Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical Systems

Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Makrygiorgos, Georgios, Berliner, Aaron J, Shi, Fengzhe, Clark, Douglas S, Arkin, Adam P, Mesbah, Ali
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 22.02.2022
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems. Competing Interest Statement The authors have declared no competing interest.
AbstractList Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-toevaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems.
Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems. Competing Interest Statement The authors have declared no competing interest.
Author Mesbah, Ali
Arkin, Adam P
Makrygiorgos, Georgios
Shi, Fengzhe
Berliner, Aaron J
Clark, Douglas S
Author_xml – sequence: 1
  givenname: Georgios
  surname: Makrygiorgos
  fullname: Makrygiorgos, Georgios
– sequence: 2
  givenname: Aaron
  surname: Berliner
  middlename: J
  fullname: Berliner, Aaron J
– sequence: 3
  givenname: Fengzhe
  surname: Shi
  fullname: Shi, Fengzhe
– sequence: 4
  givenname: Douglas
  surname: Clark
  middlename: S
  fullname: Clark, Douglas S
– sequence: 5
  givenname: Adam
  surname: Arkin
  middlename: P
  fullname: Arkin, Adam P
– sequence: 6
  givenname: Ali
  surname: Mesbah
  fullname: Mesbah, Ali
BookMark eNpNUMtOwzAQtBBIlNIP4GaJC5cUvxI3R2haQGqFEPQcOckGXCV2sd1CfoJvJm05cNqd3ZnR7lygU2MNIHRFyZhSQm8ZYWxM2JimYzGhVCQnaMCSlEUTRuLTf_05Gnm_JoSwNKFcigH6yVRQUeb0DgyeN_YrWqoNXtoKGo9r6_BhP6trXWowAWfal3YHrsO2xllnVKtLj5Wp8Fz5gFemBBeUNqHDL1tlgu6FKmhr9vx7bRv73g-ag6KH5Qe0B_za-QCtv0RntWo8jP7qEK3ms7fpY7R4fnia3i2ighKRRJWoSTqRVNGilrJQXEpSpBJYOollVcRMVXEia0L6p7kouChjUQEFkDEAV8CH6OboW2jrvvUu3zjdKtfl-yhzwnKa5scoe-r1kbpx9nMLPuRru3Wmvy5nCadSyFRy_gtj1HYi
Cites_doi 10.1146/annurev.fluid.010908.165248
10.1137/S1064827501387826
10.1142/S0129065704001899
10.1039/C5CP00904A
10.1016/S0021-9991(03)00092-5
10.3389/fspas.2021.711550
10.1016/j.ress.2012.05.002
10.1214/009053604000000067
10.23919/EuCAP.2017.7928679
10.1016/j.jprocont.2016.03.004
10.1080/01621459.1998.10473765
ContentType Paper
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2022.02.19.481146
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2022.02.19.481146v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1046-d4f09871a1bf77ba3770b97e29857db52ad567f0082034b34c54de1ee75ee3ae3
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:52:55 EST 2025
Fri Jul 25 09:21:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Uncertainty quantification
Probabilistic surrogate modeling
Polynomial chaos Kriging
Discovery of nonlinear dynamics
Flow-map decomposition
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1046-d4f09871a1bf77ba3770b97e29857db52ad567f0082034b34c54de1ee75ee3ae3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-7008-0988
0000-0002-4999-2931
0000-0003-2236-5716
0000-0002-1700-0600
0000-0002-4817-3926
OpenAccessLink https://www.biorxiv.org/content/10.1101/2022.02.19.481146
PQID 2631747973
PQPubID 2050091
PageCount 23
ParticipantIDs biorxiv_primary_2022_02_19_481146
proquest_journals_2631747973
PublicationCentury 2000
PublicationDate 20220222
PublicationDateYYYYMMDD 2022-02-22
PublicationDate_xml – month: 02
  year: 2022
  text: 20220222
  day: 22
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Deman, Konakli, Sudret, Kerrou, Perrochet, Benabderrahmane (2022.02.19.481146v1.46) 2016; 147
Brunton, Proctor, Kutz (2022.02.19.481146v1.13) 2016; 113
Girard, Rasmussen, Quinonero-Candela, Murray-Smith (2022.02.19.481146v1.69) 2003
Najm (2022.02.19.481146v1.25) 2009; 41
Cafiisch (2022.02.19.481146v1.32) 1998; 7
Daniels, Nemenman (2022.02.19.481146v1.6) 2015; 10
Tripathy, Bilionis (2022.02.19.481146v1.37) 2018; 375
Berliner, Hilzinger, Abel, McNulty, Makrygiorgos, Averesch, Gupta, Benvenuti, Caddell, Cestellos-Blanco, Doloman, Friedline, Ho, Gu, Hill, Kusuma, Lipsky, Mirkovic, Meraz, Pane, Sander, Shi, Skerker, Styer, Valgardson, Wetmore, Woo, Xiong, Yates, Zhang, Zhen, Bugbee, Clark, Coleman-Derr, Mesbah, Nandi, Waymouth, Yang, Criddle, McDonald, Seefeldt, Menezes, Arkin (2022.02.19.481146v1.71) 2021; 8
Davis, Lii, Politis (2022.02.19.481146v1.78) 2011
Marcus, Torres, Rittmann (2022.02.19.481146v1.74) 2007; 98
Paulson, Buehler, Mesbah (2022.02.19.481146v1.52) 2017; 50
Schillings, Sunnåker, Stelling, Schwab (2022.02.19.481146v1.40) 2015; 11
May (2022.02.19.481146v1.62) 1974; 186
Franceschini, Macchietto (2022.02.19.481146v1.2) 2008; 63
Rudy, Kutz, Brunton (2022.02.19.481146v1.20) 2019; 396
Williams, Kevrekidis, Rowley (2022.02.19.481146v1.17) 2015; 25
Zhang, Del Rio-Chanona, Petsagkourakis, Wagner (2022.02.19.481146v1.10) 2019; 116
Pande, Merker, Bohl, Reichelt, Schuster, De Figueiredo, Kaleta, Kost (2022.02.19.481146v1.65) 2014; 8
Kutz, Brunton, Brunton, Proctor (2022.02.19.481146v1.15) 2016
Williams, Rasmussen (2022.02.19.481146v1.49) 2006
Paulson, Martin-Casas, Mesbah (2022.02.19.481146v1.31) 2019; 15
Schmid (2022.02.19.481146v1.16) 2010; 656
Banga, Balsa-Canto, Moles, Alonso (2022.02.19.481146v1.1) 2005; 117
Qin, Chen, Jakeman, Xiu (2022.02.19.481146v1.22) 2020
Hewing, Arcari, Fröhlich, Zeilinger (2022.02.19.481146v1.67) 2020
Tsymbalov, Panov, Shapeev (2022.02.19.481146v1.56) 2018
Vanlier, Tiemann, Hilbers, Van Riel (2022.02.19.481146v1.29) 2013; 246
Hansen, Ostermeier (2022.02.19.481146v1.57) 2001; 9
Mesbah, Streif (2022.02.19.481146v1.30) 2015; 48
Streif, Petzke, Mesbah, Findeisen, Braatz (2022.02.19.481146v1.38) 2014; 47
Schöbi, Sudret (2022.02.19.481146v1.44) 2014
Borgonovo (2022.02.19.481146v1.75) 2007; 92
Raissi, Perdikaris, Karniadakis (2022.02.19.481146v1.61) 2018
Dubois, Gomez, Planckaert, Perret (2022.02.19.481146v1.60) 2020; 408
Kennedy, O’hagan (2022.02.19.481146v1.76) 2001; 63
Iooss, Lemaître (2022.02.19.481146v1.4) 2015
Schubert, Simutis, Dors, Havlik, Andreas (2022.02.19.481146v1.9) 1994; 35
Sparrow (2022.02.19.481146v1.59) 2012; 41
Olsen, Lunding (2022.02.19.481146v1.63) 2021; 31
Xiu, Karniadakis (2022.02.19.481146v1.34) 2003; 187
Streif, Kim, Rumschinski, Kishida, Shen, Findeisen, Braatz (2022.02.19.481146v1.24) 2016; 42
Brunton, Kutz (2022.02.19.481146v1.64) 2019
Komorowski, Finkenstädt, Harper, Rand (2022.02.19.481146v1.27) 2009; 10
Polymenakos, Abate, Roberts (2022.02.19.481146v1.68) 2017
Bongard, Lipson (2022.02.19.481146v1.11) 2007; 104
Torres, Marcus, Parameswaran, Rittmann (2022.02.19.481146v1.72) 2008; 42
Liu, Chen (2022.02.19.481146v1.77) 1998; 93
Pettit, Beran (2022.02.19.481146v1.42) 2006; 294
Paulson, Martin-Casas, Mesbah (2022.02.19.481146v1.47) 2019; 77
Treloar, Fedorec, Ingalls, Barnes (2022.02.19.481146v1.66) 2020; 16
Makrygiorgos, Gupta, Menezes, Mesbah (2022.02.19.481146v1.45) 2020; 53
Bishop (2022.02.19.481146v1.53) 2006; 128
Sudret, Marelli, Wiart (2022.02.19.481146v1.33) 2017
Smith (2022.02.19.481146v1.26) 2013; 12
Oladyshkin, Nowak (2022.02.19.481146v1.48) 2012; 106
Su, Chou, Xiu (2022.02.19.481146v1.23) 2021; 83
Champion, Lusch, Kutz, Brunton (2022.02.19.481146v1.12) 2019; 116
del Rio-Chanona, Wagner, Ali, Fiorelli, Zhang, Hellgardt (2022.02.19.481146v1.39) 2019; 65
Raissi, Perdikaris, Karniadakis (2022.02.19.481146v1.19) 2019; 378
Heinonen, Yildiz, Mannerström, Intosalmi, Lähdesmäki (2022.02.19.481146v1.14) 2018
Schoukens, Ljung (2022.02.19.481146v1.18) 2019; 39
Blatman, Sudret (2022.02.19.481146v1.35) 2011; 230
Hastie, Tibshirani, Wainwright (2022.02.19.481146v1.54) 2015
Makrygiorgos, Maggioni, Mesbah (2022.02.19.481146v1.43) 2020; 138
Rodrigues, Makrygiorgos, Mesbah (2022.02.19.481146v1.79) 2020
Qin, Wu, Xiu (2022.02.19.481146v1.21) 2019; 395
Cameron, Martin (2022.02.19.481146v1.51) 1947; 48
Kazemi, Biria, Rismani-Yazdi (2022.02.19.481146v1.73) 2015; 17
Paulson, Martin-Casas, Mesbah (2022.02.19.481146v1.80) 2019; 77
Golightly, Wilkinson (2022.02.19.481146v1.3) 2011; 1
Von Stosch, Oliveira, Peres, Sebastião Feyo de (2022.02.19.481146v1.8) 2014; 60
Rumschinski, Borchers, Bosio, Weismantel, Findeisen (2022.02.19.481146v1.28) 2010; 4
Pereira, Schimit, Francisco Elânio (2022.02.19.481146v1.41) 2021; 205
Schmidt, Vallabhajosyula, Jenkins, Hood, Soni, Wikswo, Lipson (2022.02.19.481146v1.5) 2011; 8
Morris, Lecar (2022.02.19.481146v1.58) 1981; 35
Efron, Hastie, Johnstone, Tibshirani, Ishwaran, Knight, Loubes, Massart, Madigan, Ridgeway, Rosset, Zhu, Stine, Turloptiach, Weisberg, Johnstone, Tibshirani (2022.02.19.481146v1.55) 2004; 32
Abel, Clark (2022.02.19.481146v1.70) 2021; 14
Feyo De Azevedo, Dahm, Oliveira (2022.02.19.481146v1.7) 1997; 21
Cressie (2022.02.19.481146v1.36) 1990; 22
Xiu, Karniadakis (2022.02.19.481146v1.50) 2002; 24
References_xml – volume: 395
  start-page: 620
  year: 2019
  end-page: 635
  ident: 2022.02.19.481146v1.21
  article-title: Data driven governing equations approximation using deep neural networks
  publication-title: Journal of Computational Physics
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: 2022.02.19.481146v1.19
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– volume: 128
  issue: 9
  year: 2006
  ident: 2022.02.19.481146v1.53
  article-title: Pattern recognition
  publication-title: Machine learning
– volume: 41
  year: 2012
  ident: 2022.02.19.481146v1.59
  publication-title: The Lorenz equations: bifurcations, chaos, and strange attractors
– volume: 41
  start-page: 35
  issue: 1
  year: 2009
  end-page: 52
  ident: 2022.02.19.481146v1.25
  article-title: Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.010908.165248
– volume: 10
  start-page: 1
  issue: 1
  year: 2009
  end-page: 10
  ident: 2022.02.19.481146v1.27
  article-title: Bayesian inference of biochemical kinetic parameters using the linear noise approximation
  publication-title: BMC bioinformatics
– volume: 117
  start-page: 407
  issue: 4
  year: 2005
  end-page: 419
  ident: 2022.02.19.481146v1.1
  article-title: Dynamic optimization of bioprocesses: Effcient and robust numerical strategies
  publication-title: Journal of Biotechnology
– volume: 48
  start-page: 100
  issue: 8
  year: 2015
  end-page: 105
  ident: 2022.02.19.481146v1.30
  article-title: A probabilistic approach to robust optimal experiment design with chance constraints
  publication-title: IFAC-PapersOnLine
– volume: 205
  start-page: 106078
  year: 2021
  ident: 2022.02.19.481146v1.41
  article-title: A deep learning based surrogate model for the parameter identification problem in probabilistic cellular automaton epidemic models
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 98
  year: 2007
  ident: 2022.02.19.481146v1.74
  article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell
  publication-title: Biotechnology and Bioengineering
– volume: 375
  start-page: 565
  year: 2018
  end-page: 588
  ident: 2022.02.19.481146v1.37
  article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: Journal of Computational Physics
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  end-page: 644
  ident: 2022.02.19.481146v1.50
  article-title: The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
  publication-title: SIAM J. Sci. Comput
  doi: 10.1137/S1064827501387826
– year: 2016
  ident: 2022.02.19.481146v1.15
  publication-title: Dynamic mode decomposition: data-driven modeling of complex systems
– volume: 31
  start-page: 013119
  issue: 1
  year: 2021
  ident: 2022.02.19.481146v1.63
  article-title: Chaos in the peroxidase–oxidase oscillator
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– start-page: 101
  year: 2015
  end-page: 122
  ident: 2022.02.19.481146v1.4
  publication-title: In Uncertainty management in simulation-optimization of complex systems
– year: 2017
  ident: 2022.02.19.481146v1.68
  article-title: Safe policy search with gaussian process models
  publication-title: arXiv preprint
– year: 2006
  ident: 2022.02.19.481146v1.49
  publication-title: Gaussian processes for machine learning
  doi: 10.1142/S0129065704001899
– volume: 14
  start-page: 344
  issue: 1
  year: 2021
  end-page: 355
  ident: 2022.02.19.481146v1.70
  article-title: A comprehensive modeling analysis of formate-mediated microbial electrosynthesis
  publication-title: ChemSusChem
– start-page: 1614
  year: 2020
  end-page: 1619
  ident: 2022.02.19.481146v1.79
  publication-title: In 2020 59th IEEE Conference on Decision and Control (CDC)
– volume: 246
  start-page: 305
  issue: 2
  year: 2013
  end-page: 314
  ident: 2022.02.19.481146v1.29
  article-title: Parameter uncertainty in biochemical models described by ordinary differential equations
  publication-title: Mathematical biosciences
– volume: 408
  start-page: 132495
  year: 2020
  ident: 2022.02.19.481146v1.60
  article-title: Data-driven predictions of the lorenz system
  publication-title: Physica D: Nonlinear Phenomena
– volume: 1
  start-page: 807
  issue: 6
  year: 2011
  end-page: 820
  ident: 2022.02.19.481146v1.3
  article-title: Bayesian parameter inference for stochastic biochemical network models using particle markov chain monte carlo
  publication-title: Interface focus
– volume: 21
  start-page: S751
  year: 1997
  end-page: S756
  ident: 2022.02.19.481146v1.7
  article-title: Hybrid modelling of biochemical processes: A comparison with the conventional approach
  publication-title: Computers & Chemical Engineering
– volume: 65
  start-page: 915
  issue: 3
  year: 2019
  end-page: 923
  ident: 2022.02.19.481146v1.39
  article-title: Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design
  publication-title: AIChE Journal
– volume: 294
  start-page: 752
  issue: 4-5
  year: 2006
  end-page: 779
  ident: 2022.02.19.481146v1.42
  article-title: Spectral and multiresolution wiener expansions of oscillatory stochastic processes
  publication-title: Journal of Sound and Vibration
– volume: 60
  start-page: 86
  year: 2014
  end-page: 101
  ident: 2022.02.19.481146v1.8
  article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future
  publication-title: Computers & Chemical Engineering
– volume: 396
  start-page: 483
  year: 2019
  end-page: 506
  ident: 2022.02.19.481146v1.20
  article-title: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints
  publication-title: Journal of Computational Physics
– volume: 48
  start-page: 385
  issue: 2
  year: 1947
  end-page: 392
  ident: 2022.02.19.481146v1.51
  article-title: Annals of Mathematics The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals
  publication-title: Ann. Math
– start-page: 424
  year: 2020
  end-page: 434
  ident: 2022.02.19.481146v1.67
  publication-title: In Learning for Dynamics and Control
– volume: 77
  start-page: 155
  year: 2019
  end-page: 171
  ident: 2022.02.19.481146v1.47
  article-title: Optimal Bayesian experiment design for nonlinear dynamic systems with chance constraints
  publication-title: Journal of Process Control
– volume: 17
  start-page: 12561
  issue: 19
  year: 2015
  end-page: 12574
  ident: 2022.02.19.481146v1.73
  article-title: Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O
  publication-title: Phys. Chem. Chem. Phys
  doi: 10.1039/C5CP00904A
– volume: 138
  start-page: 106814
  year: 2020
  ident: 2022.02.19.481146v1.43
  article-title: Surrogate modeling for fast uncertainty quantification: Application to 2d population balance models
  publication-title: Computers & Chemical Engineering
– volume: 116
  start-page: 2919
  issue: 11
  year: 2019
  end-page: 2930
  ident: 2022.02.19.481146v1.10
  article-title: Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization
  publication-title: Biotechnology and bioengineering
– start-page: 247
  year: 2018
  end-page: 258
  ident: 2022.02.19.481146v1.56
  publication-title: In International conference on analysis of images, social networks and texts
– volume: 187
  start-page: 137
  issue: 1
  year: 2003
  end-page: 167
  ident: 2022.02.19.481146v1.34
  article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos
  publication-title: Journal of Computational Physics
  doi: 10.1016/S0021-9991(03)00092-5
– volume: 42
  start-page: 6593
  issue: 17
  year: 2008
  end-page: 6597
  ident: 2022.02.19.481146v1.72
  article-title: Kinetic experiments for evaluating the nernstmonod model for anode-respiring bacteria (arb) in a biofilm anode
  publication-title: Environmental science & technology
– volume: 92
  start-page: 771
  issue: 6
  year: 2007
  end-page: 784
  ident: 2022.02.19.481146v1.75
  article-title: A new uncertainty importance measure
  publication-title: Reliability Engineering \& System Safety
– volume: 8
  start-page: 120
  year: 2021
  ident: 2022.02.19.481146v1.71
  article-title: Towards a Biomanufactory on Mars
  publication-title: Frontiers in Astronomy and Space Sciences
  doi: 10.3389/fspas.2021.711550
– year: 2018
  ident: 2022.02.19.481146v1.61
  article-title: Multistep neural networks for data-driven discovery of nonlinear dynamical systems
  publication-title: arXiv preprint
– volume: 106
  start-page: 179
  year: 2012
  end-page: 190
  ident: 2022.02.19.481146v1.48
  article-title: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion
  publication-title: Reliab. Eng. Syst. Saf
  doi: 10.1016/j.ress.2012.05.002
– volume: 4
  start-page: 1
  issue: 1
  year: 2010
  end-page: 14
  ident: 2022.02.19.481146v1.28
  article-title: Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks
  publication-title: BMC systems biology
– volume: 47
  start-page: 4103
  issue: 3
  year: 2014
  end-page: 4109
  ident: 2022.02.19.481146v1.38
  article-title: Optimal experimental design for probabilistic model discrimination using polynomial chaos
  publication-title: IFAC Proceedings Volumes
– volume: 16
  start-page: e1007783
  issue: 4
  year: 2020
  ident: 2022.02.19.481146v1.66
  article-title: Deep reinforcement learning for the control of microbial co-cultures in bioreactors
  publication-title: PLoS computational biology
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  end-page: 3937
  ident: 2022.02.19.481146v1.13
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proceedings of the national academy of sciences
– year: 2003
  ident: 2022.02.19.481146v1.69
  publication-title: Gaussian process priors with uncertain inputs? application to multiple-step ahead time series forecasting
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  end-page: 195
  ident: 2022.02.19.481146v1.57
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evolutionary computation
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  end-page: 499
  ident: 2022.02.19.481146v1.55
  article-title: Least angle regression
  publication-title: Ann. Stat
  doi: 10.1214/009053604000000067
– start-page: 793
  year: 2017
  end-page: 797
  ident: 2022.02.19.481146v1.33
  article-title: Surrogate models for uncertainty quantification: An overview
  publication-title: In 2017 11th European Conference on Antennas and Propagation (EU-CAP)
  doi: 10.23919/EuCAP.2017.7928679
– volume: 12
  year: 2013
  ident: 2022.02.19.481146v1.26
  publication-title: Uncertainty quantification: theory, implementation, and applications
– volume: 116
  start-page: 22445
  issue: 45
  year: 2019
  end-page: 22451
  ident: 2022.02.19.481146v1.12
  article-title: Data-driven discovery of co-ordinates and governing equations
  publication-title: Proceedings of the National Academy of Sciences
– volume: 63
  start-page: 425
  year: 2001
  end-page: 464
  ident: 2022.02.19.481146v1.76
  article-title: Bayesian calibration of computer models
  publication-title: J. R. Statist. Soc. B
– volume: 35
  start-page: 193
  issue: 1
  year: 1981
  end-page: 213
  ident: 2022.02.19.481146v1.58
  article-title: Voltage oscillations in the barnacle giant muscle fiber
  publication-title: Biophysical journal
– volume: 50
  start-page: 3548
  issue: 1
  year: 2017
  end-page: 3553
  ident: 2022.02.19.481146v1.52
  article-title: Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems
  publication-title: IFAC-PapersOnLine
– year: 2014
  ident: 2022.02.19.481146v1.44
  article-title: PC-Kriging: a new metamodelling method combining polynomial chaos expansions and kriging
  publication-title: Proc. 2nd Int. Symp. Uncertain. Quantif. Stoch. Model
– volume: 15
  start-page: e1007308
  issue: 8
  year: 2019
  ident: 2022.02.19.481146v1.31
  article-title: Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions
  publication-title: PLoS computational biology
– volume: 8
  start-page: 055011
  issue: 5
  year: 2011
  ident: 2022.02.19.481146v1.5
  article-title: Automated refinement and inference of analytical models for metabolic networks
  publication-title: Physical biology
– volume: 7
  start-page: 1
  year: 1998
  end-page: 49
  ident: 2022.02.19.481146v1.32
  article-title: Monte Carlo and Quasi-Monte Carlo methods
  publication-title: Acta numerica
– volume: 83
  start-page: 1
  issue: 3
  year: 2021
  end-page: 19
  ident: 2022.02.19.481146v1.23
  article-title: Deep Learning of Biological Models from Data: Applications to ODE Models
  publication-title: Bulletin of Mathematical Biology
– volume: 77
  start-page: 155
  year: 2019
  end-page: 171
  ident: 2022.02.19.481146v1.80
  article-title: Optimal bayesian experiment design for nonlinear dynamic systems with chance constraints
  publication-title: Journal of Process Control
– volume: 35
  start-page: 51
  issue: 1
  year: 1994
  end-page: 68
  ident: 2022.02.19.481146v1.9
  article-title: Bioprocess optimization and control: Application of hybrid modelling
  publication-title: Journal of biotechnology
– volume: 230
  start-page: 2345
  issue: 6
  year: 2011
  end-page: 2367
  ident: 2022.02.19.481146v1.35
  article-title: Adaptive sparse polynomial chaos expansion based on least angle regression
  publication-title: Journal of computational Physics
– year: 2020
  ident: 2022.02.19.481146v1.22
  publication-title: Deep learning of parameterized equations with applications to uncertainty quantification
– volume: 186
  start-page: 645
  issue: 4164
  year: 1974
  end-page: 647
  ident: 2022.02.19.481146v1.62
  article-title: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos
  publication-title: Science
– volume: 53
  start-page: 7268
  issue: 2
  year: 2020
  end-page: 7273
  ident: 2022.02.19.481146v1.45
  article-title: Fast probabilistic uncertainty quantification and sensitivity analysis of a mars life support system model
  publication-title: IFAC-PapersOnLine
– volume: 147
  start-page: 156
  year: 2016
  end-page: 169
  ident: 2022.02.19.481146v1.46
  article-title: Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model
  publication-title: Reliability Engineering and System Safety
– year: 2015
  ident: 2022.02.19.481146v1.54
  publication-title: Statistical Learning with Sparsity: The Lasso and Generalizations
– volume: 22
  start-page: 239
  issue: 3
  year: 1990
  end-page: 252
  ident: 2022.02.19.481146v1.36
  article-title: The origins of kriging
  publication-title: Mathematical geology
– volume: 8
  start-page: 953
  issue: 5
  year: 2014
  end-page: 962
  ident: 2022.02.19.481146v1.65
  article-title: Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria
  publication-title: The ISME journal
– volume: 656
  start-page: 5
  year: 2010
  end-page: 28
  ident: 2022.02.19.481146v1.16
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: Journal of fluid mechanics
– volume: 63
  start-page: 4846
  issue: 19
  year: 2008
  end-page: 4872
  ident: 2022.02.19.481146v1.2
  article-title: Model-based design of experiments for parameter precision: State of the art
  publication-title: Chemical Engineering Science
– volume: 42
  start-page: 14
  year: 2016
  end-page: 34
  ident: 2022.02.19.481146v1.24
  article-title: Robustness analysis, prediction, and estimation for uncertain biochemical networks: An overview
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.03.004
– volume: 93
  start-page: 1032
  issue: 443
  year: 1998
  end-page: 1044
  ident: 2022.02.19.481146v1.77
  article-title: Sequential monte carlo methods for dynamic systems
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1998.10473765
– start-page: 1959
  year: 2018
  end-page: 1968
  ident: 2022.02.19.481146v1.14
  publication-title: In International Conference on Machine Learning
– volume: 25
  start-page: 1307
  issue: 6
  year: 2015
  end-page: 1346
  ident: 2022.02.19.481146v1.17
  article-title: A data–driven approximation of the koopman operator: Extending dynamic mode decomposition
  publication-title: Journal of Nonlinear Science
– start-page: 95
  year: 2011
  end-page: 100
  ident: 2022.02.19.481146v1.78
  publication-title: In Selected Works of Murray Rosenblatt
– volume: 104
  start-page: 9943
  issue: 24
  year: 2007
  end-page: 9948
  ident: 2022.02.19.481146v1.11
  article-title: Automated reverse engineering of nonlinear dynamical systems
  publication-title: Proceedings of the National Academy of Sciences
– year: 2019
  ident: 2022.02.19.481146v1.64
  publication-title: Data-driven science and engineering: Machine learning, dynamical systems, and control
– volume: 10
  start-page: e0119821
  issue: 3
  year: 2015
  ident: 2022.02.19.481146v1.6
  article-title: Effcient inference of parsimonious phenomenological models of cellular dynamics using s-systems and alternating regression
  publication-title: PloS one
– volume: 39
  start-page: 28
  issue: 6
  year: 2019
  end-page: 99
  ident: 2022.02.19.481146v1.18
  article-title: Nonlinear system identification: A user-oriented road map
  publication-title: IEEE Control Systems Magazine
– volume: 11
  start-page: e1004457
  issue: 8
  year: 2015
  ident: 2022.02.19.481146v1.40
  article-title: Effcient characterization of parametric uncertainty of complex (bio) chemical networks
  publication-title: PLoS Computational Biology
SSID ssj0002961374
Score 1.6490589
SecondaryResourceType preprint
Snippet Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bioreactors
Computer applications
Mathematical models
Systems Biology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66IfjmFadTIvhabdOkaZ4E3cYQNqY42FvJrTAYa107dX_C32ySZvog-FjSpnBOci45J98HwA3FROahtN391CQoeUQCoYUMVCiIiEnCU0faNxonwyl-mpGZP3CrfFvl1iY6Q60Kac_I71BiPB2mjMb35VtgWaNsddVTaOyCtjHBqUm-2g_98eTl55QFMeOuHBQzSpjZ-igkvrRplqJN_JFF7IzYLU6jJggW82L1OX__Y5qdvxkcgPaEl3p1CHb08gjsNYSRm2Pw1eM1D3ora6LgYFF8BCNeQstntqigCT-hG-87WAjjTWBvXknbo7mBRQ57Dfl8BflSwQGvajg1GncdAfUGPq950zfkVGXfb_5qlei-MI_SowtAj3N-AqaD_uvjMPCMCoGwtdxA4TxkJkXikcgpFTymNBSMasRSQpUgiCuS0NzFBTEWMZYEKx1pTYnWMdfxKWgti6U-A5CYONNMIhSXDJs0K2Vpai-pJlRKpVHaAddelFnZ4GZkVtxZiLKIZY24O6C7FXLmt06V_Sr6_P_hC7BvZ3T3y1EXtOrVWl-aCKEWV34ZfAO6abkZ
  priority: 102
  providerName: ProQuest
Title Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical Systems
URI https://www.proquest.com/docview/2631747973
https://www.biorxiv.org/content/10.1101/2022.02.19.481146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66IfjmFadzRPC1o02TpnnVroiwMcXB3kpuhcFoR9up-xP-ZpO0iqAPPvaSpJyTy3d6Lh8AtxQTmfvSRvdTY6DkAfGEFtJTviAiJBGPHWnfdBY9LPDjkix_UH3ZsEqxKqv31avz49uAbbP7tovbD6ytjmyRzYCNcWwzavdB30wpbFkb0uX4-_cKYuacorjzY_7Z0iDebqRf-7A7XNIj0J_zja6OwZ4uTsBByw65OwUfCW-4l1R2P4LpunzzpnwDLXnZuoYGa0L3fOJqQJiPh8mqljYgcwfLHCYt03wNeaFgyusGLox6nfu_2cGnLW-DhJxe7PvtqFZjroW5lF0pAdgVNT8Di3Tycv_gdfQJnrCOW0_h3GfGHuKByCkVPKTUF4xqxGJClSCIKxLR3IGAEIsQS4KVDrSmROuQ6_Ac9Iqy0BcAEgMqTSdCccmwsaliFsc2IzWiUiqN4gG46USZbdoiGZkVd-ajLGBZK-4BGH4JOevWSZ2hyOAXTBkNL__RxRU4tPdcRjkagl5TbfW1wQSNGIH-3WQ2fx65WfAJxzCzMw
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAhuPEVfsEhwNNjrXa_3gJBaJ0ppExXUSL2ZfVmKVMUhdlvyJ_gp_MbOrh04IHHr0Vp7LI0_z2tn5wN4Jxg3VWx8d7_ABKVKeKSdNpGNNdcpz1QeSPums2wyZ18u-eUO_N6ehfFtlVubGAy1rY2vkX-kGXo6JqRIP69-RJ41yu-ubik0Olicus0tpmzNp5MCv-97Sseji-NJ1LMKRNrvZ0aWVTEm2olKdCWEVqkQsZbCUZlzYTWnyvJMVME3pkynzHBmXeKc4M6lyqUo9wEMWYqpzACGR6PZ-bc_VR0q0T2G0c80k2hqaMz7rVSEvi80UD8hNJEfWJ50Qbde1Oufi5t_XEHwb-MnMDxXK7d-Cjtu-QwedgSVm-fwq1Ctioq1N4lkfFXfRlO1Ip4_7aohGO6SsD4KYyjQe5Fi0RjfE7ohdUWKjuy-IWppyVg1LZkjwkIHQrshX69V16cUoOHv797qQROewEvTTzMg_Vz1FzC_F12_hMGyXrpXQDjGtShEW2Ukw7Qul3nuD8VmwhjraL4Lb3tVlqtuTkfp1V3GtExk2al7Fw62Si77X7Up_wJr7__Lb-DR5GJ6Vp6dzE734bGXHs620wMYtOtrd4jRSatf95Ag8P2-UXgHyQL1Pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvC1ox9J0zzbFb82JjjYW8lXYTC2sXbq_gn_ZnNpFUEffCxpL_QuudzlfneH0A0jVBW-AnQ_sw5KEVBPGqk87UsqIxqLxDXtGwzjuzF5mNDJj1wYgFXK6WL1Pn11cXwAbFvtW29uPwBfPYQimwHvkQQyantwTd1b6mIbtaHYGazsbNL7vmcJuT2wGGkCmn-SsKZvM-UvhexOmWwftUdiaVYHaMvMD9FO3SZyc4Q-UlEJL12BYsLZbPHmDcQSQxezWYmt0YndeN8Vg7B_gdNpqQCZucGLAqd1y_kSi7nGmSgrPLZydjiAaoOf16JGCzkBwfv1rCA694V9VE1NAdxUNz9G46z_cnvnNX0UPAkRXE-TwufWMRKBLBiTImLMl5yZkCeUaUlDoWnMCmcNRERGRFGiTWAMo8ZEwkQnqDVfzM0pwtRal5aI1EJxYp2rhCcJpKbGTCltwqSDrhtW5su6WkYO7M79MA94XrO7g7pfTM6bDVPmYWwNGcI4i87-QeIK7Y7SLH-6Hz6eoz0YdlnmYRe1qtXaXFg7oZKXbiF8AgzCt4E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Flow-Map+Models+for+Data-Efficient+Discovery+of+Dynamics+and+Fast+Uncertainty+Quantification+of+Biological+and+Biochemical+Systems&rft.jtitle=bioRxiv&rft.au=Makrygiorgos%2C+Georgios&rft.au=Berliner%2C+Aaron+J.&rft.au=Shi%2C+Fengzhe&rft.au=Clark%2C+Douglas+S.&rft.date=2022-02-22&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.02.19.481146&rft.externalDocID=2022.02.19.481146v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon