TMS with fast and accurate electronic control: measuring the orientation sensitivity of corticomotor pathways
Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models tha...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
30.12.2021
Cold Spring Harbor Laboratory |
Edition | 1.3 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2021.08.20.457096 |
Cover
Loading…
Abstract | Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. Objective: We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. Methods: We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custom-made electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3° steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. Results: The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. Conclusion: The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols. Competing Interest Statement J.O.N. has received unrelated consulting fees from Nexstim Plc, and R.J.I. has been advisor and is a minority shareholder of the company. J.O.N., L.M.K., and R.J.I. are inventors on patents and patent applications on mTMS technology. The other authors declare no conflict of interest. Footnotes * The following was updated: 1. Discussion: We clarify that the similar MEP latencies at 0 and 180 degrees of stimulus orientation seem to be associated with intrinsic characteristics of the near-rectangular biphasic E-field waveform. |
---|---|
AbstractList | Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. Objective: We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. Methods: We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custom-made electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3° steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. Results: The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. Conclusion: The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols. Competing Interest Statement J.O.N. has received unrelated consulting fees from Nexstim Plc, and R.J.I. has been advisor and is a minority shareholder of the company. J.O.N., L.M.K., and R.J.I. are inventors on patents and patent applications on mTMS technology. The other authors declare no conflict of interest. Footnotes * The following was updated: 1. Discussion: We clarify that the similar MEP latencies at 0 and 180 degrees of stimulus orientation seem to be associated with intrinsic characteristics of the near-rectangular biphasic E-field waveform. Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custom-made electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3° steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols. |
Author | Koponen, Lari M Baffa, Oswaldo Tugin, Sergei Souza, Victor H Nieminen, Jaakko O Ilmoniemi, Risto J |
Author_xml | – sequence: 1 givenname: Victor surname: Souza middlename: H fullname: Souza, Victor H – sequence: 2 givenname: Jaakko surname: Nieminen middlename: O fullname: Nieminen, Jaakko O – sequence: 3 givenname: Sergei surname: Tugin fullname: Tugin, Sergei – sequence: 4 givenname: Lari surname: Koponen middlename: M fullname: Koponen, Lari M – sequence: 5 givenname: Oswaldo surname: Baffa fullname: Baffa, Oswaldo – sequence: 6 givenname: Risto surname: Ilmoniemi middlename: J fullname: Ilmoniemi, Risto J |
BookMark | eNpNUDtPwzAYtBBIlNIfwGaJhSXh8zMJG6p4SUUMlDlyHIe6auxiOy399wSVgenupLvT6S7QqfPOIHRFICcEyC0FSnIocwo5FwVU8gRNqKxoVlIQp__4OZrFuAYAWknCCj5B_fL1He9tWuFOxYSVa7HSeggqGWw2RqfgndVYezeyzR3ujYpDsO4Tp5XBPljjkkrWOxyNizbZnU0H7LsxEZLVvvfJB7xVabVXh3iJzjq1iWb2h1P08fiwnD9ni7enl_n9ImsIcJlVglA9DuwarloDUleS8YrBKI1oKZSCa0056Uqm21a3opWspLwjhWBN20g2RTfH3sb68G139TbYXoVD_ftUDeWI9fGp0Xp9tG6D_xpMTPXaD8GN62oqJCe8LASwH4Xpa8k |
ContentType | Paper |
Copyright | 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2021.08.20.457096 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.3 |
ExternalDocumentID | 2021.08.20.457096v3 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1046-9512c613fb4ade06c9634930b4ae5d20854cc241f83cddcd5d63824f1753bdb63 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:58:45 EST 2025 Fri Jul 25 09:20:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Transcranial magnetic stimulation Electric field Multi-locus TMS Orientation sensitivity Multi-coil TMS Motor evoked potential Automated brain stimulation |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1046-9512c613fb4ade06c9634930b4ae5d20854cc241f83cddcd5d63824f1753bdb63 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: J.O.N. has received unrelated consulting fees from Nexstim Plc, and R.J.I. has been advisor and is a minority shareholder of the company. J.O.N., L.M.K., and R.J.I. are inventors on patents and patent applications on mTMS technology. The other authors declare no conflict of interest. |
ORCID | 0000-0002-7826-3519 0000-0002-3340-2618 0000-0002-8054-2699 0000-0002-0622-2814 0000-0002-0254-4322 0000-0002-1274-8863 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2021.08.20.457096 |
PQID | 2564148750 |
PQPubID | 2050091 |
PageCount | 36 |
ParticipantIDs | biorxiv_primary_2021_08_20_457096 proquest_journals_2564148750 |
PublicationCentury | 2000 |
PublicationDate | 20211230 |
PublicationDateYYYYMMDD | 2021-12-30 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211230 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Laakso, Hirata, Ugawa (2021.08.20.457096v3.21) 2014; 59 Nieminen, Koponen, Mäkelä, Souza, Stenroos, Ilmoniemi (2021.08.20.457096v3.35) 2019; 203 Kallioniemi, Könönen, Julkunen (2021.08.20.457096v3.32) 2015; 26 Aberra, Wang, Grill, Peterchev (2021.08.20.457096v3.24) 2020; 13 Heller, van Hulsteyn (2021.08.20.457096v3.27) 1992; 63 Tervo, Nieminen, Lioumis, Metsomaa, Souza, Sinisalo (2021.08.20.457096v3.37) 2021 Sarvas (2021.08.20.457096v3.28) 1987; 32 Zrenner, Desideri, Belardinelli, Ziemann (2021.08.20.457096v3.38) 2018; 11 Koponen, Nieminen, Mutanen, Ilmoniemi (2021.08.20.457096v3.31) 2018; 39 D’Ostilio, Goetz, Hannah, Ciocca, Chieffo, Chen (2021.08.20.457096v3.56) 2016; 127 Delvendahl, Lindemann, Jung, Pechmann, Siebner, Mall (2021.08.20.457096v3.7) 2014; 7 Sommer, Ciocca, Chieffo, Hammond, Neef, Paulus (2021.08.20.457096v3.54) 2018; 11 Deng, Lisanby, Peterchev (2021.08.20.457096v3.45) 2013; 6 Souza, Matsuda, Peres, Amorim, Moraes, Silva (2021.08.20.457096v3.11) 2018; 309 Ziemann, Rothwell, Ridding (2021.08.20.457096v3.6) 1996; 496 Koponen, Nieminen, Mutanen, Stenroos, Ilmoniemi (2021.08.20.457096v3.43) 2017; 10 Zrenner, Zrenner, Gordon, Belardinelli, McDermott, Soekadar (2021.08.20.457096v3.39) 2020; 13 van de Ven, Sack (2021.08.20.457096v3.40) 2013; 236 Nieminen, Sinisalo, Souza, Malmi, Yuryev, Tervo (2021.08.20.457096v3.14) 2021 DeFelipe (2021.08.20.457096v3.49) 2002 Thielscher, Kammer (2021.08.20.457096v3.26) 2002; 17 Roth, Pell, Barnea-Ygael, Ankry, Hadad, Eisen (2021.08.20.457096v3.17) 2020; 13 Di Lazzaro, Rothwell (2021.08.20.457096v3.4) 2014; 592 Abdeen, Stuchly (2021.08.20.457096v3.19) 1994; 41 Nielsen (2021.08.20.457096v3.34) 1996; 13 Bromm, Frankenhaeuser (2021.08.20.457096v3.55) 1968; 299 Koponen, Nieminen, Ilmoniemi (2021.08.20.457096v3.12) 2018; 11 Di Lazzaro, Oliviero, Pilato, Saturno, Dileone, Mazzone (2021.08.20.457096v3.47) 2004; 115 Fox, Narayana, Tandon, Sandoval, Fox, Kochunov (2021.08.20.457096v3.20) 2004; 22 Nieminen, Koponen, Ilmoniemi (2021.08.20.457096v3.30) 2015; 8 Peterchev, Jalinous, Lisanby (2021.08.20.457096v3.59) 2008; 55 Koponen, Nieminen, Ilmoniemi (2021.08.20.457096v3.16) 2015; 8 Day, Dressler, Maertens de Noordhout, Marsden, Nakashima, Rothwell (2021.08.20.457096v3.52) 1989; 412 Souza, Vieira, Peres, Garcia, Vargas, Baffa (2021.08.20.457096v3.2) 2018; 63 Souza, Nieminen, Tugin, Koponen, Baffa, Ilmoniemi (2021.08.20.457096v3.9) 2021 Ruohonen, Karhu (2021.08.20.457096v3.10) 2010; 40 Bungert, Antunes, Espenhahn, Thielscher (2021.08.20.457096v3.25) 2016 Ruohonen, Ravazzani, Grandori, Ilmoniemi (2021.08.20.457096v3.13) 1999; 46 Rotem, Neef, Neef, Agudelo-Toro, Rakhmilevitch, Paulus (2021.08.20.457096v3.18) 2014; 9 Wiegel, Niemann, Rothwell, Leukel (2021.08.20.457096v3.48) 2018; 47 Seo, Schaworonkow, Jun, Triesch (2021.08.20.457096v3.22) 2017; 5 Rossini, Burke, Chen, Cohen, Daskalakis, Di Iorio (2021.08.20.457096v3.1) 2015; 126 Weise, Numssen, Thielscher, Hartwigsen, Knösche (2021.08.20.457096v3.23) 2020; 209 Ruohonen, Ilmoniemi (2021.08.20.457096v3.15) 1998; 36 Ilmoniemi, Ruohonen, Karhu (2021.08.20.457096v3.29) 1999; 27 Bashir, Perez, Horvath, Pascual-Leone (2021.08.20.457096v3.57) 2013; 30 Kammer, Beck, Thielscher, Laubis-Herrmann, Topka (2021.08.20.457096v3.58) 2001; 112 Tugin, Souza, Nazarova, Novikov, Tervo, Nieminen (2021.08.20.457096v3.8) 2021; 16 Laakso, Murakami, Hirata, Ugawa (2021.08.20.457096v3.3) 2018; 11 Tervo, Metsomaa, Nieminen, Sarvas, Ilmoniemi (2021.08.20.457096v3.36) 2020; 220 Fox, Buckner, White, Greicius, Pascual-Leone (2021.08.20.457096v3.42) 2012; 72 Peterchev, Goetz, Westin, Luber, Lisanby (2021.08.20.457096v3.33) 2013; 124 Esser, Hill, Tononi (2021.08.20.457096v3.51) 2005; 94 Kätzel, Zemelman B, Buetfering, Wölfel, Miesenböck (2021.08.20.457096v3.50) 2011; 14 Çan, Laakso, Nieminen, Murakami, Ugawa (2021.08.20.457096v3.41) 2018; 5 Romero, Davare, Armendariz, Janssen (2021.08.20.457096v3.46) 2019; 10 Hannah, Rothwell (2021.08.20.457096v3.5) 2017; 10 Nurmi, Karttunen, Souza, Ilmoniemi, Nieminen (2021.08.20.457096v3.44) 2021; 18 Sommer, Alfaro, Rummel, Speck, Lang, Tings (2021.08.20.457096v3.53) 2006; 117 |
References_xml | – volume: 27 start-page: 241 year: 1999 end-page: 84 ident: 2021.08.20.457096v3.29 article-title: Transcranial magnetic stimulation—a new tool for functional imaging of the brain publication-title: Crit Rev Biomed Eng – volume: 7 start-page: 49 year: 2014 end-page: 58 ident: 2021.08.20.457096v3.7 article-title: Influence of waveform and current direction on short-interval intracortical facilitation: A paired-pulse TMS study publication-title: Brain Stimul – volume: 309 start-page: 109 year: 2018 end-page: 20 ident: 2021.08.20.457096v3.11 article-title: Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation publication-title: J Neurosci Methods – volume: 126 start-page: 1071 year: 2015 end-page: 107 ident: 2021.08.20.457096v3.1 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee publication-title: Clin Neurophysiol – volume: 13 start-page: 900 year: 2020 end-page: 7 ident: 2021.08.20.457096v3.17 article-title: Rotational field TMS: Comparison with conventional TMS based on motor evoked potentials and thresholds in the hand and leg motor cortices publication-title: Brain Stimul – volume: 32 start-page: 11 year: 1987 end-page: 22 ident: 2021.08.20.457096v3.28 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys Med Biol – volume: 10 start-page: 2642 year: 2019 ident: 2021.08.20.457096v3.46 article-title: Neural effects of transcranial magnetic stimulation at the single-cell level publication-title: Nat Commun – volume: 47 start-page: 1311 year: 2018 end-page: 9 ident: 2021.08.20.457096v3.48 article-title: Evidence for a subcortical contribution to intracortical facilitation publication-title: Eur J Neurosci – volume: 22 start-page: 1 year: 2004 end-page: 14 ident: 2021.08.20.457096v3.20 article-title: Column-based model of electric field excitation of cerebral cortex publication-title: Hum Brain Mapp – volume: 203 start-page: 116194 year: 2019 ident: 2021.08.20.457096v3.35 article-title: Short-interval intracortical inhibition in human primary motor cortex: A multi-locus transcranial magnetic stimulation study publication-title: Neuroimage – volume: 13 start-page: 175 year: 2020 end-page: 89 ident: 2021.08.20.457096v3.24 article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons publication-title: Brain Stimul – volume: 5 start-page: 015020 year: 2018 ident: 2021.08.20.457096v3.41 article-title: Coil model comparison for cerebellar transcranial magnetic stimulation publication-title: Biomed Phys Eng Express – volume: 63 start-page: 635 year: 2018 end-page: 45 ident: 2021.08.20.457096v3.2 article-title: Effect of TMS coil orientation on the spatial distribution of motor evoked potentials in an intrinsic hand muscle publication-title: Biomed Eng / Biomed Tech – volume: 5 start-page: 1945 year: 2017 ident: 2021.08.20.457096v3.22 article-title: A multi-scale computational model of the effects of TMS on motor cortex publication-title: F1000Research – volume: 39 start-page: 2405 year: 2018 end-page: 11 ident: 2021.08.20.457096v3.31 article-title: Noninvasive extraction of microsecond-scale dynamics from human motor cortex publication-title: Hum Brain Mapp – volume: 209 start-page: 116486 year: 2020 ident: 2021.08.20.457096v3.23 article-title: A novel approach to localize cortical TMS effects publication-title: Neuroimage – volume: 16 start-page: e0257554 year: 2021 ident: 2021.08.20.457096v3.8 article-title: Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study publication-title: PLoS One – volume: 299 start-page: 357 year: 1968 end-page: 63 ident: 2021.08.20.457096v3.55 article-title: Numerical calculation of the response in the myelinated nerve to short symmetrical double pulses publication-title: Pflugers Arch Gesamte Physiol Menschen Tiere – volume: 112 start-page: 250 year: 2001 end-page: 8 ident: 2021.08.20.457096v3.58 article-title: Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types publication-title: Clin Neurophysiol – volume: 55 start-page: 257 year: 2008 end-page: 66 ident: 2021.08.20.457096v3.59 article-title: A transcranial magnetic stimulator inducing near-rectangular pulses with controllable pulse width (cTMS) publication-title: IEEE Trans Biomed Eng – volume: 220 start-page: 117082 year: 2020 ident: 2021.08.20.457096v3.36 article-title: Automated search of stimulation targets with closed-loop transcranial magnetic stimulation publication-title: Neuroimage – volume: 6 start-page: 1 year: 2013 end-page: 13 ident: 2021.08.20.457096v3.45 article-title: Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs publication-title: Brain Stimul – volume: 8 start-page: 124 year: 2015 end-page: 34 ident: 2021.08.20.457096v3.16 article-title: Minimum-energy coils for transcranial magnetic stimulation: Application to focal stimulation publication-title: Brain Stimul – volume: 496 start-page: 873 year: 1996 end-page: 81 ident: 2021.08.20.457096v3.6 article-title: Interaction between intracortical inhibition and facilitation in human motor cortex publication-title: J Physiol – volume: 127 start-page: 675 year: 2016 end-page: 83 ident: 2021.08.20.457096v3.56 article-title: Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 11 start-page: 166 year: 2018 end-page: 74 ident: 2021.08.20.457096v3.3 article-title: Where and what TMS activates: Experiments and modeling publication-title: Brain Stimul – year: 2016 ident: 2021.08.20.457096v3.25 article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position publication-title: Cereb Cortex – volume: 63 start-page: 129 year: 1992 end-page: 38 ident: 2021.08.20.457096v3.27 article-title: Brain stimulation using electromagnetic sources: theoretical aspects publication-title: Biophys J – volume: 11 start-page: 374 year: 2018 end-page: 89 ident: 2021.08.20.457096v3.38 article-title: Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex publication-title: Brain Stimul – start-page: 215 year: 2002 end-page: 38 ident: 2021.08.20.457096v3.49 article-title: Chapter 17 Cortical interneurons: from Cajal to 2001 – year: 2021 ident: 2021.08.20.457096v3.9 article-title: Probing the orientation specificity of excitatory and inhibitory circuitries in the primary motor cortex with multi-channel TMS publication-title: BioRxiv – volume: 117 start-page: 838 year: 2006 end-page: 44 ident: 2021.08.20.457096v3.53 article-title: Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex publication-title: Clin Neurophysiol – volume: 94 start-page: 622 year: 2005 end-page: 39 ident: 2021.08.20.457096v3.51 article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits publication-title: J Neurophysiol – volume: 10 start-page: 795 year: 2017 end-page: 805 ident: 2021.08.20.457096v3.43 article-title: Coil optimisation for transcranial magnetic stimulation in realistic head geometry publication-title: Brain Stimul – volume: 14 start-page: 100 year: 2011 end-page: 7 ident: 2021.08.20.457096v3.50 article-title: The columnar and laminar organization of inhibitory connections to neocortical excitatory cells publication-title: Nat Neurosci – volume: 72 start-page: 595 year: 2012 end-page: 603 ident: 2021.08.20.457096v3.42 article-title: Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate publication-title: Biol Psychiatry – volume: 46 start-page: 646 year: 1999 end-page: 51 ident: 2021.08.20.457096v3.13 article-title: Theory of multichannel magnetic stimulation: Toward functional neuromuscular rehabilitation publication-title: IEEE Trans Biomed Eng – volume: 11 start-page: 558 year: 2018 end-page: 65 ident: 2021.08.20.457096v3.54 article-title: TMS of primary motor cortex with a biphasic pulse activates two independent sets of excitable neurones publication-title: Brain Stimul – volume: 592 start-page: 4115 year: 2014 end-page: 28 ident: 2021.08.20.457096v3.4 article-title: Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex publication-title: J Physiol – volume: 59 start-page: 203 year: 2014 end-page: 18 ident: 2021.08.20.457096v3.21 article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area publication-title: Phys Med Biol – year: 2021 ident: 2021.08.20.457096v3.37 article-title: Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback publication-title: BioRxiv – volume: 18 start-page: 066003 year: 2021 ident: 2021.08.20.457096v3.44 article-title: Trade-off between stimulation focality and the number of coils in multi-locus transcranial magnetic stimulation publication-title: J Neural Eng – volume: 36 start-page: 297 year: 1998 end-page: 301 ident: 2021.08.20.457096v3.15 article-title: Focusing and targeting of magnetic brain stimulation using multiple coils publication-title: Med Biol Eng Comput – volume: 412 start-page: 449 year: 1989 end-page: 73 ident: 2021.08.20.457096v3.52 article-title: Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses publication-title: J Physiol – volume: 30 start-page: 390 year: 2013 end-page: 5 ident: 2021.08.20.457096v3.57 article-title: Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects publication-title: J Clin Neurophysiol – volume: 8 start-page: 582 year: 2015 end-page: 9 ident: 2021.08.20.457096v3.30 article-title: Experimental characterization of the electric field distribution induced by TMS devices publication-title: Brain Stimul – volume: 10 start-page: 106 year: 2017 end-page: 15 ident: 2021.08.20.457096v3.5 article-title: Pulse duration as well as current direction determines the specificity of transcranial magnetic stimulation of motor cortex during contraction publication-title: Brain Stimul – volume: 13 start-page: 423 year: 1996 end-page: 34 ident: 2021.08.20.457096v3.34 article-title: Logarithmic distribution of amplitudes of compound muscle action potentials evoked by transcranial magnetic stimulation publication-title: J Clin Neurophysiol – volume: 236 start-page: 67 year: 2013 end-page: 77 ident: 2021.08.20.457096v3.40 article-title: Transcranial magnetic stimulation of visual cortex in memory: Cortical state, interference and reactivation of visual content in memory publication-title: Behav Brain Res – volume: 124 start-page: 1364 year: 2013 end-page: 72 ident: 2021.08.20.457096v3.33 article-title: Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 40 start-page: 7 year: 2010 end-page: 17 ident: 2021.08.20.457096v3.10 article-title: Navigated transcranial magnetic stimulation publication-title: Neurophysiol Clin – volume: 41 start-page: 1092 year: 1994 end-page: 5 ident: 2021.08.20.457096v3.19 article-title: Modeling of magnetic field stimulation of bent neurons publication-title: IEEE Trans Biomed Eng – year: 2021 ident: 2021.08.20.457096v3.14 article-title: Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation publication-title: Brain Stimul – volume: 13 start-page: 197 year: 2020 end-page: 205 ident: 2021.08.20.457096v3.39 article-title: Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS publication-title: Brain Stimul – volume: 9 start-page: e86794 year: 2014 ident: 2021.08.20.457096v3.18 article-title: Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields publication-title: PLoS One – volume: 11 start-page: 849 year: 2018 end-page: 55 ident: 2021.08.20.457096v3.12 article-title: Multi-locus transcranial magnetic stimulation—theory and implementation publication-title: Brain Stimul – volume: 115 start-page: 255 year: 2004 end-page: 66 ident: 2021.08.20.457096v3.47 article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans publication-title: Clin Neurophysiol – volume: 26 start-page: 515 year: 2015 end-page: 21 ident: 2021.08.20.457096v3.32 article-title: Repeatability of functional anisotropy in navigated transcranial magnetic stimulation – coil-orientation versus response publication-title: Neuroreport – volume: 17 start-page: 1117 year: 2002 end-page: 30 ident: 2021.08.20.457096v3.26 article-title: Linking physics with physiology in TMS: A sphere field model to determine the cortical stimulation site in TMS publication-title: Neuroimage |
SSID | ssj0002961374 |
Score | 1.6443877 |
SecondaryResourceType | preprint |
Snippet | Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in... Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Automation Magnetic fields Neurological diseases Neuroscience Patent applications Transcranial magnetic stimulation |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60peDNJ1arrOA1uk02aeJFUFqK0FK0hd7CPqGHJjVp1f57Z5LVHgRPIYSEZHbnkW9nv4-QWwtZsSdi5qkkROhGa9ysDI7X1RY3MiahQkB_NI6GM_4yD-cOcCtdW-VPTKwCtc4VYuT3kJp5F6tr9rh691A1CldXnYTGPmlCCI5hhjef-uPJ6y_K4ieQrioqZj9K4A18FrqlTZiK-ONfEXj67I6HPYbE_S25yIuvxcef0Fzlm8EhaU7EyhRHZM9kx6RVC0ZuT8hyOnqjCJ1SK8o1FZmmQqkN0j3QnaANdf3nD3RZIYCQnSjUeTQvFm6nUUZLbFyvlSNobuEOnEHYmZcXFFWKP8W2PCWzQX_6PPScYIIncanWg2rJV_DBVnKhDYsUeBdPAganJtSoxsmVgpRt40BprXSowft8bpGtU2oZBWekkeWZOSdUxsx2NePKQEVlZSR60k-sCIQIEqMj1iY3zlLpqqbFSNGaKYvhmNbWbJPOjw1T5xlluhvHi_8vX5IDfGJFqsg6pLEuNuYKCoC1vHaj_A2QhK7i priority: 102 providerName: ProQuest |
Title | TMS with fast and accurate electronic control: measuring the orientation sensitivity of corticomotor pathways |
URI | https://www.proquest.com/docview/2564148750 https://www.biorxiv.org/content/10.1101/2021.08.20.457096 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDmE6u1rOA1ZZNsXh6VliK0FG2ht7BP6KFJSdpq_70zSXyAHjyFBDYhszv7zc7rI-TeAipGImaOSgJ03WiNxcqgeK62WMiYBAod-uNJOJrz50Ww-EH1hWmVcpkX78tdFcfHhG3YfWvlZi6e1auemx7r8yAC-_uQtLHHGS7o4aL_5V7xEsCpiDdxzD9HgsXbfOnXPlyBy_CEtKdibYpTcmCyM3JUs0Puz8lqNn6l6CelVpQbCkd-KpTaYm8H-s1eQ5tk8we6qtx9AEUUjDqaF8umrCijJWap1zQRNLcwApcLpuHlBUVK4jexLy_IfDiYPY2chh3BkRiXdcA08hT8pJVcaMNCBarEE5_BrQk0Um9ypQCfbewrrZUONKiaxy225pRahv4laWV5Zq4IlTGzrmZcGTCfrAxFJL3ECl8IPzE6ZB1y10gqXdc9MFKUZspiuKa1NDuk-ynDtFGDMgV7irt4JGLX_3jFDTnGZ1UbRdYlrU2xNbcA-RvZI-3HwWT60qsm-QNjLakb |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BIgS3FqiA0rJIcDTdrNdOXAlVKg-FRyIEQeJm9inlgJ3aoTR_it_YGduBAxI3TpZleSXPzu43_nZmPoA9j6jYVT0emCQi6sZaKlbGhdexngoZk8gQoT8Yxv1beX4X3S3A87wWhtIq53titVHb3BBH_gOhWXYouua_Jn8CUo2i09W5hEbtFhdu9oS_bOXh2THO774Qpyejo37QqAoEms4zAwwphEEQ81oq63hs0AVlEnK8dZElyUppDOKa74XGWmMjiy4qpKeWltrqOMRxF6EtQwwVWtD-fTK8un5hdUSCI1etn0Wc4BcLHjVHqej6RDRUDUMFP5BRl5NQwJIe58W_8d83UFDh2-knaF-piSs-w4LLVmGpFqicrcHDaHDDiKplXpVTpjLLlDGP1F6CvQrosCbf_Sd7qBhHREOGcSXLi3FT2ZSxkhLla6UKlnt8gzyWMgHzgpEq8pOaletw-yGm_AKtLM_cBjDd475juTQOIzivY9XVIvEqVCpMnI35Juw2lkondRuOlKyZ8h5e09qam7A9t2HarMQyffWbrfcf78ByfzS4TC_PhhdfYYVGrxo68m1oTYtH9w2Dj6n-3sw4g_uPdrL_p5Xq5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4NAFJ5oG40311itOiZeIQMMm1eV1KVNE9ukNzILk_QgNNCq_fe-B7gkevBECGEID968760fIVcGrGIoImap2MfQjdbYrAyK52iDjYyxrzCgPxwFgyl_mPmzH70wWFYp50X5Pn-t8_hYsA27b6PczEFfvZ656TKb-yHgbxvD1PZCm03SxWFnWNaVzOyvOIsbg8EKeZvQ_HMJgL7tI39tyLWVSXZJdywWWblHNrJ8n2w1NJHrA_IyGT5TDJhSI6olBd-fCqVWOOSBftPY0Lbq_Jq-1HE_sEkU0B0tynnbX5TTCsvVG74IWhi4A_8brMcrSorcxG9iXR2SaXI3uRlYLU2CJTFBawFGchW8pJFc6IwFCnSKxx6D08zXyMHJlQJDbSJPaa20r0HnXG5wRqfUMvCOSCcv8uyYUBkx42jGVQY4yshAhNKNjfCE8OJMB6xHLltJpYtmGEaK0kxZBMe0kWaP9D9lmLb6UKUArLiDvhE7-ccSF2R7fJukT_ejx1Oyg5fr0YqsTzrLcpWdAQxYyvP6O38ABMqtYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMS+with+fast+and+accurate+electronic+control%3A+measuring+the+orientation+sensitivity+of+corticomotor+pathways&rft.jtitle=bioRxiv&rft.au=Souza%2C+Victor+Hugo&rft.au=Nieminen%2C+Jaakko+O.&rft.au=Tugin%2C+Sergei&rft.au=Koponen%2C+Lari+M.&rft.date=2021-12-30&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.08.20.457096&rft.externalDocID=2021.08.20.457096v3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |