume: 240
  start-page: 118332
  year: 2021
  ident: 2022.09.03.506487v1.51
  article-title: Within node connectivity changes, not simply edge changes, influence graph theory measures in functional connectivity studies of the brain
  publication-title: Neuroimage
– volume: 170
  start-page: 1263
  year: 2013
  end-page: 1274
  ident: 2022.09.03.506487v1.60
  article-title: Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP)
  publication-title: Am J Psychiatry
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: 2022.09.03.506487v1.65
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
– volume: 46
  start-page: 271
  year: 2019
  end-page: 311
  ident: 2022.09.03.506487v1.25
  article-title: Partitioning subjects based on high-dimensional fMRI data: comparison of several clustering methods and studying the influence of ICA data reduction in big data
  publication-title: Behaviormetrika
– volume: 369
  year: 2014
  ident: 2022.09.03.506487v1.46
  article-title: Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 27
  start-page: 386
  year: 2017a
  end-page: 399
  ident: 2022.09.03.506487v1.30
  article-title: Individual Variability of the System-Level Organization of the Human Brain
  publication-title: Cereb Cortex
– volume: 254
  start-page: 46
  year: 2015
  end-page: 59
  ident: 2022.09.03.506487v1.44
  article-title: AICHA: An atlas of intrinsic connectivity of homotopic areas
  publication-title: J Neurosci Methods
– volume: 208
  start-page: 116366
  year: 2020
  ident: 2022.09.03.506487v1.57
  article-title: There is no single functional atlas even for a single individual: Functional parcel definitions change with task
  publication-title: Neuroimage
– volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  ident: 2022.09.03.506487v1.8
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev Biomed Eng
– volume: 29
  start-page: 828
  year: 2008
  end-page: 838
  ident: 2022.09.03.506487v1.12
  article-title: Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks
  publication-title: Hum Brain Mapp
– volume: 17
  start-page: 666
  year: 2013
  end-page: 682
  ident: 2022.09.03.506487v1.58
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn Sci
– volume: 124
  start-page: 1074
  year: 2016
  end-page: 1079
  ident: 2022.09.03.506487v1.45
  article-title: The Function Biomedical Informatics Research Network Data Repository
  publication-title: Neuroimage
– volume: 95
  start-page: 457
  year: 2017
  end-page: 471
  ident: 2022.09.03.506487v1.7
  article-title: Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity
  publication-title: Neuron
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: 2022.09.03.506487v1.42
  article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
– volume: 31
  start-page: 1076
  year: 2010
  end-page: 1088
  ident: 2022.09.03.506487v1.49
  article-title: Semiblind spatial ICA of fMRI using spatial constraints
  publication-title: Hum Brain Mapp
– volume: 34
  start-page: 565
  year: 2007
  end-page: 574
  ident: 2022.09.03.506487v1.55
  article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
  publication-title: Neuroimage
– volume: 220
  start-page: 117061
  year: 2020
  ident: 2022.09.03.506487v1.32
  article-title: Understanding brain organisation in the face of functional heterogeneity and functional multiplicity
  publication-title: Neuroimage
– volume: 83
  start-page: 550
  year: 2013
  end-page: 558
  ident: 2022.09.03.506487v1.5
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates
  publication-title: Neuroimage
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: 2022.09.03.506487v1.3
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput
– volume: 115
  start-page: 1151
  year: 2020
  end-page: 1177
  ident: 2022.09.03.506487v1.53
  article-title: Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks using Big Data Population Priors
  publication-title: J Am Stat Assoc
SSID ssj0002961374
Score 1.6670182
SecondaryResourceType preprint
Snippet Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for improving our understanding of brain function and...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Brain mapping
Cognitive ability
Datasets
Functional magnetic resonance imaging
Neural networks
Neuroimaging
Neuroscience
Quality control
Spatial discrimination
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66y4I3n_gmgjcJpo-0zUnwhSvsIurC3kqeUJTuuq2i_95JmtWD4KG9hAY6k8zkm_kyg9BploskiwwjRSpSAo8iwmpDTJFlwjKrqC-7OBpnd5P0fsqmIeDWBFrl0iZ6Q61nysXIz-OccrCmBeMX8zfiuka57GpoobGK-mCCCwBf_cub8cPjT5Ql5uCufCnmOOOw9WPKQmoTlqID_nGocurqtjla3UBWs8Vn9fHHNHt_c7uO-g9ibhYbaMXUm2jQNYz82kLVlahn_iYjFrXGcHp2MTf5arC_SEueYMTgYd0uqhrEjz2NRXUNIvC4Y3w3uKpxROnLGXzfONYz8SdObEePQ3wtWvBrbbONJrc3z1d3JDRLINJXW4B3lkoGSDd3SV6lADgUlAlmAaIUKStymZpIcG6TVGvFjc5sbJPCJCbiAIOTHdSDPzC7CHOYSeduL0cmlVSDzhLLJY-p0kraeA-dBCmV864kRukkWVJe0qTsJLmHDpfyK8OuaMpfHe7_P3yA1tyMnsvFDlGvXbybI3D-rTwOGv4GTNuq9Q
  priority: 102
  providerName: ProQuest
Title Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets
URI https://www.proquest.com/docview/2709801859
https://www.biorxiv.org/content/10.1101/2022.09.03.506487
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66IfjmT5zOEcE3qaRt0iavzo1N2BjTwd5K0iZQlG60VfS_95JWEfTBh_ahJSm59HL35b7cIXQdxTKMfM08TiX14Eo9aTLtaR5F0jCTEpd2cTaPJiv6sGbrH6W-LK1S5ZvyPX9zcXxL2IbVt1Fu4lusHrSJSW2qNR7voi78UtRWbRivb7-3VwIBdiqmbRzzz5bg8bZf-rUOO-MyPkDdhdzq8hDt6OII7TXVIT-OUT6UxcYdW8QA9zG4ynaDTb1o7E7Neo_wRuNpUZd5AbLGjrOSNtUg8Lyhd1c4L7BPyPMNtK8sxdlz7iU2s-UU38sajFhdnaDVePQ0nHhtZQRPudQKcI-oYgBrYxvRTVNACZwwyQzgEU4ZjxXVvhTChDTLUqGzyAQm5DrUvgDMG56iDoxAnyEsoKcstorra6pIBhMUGqFEQNIsVSbooatWSsm2yX-RWEkmRCQkTBpJ9lD_S35JqwJVEsREgPnjTJz_o4sLtG-fOfYW66NOXb7qSzD3tRqg7t1ovlgO3AR_AuIapRs
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFR2VdEbT1EoYCQ4IQuvYyf2ASHRh3Zpd1WVVuotOH5IUVF2uwmP_hTfyNjJwgGJWw_JxfJImZnM-wHwOi9Mlk-8pEoYQfGx1ATnqVd5boIMlqWxi_NFPr0Qny7l5Rb82vTCxLLKjUxMgtotbYyRv-MF0yhNldQfVtc0bo2K2dXNCo2eLY79zQ902dr3swOk7xvOjw7P96d02CpAqzSWAN-5qCS6hEXMhlqLFrZi0siAtrwSUhWV8BOjdciEc1Z7lwceMuUzjw66UhnCvQNjkaErM4Lxx8PF6dmfqA7XqB7T6GeeaxQ1nMkhlYqsHwMNfJiqGufExTK-7apern_W3_9RBUm_Hd2D8alZ-fV92PLNA9juF1TePIR63zTL1DlJTOMIWusxxld99SQ17tLPeOLJrOnWdYPkJqlsxvYLKciirzBvSd2QCWNXb_F-G6usabJwSZifzciB6VCPdu0juLgVND6GEX6BfwJEIyRXRNkx8aJiDnkkC7rSnFlnq8B34dWApXLVj-AoIyZLpkuWlT0md2Fvg79y-Avb8i_PPP3_8Uu4Oz2fn5Qns8XxM9iJ0FMdmdyDUbf-5p-j4dFVLwZqE_hy2wz2G3W95WA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvBNOtI2aZvnzbKpG0Md7K0kbQJF6UZbRf97L2kVQR98aF9Cr_TSy3397g6hqyAUfuAq5kRUUAeu1BE6U46KgkBoplNi2y5OZ8F4QW-XbPmjFsbAKmW-Kt_zN5vHN4BtOH0b4Sau8dW9tjGpabUWhQMTph6sM72JuqbZmfmz4-XgO87icVBYIW0Tmn-SANO3feWvA9lqmXgXdedirco9tKGKfbTVjIn8OED5UBQrW7-Iwe_HYDObSJt8UdiWzzqPsKLwpKjLvACmYwteSZuxEHjW4LwrnBfYJeT5Gp6vDNbZsXYm1tOHCR6JGrRZXR2iRXzzNBw77YgER9oeC3APqGTg34YmtZum4C5EhAmmwTGJKItCSZUrONc-zbKUqyzQnvYj5SuXg_PrH6EOfIE6RpgDpSw0EuwqKkkGO-VrLrlH0iyV2uuhy5ZLybpphJEYTiaEJ8RPGk72UP-Lf0krC1XihYSDHowYP_kHiQu0PR_Fyf1kdneKdsyyRXSxPurU5as6AxOglud2jz8BhOupaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canonical+and+Replicable+Multi-Scale+Intrinsic+Connectivity+Networks+in+100k%2B+Resting-State+fMRI+Datasets&rft.jtitle=bioRxiv&rft.au=Iraji%2C+A.&rft.au=Fu%2C+Z.&rft.au=Faghiri%2C+A.&rft.au=Duda%2C+M.&rft.date=2022-09-05&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.09.03.506487&rft.externalDocID=2022.09.03.506487v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon