Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion
To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been ra...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
23.09.2022
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2022.09.22.508637 |
Cover
Abstract | To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been rare, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including efficiency, individual identification, test-retest reliability and replicability of group-level statistical results, on widely used R-fMRI metrics across multiple datasets including data obtained from the same participants scanned at several sites. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder. Test-retest reliability was better for SMA and adjusted ComBat series than alternatives, while SMA was superior to the latter in replicability, both in terms of Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Moreover, we examined test-retest datasets to identify the best target site features to optimize SMA identifiability and test-retest reliability. We noted that both sample size and distribution of the target site matter and introduced a heuristic target site selection formula. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data. Competing Interest Statement The authors have declared no competing interest. |
---|---|
AbstractList | To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been rare, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including efficiency, individual identification, test-retest reliability and replicability of group-level statistical results, on widely used R-fMRI metrics across multiple datasets including data obtained from the same participants scanned at several sites. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder. Test-retest reliability was better for SMA and adjusted ComBat series than alternatives, while SMA was superior to the latter in replicability, both in terms of Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Moreover, we examined test-retest datasets to identify the best target site features to optimize SMA identifiability and test-retest reliability. We noted that both sample size and distribution of the target site matter and introduced a heuristic target site selection formula. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data. To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been rare, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including efficiency, individual identification, test-retest reliability and replicability of group-level statistical results, on widely used R-fMRI metrics across multiple datasets including data obtained from the same participants scanned at several sites. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder. Test-retest reliability was better for SMA and adjusted ComBat series than alternatives, while SMA was superior to the latter in replicability, both in terms of Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Moreover, we examined test-retest datasets to identify the best target site features to optimize SMA identifiability and test-retest reliability. We noted that both sample size and distribution of the target site matter and introduced a heuristic target site selection formula. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data. Competing Interest Statement The authors have declared no competing interest. |
Author | Yu-Wei, Wang Chao-Gan, Yan Chen, Xiao |
Author_xml | – sequence: 1 givenname: Wang surname: Yu-Wei fullname: Yu-Wei, Wang – sequence: 2 givenname: Xiao surname: Chen fullname: Chen, Xiao – sequence: 3 givenname: Yan surname: Chao-Gan fullname: Chao-Gan, Yan |
BookMark | eNpNkM1qwzAQhEVJoWmaB-hN0EsvTleSbWmPJfQPAr20ZyPbUqLgSKlkh7ZPX4fk0MvssHwsO3NNJj54Q8gtgwVjwB44cL4AXIxagCqFvCBTXiLPFIdi8s9fkXlKWwDgWDIh8ymplmG3j2ZjfHIHQ81Bd4PuXfA0WLrRcRe8-z0vPLWDb45ed7SO2nnqdnrt_JraEOlu6HqXXG9oq3ud2SGN5A25tLpLZn6eM_L5_PSxfM1W7y9vy8dVVjPIZaYKhbKwysgaTStsU-ZYN0pi3ioQjDelqBFz20qNQrWyRFQANWOKCxQaxIzcn-7WLsRvd6j2cfwt_lTHbirAatRTNyN6d0L3MXwNJvXVNgxxzJQqLplkCkHl4g_b0WXA |
ContentType | Paper |
Copyright | 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.09.22.508637v1 2022, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.09.22.508637v1 – notice: 2022, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2022.09.22.508637 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2022.09.22.508637v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1047-858975f8e7b9ed3fc649bc8794d80312c63b994fd7a938d7699800b1182393a03 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:54:42 EST 2025 Fri Jul 25 09:16:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | comparison resting-state fMRI harmonization multi-site pooling |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1047-858975f8e7b9ed3fc649bc8794d80312c63b994fd7a938d7699800b1182393a03 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0003-3913-9328 0000-0003-3413-5977 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2022.09.22.508637 |
PQID | 2717189084 |
PQPubID | 2050091 |
PageCount | 54 |
ParticipantIDs | biorxiv_primary_2022_09_22_508637 proquest_journals_2717189084 |
PublicationCentury | 2000 |
PublicationDate | 20220923 |
PublicationDateYYYYMMDD | 2022-09-23 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220923 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Yan, Chen, Li, Castellanos, Bai, Bo, Cao, Chen, Chen, Chen, Cheng, Cheng, Cui, Duan, Fang, Gong, Guo, Hou, Hu, Kuang, Li, Li, Li, Liu, Liu, Long, Luo, Meng, Peng, Qiu, Qiu, Shen, Shi, Wang, Wang, Wang, Wang, Wang, Wang, Wu, Wu, Xie, Xie, Xie, Xie, Xu, Yang, Yang, Yao, Yao, Yin, Yuan, Zhang, Zhang, Zhang, Zhang, Zhang, Zhou, Zhou, Zhu, Zou, Si, Zuo, Zhao, Zang (2022.09.22.508637v1.47) 2019; 116 Fortin, Cullen, Sheline, Taylor, Aselcioglu, Cook, Adams, Cooper, Fava, McGrath, McInnis, Phillips, Trivedi, Weissman, Shinohara (2022.09.22.508637v1.21) 2018; 167 Rombouts, Barkhof, Hoogenraad, Sprenger, Scheltens (2022.09.22.508637v1.41) 1998 Quinlan, Banaschewski, Barker, Bokde, Bromberg, Buchel, Desrivieres, Flor, Frouin, Garavan, Heinz, Bruhl, Martinot, Paillere Martinot, Nees, Orfanos, Paus, Poustka, Hohmann, Smolka, Frohner, Walter, Whelan, Schumann, Consortium (2022.09.22.508637v1.40) 2020; 25 Chen, Beer, Tustison, Cook, Shinohara, Shou (2022.09.22.508637v1.12) 2022a; 43 Friston, Worsley, Frackowiak, Mazziotta, Evans (2022.09.22.508637v1.25) 1994; 1 Chen, Lu, Li, Li, Wang, Castellanos, Cao, Chen, Chen, Cheng, Cui, Deng, Fang, Gong, Guo, Hu, Kuang, Li, Li, Li, Lian, Liao, Liu, Liu, Lu, Luo, Meng, Peng, Qiu, Shen, Si, Tang, Wang, Wang, Wang, Wang, Wang, Wang, Wang, Wu, Xie, Xie, Xie, Xu, Yang, Yang, Yao, Yu, Yuan, Zhang, Zhang, Zhang, Zhu, Zuo, Zhao, Zang, Yan, Chen, Cao, Chen, Cheng, Fang, Gong, Guo, Kuang, Li, Li, Liu, Liu, Lu, Luo, Meng, Peng, Qiu, Shen, Si, Tang, Wang, Y, Zang, Wang, Wang, Wang, Wang, Wu, Xie, Xie, Xie, Xu, Yang, Yang, Yao, Yu, Yuan, Zhang, Zhang, Zhang, Zhu, Zuo, Zhao, Zang, Yan (2022.09.22.508637v1.14) 2022b; 2 Varoquaux (2022.09.22.508637v1.44) 2018; 180 Fisher, Medaglia, Jeronimus (2022.09.22.508637v1.20) 2018; 115 Gong, Grauman, Sha (2022.09.22.508637v1.27) 2013 Fortin, Parker, Tunc, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (2022.09.22.508637v1.22) 2017; 161 Coalson, Van Essen, Glasser (2022.09.22.508637v1.15) 2018; 115 Satterthwaite, Wolf, Ruparel, Erus, Elliott, Eickhoff, Gennatas, Jackson, Prabhakaran, Smith, Hakonarson, Verma, Davatzikos, Gur, Gur (2022.09.22.508637v1.42) 2013; 83 Bareinboim, Pearl (2022.09.22.508637v1.4) 2016; 113 Buckner, Sepulcre, Talukdar, Krienen, Liu, Hedden, Andrews-Hanna, Sperling, Johnson (2022.09.22.508637v1.9) 2009; 29 Zindler, Frieling, Neyazi, Bleich, Friedel (2022.09.22.508637v1.56) 2020; 21 Zang, He, Zhu, Cao, Sui, Liang, Tian, Jiang, Wang (2022.09.22.508637v1.53) 2007; 29 Murphy, Fox (2022.09.22.508637v1.37) 2016 Csiszar (2022.09.22.508637v1.16) 1975; 3 Dansereau, Benhajali, Risterucci, Pich, Orban, Arnold, Bellec (2022.09.22.508637v1.17) 2017; 149 Moyer, Ver Steeg, Tax, Thompson (2022.09.22.508637v1.36) 2020; 84 Li, Guo, Li (2022.09.22.508637v1.33) 2019; 17 Jenkinson, Bannister, Brady, Smith (2022.09.22.508637v1.31) 2002; 17 Marek, Tervo-Clemmens, Calabro, Montez, Kay, Hatoum, Donohue, Foran, Miller, Hendrickson, Malone, Kandala, Feczko, Miranda-Dominguez, Graham, Earl, Perrone, Cordova, Doyle, Moore, Conan, Uriarte, Snider, Lynch, Wilgenbusch, Pengo, Tam, Chen, Newbold, Zheng, Seider, Van, Metoki, Chauvin, Laumann, Greene, Petersen, Garavan, Thompson, Nichols, Yeo, Barch, Luna, Fair, Dosenbach (2022.09.22.508637v1.34) 2022; 603 Charles, Falk, Turner, Pereira, Tward, Pedigo, Chung, Burns, Ghosh, Kebschull, Silversmith, Vogelstein (2022.09.22.508637v1.11) 2020; 43 Zhong, Wang, Li, Xue, Liu, Wang, Gao, Wang, Yang, Li (2022.09.22.508637v1.54) 2020; 19 Yan, Wang, Zuo, Zang (2022.09.22.508637v1.49) 2016; 14 Ashburner (2022.09.22.508637v1.3) 2007; 38 Zuo, Xing (2022.09.22.508637v1.61) 2014; 45 Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (2022.09.22.508637v1.19) 2010; 329 Brodoehl, Gaser, Dahnke, Witte, Klingner (2022.09.22.508637v1.8) 2020; 10 Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafo (2022.09.22.508637v1.10) 2013; 14 Biswal, Yetkin, Haughton, Hyde (2022.09.22.508637v1.6) 1995; 34 McGrath, Lim, Plana-Ripoll, Holtz, Agerbo, Momen, Mortensen, Pedersen, Abdulmalik, Aguilar-Gaxiola, Al-Hamzawi, Alonso, Bromet, Bruffaerts, Bunting, de Almeida, de Girolamo, De Vries, Florescu, Gureje, Haro, Harris, Hu, Karam, Kawakami, Kiejna, Kovess-Masfety, Lee, Mneimneh, Navarro-Mateu, Orozco, Posada-Villa, Roest, Saha, Scott, Stagnaro, Stein, Torres, Viana, Ziv, Kessler, de Jonge (2022.09.22.508637v1.35) 2020; 29 Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan, Launer, Masters, Maruff, Zhuo, Volzke, Johnson, Fripp, Koutsouleris, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wolk, Shinohara, Shou, Davatzikos (2022.09.22.508637v1.39) 2020; 208 Hallquist, Hwang, Luna (2022.09.22.508637v1.30) 2013; 82 Yan, Craddock, Zuo, Zang, Milham (2022.09.22.508637v1.48) 2013; 80 Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner, Eichele, Adelsheim, Bryan, Bustillo, Clark, Feldstein Ewing, Filbey, Ford, Hutchison, Jung, Kiehl, Kodituwakku, Komesu, Mayer, Pearlson, Phillips, Sadek, Stevens, Teuscher, Thoma, Calhoun (2022.09.22.508637v1.2) 2011; 5 Chen, Chen, Shen, Li, Li, Lu, Zhu, Fan, Yan (2022.09.22.508637v1.13) 2020; 221 Genovese, Lazar, Nichols (2022.09.22.508637v1.26) 2002; 15 Hadi (2022.09.22.508637v1.29) 1991; 34 Zou, Zhu, Yang, Zuo, Long, Cao, Wang, Zang (2022.09.22.508637v1.57) 2008; 172 Dinsdale, Jenkinson, Namburete (2022.09.22.508637v1.18) 2021; 228 Friston, Williams, Howard, Frackowiak, Turner (2022.09.22.508637v1.24) 1996; 35 Xia, Wang, He (2022.09.22.508637v1.45) 2013; 8 Zuo, Anderson, Bellec, Birn, Biswal, Blautzik, Breitner, Buckner, Calhoun, Castellanos, Chen, Chen, Chen, Chen, Colcombe, Courtney, Craddock, Di Martino, Dong, Fu, Gong, Gorgolewski, Han, He, He, Ho, Holmes, Hou, Huckins, Jiang, Jiang, Kelley, Kelly, King, LaConte, Lainhart, Lei, Li, Li, Li, Lin, Liu, Liu, Liu, Liu, Lu, Lu, Luna, Luo, Lurie, Mao, Margulies, Mayer, Meindl, Meyerand, Nan, Nielsen, O’Connor, Paulsen, Prabhakaran, Qi, Qiu, Shao, Shehzad, Tang, Villringer, Wang, Wang, Wei, Wei, Weng, Wu, Xu, Yang, Yang, Zang, Zhang, Zhang, Zhang, Zhang, Zhao, Zhen, Zhou, Zhu, Milham (2022.09.22.508637v1.58) 2014; 1 Yamashita, Yahata, Itahashi, Lisi, Yamada, Ichikawa, Takamura, Yoshihara, Kunimatsu, Okada, Yamagata, Matsuo, Hashimoto, Okada, Sakai, Morimoto, Narumoto, Shimada, Kasai, Kato, Takahashi, Okamoto, Tanaka, Kawato, Yamashita, Imamizu (2022.09.22.508637v1.46) 2019; 17 Yu, Linn, Cook, Phillips, McInnis, Fava, Trivedi, Weissman, Shinohara, Sheline (2022.09.22.508637v1.51) 2018; 39 van Velzen, Kelly, Isaev, Aleman, Aftanas, Bauer, Baune, Brak, Carballedo, Connolly, Couvy-Duchesne, Cullen, Danilenko, Dannlowski, Enneking, Filimonova, Forster, Frodl, Gotlib, Groenewold, Grotegerd, Harris, Hatton, Hawkins, Hickie, Ho, Jansen, Kircher, Klimes-Dougan, Kochunov, Krug, Lagopoulos, Lee, Lett, Li, MacMaster, Martin, McIntosh, McLellan, Meinert, Nenadic, Osipov, Penninx, Portella, Repple, Roos, Sacchet, Samann, Schnell, Shen, Sim, Stein, van Tol, Tomyshev, Tozzi, Veer, Vermeiren, Vives-Gilabert, Walter, Walter, van der Wee, van der Werff, Schreiner, Whalley, Wright, Yang, Zhu, Veltman, Thompson, Jahanshad, Schmaal (2022.09.22.508637v1.43) 2020; 25 Zhou, Singh, Johnson, Wahba (2022.09.22.508637v1.55) 2018; 115 Zuo, Xu, Milham (2022.09.22.508637v1.62) 2019; 3 Zuo, He, Betzel, Colcombe, Sporns, Milham (2022.09.22.508637v1.60) 2017; 21 Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kotter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (2022.09.22.508637v1.7) 2010; 107 Yan, Zang (2022.09.22.508637v1.50) 2010; 4 Murtagh, Legendre (2022.09.22.508637v1.38) 2014; 31 Beer, Tustison, Cook, Davatzikos, Sheline, Shinohara, Linn (2022.09.22.508637v1.5) 2020; 220 Friston (2022.09.22.508637v1.23) 2011; 1 Johnson, Li, Rabinovic (2022.09.22.508637v1.32) 2007; 8 Al Zoubi, Misaki, Tsuchiyagaito, Zotev, White, Paulus, Bodurka (2022.09.22.508637v1.1) 2020 Guan, Liu, Yang, Yap, Shen, Liu (2022.09.22.508637v1.28) 2021; 71 Zuo, Ehmke, Mennes, Imperati, Castellanos, Sporns, Milham (2022.09.22.508637v1.59) 2012; 22 Zang, Jiang, Lu, He, Tian (2022.09.22.508637v1.52) 2004; 22 |
References_xml | – volume: 180 start-page: 68 year: 2018 end-page: 77 ident: 2022.09.22.508637v1.44 article-title: Cross-validation failure: Small sample sizes lead to large error bars publication-title: Neuroimage – volume: 29 start-page: 83 year: 2007 end-page: 91 ident: 2022.09.22.508637v1.53 article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI publication-title: Brain Dev – volume: 31 start-page: 274 year: 2014 end-page: 295 ident: 2022.09.22.508637v1.38 article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? publication-title: Journal of Classification – volume: 39 start-page: 4213 year: 2018 end-page: 4227 ident: 2022.09.22.508637v1.51 article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data publication-title: Hum Brain Mapp – volume: 35 start-page: 346 year: 1996 end-page: 355 ident: 2022.09.22.508637v1.24 article-title: Movement-related effects in fMRI time-series publication-title: Magn Reson Med – year: 2020 ident: 2022.09.22.508637v1.1 article-title: Predicting Sex from Resting-State fMRI Across Multiple Independent Acquired Datasets – volume: 208 start-page: 116450 year: 2020 ident: 2022.09.22.508637v1.39 article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan publication-title: Neuroimage – volume: 8 start-page: e68910 year: 2013 ident: 2022.09.22.508637v1.45 article-title: BrainNet Viewer: a network visualization tool for human brain connectomics publication-title: PLoS ONE – volume: 29 start-page: 1860 year: 2009 end-page: 1873 ident: 2022.09.22.508637v1.9 article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease publication-title: J Neurosci – volume: 1 start-page: 210 year: 1994 end-page: 220 ident: 2022.09.22.508637v1.25 article-title: Assessing the significance of focal activations using their spatial extent publication-title: Hum Brain Mapp – volume: 71 start-page: 102076 year: 2021 ident: 2022.09.22.508637v1.28 article-title: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification publication-title: Med Image Anal – year: 1998 ident: 2022.09.22.508637v1.41 article-title: Within-Subject Reproducibility of Visual Activation Patterns With Functional Magnetic Resonance Imaging Using Multislice Echo Planar Imaging publication-title: Magnetic Resonance Imaging – volume: 116 start-page: 9078 year: 2019 end-page: 9083 ident: 2022.09.22.508637v1.47 article-title: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder publication-title: Proc Natl Acad Sci U S A – volume: 1 start-page: 140049 year: 2014 ident: 2022.09.22.508637v1.58 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Sci Data – volume: 17 start-page: e3000042 year: 2019 ident: 2022.09.22.508637v1.46 article-title: Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias publication-title: PLoS Biol – volume: 25 start-page: 1511 year: 2020 end-page: 1525 ident: 2022.09.22.508637v1.43 article-title: White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group publication-title: Mol Psychiatry – volume: 167 start-page: 104 year: 2018 end-page: 120 ident: 2022.09.22.508637v1.21 article-title: Harmonization of cortical thickness measurements across scanners and sites publication-title: Neuroimage – volume: 161 start-page: 149 year: 2017 end-page: 170 ident: 2022.09.22.508637v1.22 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage – volume: 149 start-page: 220 year: 2017 end-page: 232 ident: 2022.09.22.508637v1.17 article-title: Statistical power and prediction accuracy in multisite resting-state fMRI connectivity publication-title: Neuroimage – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: 2022.09.22.508637v1.3 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – volume: 220 start-page: 117129 year: 2020 ident: 2022.09.22.508637v1.5 article-title: Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data publication-title: Neuroimage – volume: 1 start-page: 13 year: 2011 end-page: 36 ident: 2022.09.22.508637v1.23 article-title: Functional and effective connectivity: a review publication-title: Brain Connect – volume: 43 start-page: 441 year: 2020 end-page: 464 ident: 2022.09.22.508637v1.11 article-title: Toward Community-Driven Big Open Brain Science: Open Big Data and Tools for Structure, Function, and Genetics publication-title: Annu Rev Neurosci – volume: 17 start-page: 393 year: 2019 end-page: 401 ident: 2022.09.22.508637v1.33 article-title: Functional Neuroimaging in the New Era of Big Data publication-title: Genomics Proteomics Bioinformatics – volume: 115 start-page: E6106 year: 2018 end-page: E6115 ident: 2022.09.22.508637v1.20 article-title: Lack of group-to-individual generalizability is a threat to human subjects research publication-title: Proc Natl Acad Sci U S A – volume: 80 start-page: 246 year: 2013 end-page: 262 ident: 2022.09.22.508637v1.48 article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes publication-title: Neuroimage – year: 2016 ident: 2022.09.22.508637v1.37 article-title: Towards a Consensus Regarding Global Signal Regression for Resting State Functional Connectivity MRI publication-title: Neuroimage – volume: 2 start-page: 32 year: 2022b end-page: 42 ident: 2022.09.22.508637v1.14 article-title: The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder publication-title: Psychoradiology – volume: 3 start-page: 768 year: 2019 end-page: 771 ident: 2022.09.22.508637v1.62 article-title: Harnessing reliability for neuroscience research publication-title: Nat Hum Behav – volume: 22 start-page: 394 year: 2004 end-page: 400 ident: 2022.09.22.508637v1.52 article-title: Regional homogeneity approach to fMRI data analysis publication-title: Neuroimage – volume: 228 start-page: 117689 year: 2021 ident: 2022.09.22.508637v1.18 article-title: Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal publication-title: Neuroimage – volume: 172 start-page: 137 year: 2008 end-page: 141 ident: 2022.09.22.508637v1.57 article-title: An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF publication-title: J Neurosci Methods – volume: 10 start-page: 5737 year: 2020 ident: 2022.09.22.508637v1.8 article-title: Surface-based analysis increases the specificity of cortical activation patterns and connectivity results publication-title: Sci Rep – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: 2022.09.22.508637v1.19 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 34 start-page: 111 year: 1991 end-page: 112 ident: 2022.09.22.508637v1.29 article-title: Finding Groups in Data: An Introduction to Chster Analysis publication-title: Technometrics – volume: 115 start-page: E6356 year: 2018 end-page: E6365 ident: 2022.09.22.508637v1.15 article-title: The impact of traditional neuroimaging methods on the spatial localization of cortical areas publication-title: Proc Natl Acad Sci U S A – start-page: I-222 year: 2013 end-page: I-230 ident: 2022.09.22.508637v1.27 publication-title: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28 – volume: 82 start-page: 208 year: 2013 end-page: 225 ident: 2022.09.22.508637v1.30 article-title: The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity publication-title: Neuroimage – volume: 115 start-page: 1481 year: 2018 end-page: 1486 ident: 2022.09.22.508637v1.55 article-title: Statistical tests and identifiability conditions for pooling and analyzing multisite datasets publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 32 year: 2017 end-page: 45 ident: 2022.09.22.508637v1.60 article-title: Human Connectomics across the Life Span publication-title: Trends Cogn Sci – volume: 113 start-page: 7345 year: 2016 end-page: 7352 ident: 2022.09.22.508637v1.4 article-title: Causal inference and the data-fusion problem publication-title: Proc Natl Acad Sci U S A – volume: 14 start-page: 365 year: 2013 end-page: 376 ident: 2022.09.22.508637v1.10 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat Rev Neurosci – volume: 19 start-page: 4 year: 2020 ident: 2022.09.22.508637v1.54 article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development publication-title: Biomed Eng Online – volume: 43 start-page: 1179 year: 2022a end-page: 1195 ident: 2022.09.22.508637v1.12 article-title: Mitigating site effects in covariance for machine learning in neuroimaging data publication-title: Hum Brain Mapp – volume: 8 start-page: 118 year: 2007 end-page: 127 ident: 2022.09.22.508637v1.32 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics – volume: 3 start-page: 113 issue: 146-158 year: 1975 ident: 2022.09.22.508637v1.16 article-title: $I$-Divergence Geometry of Probability Distributions and Minimization Problems publication-title: The Annals of Probability – volume: 83 start-page: 45 year: 2013 end-page: 57 ident: 2022.09.22.508637v1.42 article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth publication-title: Neuroimage – volume: 5 start-page: 2 year: 2011 ident: 2022.09.22.508637v1.2 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front Syst Neurosci – volume: 15 start-page: 870 year: 2002 end-page: 878 ident: 2022.09.22.508637v1.26 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: Neuroimage – volume: 21 start-page: 271 year: 2020 ident: 2022.09.22.508637v1.56 article-title: Simulating ComBat: how batch correction can lead to the systematic introduction of false positive results in DNA methylation microarray studies publication-title: BMC Bioinformatics – volume: 29 start-page: e153 year: 2020 ident: 2022.09.22.508637v1.35 article-title: Comorbidity within mental disorders: a comprehensive analysis based on 145 990 survey respondents from 27 countries publication-title: Epidemiol Psychiatr Sci – volume: 221 start-page: 117185 year: 2020 ident: 2022.09.22.508637v1.13 article-title: The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study publication-title: Neuroimage – volume: 45 start-page: 100 year: 2014 end-page: 118 ident: 2022.09.22.508637v1.61 article-title: Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective publication-title: Neurosci Biobehav Rev – volume: 34 start-page: 537 year: 1995 end-page: 541 ident: 2022.09.22.508637v1.6 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn Reson Med – volume: 4 start-page: 13 year: 2010 ident: 2022.09.22.508637v1.50 article-title: DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI publication-title: Front Syst Neurosci – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: 2022.09.22.508637v1.31 article-title: Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images publication-title: Neuroimage – volume: 84 start-page: 2174 year: 2020 end-page: 2189 ident: 2022.09.22.508637v1.36 article-title: Scanner invariant representations for diffusion MRI harmonization publication-title: Magn Reson Med – volume: 14 start-page: 339 year: 2016 end-page: 351 ident: 2022.09.22.508637v1.49 article-title: DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging publication-title: Neuroinformatics – volume: 25 start-page: 243 year: 2020 end-page: 253 ident: 2022.09.22.508637v1.40 article-title: Identifying biological markers for improved precision medicine in psychiatry publication-title: Mol Psychiatry – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: 2022.09.22.508637v1.7 article-title: Toward discovery science of human brain function publication-title: Proc Natl Acad Sci U S A – volume: 22 start-page: 1862 year: 2012 end-page: 1875 ident: 2022.09.22.508637v1.59 article-title: Network centrality in the human functional connectome publication-title: Cereb Cortex – volume: 603 start-page: 654 year: 2022 end-page: 660 ident: 2022.09.22.508637v1.34 article-title: Reproducible brain-wide association studies require thousands of individuals publication-title: Nature |
SSID | ssj0002961374 |
Score | 1.6677493 |
SecondaryResourceType | preprint |
Snippet | To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Brain mapping Datasets Functional magnetic resonance imaging Neuroimaging Neuroscience Regression analysis Sex differences |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6MfDmJ06nRPBazJImTU6CsjEExxAHu5WkSXEH19ltov-977WdOwhCCYVAoS95n3n5_Qi5TRIvNFM60tqaKOaxhTeWR5IFZZ00PFTXo5_HajSNn2Zy1hTcVk1b5dYmVobaFxnWyO845B19bZiO75cfEbJG4elqQ6GxT9pggjXs8_bDYDx5-a2ycAPuqoJi5sqA6nMmm6NN2IqY-HNEOYUR4hSFXOgdNy_Kr_nnH9Nc-ZvhIWlP7DKUR2QvLI5JpyaM_D4hKapvGd7qrnO6g-qmRU4RhLrY3quk8KDPqkt91CETBJ2_V5xEFAJVWnUS4s9RbBKN8g2WzU7JdDh4fRxFDUVC5CqMBS21SWSuQ-JM8CLPVGxcpkHJvAZ15ZkSzpg494k1QvtEQXbFmMOsQhhhmTgjrUWxCOeE2n7QBuST-awf89wZm8tgtfIWoyIZuuSmkU26rIEwUpRfykwKYy2_LultpZY2urBKdyt38f_0JTnAL2I3Bhc90lqXm3AFLn_trpt1_QFsmqjF priority: 102 providerName: ProQuest |
Title | Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion |
URI | https://www.proquest.com/docview/2717189084 https://www.biorxiv.org/content/10.1101/2022.09.22.508637 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66IfjmFadzRPC1kuaeV2VjCI4hDvZWkjbBPbiOuon-e3PaTgV9EEoohbb0NCfn9uV8CF0rVTBNpE60tibhlNt4RkIiiJfWCUN9vT36YSLHM34_F_MfVF8Aq3SLsnpfvNV1fABsx9W3UW6SQqxOoTFpHKNrIZnaRd04pSiwNozmN1_pFWqinVK8rWP-eWf0eNs3_VqHa-MyOkDdqV356hDt-OUR2mvYIT-OUQa6WvnnBmKOv_ty4zJg6DhdbjdR4niAgWryetgB7QNevNQERDh6pbiGDUKdGAMiNAkbyJGdoNlo-HQ3Tlo-hMTVDRW00EaJoL1yxhcs5JIbl-v4-YWOuklzyZwxPBTKGqYLJWMoRYiDEIIZZgk7RZ1lufRnCNvUa0OJyIs85TQ4Y4PwVsvCggskfA9dtbLJVk3XiwzklxGTxbGRXw_1t1LL2on_mtEYHqbaEM3P__GIC7QP1wB_QVkfddbVxl9GI792A9S9HU6mj4P6t34CU4ei8Q |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50l0VvPvFtBD0Ws2mbJgcRfCzra1lkBW81aVPcg9t1ff8pf6MzfehB8CaUUCjk8GU6r8zMB7AbRamvuFSeUkZ7gQgMvvHMC7mTxoZauKI9-qonuzfB-W14OwWfdS8MlVXWOrFQ1GmeUI58X2Dc0Vaaq-Bw_OgRaxTdrtYUGqVYXLiPNwzZng7OTvB894TonA6Ou17FKuDZYiyBCpWOwky5yGqX-lkiA20ThXKZKpRwkUjfah1kaWS0r9JIYkDCuSVH3Ne-4T7uOw3NgDpaG9A8Ou31r7-zOkKjeSxGPwupUdUIHlZXqSj6lGgQNFUVV_SLJHGvt-wwn7wPX3-ZgsK-deag2TdjN5mHKTdagFZJUPmxCDGpi4m7L6vc2c9ocJZnjIZe53UfJ8OHbGSZWmSWmCfY8KHgQGLoGLOicpHAZFSU6mUvlKZbgpt_AW8ZGqN85FaAmbZTGvFJ0qQdiMxqk4XOKJka8sJCtwo7FTbxuBy8ERN-MdcxriV-q7BRoxZX_95T_CMpa39_3oaZ7uDqMr48612swyztTpUgwt-AxvPkxW2iu_Fst6ozZnD332L1BTq-4x4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6oXjzE6dTI3jtSJOmSc5q8XPs4GC3kLQJ7uA66ib635vXdiroQSihUEjIa17e1--9h9CFEAWTJJWRlEZFCU1MeCM-4sSlxnJFXZ0e_ThMb8bJ3YRPfuTCAKzSTsvqffpWx_EBsB1u34a5SQy2OoXCpGEMqkXKxADc1IN54ddRN5ytGE52Nhl8-VmoCgJLJG1A888pgurbLvnrQq6lTLaNuiMzd9UOWnOzXbTRtIn82EMamLZyzw3WHH8X6Malx1B6ulxlU-LwgKRqHHzYQv8HPH2pOxHhoJ7iGj8IAWMM0NDIL8FZto_G2fXT5U3UNkaIbF1ZQXKpBPfSCatcwXyeJsrmMmy_kIFJaZ4yq1TiC2EUk4VIg01FiAVbgilmCDtAnVk5c4cIm9hJRQnPizxOqLfKeO6MTAsDuhB3PXTe0kbPm_IXGuinidJhbOjXQ_0V1XTLAa-aBjsxlorI5OgfU5yhzdFVph9uh_fHaAs-AyaDsj7qLKqlOwmCf2FP6z_7CcTkpz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+evaluation+of+harmonization+on+functional+brain+imaging+for+multisite+data-fusion&rft.jtitle=bioRxiv&rft.au=Wang%2C+Yu-Wei&rft.au=Chen%2C+Xiao&rft.au=Yan%2C+Chao-Gan&rft.date=2022-09-23&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.09.22.508637&rft.externalDocID=2022.09.22.508637v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |