Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical Systems
Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
22.02.2022
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems. Competing Interest Statement The authors have declared no competing interest. |
---|---|
AbstractList | Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-toevaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems. Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems. Competing Interest Statement The authors have declared no competing interest. |
Author | Mesbah, Ali Arkin, Adam P Makrygiorgos, Georgios Shi, Fengzhe Berliner, Aaron J Clark, Douglas S |
Author_xml | – sequence: 1 givenname: Georgios surname: Makrygiorgos fullname: Makrygiorgos, Georgios – sequence: 2 givenname: Aaron surname: Berliner middlename: J fullname: Berliner, Aaron J – sequence: 3 givenname: Fengzhe surname: Shi fullname: Shi, Fengzhe – sequence: 4 givenname: Douglas surname: Clark middlename: S fullname: Clark, Douglas S – sequence: 5 givenname: Adam surname: Arkin middlename: P fullname: Arkin, Adam P – sequence: 6 givenname: Ali surname: Mesbah fullname: Mesbah, Ali |
BookMark | eNpNUMtOwzAQtBBIlNIP4GaJC5cUvxI3R2haQGqFEPQcOckGXCV2sd1CfoJvJm05cNqd3ZnR7lygU2MNIHRFyZhSQm8ZYWxM2JimYzGhVCQnaMCSlEUTRuLTf_05Gnm_JoSwNKFcigH6yVRQUeb0DgyeN_YrWqoNXtoKGo9r6_BhP6trXWowAWfal3YHrsO2xllnVKtLj5Wp8Fz5gFemBBeUNqHDL1tlgu6FKmhr9vx7bRv73g-ag6KH5Qe0B_za-QCtv0RntWo8jP7qEK3ms7fpY7R4fnia3i2ighKRRJWoSTqRVNGilrJQXEpSpBJYOollVcRMVXEia0L6p7kouChjUQEFkDEAV8CH6OboW2jrvvUu3zjdKtfl-yhzwnKa5scoe-r1kbpx9nMLPuRru3Wmvy5nCadSyFRy_gtj1HYi |
Cites_doi | 10.1146/annurev.fluid.010908.165248 10.1137/S1064827501387826 10.1142/S0129065704001899 10.1039/C5CP00904A 10.1016/S0021-9991(03)00092-5 10.3389/fspas.2021.711550 10.1016/j.ress.2012.05.002 10.1214/009053604000000067 10.23919/EuCAP.2017.7928679 10.1016/j.jprocont.2016.03.004 10.1080/01621459.1998.10473765 |
ContentType | Paper |
Copyright | 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2022.02.19.481146 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2022.02.19.481146v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1046-d4f09871a1bf77ba3770b97e29857db52ad567f0082034b34c54de1ee75ee3ae3 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:52:55 EST 2025 Fri Jul 25 09:21:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Uncertainty quantification Probabilistic surrogate modeling Polynomial chaos Kriging Discovery of nonlinear dynamics Flow-map decomposition |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1046-d4f09871a1bf77ba3770b97e29857db52ad567f0082034b34c54de1ee75ee3ae3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0002-7008-0988 0000-0002-4999-2931 0000-0003-2236-5716 0000-0002-1700-0600 0000-0002-4817-3926 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2022.02.19.481146 |
PQID | 2631747973 |
PQPubID | 2050091 |
PageCount | 23 |
ParticipantIDs | biorxiv_primary_2022_02_19_481146 proquest_journals_2631747973 |
PublicationCentury | 2000 |
PublicationDate | 20220222 |
PublicationDateYYYYMMDD | 2022-02-22 |
PublicationDate_xml | – month: 02 year: 2022 text: 20220222 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Deman, Konakli, Sudret, Kerrou, Perrochet, Benabderrahmane (2022.02.19.481146v1.46) 2016; 147 Brunton, Proctor, Kutz (2022.02.19.481146v1.13) 2016; 113 Girard, Rasmussen, Quinonero-Candela, Murray-Smith (2022.02.19.481146v1.69) 2003 Najm (2022.02.19.481146v1.25) 2009; 41 Cafiisch (2022.02.19.481146v1.32) 1998; 7 Daniels, Nemenman (2022.02.19.481146v1.6) 2015; 10 Tripathy, Bilionis (2022.02.19.481146v1.37) 2018; 375 Berliner, Hilzinger, Abel, McNulty, Makrygiorgos, Averesch, Gupta, Benvenuti, Caddell, Cestellos-Blanco, Doloman, Friedline, Ho, Gu, Hill, Kusuma, Lipsky, Mirkovic, Meraz, Pane, Sander, Shi, Skerker, Styer, Valgardson, Wetmore, Woo, Xiong, Yates, Zhang, Zhen, Bugbee, Clark, Coleman-Derr, Mesbah, Nandi, Waymouth, Yang, Criddle, McDonald, Seefeldt, Menezes, Arkin (2022.02.19.481146v1.71) 2021; 8 Davis, Lii, Politis (2022.02.19.481146v1.78) 2011 Marcus, Torres, Rittmann (2022.02.19.481146v1.74) 2007; 98 Paulson, Buehler, Mesbah (2022.02.19.481146v1.52) 2017; 50 Schillings, Sunnåker, Stelling, Schwab (2022.02.19.481146v1.40) 2015; 11 May (2022.02.19.481146v1.62) 1974; 186 Franceschini, Macchietto (2022.02.19.481146v1.2) 2008; 63 Rudy, Kutz, Brunton (2022.02.19.481146v1.20) 2019; 396 Williams, Kevrekidis, Rowley (2022.02.19.481146v1.17) 2015; 25 Zhang, Del Rio-Chanona, Petsagkourakis, Wagner (2022.02.19.481146v1.10) 2019; 116 Pande, Merker, Bohl, Reichelt, Schuster, De Figueiredo, Kaleta, Kost (2022.02.19.481146v1.65) 2014; 8 Kutz, Brunton, Brunton, Proctor (2022.02.19.481146v1.15) 2016 Williams, Rasmussen (2022.02.19.481146v1.49) 2006 Paulson, Martin-Casas, Mesbah (2022.02.19.481146v1.31) 2019; 15 Schmid (2022.02.19.481146v1.16) 2010; 656 Banga, Balsa-Canto, Moles, Alonso (2022.02.19.481146v1.1) 2005; 117 Qin, Chen, Jakeman, Xiu (2022.02.19.481146v1.22) 2020 Hewing, Arcari, Fröhlich, Zeilinger (2022.02.19.481146v1.67) 2020 Tsymbalov, Panov, Shapeev (2022.02.19.481146v1.56) 2018 Vanlier, Tiemann, Hilbers, Van Riel (2022.02.19.481146v1.29) 2013; 246 Hansen, Ostermeier (2022.02.19.481146v1.57) 2001; 9 Mesbah, Streif (2022.02.19.481146v1.30) 2015; 48 Streif, Petzke, Mesbah, Findeisen, Braatz (2022.02.19.481146v1.38) 2014; 47 Schöbi, Sudret (2022.02.19.481146v1.44) 2014 Borgonovo (2022.02.19.481146v1.75) 2007; 92 Raissi, Perdikaris, Karniadakis (2022.02.19.481146v1.61) 2018 Dubois, Gomez, Planckaert, Perret (2022.02.19.481146v1.60) 2020; 408 Kennedy, O’hagan (2022.02.19.481146v1.76) 2001; 63 Iooss, Lemaître (2022.02.19.481146v1.4) 2015 Schubert, Simutis, Dors, Havlik, Andreas (2022.02.19.481146v1.9) 1994; 35 Sparrow (2022.02.19.481146v1.59) 2012; 41 Olsen, Lunding (2022.02.19.481146v1.63) 2021; 31 Xiu, Karniadakis (2022.02.19.481146v1.34) 2003; 187 Streif, Kim, Rumschinski, Kishida, Shen, Findeisen, Braatz (2022.02.19.481146v1.24) 2016; 42 Brunton, Kutz (2022.02.19.481146v1.64) 2019 Komorowski, Finkenstädt, Harper, Rand (2022.02.19.481146v1.27) 2009; 10 Polymenakos, Abate, Roberts (2022.02.19.481146v1.68) 2017 Bongard, Lipson (2022.02.19.481146v1.11) 2007; 104 Torres, Marcus, Parameswaran, Rittmann (2022.02.19.481146v1.72) 2008; 42 Liu, Chen (2022.02.19.481146v1.77) 1998; 93 Pettit, Beran (2022.02.19.481146v1.42) 2006; 294 Paulson, Martin-Casas, Mesbah (2022.02.19.481146v1.47) 2019; 77 Treloar, Fedorec, Ingalls, Barnes (2022.02.19.481146v1.66) 2020; 16 Makrygiorgos, Gupta, Menezes, Mesbah (2022.02.19.481146v1.45) 2020; 53 Bishop (2022.02.19.481146v1.53) 2006; 128 Sudret, Marelli, Wiart (2022.02.19.481146v1.33) 2017 Smith (2022.02.19.481146v1.26) 2013; 12 Oladyshkin, Nowak (2022.02.19.481146v1.48) 2012; 106 Su, Chou, Xiu (2022.02.19.481146v1.23) 2021; 83 Champion, Lusch, Kutz, Brunton (2022.02.19.481146v1.12) 2019; 116 del Rio-Chanona, Wagner, Ali, Fiorelli, Zhang, Hellgardt (2022.02.19.481146v1.39) 2019; 65 Raissi, Perdikaris, Karniadakis (2022.02.19.481146v1.19) 2019; 378 Heinonen, Yildiz, Mannerström, Intosalmi, Lähdesmäki (2022.02.19.481146v1.14) 2018 Schoukens, Ljung (2022.02.19.481146v1.18) 2019; 39 Blatman, Sudret (2022.02.19.481146v1.35) 2011; 230 Hastie, Tibshirani, Wainwright (2022.02.19.481146v1.54) 2015 Makrygiorgos, Maggioni, Mesbah (2022.02.19.481146v1.43) 2020; 138 Rodrigues, Makrygiorgos, Mesbah (2022.02.19.481146v1.79) 2020 Qin, Wu, Xiu (2022.02.19.481146v1.21) 2019; 395 Cameron, Martin (2022.02.19.481146v1.51) 1947; 48 Kazemi, Biria, Rismani-Yazdi (2022.02.19.481146v1.73) 2015; 17 Paulson, Martin-Casas, Mesbah (2022.02.19.481146v1.80) 2019; 77 Golightly, Wilkinson (2022.02.19.481146v1.3) 2011; 1 Von Stosch, Oliveira, Peres, Sebastião Feyo de (2022.02.19.481146v1.8) 2014; 60 Rumschinski, Borchers, Bosio, Weismantel, Findeisen (2022.02.19.481146v1.28) 2010; 4 Pereira, Schimit, Francisco Elânio (2022.02.19.481146v1.41) 2021; 205 Schmidt, Vallabhajosyula, Jenkins, Hood, Soni, Wikswo, Lipson (2022.02.19.481146v1.5) 2011; 8 Morris, Lecar (2022.02.19.481146v1.58) 1981; 35 Efron, Hastie, Johnstone, Tibshirani, Ishwaran, Knight, Loubes, Massart, Madigan, Ridgeway, Rosset, Zhu, Stine, Turloptiach, Weisberg, Johnstone, Tibshirani (2022.02.19.481146v1.55) 2004; 32 Abel, Clark (2022.02.19.481146v1.70) 2021; 14 Feyo De Azevedo, Dahm, Oliveira (2022.02.19.481146v1.7) 1997; 21 Cressie (2022.02.19.481146v1.36) 1990; 22 Xiu, Karniadakis (2022.02.19.481146v1.50) 2002; 24 |
References_xml | – volume: 395 start-page: 620 year: 2019 end-page: 635 ident: 2022.02.19.481146v1.21 article-title: Data driven governing equations approximation using deep neural networks publication-title: Journal of Computational Physics – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: 2022.02.19.481146v1.19 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics – volume: 128 issue: 9 year: 2006 ident: 2022.02.19.481146v1.53 article-title: Pattern recognition publication-title: Machine learning – volume: 41 year: 2012 ident: 2022.02.19.481146v1.59 publication-title: The Lorenz equations: bifurcations, chaos, and strange attractors – volume: 41 start-page: 35 issue: 1 year: 2009 end-page: 52 ident: 2022.02.19.481146v1.25 article-title: Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.010908.165248 – volume: 10 start-page: 1 issue: 1 year: 2009 end-page: 10 ident: 2022.02.19.481146v1.27 article-title: Bayesian inference of biochemical kinetic parameters using the linear noise approximation publication-title: BMC bioinformatics – volume: 117 start-page: 407 issue: 4 year: 2005 end-page: 419 ident: 2022.02.19.481146v1.1 article-title: Dynamic optimization of bioprocesses: Effcient and robust numerical strategies publication-title: Journal of Biotechnology – volume: 48 start-page: 100 issue: 8 year: 2015 end-page: 105 ident: 2022.02.19.481146v1.30 article-title: A probabilistic approach to robust optimal experiment design with chance constraints publication-title: IFAC-PapersOnLine – volume: 205 start-page: 106078 year: 2021 ident: 2022.02.19.481146v1.41 article-title: A deep learning based surrogate model for the parameter identification problem in probabilistic cellular automaton epidemic models publication-title: Computer Methods and Programs in Biomedicine – volume: 98 year: 2007 ident: 2022.02.19.481146v1.74 article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell publication-title: Biotechnology and Bioengineering – volume: 375 start-page: 565 year: 2018 end-page: 588 ident: 2022.02.19.481146v1.37 article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification publication-title: Journal of Computational Physics – volume: 24 start-page: 619 issue: 2 year: 2002 end-page: 644 ident: 2022.02.19.481146v1.50 article-title: The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations publication-title: SIAM J. Sci. Comput doi: 10.1137/S1064827501387826 – year: 2016 ident: 2022.02.19.481146v1.15 publication-title: Dynamic mode decomposition: data-driven modeling of complex systems – volume: 31 start-page: 013119 issue: 1 year: 2021 ident: 2022.02.19.481146v1.63 article-title: Chaos in the peroxidase–oxidase oscillator publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science – start-page: 101 year: 2015 end-page: 122 ident: 2022.02.19.481146v1.4 publication-title: In Uncertainty management in simulation-optimization of complex systems – year: 2017 ident: 2022.02.19.481146v1.68 article-title: Safe policy search with gaussian process models publication-title: arXiv preprint – year: 2006 ident: 2022.02.19.481146v1.49 publication-title: Gaussian processes for machine learning doi: 10.1142/S0129065704001899 – volume: 14 start-page: 344 issue: 1 year: 2021 end-page: 355 ident: 2022.02.19.481146v1.70 article-title: A comprehensive modeling analysis of formate-mediated microbial electrosynthesis publication-title: ChemSusChem – start-page: 1614 year: 2020 end-page: 1619 ident: 2022.02.19.481146v1.79 publication-title: In 2020 59th IEEE Conference on Decision and Control (CDC) – volume: 246 start-page: 305 issue: 2 year: 2013 end-page: 314 ident: 2022.02.19.481146v1.29 article-title: Parameter uncertainty in biochemical models described by ordinary differential equations publication-title: Mathematical biosciences – volume: 408 start-page: 132495 year: 2020 ident: 2022.02.19.481146v1.60 article-title: Data-driven predictions of the lorenz system publication-title: Physica D: Nonlinear Phenomena – volume: 1 start-page: 807 issue: 6 year: 2011 end-page: 820 ident: 2022.02.19.481146v1.3 article-title: Bayesian parameter inference for stochastic biochemical network models using particle markov chain monte carlo publication-title: Interface focus – volume: 21 start-page: S751 year: 1997 end-page: S756 ident: 2022.02.19.481146v1.7 article-title: Hybrid modelling of biochemical processes: A comparison with the conventional approach publication-title: Computers & Chemical Engineering – volume: 65 start-page: 915 issue: 3 year: 2019 end-page: 923 ident: 2022.02.19.481146v1.39 article-title: Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design publication-title: AIChE Journal – volume: 294 start-page: 752 issue: 4-5 year: 2006 end-page: 779 ident: 2022.02.19.481146v1.42 article-title: Spectral and multiresolution wiener expansions of oscillatory stochastic processes publication-title: Journal of Sound and Vibration – volume: 60 start-page: 86 year: 2014 end-page: 101 ident: 2022.02.19.481146v1.8 article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future publication-title: Computers & Chemical Engineering – volume: 396 start-page: 483 year: 2019 end-page: 506 ident: 2022.02.19.481146v1.20 article-title: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints publication-title: Journal of Computational Physics – volume: 48 start-page: 385 issue: 2 year: 1947 end-page: 392 ident: 2022.02.19.481146v1.51 article-title: Annals of Mathematics The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals publication-title: Ann. Math – start-page: 424 year: 2020 end-page: 434 ident: 2022.02.19.481146v1.67 publication-title: In Learning for Dynamics and Control – volume: 77 start-page: 155 year: 2019 end-page: 171 ident: 2022.02.19.481146v1.47 article-title: Optimal Bayesian experiment design for nonlinear dynamic systems with chance constraints publication-title: Journal of Process Control – volume: 17 start-page: 12561 issue: 19 year: 2015 end-page: 12574 ident: 2022.02.19.481146v1.73 article-title: Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O publication-title: Phys. Chem. Chem. Phys doi: 10.1039/C5CP00904A – volume: 138 start-page: 106814 year: 2020 ident: 2022.02.19.481146v1.43 article-title: Surrogate modeling for fast uncertainty quantification: Application to 2d population balance models publication-title: Computers & Chemical Engineering – volume: 116 start-page: 2919 issue: 11 year: 2019 end-page: 2930 ident: 2022.02.19.481146v1.10 article-title: Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization publication-title: Biotechnology and bioengineering – start-page: 247 year: 2018 end-page: 258 ident: 2022.02.19.481146v1.56 publication-title: In International conference on analysis of images, social networks and texts – volume: 187 start-page: 137 issue: 1 year: 2003 end-page: 167 ident: 2022.02.19.481146v1.34 article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos publication-title: Journal of Computational Physics doi: 10.1016/S0021-9991(03)00092-5 – volume: 42 start-page: 6593 issue: 17 year: 2008 end-page: 6597 ident: 2022.02.19.481146v1.72 article-title: Kinetic experiments for evaluating the nernstmonod model for anode-respiring bacteria (arb) in a biofilm anode publication-title: Environmental science & technology – volume: 92 start-page: 771 issue: 6 year: 2007 end-page: 784 ident: 2022.02.19.481146v1.75 article-title: A new uncertainty importance measure publication-title: Reliability Engineering \& System Safety – volume: 8 start-page: 120 year: 2021 ident: 2022.02.19.481146v1.71 article-title: Towards a Biomanufactory on Mars publication-title: Frontiers in Astronomy and Space Sciences doi: 10.3389/fspas.2021.711550 – year: 2018 ident: 2022.02.19.481146v1.61 article-title: Multistep neural networks for data-driven discovery of nonlinear dynamical systems publication-title: arXiv preprint – volume: 106 start-page: 179 year: 2012 end-page: 190 ident: 2022.02.19.481146v1.48 article-title: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion publication-title: Reliab. Eng. Syst. Saf doi: 10.1016/j.ress.2012.05.002 – volume: 4 start-page: 1 issue: 1 year: 2010 end-page: 14 ident: 2022.02.19.481146v1.28 article-title: Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks publication-title: BMC systems biology – volume: 47 start-page: 4103 issue: 3 year: 2014 end-page: 4109 ident: 2022.02.19.481146v1.38 article-title: Optimal experimental design for probabilistic model discrimination using polynomial chaos publication-title: IFAC Proceedings Volumes – volume: 16 start-page: e1007783 issue: 4 year: 2020 ident: 2022.02.19.481146v1.66 article-title: Deep reinforcement learning for the control of microbial co-cultures in bioreactors publication-title: PLoS computational biology – volume: 113 start-page: 3932 issue: 15 year: 2016 end-page: 3937 ident: 2022.02.19.481146v1.13 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proceedings of the national academy of sciences – year: 2003 ident: 2022.02.19.481146v1.69 publication-title: Gaussian process priors with uncertain inputs? application to multiple-step ahead time series forecasting – volume: 9 start-page: 159 issue: 2 year: 2001 end-page: 195 ident: 2022.02.19.481146v1.57 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evolutionary computation – volume: 32 start-page: 407 issue: 2 year: 2004 end-page: 499 ident: 2022.02.19.481146v1.55 article-title: Least angle regression publication-title: Ann. Stat doi: 10.1214/009053604000000067 – start-page: 793 year: 2017 end-page: 797 ident: 2022.02.19.481146v1.33 article-title: Surrogate models for uncertainty quantification: An overview publication-title: In 2017 11th European Conference on Antennas and Propagation (EU-CAP) doi: 10.23919/EuCAP.2017.7928679 – volume: 12 year: 2013 ident: 2022.02.19.481146v1.26 publication-title: Uncertainty quantification: theory, implementation, and applications – volume: 116 start-page: 22445 issue: 45 year: 2019 end-page: 22451 ident: 2022.02.19.481146v1.12 article-title: Data-driven discovery of co-ordinates and governing equations publication-title: Proceedings of the National Academy of Sciences – volume: 63 start-page: 425 year: 2001 end-page: 464 ident: 2022.02.19.481146v1.76 article-title: Bayesian calibration of computer models publication-title: J. R. Statist. Soc. B – volume: 35 start-page: 193 issue: 1 year: 1981 end-page: 213 ident: 2022.02.19.481146v1.58 article-title: Voltage oscillations in the barnacle giant muscle fiber publication-title: Biophysical journal – volume: 50 start-page: 3548 issue: 1 year: 2017 end-page: 3553 ident: 2022.02.19.481146v1.52 article-title: Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems publication-title: IFAC-PapersOnLine – year: 2014 ident: 2022.02.19.481146v1.44 article-title: PC-Kriging: a new metamodelling method combining polynomial chaos expansions and kriging publication-title: Proc. 2nd Int. Symp. Uncertain. Quantif. Stoch. Model – volume: 15 start-page: e1007308 issue: 8 year: 2019 ident: 2022.02.19.481146v1.31 article-title: Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions publication-title: PLoS computational biology – volume: 8 start-page: 055011 issue: 5 year: 2011 ident: 2022.02.19.481146v1.5 article-title: Automated refinement and inference of analytical models for metabolic networks publication-title: Physical biology – volume: 7 start-page: 1 year: 1998 end-page: 49 ident: 2022.02.19.481146v1.32 article-title: Monte Carlo and Quasi-Monte Carlo methods publication-title: Acta numerica – volume: 83 start-page: 1 issue: 3 year: 2021 end-page: 19 ident: 2022.02.19.481146v1.23 article-title: Deep Learning of Biological Models from Data: Applications to ODE Models publication-title: Bulletin of Mathematical Biology – volume: 77 start-page: 155 year: 2019 end-page: 171 ident: 2022.02.19.481146v1.80 article-title: Optimal bayesian experiment design for nonlinear dynamic systems with chance constraints publication-title: Journal of Process Control – volume: 35 start-page: 51 issue: 1 year: 1994 end-page: 68 ident: 2022.02.19.481146v1.9 article-title: Bioprocess optimization and control: Application of hybrid modelling publication-title: Journal of biotechnology – volume: 230 start-page: 2345 issue: 6 year: 2011 end-page: 2367 ident: 2022.02.19.481146v1.35 article-title: Adaptive sparse polynomial chaos expansion based on least angle regression publication-title: Journal of computational Physics – year: 2020 ident: 2022.02.19.481146v1.22 publication-title: Deep learning of parameterized equations with applications to uncertainty quantification – volume: 186 start-page: 645 issue: 4164 year: 1974 end-page: 647 ident: 2022.02.19.481146v1.62 article-title: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos publication-title: Science – volume: 53 start-page: 7268 issue: 2 year: 2020 end-page: 7273 ident: 2022.02.19.481146v1.45 article-title: Fast probabilistic uncertainty quantification and sensitivity analysis of a mars life support system model publication-title: IFAC-PapersOnLine – volume: 147 start-page: 156 year: 2016 end-page: 169 ident: 2022.02.19.481146v1.46 article-title: Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model publication-title: Reliability Engineering and System Safety – year: 2015 ident: 2022.02.19.481146v1.54 publication-title: Statistical Learning with Sparsity: The Lasso and Generalizations – volume: 22 start-page: 239 issue: 3 year: 1990 end-page: 252 ident: 2022.02.19.481146v1.36 article-title: The origins of kriging publication-title: Mathematical geology – volume: 8 start-page: 953 issue: 5 year: 2014 end-page: 962 ident: 2022.02.19.481146v1.65 article-title: Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria publication-title: The ISME journal – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: 2022.02.19.481146v1.16 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: Journal of fluid mechanics – volume: 63 start-page: 4846 issue: 19 year: 2008 end-page: 4872 ident: 2022.02.19.481146v1.2 article-title: Model-based design of experiments for parameter precision: State of the art publication-title: Chemical Engineering Science – volume: 42 start-page: 14 year: 2016 end-page: 34 ident: 2022.02.19.481146v1.24 article-title: Robustness analysis, prediction, and estimation for uncertain biochemical networks: An overview publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.03.004 – volume: 93 start-page: 1032 issue: 443 year: 1998 end-page: 1044 ident: 2022.02.19.481146v1.77 article-title: Sequential monte carlo methods for dynamic systems publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10473765 – start-page: 1959 year: 2018 end-page: 1968 ident: 2022.02.19.481146v1.14 publication-title: In International Conference on Machine Learning – volume: 25 start-page: 1307 issue: 6 year: 2015 end-page: 1346 ident: 2022.02.19.481146v1.17 article-title: A data–driven approximation of the koopman operator: Extending dynamic mode decomposition publication-title: Journal of Nonlinear Science – start-page: 95 year: 2011 end-page: 100 ident: 2022.02.19.481146v1.78 publication-title: In Selected Works of Murray Rosenblatt – volume: 104 start-page: 9943 issue: 24 year: 2007 end-page: 9948 ident: 2022.02.19.481146v1.11 article-title: Automated reverse engineering of nonlinear dynamical systems publication-title: Proceedings of the National Academy of Sciences – year: 2019 ident: 2022.02.19.481146v1.64 publication-title: Data-driven science and engineering: Machine learning, dynamical systems, and control – volume: 10 start-page: e0119821 issue: 3 year: 2015 ident: 2022.02.19.481146v1.6 article-title: Effcient inference of parsimonious phenomenological models of cellular dynamics using s-systems and alternating regression publication-title: PloS one – volume: 39 start-page: 28 issue: 6 year: 2019 end-page: 99 ident: 2022.02.19.481146v1.18 article-title: Nonlinear system identification: A user-oriented road map publication-title: IEEE Control Systems Magazine – volume: 11 start-page: e1004457 issue: 8 year: 2015 ident: 2022.02.19.481146v1.40 article-title: Effcient characterization of parametric uncertainty of complex (bio) chemical networks publication-title: PLoS Computational Biology |
SSID | ssj0002961374 |
Score | 1.6490589 |
SecondaryResourceType | preprint |
Snippet | Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Bioreactors Computer applications Mathematical models Systems Biology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66IfjmFadTIvhabdOkaZ4E3cYQNqY42FvJrTAYa107dX_C32ySZvog-FjSpnBOci45J98HwA3FROahtN391CQoeUQCoYUMVCiIiEnCU0faNxonwyl-mpGZP3CrfFvl1iY6Q60Kac_I71BiPB2mjMb35VtgWaNsddVTaOyCtjHBqUm-2g_98eTl55QFMeOuHBQzSpjZ-igkvrRplqJN_JFF7IzYLU6jJggW82L1OX__Y5qdvxkcgPaEl3p1CHb08gjsNYSRm2Pw1eM1D3ora6LgYFF8BCNeQstntqigCT-hG-87WAjjTWBvXknbo7mBRQ57Dfl8BflSwQGvajg1GncdAfUGPq950zfkVGXfb_5qlei-MI_SowtAj3N-AqaD_uvjMPCMCoGwtdxA4TxkJkXikcgpFTymNBSMasRSQpUgiCuS0NzFBTEWMZYEKx1pTYnWMdfxKWgti6U-A5CYONNMIhSXDJs0K2Vpai-pJlRKpVHaAddelFnZ4GZkVtxZiLKIZY24O6C7FXLmt06V_Sr6_P_hC7BvZ3T3y1EXtOrVWl-aCKEWV34ZfAO6abkZ priority: 102 providerName: ProQuest |
Title | Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical Systems |
URI | https://www.proquest.com/docview/2631747973 https://www.biorxiv.org/content/10.1101/2022.02.19.481146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66IfjmFadzRPC1o02TpnnVroiwMcXB3kpuhcFoR9up-xP-ZpO0iqAPPvaSpJyTy3d6Lh8AtxQTmfvSRvdTY6DkAfGEFtJTviAiJBGPHWnfdBY9LPDjkix_UH3ZsEqxKqv31avz49uAbbP7tovbD6ytjmyRzYCNcWwzavdB30wpbFkb0uX4-_cKYuacorjzY_7Z0iDebqRf-7A7XNIj0J_zja6OwZ4uTsBByw65OwUfCW-4l1R2P4LpunzzpnwDLXnZuoYGa0L3fOJqQJiPh8mqljYgcwfLHCYt03wNeaFgyusGLox6nfu_2cGnLW-DhJxe7PvtqFZjroW5lF0pAdgVNT8Di3Tycv_gdfQJnrCOW0_h3GfGHuKByCkVPKTUF4xqxGJClSCIKxLR3IGAEIsQS4KVDrSmROuQ6_Ac9Iqy0BcAEgMqTSdCccmwsaliFsc2IzWiUiqN4gG46USZbdoiGZkVd-ajLGBZK-4BGH4JOevWSZ2hyOAXTBkNL__RxRU4tPdcRjkagl5TbfW1wQSNGIH-3WQ2fx65WfAJxzCzMw |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAhuPEVfsEhwNNjrXa_3gJBaJ0ppExXUSL2ZfVmKVMUhdlvyJ_gp_MbOrh04IHHr0Vp7LI0_z2tn5wN4Jxg3VWx8d7_ABKVKeKSdNpGNNdcpz1QeSPums2wyZ18u-eUO_N6ehfFtlVubGAy1rY2vkX-kGXo6JqRIP69-RJ41yu-ubik0Olicus0tpmzNp5MCv-97Sseji-NJ1LMKRNrvZ0aWVTEm2olKdCWEVqkQsZbCUZlzYTWnyvJMVME3pkynzHBmXeKc4M6lyqUo9wEMWYqpzACGR6PZ-bc_VR0q0T2G0c80k2hqaMz7rVSEvi80UD8hNJEfWJ50Qbde1Oufi5t_XEHwb-MnMDxXK7d-Cjtu-QwedgSVm-fwq1Ctioq1N4lkfFXfRlO1Ip4_7aohGO6SsD4KYyjQe5Fi0RjfE7ohdUWKjuy-IWppyVg1LZkjwkIHQrshX69V16cUoOHv797qQROewEvTTzMg_Vz1FzC_F12_hMGyXrpXQDjGtShEW2Ukw7Qul3nuD8VmwhjraL4Lb3tVlqtuTkfp1V3GtExk2al7Fw62Si77X7Up_wJr7__Lb-DR5GJ6Vp6dzE734bGXHs620wMYtOtrd4jRSatf95Ag8P2-UXgHyQL1Pg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvC1ox9J0zzbFb82JjjYW8lXYTC2sXbq_gn_ZnNpFUEffCxpL_QuudzlfneH0A0jVBW-AnQ_sw5KEVBPGqk87UsqIxqLxDXtGwzjuzF5mNDJj1wYgFXK6WL1Pn11cXwAbFvtW29uPwBfPYQimwHvkQQyantwTd1b6mIbtaHYGazsbNL7vmcJuT2wGGkCmn-SsKZvM-UvhexOmWwftUdiaVYHaMvMD9FO3SZyc4Q-UlEJL12BYsLZbPHmDcQSQxezWYmt0YndeN8Vg7B_gdNpqQCZucGLAqd1y_kSi7nGmSgrPLZydjiAaoOf16JGCzkBwfv1rCA694V9VE1NAdxUNz9G46z_cnvnNX0UPAkRXE-TwufWMRKBLBiTImLMl5yZkCeUaUlDoWnMCmcNRERGRFGiTWAMo8ZEwkQnqDVfzM0pwtRal5aI1EJxYp2rhCcJpKbGTCltwqSDrhtW5su6WkYO7M79MA94XrO7g7pfTM6bDVPmYWwNGcI4i87-QeIK7Y7SLH-6Hz6eoz0YdlnmYRe1qtXaXFg7oZKXbiF8AgzCt4E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Flow-Map+Models+for+Data-Efficient+Discovery+of+Dynamics+and+Fast+Uncertainty+Quantification+of+Biological+and+Biochemical+Systems&rft.jtitle=bioRxiv&rft.au=Makrygiorgos%2C+Georgios&rft.au=Berliner%2C+Aaron+J.&rft.au=Shi%2C+Fengzhe&rft.au=Clark%2C+Douglas+S.&rft.date=2022-02-22&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.02.19.481146&rft.externalDocID=2022.02.19.481146v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |