Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion

To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been ra...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Yu-Wei, Wang, Chen, Xiao, Chao-Gan, Yan
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 23.09.2022
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2022.09.22.508637

Cover

Abstract To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been rare, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including efficiency, individual identification, test-retest reliability and replicability of group-level statistical results, on widely used R-fMRI metrics across multiple datasets including data obtained from the same participants scanned at several sites. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder. Test-retest reliability was better for SMA and adjusted ComBat series than alternatives, while SMA was superior to the latter in replicability, both in terms of Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Moreover, we examined test-retest datasets to identify the best target site features to optimize SMA identifiability and test-retest reliability. We noted that both sample size and distribution of the target site matter and introduced a heuristic target site selection formula. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data. Competing Interest Statement The authors have declared no competing interest.
AbstractList To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been rare, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including efficiency, individual identification, test-retest reliability and replicability of group-level statistical results, on widely used R-fMRI metrics across multiple datasets including data obtained from the same participants scanned at several sites. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder. Test-retest reliability was better for SMA and adjusted ComBat series than alternatives, while SMA was superior to the latter in replicability, both in terms of Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Moreover, we examined test-retest datasets to identify the best target site features to optimize SMA identifiability and test-retest reliability. We noted that both sample size and distribution of the target site matter and introduced a heuristic target site selection formula. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data.
To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. Comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data has been rare, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including efficiency, individual identification, test-retest reliability and replicability of group-level statistical results, on widely used R-fMRI metrics across multiple datasets including data obtained from the same participants scanned at several sites. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder. Test-retest reliability was better for SMA and adjusted ComBat series than alternatives, while SMA was superior to the latter in replicability, both in terms of Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Moreover, we examined test-retest datasets to identify the best target site features to optimize SMA identifiability and test-retest reliability. We noted that both sample size and distribution of the target site matter and introduced a heuristic target site selection formula. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data. Competing Interest Statement The authors have declared no competing interest.
Author Yu-Wei, Wang
Chao-Gan, Yan
Chen, Xiao
Author_xml – sequence: 1
  givenname: Wang
  surname: Yu-Wei
  fullname: Yu-Wei, Wang
– sequence: 2
  givenname: Xiao
  surname: Chen
  fullname: Chen, Xiao
– sequence: 3
  givenname: Yan
  surname: Chao-Gan
  fullname: Chao-Gan, Yan
BookMark eNpNkM1qwzAQhEVJoWmaB-hN0EsvTleSbWmPJfQPAr20ZyPbUqLgSKlkh7ZPX4fk0MvssHwsO3NNJj54Q8gtgwVjwB44cL4AXIxagCqFvCBTXiLPFIdi8s9fkXlKWwDgWDIh8ymplmG3j2ZjfHIHQ81Bd4PuXfA0WLrRcRe8-z0vPLWDb45ed7SO2nnqdnrt_JraEOlu6HqXXG9oq3ud2SGN5A25tLpLZn6eM_L5_PSxfM1W7y9vy8dVVjPIZaYKhbKwysgaTStsU-ZYN0pi3ioQjDelqBFz20qNQrWyRFQANWOKCxQaxIzcn-7WLsRvd6j2cfwt_lTHbirAatRTNyN6d0L3MXwNJvXVNgxxzJQqLplkCkHl4g_b0WXA
ContentType Paper
Copyright 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.09.22.508637v1
2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2022.09.22.508637v1
– notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2022.09.22.508637
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2022.09.22.508637v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1047-858975f8e7b9ed3fc649bc8794d80312c63b994fd7a938d7699800b1182393a03
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:54:42 EST 2025
Fri Jul 25 09:16:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords comparison
resting-state fMRI
harmonization
multi-site pooling
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1047-858975f8e7b9ed3fc649bc8794d80312c63b994fd7a938d7699800b1182393a03
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0003-3913-9328
0000-0003-3413-5977
OpenAccessLink https://www.biorxiv.org/content/10.1101/2022.09.22.508637
PQID 2717189084
PQPubID 2050091
PageCount 54
ParticipantIDs biorxiv_primary_2022_09_22_508637
proquest_journals_2717189084
PublicationCentury 2000
PublicationDate 20220923
PublicationDateYYYYMMDD 2022-09-23
PublicationDate_xml – month: 09
  year: 2022
  text: 20220923
  day: 23
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Yan, Chen, Li, Castellanos, Bai, Bo, Cao, Chen, Chen, Chen, Cheng, Cheng, Cui, Duan, Fang, Gong, Guo, Hou, Hu, Kuang, Li, Li, Li, Liu, Liu, Long, Luo, Meng, Peng, Qiu, Qiu, Shen, Shi, Wang, Wang, Wang, Wang, Wang, Wang, Wu, Wu, Xie, Xie, Xie, Xie, Xu, Yang, Yang, Yao, Yao, Yin, Yuan, Zhang, Zhang, Zhang, Zhang, Zhang, Zhou, Zhou, Zhu, Zou, Si, Zuo, Zhao, Zang (2022.09.22.508637v1.47) 2019; 116
Fortin, Cullen, Sheline, Taylor, Aselcioglu, Cook, Adams, Cooper, Fava, McGrath, McInnis, Phillips, Trivedi, Weissman, Shinohara (2022.09.22.508637v1.21) 2018; 167
Rombouts, Barkhof, Hoogenraad, Sprenger, Scheltens (2022.09.22.508637v1.41) 1998
Quinlan, Banaschewski, Barker, Bokde, Bromberg, Buchel, Desrivieres, Flor, Frouin, Garavan, Heinz, Bruhl, Martinot, Paillere Martinot, Nees, Orfanos, Paus, Poustka, Hohmann, Smolka, Frohner, Walter, Whelan, Schumann, Consortium (2022.09.22.508637v1.40) 2020; 25
Chen, Beer, Tustison, Cook, Shinohara, Shou (2022.09.22.508637v1.12) 2022a; 43
Friston, Worsley, Frackowiak, Mazziotta, Evans (2022.09.22.508637v1.25) 1994; 1
Chen, Lu, Li, Li, Wang, Castellanos, Cao, Chen, Chen, Cheng, Cui, Deng, Fang, Gong, Guo, Hu, Kuang, Li, Li, Li, Lian, Liao, Liu, Liu, Lu, Luo, Meng, Peng, Qiu, Shen, Si, Tang, Wang, Wang, Wang, Wang, Wang, Wang, Wang, Wu, Xie, Xie, Xie, Xu, Yang, Yang, Yao, Yu, Yuan, Zhang, Zhang, Zhang, Zhu, Zuo, Zhao, Zang, Yan, Chen, Cao, Chen, Cheng, Fang, Gong, Guo, Kuang, Li, Li, Liu, Liu, Lu, Luo, Meng, Peng, Qiu, Shen, Si, Tang, Wang, Y, Zang, Wang, Wang, Wang, Wang, Wu, Xie, Xie, Xie, Xu, Yang, Yang, Yao, Yu, Yuan, Zhang, Zhang, Zhang, Zhu, Zuo, Zhao, Zang, Yan (2022.09.22.508637v1.14) 2022b; 2
Varoquaux (2022.09.22.508637v1.44) 2018; 180
Fisher, Medaglia, Jeronimus (2022.09.22.508637v1.20) 2018; 115
Gong, Grauman, Sha (2022.09.22.508637v1.27) 2013
Fortin, Parker, Tunc, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (2022.09.22.508637v1.22) 2017; 161
Coalson, Van Essen, Glasser (2022.09.22.508637v1.15) 2018; 115
Satterthwaite, Wolf, Ruparel, Erus, Elliott, Eickhoff, Gennatas, Jackson, Prabhakaran, Smith, Hakonarson, Verma, Davatzikos, Gur, Gur (2022.09.22.508637v1.42) 2013; 83
Bareinboim, Pearl (2022.09.22.508637v1.4) 2016; 113
Buckner, Sepulcre, Talukdar, Krienen, Liu, Hedden, Andrews-Hanna, Sperling, Johnson (2022.09.22.508637v1.9) 2009; 29
Zindler, Frieling, Neyazi, Bleich, Friedel (2022.09.22.508637v1.56) 2020; 21
Zang, He, Zhu, Cao, Sui, Liang, Tian, Jiang, Wang (2022.09.22.508637v1.53) 2007; 29
Murphy, Fox (2022.09.22.508637v1.37) 2016
Csiszar (2022.09.22.508637v1.16) 1975; 3
Dansereau, Benhajali, Risterucci, Pich, Orban, Arnold, Bellec (2022.09.22.508637v1.17) 2017; 149
Moyer, Ver Steeg, Tax, Thompson (2022.09.22.508637v1.36) 2020; 84
Li, Guo, Li (2022.09.22.508637v1.33) 2019; 17
Jenkinson, Bannister, Brady, Smith (2022.09.22.508637v1.31) 2002; 17
Marek, Tervo-Clemmens, Calabro, Montez, Kay, Hatoum, Donohue, Foran, Miller, Hendrickson, Malone, Kandala, Feczko, Miranda-Dominguez, Graham, Earl, Perrone, Cordova, Doyle, Moore, Conan, Uriarte, Snider, Lynch, Wilgenbusch, Pengo, Tam, Chen, Newbold, Zheng, Seider, Van, Metoki, Chauvin, Laumann, Greene, Petersen, Garavan, Thompson, Nichols, Yeo, Barch, Luna, Fair, Dosenbach (2022.09.22.508637v1.34) 2022; 603
Charles, Falk, Turner, Pereira, Tward, Pedigo, Chung, Burns, Ghosh, Kebschull, Silversmith, Vogelstein (2022.09.22.508637v1.11) 2020; 43
Zhong, Wang, Li, Xue, Liu, Wang, Gao, Wang, Yang, Li (2022.09.22.508637v1.54) 2020; 19
Yan, Wang, Zuo, Zang (2022.09.22.508637v1.49) 2016; 14
Ashburner (2022.09.22.508637v1.3) 2007; 38
Zuo, Xing (2022.09.22.508637v1.61) 2014; 45
Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (2022.09.22.508637v1.19) 2010; 329
Brodoehl, Gaser, Dahnke, Witte, Klingner (2022.09.22.508637v1.8) 2020; 10
Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafo (2022.09.22.508637v1.10) 2013; 14
Biswal, Yetkin, Haughton, Hyde (2022.09.22.508637v1.6) 1995; 34
McGrath, Lim, Plana-Ripoll, Holtz, Agerbo, Momen, Mortensen, Pedersen, Abdulmalik, Aguilar-Gaxiola, Al-Hamzawi, Alonso, Bromet, Bruffaerts, Bunting, de Almeida, de Girolamo, De Vries, Florescu, Gureje, Haro, Harris, Hu, Karam, Kawakami, Kiejna, Kovess-Masfety, Lee, Mneimneh, Navarro-Mateu, Orozco, Posada-Villa, Roest, Saha, Scott, Stagnaro, Stein, Torres, Viana, Ziv, Kessler, de Jonge (2022.09.22.508637v1.35) 2020; 29
Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan, Launer, Masters, Maruff, Zhuo, Volzke, Johnson, Fripp, Koutsouleris, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wolk, Shinohara, Shou, Davatzikos (2022.09.22.508637v1.39) 2020; 208
Hallquist, Hwang, Luna (2022.09.22.508637v1.30) 2013; 82
Yan, Craddock, Zuo, Zang, Milham (2022.09.22.508637v1.48) 2013; 80
Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner, Eichele, Adelsheim, Bryan, Bustillo, Clark, Feldstein Ewing, Filbey, Ford, Hutchison, Jung, Kiehl, Kodituwakku, Komesu, Mayer, Pearlson, Phillips, Sadek, Stevens, Teuscher, Thoma, Calhoun (2022.09.22.508637v1.2) 2011; 5
Chen, Chen, Shen, Li, Li, Lu, Zhu, Fan, Yan (2022.09.22.508637v1.13) 2020; 221
Genovese, Lazar, Nichols (2022.09.22.508637v1.26) 2002; 15
Hadi (2022.09.22.508637v1.29) 1991; 34
Zou, Zhu, Yang, Zuo, Long, Cao, Wang, Zang (2022.09.22.508637v1.57) 2008; 172
Dinsdale, Jenkinson, Namburete (2022.09.22.508637v1.18) 2021; 228
Friston, Williams, Howard, Frackowiak, Turner (2022.09.22.508637v1.24) 1996; 35
Xia, Wang, He (2022.09.22.508637v1.45) 2013; 8
Zuo, Anderson, Bellec, Birn, Biswal, Blautzik, Breitner, Buckner, Calhoun, Castellanos, Chen, Chen, Chen, Chen, Colcombe, Courtney, Craddock, Di Martino, Dong, Fu, Gong, Gorgolewski, Han, He, He, Ho, Holmes, Hou, Huckins, Jiang, Jiang, Kelley, Kelly, King, LaConte, Lainhart, Lei, Li, Li, Li, Lin, Liu, Liu, Liu, Liu, Lu, Lu, Luna, Luo, Lurie, Mao, Margulies, Mayer, Meindl, Meyerand, Nan, Nielsen, O’Connor, Paulsen, Prabhakaran, Qi, Qiu, Shao, Shehzad, Tang, Villringer, Wang, Wang, Wei, Wei, Weng, Wu, Xu, Yang, Yang, Zang, Zhang, Zhang, Zhang, Zhang, Zhao, Zhen, Zhou, Zhu, Milham (2022.09.22.508637v1.58) 2014; 1
Yamashita, Yahata, Itahashi, Lisi, Yamada, Ichikawa, Takamura, Yoshihara, Kunimatsu, Okada, Yamagata, Matsuo, Hashimoto, Okada, Sakai, Morimoto, Narumoto, Shimada, Kasai, Kato, Takahashi, Okamoto, Tanaka, Kawato, Yamashita, Imamizu (2022.09.22.508637v1.46) 2019; 17
Yu, Linn, Cook, Phillips, McInnis, Fava, Trivedi, Weissman, Shinohara, Sheline (2022.09.22.508637v1.51) 2018; 39
van Velzen, Kelly, Isaev, Aleman, Aftanas, Bauer, Baune, Brak, Carballedo, Connolly, Couvy-Duchesne, Cullen, Danilenko, Dannlowski, Enneking, Filimonova, Forster, Frodl, Gotlib, Groenewold, Grotegerd, Harris, Hatton, Hawkins, Hickie, Ho, Jansen, Kircher, Klimes-Dougan, Kochunov, Krug, Lagopoulos, Lee, Lett, Li, MacMaster, Martin, McIntosh, McLellan, Meinert, Nenadic, Osipov, Penninx, Portella, Repple, Roos, Sacchet, Samann, Schnell, Shen, Sim, Stein, van Tol, Tomyshev, Tozzi, Veer, Vermeiren, Vives-Gilabert, Walter, Walter, van der Wee, van der Werff, Schreiner, Whalley, Wright, Yang, Zhu, Veltman, Thompson, Jahanshad, Schmaal (2022.09.22.508637v1.43) 2020; 25
Zhou, Singh, Johnson, Wahba (2022.09.22.508637v1.55) 2018; 115
Zuo, Xu, Milham (2022.09.22.508637v1.62) 2019; 3
Zuo, He, Betzel, Colcombe, Sporns, Milham (2022.09.22.508637v1.60) 2017; 21
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe, Dogonowski, Ernst, Fair, Hampson, Hoptman, Hyde, Kiviniemi, Kotter, Li, Lin, Lowe, Mackay, Madden, Madsen, Margulies, Mayberg, McMahon, Monk, Mostofsky, Nagel, Pekar, Peltier, Petersen, Riedl, Rombouts, Rypma, Schlaggar, Schmidt, Seidler, Siegle, Sorg, Teng, Veijola, Villringer, Walter, Wang, Weng, Whitfield-Gabrieli, Williamson, Windischberger, Zang, Zhang, Castellanos, Milham (2022.09.22.508637v1.7) 2010; 107
Yan, Zang (2022.09.22.508637v1.50) 2010; 4
Murtagh, Legendre (2022.09.22.508637v1.38) 2014; 31
Beer, Tustison, Cook, Davatzikos, Sheline, Shinohara, Linn (2022.09.22.508637v1.5) 2020; 220
Friston (2022.09.22.508637v1.23) 2011; 1
Johnson, Li, Rabinovic (2022.09.22.508637v1.32) 2007; 8
Al Zoubi, Misaki, Tsuchiyagaito, Zotev, White, Paulus, Bodurka (2022.09.22.508637v1.1) 2020
Guan, Liu, Yang, Yap, Shen, Liu (2022.09.22.508637v1.28) 2021; 71
Zuo, Ehmke, Mennes, Imperati, Castellanos, Sporns, Milham (2022.09.22.508637v1.59) 2012; 22
Zang, Jiang, Lu, He, Tian (2022.09.22.508637v1.52) 2004; 22
References_xml – volume: 180
  start-page: 68
  year: 2018
  end-page: 77
  ident: 2022.09.22.508637v1.44
  article-title: Cross-validation failure: Small sample sizes lead to large error bars
  publication-title: Neuroimage
– volume: 29
  start-page: 83
  year: 2007
  end-page: 91
  ident: 2022.09.22.508637v1.53
  article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI
  publication-title: Brain Dev
– volume: 31
  start-page: 274
  year: 2014
  end-page: 295
  ident: 2022.09.22.508637v1.38
  article-title: Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?
  publication-title: Journal of Classification
– volume: 39
  start-page: 4213
  year: 2018
  end-page: 4227
  ident: 2022.09.22.508637v1.51
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
  publication-title: Hum Brain Mapp
– volume: 35
  start-page: 346
  year: 1996
  end-page: 355
  ident: 2022.09.22.508637v1.24
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn Reson Med
– year: 2020
  ident: 2022.09.22.508637v1.1
  article-title: Predicting Sex from Resting-State fMRI Across Multiple Independent Acquired Datasets
– volume: 208
  start-page: 116450
  year: 2020
  ident: 2022.09.22.508637v1.39
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: Neuroimage
– volume: 8
  start-page: e68910
  year: 2013
  ident: 2022.09.22.508637v1.45
  article-title: BrainNet Viewer: a network visualization tool for human brain connectomics
  publication-title: PLoS ONE
– volume: 29
  start-page: 1860
  year: 2009
  end-page: 1873
  ident: 2022.09.22.508637v1.9
  article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease
  publication-title: J Neurosci
– volume: 1
  start-page: 210
  year: 1994
  end-page: 220
  ident: 2022.09.22.508637v1.25
  article-title: Assessing the significance of focal activations using their spatial extent
  publication-title: Hum Brain Mapp
– volume: 71
  start-page: 102076
  year: 2021
  ident: 2022.09.22.508637v1.28
  article-title: Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification
  publication-title: Med Image Anal
– year: 1998
  ident: 2022.09.22.508637v1.41
  article-title: Within-Subject Reproducibility of Visual Activation Patterns With Functional Magnetic Resonance Imaging Using Multislice Echo Planar Imaging
  publication-title: Magnetic Resonance Imaging
– volume: 116
  start-page: 9078
  year: 2019
  end-page: 9083
  ident: 2022.09.22.508637v1.47
  article-title: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder
  publication-title: Proc Natl Acad Sci U S A
– volume: 1
  start-page: 140049
  year: 2014
  ident: 2022.09.22.508637v1.58
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
  publication-title: Sci Data
– volume: 17
  start-page: e3000042
  year: 2019
  ident: 2022.09.22.508637v1.46
  article-title: Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias
  publication-title: PLoS Biol
– volume: 25
  start-page: 1511
  year: 2020
  end-page: 1525
  ident: 2022.09.22.508637v1.43
  article-title: White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group
  publication-title: Mol Psychiatry
– volume: 167
  start-page: 104
  year: 2018
  end-page: 120
  ident: 2022.09.22.508637v1.21
  article-title: Harmonization of cortical thickness measurements across scanners and sites
  publication-title: Neuroimage
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: 2022.09.22.508637v1.22
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
– volume: 149
  start-page: 220
  year: 2017
  end-page: 232
  ident: 2022.09.22.508637v1.17
  article-title: Statistical power and prediction accuracy in multisite resting-state fMRI connectivity
  publication-title: Neuroimage
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: 2022.09.22.508637v1.3
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 220
  start-page: 117129
  year: 2020
  ident: 2022.09.22.508637v1.5
  article-title: Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data
  publication-title: Neuroimage
– volume: 1
  start-page: 13
  year: 2011
  end-page: 36
  ident: 2022.09.22.508637v1.23
  article-title: Functional and effective connectivity: a review
  publication-title: Brain Connect
– volume: 43
  start-page: 441
  year: 2020
  end-page: 464
  ident: 2022.09.22.508637v1.11
  article-title: Toward Community-Driven Big Open Brain Science: Open Big Data and Tools for Structure, Function, and Genetics
  publication-title: Annu Rev Neurosci
– volume: 17
  start-page: 393
  year: 2019
  end-page: 401
  ident: 2022.09.22.508637v1.33
  article-title: Functional Neuroimaging in the New Era of Big Data
  publication-title: Genomics Proteomics Bioinformatics
– volume: 115
  start-page: E6106
  year: 2018
  end-page: E6115
  ident: 2022.09.22.508637v1.20
  article-title: Lack of group-to-individual generalizability is a threat to human subjects research
  publication-title: Proc Natl Acad Sci U S A
– volume: 80
  start-page: 246
  year: 2013
  end-page: 262
  ident: 2022.09.22.508637v1.48
  article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes
  publication-title: Neuroimage
– year: 2016
  ident: 2022.09.22.508637v1.37
  article-title: Towards a Consensus Regarding Global Signal Regression for Resting State Functional Connectivity MRI
  publication-title: Neuroimage
– volume: 2
  start-page: 32
  year: 2022b
  end-page: 42
  ident: 2022.09.22.508637v1.14
  article-title: The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder
  publication-title: Psychoradiology
– volume: 3
  start-page: 768
  year: 2019
  end-page: 771
  ident: 2022.09.22.508637v1.62
  article-title: Harnessing reliability for neuroscience research
  publication-title: Nat Hum Behav
– volume: 22
  start-page: 394
  year: 2004
  end-page: 400
  ident: 2022.09.22.508637v1.52
  article-title: Regional homogeneity approach to fMRI data analysis
  publication-title: Neuroimage
– volume: 228
  start-page: 117689
  year: 2021
  ident: 2022.09.22.508637v1.18
  article-title: Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
  publication-title: Neuroimage
– volume: 172
  start-page: 137
  year: 2008
  end-page: 141
  ident: 2022.09.22.508637v1.57
  article-title: An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF
  publication-title: J Neurosci Methods
– volume: 10
  start-page: 5737
  year: 2020
  ident: 2022.09.22.508637v1.8
  article-title: Surface-based analysis increases the specificity of cortical activation patterns and connectivity results
  publication-title: Sci Rep
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: 2022.09.22.508637v1.19
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 34
  start-page: 111
  year: 1991
  end-page: 112
  ident: 2022.09.22.508637v1.29
  article-title: Finding Groups in Data: An Introduction to Chster Analysis
  publication-title: Technometrics
– volume: 115
  start-page: E6356
  year: 2018
  end-page: E6365
  ident: 2022.09.22.508637v1.15
  article-title: The impact of traditional neuroimaging methods on the spatial localization of cortical areas
  publication-title: Proc Natl Acad Sci U S A
– start-page: I-222
  year: 2013
  end-page: I-230
  ident: 2022.09.22.508637v1.27
  publication-title: Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28
– volume: 82
  start-page: 208
  year: 2013
  end-page: 225
  ident: 2022.09.22.508637v1.30
  article-title: The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity
  publication-title: Neuroimage
– volume: 115
  start-page: 1481
  year: 2018
  end-page: 1486
  ident: 2022.09.22.508637v1.55
  article-title: Statistical tests and identifiability conditions for pooling and analyzing multisite datasets
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 32
  year: 2017
  end-page: 45
  ident: 2022.09.22.508637v1.60
  article-title: Human Connectomics across the Life Span
  publication-title: Trends Cogn Sci
– volume: 113
  start-page: 7345
  year: 2016
  end-page: 7352
  ident: 2022.09.22.508637v1.4
  article-title: Causal inference and the data-fusion problem
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 365
  year: 2013
  end-page: 376
  ident: 2022.09.22.508637v1.10
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat Rev Neurosci
– volume: 19
  start-page: 4
  year: 2020
  ident: 2022.09.22.508637v1.54
  article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development
  publication-title: Biomed Eng Online
– volume: 43
  start-page: 1179
  year: 2022a
  end-page: 1195
  ident: 2022.09.22.508637v1.12
  article-title: Mitigating site effects in covariance for machine learning in neuroimaging data
  publication-title: Hum Brain Mapp
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  ident: 2022.09.22.508637v1.32
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
– volume: 3
  start-page: 113
  issue: 146-158
  year: 1975
  ident: 2022.09.22.508637v1.16
  article-title: $I$-Divergence Geometry of Probability Distributions and Minimization Problems
  publication-title: The Annals of Probability
– volume: 83
  start-page: 45
  year: 2013
  end-page: 57
  ident: 2022.09.22.508637v1.42
  article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth
  publication-title: Neuroimage
– volume: 5
  start-page: 2
  year: 2011
  ident: 2022.09.22.508637v1.2
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Front Syst Neurosci
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  ident: 2022.09.22.508637v1.26
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: Neuroimage
– volume: 21
  start-page: 271
  year: 2020
  ident: 2022.09.22.508637v1.56
  article-title: Simulating ComBat: how batch correction can lead to the systematic introduction of false positive results in DNA methylation microarray studies
  publication-title: BMC Bioinformatics
– volume: 29
  start-page: e153
  year: 2020
  ident: 2022.09.22.508637v1.35
  article-title: Comorbidity within mental disorders: a comprehensive analysis based on 145 990 survey respondents from 27 countries
  publication-title: Epidemiol Psychiatr Sci
– volume: 221
  start-page: 117185
  year: 2020
  ident: 2022.09.22.508637v1.13
  article-title: The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study
  publication-title: Neuroimage
– volume: 45
  start-page: 100
  year: 2014
  end-page: 118
  ident: 2022.09.22.508637v1.61
  article-title: Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective
  publication-title: Neurosci Biobehav Rev
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: 2022.09.22.508637v1.6
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn Reson Med
– volume: 4
  start-page: 13
  year: 2010
  ident: 2022.09.22.508637v1.50
  article-title: DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI
  publication-title: Front Syst Neurosci
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: 2022.09.22.508637v1.31
  article-title: Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images
  publication-title: Neuroimage
– volume: 84
  start-page: 2174
  year: 2020
  end-page: 2189
  ident: 2022.09.22.508637v1.36
  article-title: Scanner invariant representations for diffusion MRI harmonization
  publication-title: Magn Reson Med
– volume: 14
  start-page: 339
  year: 2016
  end-page: 351
  ident: 2022.09.22.508637v1.49
  article-title: DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging
  publication-title: Neuroinformatics
– volume: 25
  start-page: 243
  year: 2020
  end-page: 253
  ident: 2022.09.22.508637v1.40
  article-title: Identifying biological markers for improved precision medicine in psychiatry
  publication-title: Mol Psychiatry
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: 2022.09.22.508637v1.7
  article-title: Toward discovery science of human brain function
  publication-title: Proc Natl Acad Sci U S A
– volume: 22
  start-page: 1862
  year: 2012
  end-page: 1875
  ident: 2022.09.22.508637v1.59
  article-title: Network centrality in the human functional connectome
  publication-title: Cereb Cortex
– volume: 603
  start-page: 654
  year: 2022
  end-page: 660
  ident: 2022.09.22.508637v1.34
  article-title: Reproducible brain-wide association studies require thousands of individuals
  publication-title: Nature
SSID ssj0002961374
Score 1.6677493
SecondaryResourceType preprint
Snippet To embrace big-data neuroimaging, harmonization of site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Brain mapping
Datasets
Functional magnetic resonance imaging
Neuroimaging
Neuroscience
Regression analysis
Sex differences
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6MfDmJ06nRPBazJImTU6CsjEExxAHu5WkSXEH19ltov-977WdOwhCCYVAoS95n3n5_Qi5TRIvNFM60tqaKOaxhTeWR5IFZZ00PFTXo5_HajSNn2Zy1hTcVk1b5dYmVobaFxnWyO845B19bZiO75cfEbJG4elqQ6GxT9pggjXs8_bDYDx5-a2ycAPuqoJi5sqA6nMmm6NN2IqY-HNEOYUR4hSFXOgdNy_Kr_nnH9Nc-ZvhIWlP7DKUR2QvLI5JpyaM_D4hKapvGd7qrnO6g-qmRU4RhLrY3quk8KDPqkt91CETBJ2_V5xEFAJVWnUS4s9RbBKN8g2WzU7JdDh4fRxFDUVC5CqMBS21SWSuQ-JM8CLPVGxcpkHJvAZ15ZkSzpg494k1QvtEQXbFmMOsQhhhmTgjrUWxCOeE2n7QBuST-awf89wZm8tgtfIWoyIZuuSmkU26rIEwUpRfykwKYy2_LultpZY2urBKdyt38f_0JTnAL2I3Bhc90lqXm3AFLn_trpt1_QFsmqjF
  priority: 102
  providerName: ProQuest
Title Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion
URI https://www.proquest.com/docview/2717189084
https://www.biorxiv.org/content/10.1101/2022.09.22.508637
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66IfjmFadzRPC1kuaeV2VjCI4hDvZWkjbBPbiOuon-e3PaTgV9EEoohbb0NCfn9uV8CF0rVTBNpE60tibhlNt4RkIiiJfWCUN9vT36YSLHM34_F_MfVF8Aq3SLsnpfvNV1fABsx9W3UW6SQqxOoTFpHKNrIZnaRd04pSiwNozmN1_pFWqinVK8rWP-eWf0eNs3_VqHa-MyOkDdqV356hDt-OUR2mvYIT-OUQa6WvnnBmKOv_ty4zJg6DhdbjdR4niAgWryetgB7QNevNQERDh6pbiGDUKdGAMiNAkbyJGdoNlo-HQ3Tlo-hMTVDRW00EaJoL1yxhcs5JIbl-v4-YWOuklzyZwxPBTKGqYLJWMoRYiDEIIZZgk7RZ1lufRnCNvUa0OJyIs85TQ4Y4PwVsvCggskfA9dtbLJVk3XiwzklxGTxbGRXw_1t1LL2on_mtEYHqbaEM3P__GIC7QP1wB_QVkfddbVxl9GI792A9S9HU6mj4P6t34CU4ei8Q
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50l0VvPvFtBD0Ws2mbJgcRfCzra1lkBW81aVPcg9t1ff8pf6MzfehB8CaUUCjk8GU6r8zMB7AbRamvuFSeUkZ7gQgMvvHMC7mTxoZauKI9-qonuzfB-W14OwWfdS8MlVXWOrFQ1GmeUI58X2Dc0Vaaq-Bw_OgRaxTdrtYUGqVYXLiPNwzZng7OTvB894TonA6Ou17FKuDZYiyBCpWOwky5yGqX-lkiA20ThXKZKpRwkUjfah1kaWS0r9JIYkDCuSVH3Ne-4T7uOw3NgDpaG9A8Ou31r7-zOkKjeSxGPwupUdUIHlZXqSj6lGgQNFUVV_SLJHGvt-wwn7wPX3-ZgsK-deag2TdjN5mHKTdagFZJUPmxCDGpi4m7L6vc2c9ocJZnjIZe53UfJ8OHbGSZWmSWmCfY8KHgQGLoGLOicpHAZFSU6mUvlKZbgpt_AW8ZGqN85FaAmbZTGvFJ0qQdiMxqk4XOKJka8sJCtwo7FTbxuBy8ERN-MdcxriV-q7BRoxZX_95T_CMpa39_3oaZ7uDqMr48612swyztTpUgwt-AxvPkxW2iu_Fst6ozZnD332L1BTq-4x4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6oXjzE6dTI3jtSJOmSc5q8XPs4GC3kLQJ7uA66ib635vXdiroQSihUEjIa17e1--9h9CFEAWTJJWRlEZFCU1MeCM-4sSlxnJFXZ0e_ThMb8bJ3YRPfuTCAKzSTsvqffpWx_EBsB1u34a5SQy2OoXCpGEMqkXKxADc1IN54ddRN5ytGE52Nhl8-VmoCgJLJG1A888pgurbLvnrQq6lTLaNuiMzd9UOWnOzXbTRtIn82EMamLZyzw3WHH8X6Malx1B6ulxlU-LwgKRqHHzYQv8HPH2pOxHhoJ7iGj8IAWMM0NDIL8FZto_G2fXT5U3UNkaIbF1ZQXKpBPfSCatcwXyeJsrmMmy_kIFJaZ4yq1TiC2EUk4VIg01FiAVbgilmCDtAnVk5c4cIm9hJRQnPizxOqLfKeO6MTAsDuhB3PXTe0kbPm_IXGuinidJhbOjXQ_0V1XTLAa-aBjsxlorI5OgfU5yhzdFVph9uh_fHaAs-AyaDsj7qLKqlOwmCf2FP6z_7CcTkpz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+evaluation+of+harmonization+on+functional+brain+imaging+for+multisite+data-fusion&rft.jtitle=bioRxiv&rft.au=Wang%2C+Yu-Wei&rft.au=Chen%2C+Xiao&rft.au=Yan%2C+Chao-Gan&rft.date=2022-09-23&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.09.22.508637&rft.externalDocID=2022.09.22.508637v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon