TMS with fast and accurate electronic control: measuring the orientation sensitivity of corticomotor pathways

Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models tha...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Souza, Victor H, Nieminen, Jaakko O, Tugin, Sergei, Koponen, Lari M, Baffa, Oswaldo, Ilmoniemi, Risto J
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 30.12.2021
Cold Spring Harbor Laboratory
Edition1.3
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2021.08.20.457096

Cover

Loading…
Abstract Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. Objective: We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. Methods: We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custom-made electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3° steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. Results: The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. Conclusion: The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols. Competing Interest Statement J.O.N. has received unrelated consulting fees from Nexstim Plc, and R.J.I. has been advisor and is a minority shareholder of the company. J.O.N., L.M.K., and R.J.I. are inventors on patents and patent applications on mTMS technology. The other authors declare no conflict of interest. Footnotes * The following was updated: 1. Discussion: We clarify that the similar MEP latencies at 0 and 180 degrees of stimulus orientation seem to be associated with intrinsic characteristics of the near-rectangular biphasic E-field waveform.
AbstractList Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. Objective: We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. Methods: We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custom-made electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3° steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. Results: The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. Conclusion: The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols. Competing Interest Statement J.O.N. has received unrelated consulting fees from Nexstim Plc, and R.J.I. has been advisor and is a minority shareholder of the company. J.O.N., L.M.K., and R.J.I. are inventors on patents and patent applications on mTMS technology. The other authors declare no conflict of interest. Footnotes * The following was updated: 1. Discussion: We clarify that the similar MEP latencies at 0 and 180 degrees of stimulus orientation seem to be associated with intrinsic characteristics of the near-rectangular biphasic E-field waveform.
Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing. We aimed to (1) develop a TMS transducer for manipulating the E-field orientation electronically with high accuracy at the neuronally meaningful millisecond-level time scale and (2) devise and validate a physiologically based model describing the orientation selectivity of neuronal excitability. We designed and manufactured a two-coil TMS transducer. The coil windings were computed with a minimum-energy optimization procedure, and the transducer was controlled with our custom-made electronics. The electronic E-field control was verified with a TMS characterizer. The motor evoked potential amplitude and latency of a hand muscle were mapped in 3° steps of the stimulus orientation in 16 healthy subjects for three stimulation intensities. We fitted a logistic model to the motor response amplitude. The two-coil TMS transducer allows one to manipulate the pulse orientation accurately without manual coil movement. The motor response amplitude followed a logistic function of the stimulus orientation; this dependency was strongly affected by the stimulus intensity. The developed electronic control of the E-field orientation allows exploring new stimulation paradigms and probing neuronal mechanisms. The presented model helps to disentangle the neuronal mechanisms of brain function and guide future non-invasive stimulation protocols.
Author Koponen, Lari M
Baffa, Oswaldo
Tugin, Sergei
Souza, Victor H
Nieminen, Jaakko O
Ilmoniemi, Risto J
Author_xml – sequence: 1
  givenname: Victor
  surname: Souza
  middlename: H
  fullname: Souza, Victor H
– sequence: 2
  givenname: Jaakko
  surname: Nieminen
  middlename: O
  fullname: Nieminen, Jaakko O
– sequence: 3
  givenname: Sergei
  surname: Tugin
  fullname: Tugin, Sergei
– sequence: 4
  givenname: Lari
  surname: Koponen
  middlename: M
  fullname: Koponen, Lari M
– sequence: 5
  givenname: Oswaldo
  surname: Baffa
  fullname: Baffa, Oswaldo
– sequence: 6
  givenname: Risto
  surname: Ilmoniemi
  middlename: J
  fullname: Ilmoniemi, Risto J
BookMark eNpNUDtPwzAYtBBIlNIfwGaJhSXh8zMJG6p4SUUMlDlyHIe6auxiOy399wSVgenupLvT6S7QqfPOIHRFICcEyC0FSnIocwo5FwVU8gRNqKxoVlIQp__4OZrFuAYAWknCCj5B_fL1He9tWuFOxYSVa7HSeggqGWw2RqfgndVYezeyzR3ujYpDsO4Tp5XBPljjkkrWOxyNizbZnU0H7LsxEZLVvvfJB7xVabVXh3iJzjq1iWb2h1P08fiwnD9ni7enl_n9ImsIcJlVglA9DuwarloDUleS8YrBKI1oKZSCa0056Uqm21a3opWspLwjhWBN20g2RTfH3sb68G139TbYXoVD_ftUDeWI9fGp0Xp9tG6D_xpMTPXaD8GN62oqJCe8LASwH4Xpa8k
ContentType Paper
Copyright 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2021.08.20.457096
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.3
ExternalDocumentID 2021.08.20.457096v3
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1046-9512c613fb4ade06c9634930b4ae5d20854cc241f83cddcd5d63824f1753bdb63
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:58:45 EST 2025
Fri Jul 25 09:20:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Transcranial magnetic stimulation
Electric field
Multi-locus TMS
Orientation sensitivity
Multi-coil TMS
Motor evoked potential
Automated brain stimulation
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1046-9512c613fb4ade06c9634930b4ae5d20854cc241f83cddcd5d63824f1753bdb63
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: J.O.N. has received unrelated consulting fees from Nexstim Plc, and R.J.I. has been advisor and is a minority shareholder of the company. J.O.N., L.M.K., and R.J.I. are inventors on patents and patent applications on mTMS technology. The other authors declare no conflict of interest.
ORCID 0000-0002-7826-3519
0000-0002-3340-2618
0000-0002-8054-2699
0000-0002-0622-2814
0000-0002-0254-4322
0000-0002-1274-8863
OpenAccessLink https://www.biorxiv.org/content/10.1101/2021.08.20.457096
PQID 2564148750
PQPubID 2050091
PageCount 36
ParticipantIDs biorxiv_primary_2021_08_20_457096
proquest_journals_2564148750
PublicationCentury 2000
PublicationDate 20211230
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 20211230
  day: 30
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Laakso, Hirata, Ugawa (2021.08.20.457096v3.21) 2014; 59
Nieminen, Koponen, Mäkelä, Souza, Stenroos, Ilmoniemi (2021.08.20.457096v3.35) 2019; 203
Kallioniemi, Könönen, Julkunen (2021.08.20.457096v3.32) 2015; 26
Aberra, Wang, Grill, Peterchev (2021.08.20.457096v3.24) 2020; 13
Heller, van Hulsteyn (2021.08.20.457096v3.27) 1992; 63
Tervo, Nieminen, Lioumis, Metsomaa, Souza, Sinisalo (2021.08.20.457096v3.37) 2021
Sarvas (2021.08.20.457096v3.28) 1987; 32
Zrenner, Desideri, Belardinelli, Ziemann (2021.08.20.457096v3.38) 2018; 11
Koponen, Nieminen, Mutanen, Ilmoniemi (2021.08.20.457096v3.31) 2018; 39
D’Ostilio, Goetz, Hannah, Ciocca, Chieffo, Chen (2021.08.20.457096v3.56) 2016; 127
Delvendahl, Lindemann, Jung, Pechmann, Siebner, Mall (2021.08.20.457096v3.7) 2014; 7
Sommer, Ciocca, Chieffo, Hammond, Neef, Paulus (2021.08.20.457096v3.54) 2018; 11
Deng, Lisanby, Peterchev (2021.08.20.457096v3.45) 2013; 6
Souza, Matsuda, Peres, Amorim, Moraes, Silva (2021.08.20.457096v3.11) 2018; 309
Ziemann, Rothwell, Ridding (2021.08.20.457096v3.6) 1996; 496
Koponen, Nieminen, Mutanen, Stenroos, Ilmoniemi (2021.08.20.457096v3.43) 2017; 10
Zrenner, Zrenner, Gordon, Belardinelli, McDermott, Soekadar (2021.08.20.457096v3.39) 2020; 13
van de Ven, Sack (2021.08.20.457096v3.40) 2013; 236
Nieminen, Sinisalo, Souza, Malmi, Yuryev, Tervo (2021.08.20.457096v3.14) 2021
DeFelipe (2021.08.20.457096v3.49) 2002
Thielscher, Kammer (2021.08.20.457096v3.26) 2002; 17
Roth, Pell, Barnea-Ygael, Ankry, Hadad, Eisen (2021.08.20.457096v3.17) 2020; 13
Di Lazzaro, Rothwell (2021.08.20.457096v3.4) 2014; 592
Abdeen, Stuchly (2021.08.20.457096v3.19) 1994; 41
Nielsen (2021.08.20.457096v3.34) 1996; 13
Bromm, Frankenhaeuser (2021.08.20.457096v3.55) 1968; 299
Koponen, Nieminen, Ilmoniemi (2021.08.20.457096v3.12) 2018; 11
Di Lazzaro, Oliviero, Pilato, Saturno, Dileone, Mazzone (2021.08.20.457096v3.47) 2004; 115
Fox, Narayana, Tandon, Sandoval, Fox, Kochunov (2021.08.20.457096v3.20) 2004; 22
Nieminen, Koponen, Ilmoniemi (2021.08.20.457096v3.30) 2015; 8
Peterchev, Jalinous, Lisanby (2021.08.20.457096v3.59) 2008; 55
Koponen, Nieminen, Ilmoniemi (2021.08.20.457096v3.16) 2015; 8
Day, Dressler, Maertens de Noordhout, Marsden, Nakashima, Rothwell (2021.08.20.457096v3.52) 1989; 412
Souza, Vieira, Peres, Garcia, Vargas, Baffa (2021.08.20.457096v3.2) 2018; 63
Souza, Nieminen, Tugin, Koponen, Baffa, Ilmoniemi (2021.08.20.457096v3.9) 2021
Ruohonen, Karhu (2021.08.20.457096v3.10) 2010; 40
Bungert, Antunes, Espenhahn, Thielscher (2021.08.20.457096v3.25) 2016
Ruohonen, Ravazzani, Grandori, Ilmoniemi (2021.08.20.457096v3.13) 1999; 46
Rotem, Neef, Neef, Agudelo-Toro, Rakhmilevitch, Paulus (2021.08.20.457096v3.18) 2014; 9
Wiegel, Niemann, Rothwell, Leukel (2021.08.20.457096v3.48) 2018; 47
Seo, Schaworonkow, Jun, Triesch (2021.08.20.457096v3.22) 2017; 5
Rossini, Burke, Chen, Cohen, Daskalakis, Di Iorio (2021.08.20.457096v3.1) 2015; 126
Weise, Numssen, Thielscher, Hartwigsen, Knösche (2021.08.20.457096v3.23) 2020; 209
Ruohonen, Ilmoniemi (2021.08.20.457096v3.15) 1998; 36
Ilmoniemi, Ruohonen, Karhu (2021.08.20.457096v3.29) 1999; 27
Bashir, Perez, Horvath, Pascual-Leone (2021.08.20.457096v3.57) 2013; 30
Kammer, Beck, Thielscher, Laubis-Herrmann, Topka (2021.08.20.457096v3.58) 2001; 112
Tugin, Souza, Nazarova, Novikov, Tervo, Nieminen (2021.08.20.457096v3.8) 2021; 16
Laakso, Murakami, Hirata, Ugawa (2021.08.20.457096v3.3) 2018; 11
Tervo, Metsomaa, Nieminen, Sarvas, Ilmoniemi (2021.08.20.457096v3.36) 2020; 220
Fox, Buckner, White, Greicius, Pascual-Leone (2021.08.20.457096v3.42) 2012; 72
Peterchev, Goetz, Westin, Luber, Lisanby (2021.08.20.457096v3.33) 2013; 124
Esser, Hill, Tononi (2021.08.20.457096v3.51) 2005; 94
Kätzel, Zemelman B, Buetfering, Wölfel, Miesenböck (2021.08.20.457096v3.50) 2011; 14
Çan, Laakso, Nieminen, Murakami, Ugawa (2021.08.20.457096v3.41) 2018; 5
Romero, Davare, Armendariz, Janssen (2021.08.20.457096v3.46) 2019; 10
Hannah, Rothwell (2021.08.20.457096v3.5) 2017; 10
Nurmi, Karttunen, Souza, Ilmoniemi, Nieminen (2021.08.20.457096v3.44) 2021; 18
Sommer, Alfaro, Rummel, Speck, Lang, Tings (2021.08.20.457096v3.53) 2006; 117
References_xml – volume: 27
  start-page: 241
  year: 1999
  end-page: 84
  ident: 2021.08.20.457096v3.29
  article-title: Transcranial magnetic stimulation—a new tool for functional imaging of the brain
  publication-title: Crit Rev Biomed Eng
– volume: 7
  start-page: 49
  year: 2014
  end-page: 58
  ident: 2021.08.20.457096v3.7
  article-title: Influence of waveform and current direction on short-interval intracortical facilitation: A paired-pulse TMS study
  publication-title: Brain Stimul
– volume: 309
  start-page: 109
  year: 2018
  end-page: 20
  ident: 2021.08.20.457096v3.11
  article-title: Development and characterization of the InVesalius Navigator software for navigated transcranial magnetic stimulation
  publication-title: J Neurosci Methods
– volume: 126
  start-page: 1071
  year: 2015
  end-page: 107
  ident: 2021.08.20.457096v3.1
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee
  publication-title: Clin Neurophysiol
– volume: 13
  start-page: 900
  year: 2020
  end-page: 7
  ident: 2021.08.20.457096v3.17
  article-title: Rotational field TMS: Comparison with conventional TMS based on motor evoked potentials and thresholds in the hand and leg motor cortices
  publication-title: Brain Stimul
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  ident: 2021.08.20.457096v3.28
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys Med Biol
– volume: 10
  start-page: 2642
  year: 2019
  ident: 2021.08.20.457096v3.46
  article-title: Neural effects of transcranial magnetic stimulation at the single-cell level
  publication-title: Nat Commun
– volume: 47
  start-page: 1311
  year: 2018
  end-page: 9
  ident: 2021.08.20.457096v3.48
  article-title: Evidence for a subcortical contribution to intracortical facilitation
  publication-title: Eur J Neurosci
– volume: 22
  start-page: 1
  year: 2004
  end-page: 14
  ident: 2021.08.20.457096v3.20
  article-title: Column-based model of electric field excitation of cerebral cortex
  publication-title: Hum Brain Mapp
– volume: 203
  start-page: 116194
  year: 2019
  ident: 2021.08.20.457096v3.35
  article-title: Short-interval intracortical inhibition in human primary motor cortex: A multi-locus transcranial magnetic stimulation study
  publication-title: Neuroimage
– volume: 13
  start-page: 175
  year: 2020
  end-page: 89
  ident: 2021.08.20.457096v3.24
  article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons
  publication-title: Brain Stimul
– volume: 5
  start-page: 015020
  year: 2018
  ident: 2021.08.20.457096v3.41
  article-title: Coil model comparison for cerebellar transcranial magnetic stimulation
  publication-title: Biomed Phys Eng Express
– volume: 63
  start-page: 635
  year: 2018
  end-page: 45
  ident: 2021.08.20.457096v3.2
  article-title: Effect of TMS coil orientation on the spatial distribution of motor evoked potentials in an intrinsic hand muscle
  publication-title: Biomed Eng / Biomed Tech
– volume: 5
  start-page: 1945
  year: 2017
  ident: 2021.08.20.457096v3.22
  article-title: A multi-scale computational model of the effects of TMS on motor cortex
  publication-title: F1000Research
– volume: 39
  start-page: 2405
  year: 2018
  end-page: 11
  ident: 2021.08.20.457096v3.31
  article-title: Noninvasive extraction of microsecond-scale dynamics from human motor cortex
  publication-title: Hum Brain Mapp
– volume: 209
  start-page: 116486
  year: 2020
  ident: 2021.08.20.457096v3.23
  article-title: A novel approach to localize cortical TMS effects
  publication-title: Neuroimage
– volume: 16
  start-page: e0257554
  year: 2021
  ident: 2021.08.20.457096v3.8
  article-title: Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study
  publication-title: PLoS One
– volume: 299
  start-page: 357
  year: 1968
  end-page: 63
  ident: 2021.08.20.457096v3.55
  article-title: Numerical calculation of the response in the myelinated nerve to short symmetrical double pulses
  publication-title: Pflugers Arch Gesamte Physiol Menschen Tiere
– volume: 112
  start-page: 250
  year: 2001
  end-page: 8
  ident: 2021.08.20.457096v3.58
  article-title: Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types
  publication-title: Clin Neurophysiol
– volume: 55
  start-page: 257
  year: 2008
  end-page: 66
  ident: 2021.08.20.457096v3.59
  article-title: A transcranial magnetic stimulator inducing near-rectangular pulses with controllable pulse width (cTMS)
  publication-title: IEEE Trans Biomed Eng
– volume: 220
  start-page: 117082
  year: 2020
  ident: 2021.08.20.457096v3.36
  article-title: Automated search of stimulation targets with closed-loop transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 6
  start-page: 1
  year: 2013
  end-page: 13
  ident: 2021.08.20.457096v3.45
  article-title: Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs
  publication-title: Brain Stimul
– volume: 8
  start-page: 124
  year: 2015
  end-page: 34
  ident: 2021.08.20.457096v3.16
  article-title: Minimum-energy coils for transcranial magnetic stimulation: Application to focal stimulation
  publication-title: Brain Stimul
– volume: 496
  start-page: 873
  year: 1996
  end-page: 81
  ident: 2021.08.20.457096v3.6
  article-title: Interaction between intracortical inhibition and facilitation in human motor cortex
  publication-title: J Physiol
– volume: 127
  start-page: 675
  year: 2016
  end-page: 83
  ident: 2021.08.20.457096v3.56
  article-title: Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 11
  start-page: 166
  year: 2018
  end-page: 74
  ident: 2021.08.20.457096v3.3
  article-title: Where and what TMS activates: Experiments and modeling
  publication-title: Brain Stimul
– year: 2016
  ident: 2021.08.20.457096v3.25
  article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position
  publication-title: Cereb Cortex
– volume: 63
  start-page: 129
  year: 1992
  end-page: 38
  ident: 2021.08.20.457096v3.27
  article-title: Brain stimulation using electromagnetic sources: theoretical aspects
  publication-title: Biophys J
– volume: 11
  start-page: 374
  year: 2018
  end-page: 89
  ident: 2021.08.20.457096v3.38
  article-title: Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex
  publication-title: Brain Stimul
– start-page: 215
  year: 2002
  end-page: 38
  ident: 2021.08.20.457096v3.49
  article-title: Chapter 17 Cortical interneurons: from Cajal to 2001
– year: 2021
  ident: 2021.08.20.457096v3.9
  article-title: Probing the orientation specificity of excitatory and inhibitory circuitries in the primary motor cortex with multi-channel TMS
  publication-title: BioRxiv
– volume: 117
  start-page: 838
  year: 2006
  end-page: 44
  ident: 2021.08.20.457096v3.53
  article-title: Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex
  publication-title: Clin Neurophysiol
– volume: 94
  start-page: 622
  year: 2005
  end-page: 39
  ident: 2021.08.20.457096v3.51
  article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits
  publication-title: J Neurophysiol
– volume: 10
  start-page: 795
  year: 2017
  end-page: 805
  ident: 2021.08.20.457096v3.43
  article-title: Coil optimisation for transcranial magnetic stimulation in realistic head geometry
  publication-title: Brain Stimul
– volume: 14
  start-page: 100
  year: 2011
  end-page: 7
  ident: 2021.08.20.457096v3.50
  article-title: The columnar and laminar organization of inhibitory connections to neocortical excitatory cells
  publication-title: Nat Neurosci
– volume: 72
  start-page: 595
  year: 2012
  end-page: 603
  ident: 2021.08.20.457096v3.42
  article-title: Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate
  publication-title: Biol Psychiatry
– volume: 46
  start-page: 646
  year: 1999
  end-page: 51
  ident: 2021.08.20.457096v3.13
  article-title: Theory of multichannel magnetic stimulation: Toward functional neuromuscular rehabilitation
  publication-title: IEEE Trans Biomed Eng
– volume: 11
  start-page: 558
  year: 2018
  end-page: 65
  ident: 2021.08.20.457096v3.54
  article-title: TMS of primary motor cortex with a biphasic pulse activates two independent sets of excitable neurones
  publication-title: Brain Stimul
– volume: 592
  start-page: 4115
  year: 2014
  end-page: 28
  ident: 2021.08.20.457096v3.4
  article-title: Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex
  publication-title: J Physiol
– volume: 59
  start-page: 203
  year: 2014
  end-page: 18
  ident: 2021.08.20.457096v3.21
  article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area
  publication-title: Phys Med Biol
– year: 2021
  ident: 2021.08.20.457096v3.37
  article-title: Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback
  publication-title: BioRxiv
– volume: 18
  start-page: 066003
  year: 2021
  ident: 2021.08.20.457096v3.44
  article-title: Trade-off between stimulation focality and the number of coils in multi-locus transcranial magnetic stimulation
  publication-title: J Neural Eng
– volume: 36
  start-page: 297
  year: 1998
  end-page: 301
  ident: 2021.08.20.457096v3.15
  article-title: Focusing and targeting of magnetic brain stimulation using multiple coils
  publication-title: Med Biol Eng Comput
– volume: 412
  start-page: 449
  year: 1989
  end-page: 73
  ident: 2021.08.20.457096v3.52
  article-title: Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses
  publication-title: J Physiol
– volume: 30
  start-page: 390
  year: 2013
  end-page: 5
  ident: 2021.08.20.457096v3.57
  article-title: Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects
  publication-title: J Clin Neurophysiol
– volume: 8
  start-page: 582
  year: 2015
  end-page: 9
  ident: 2021.08.20.457096v3.30
  article-title: Experimental characterization of the electric field distribution induced by TMS devices
  publication-title: Brain Stimul
– volume: 10
  start-page: 106
  year: 2017
  end-page: 15
  ident: 2021.08.20.457096v3.5
  article-title: Pulse duration as well as current direction determines the specificity of transcranial magnetic stimulation of motor cortex during contraction
  publication-title: Brain Stimul
– volume: 13
  start-page: 423
  year: 1996
  end-page: 34
  ident: 2021.08.20.457096v3.34
  article-title: Logarithmic distribution of amplitudes of compound muscle action potentials evoked by transcranial magnetic stimulation
  publication-title: J Clin Neurophysiol
– volume: 236
  start-page: 67
  year: 2013
  end-page: 77
  ident: 2021.08.20.457096v3.40
  article-title: Transcranial magnetic stimulation of visual cortex in memory: Cortical state, interference and reactivation of visual content in memory
  publication-title: Behav Brain Res
– volume: 124
  start-page: 1364
  year: 2013
  end-page: 72
  ident: 2021.08.20.457096v3.33
  article-title: Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 40
  start-page: 7
  year: 2010
  end-page: 17
  ident: 2021.08.20.457096v3.10
  article-title: Navigated transcranial magnetic stimulation
  publication-title: Neurophysiol Clin
– volume: 41
  start-page: 1092
  year: 1994
  end-page: 5
  ident: 2021.08.20.457096v3.19
  article-title: Modeling of magnetic field stimulation of bent neurons
  publication-title: IEEE Trans Biomed Eng
– year: 2021
  ident: 2021.08.20.457096v3.14
  article-title: Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation
  publication-title: Brain Stimul
– volume: 13
  start-page: 197
  year: 2020
  end-page: 205
  ident: 2021.08.20.457096v3.39
  article-title: Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS
  publication-title: Brain Stimul
– volume: 9
  start-page: e86794
  year: 2014
  ident: 2021.08.20.457096v3.18
  article-title: Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields
  publication-title: PLoS One
– volume: 11
  start-page: 849
  year: 2018
  end-page: 55
  ident: 2021.08.20.457096v3.12
  article-title: Multi-locus transcranial magnetic stimulation—theory and implementation
  publication-title: Brain Stimul
– volume: 115
  start-page: 255
  year: 2004
  end-page: 66
  ident: 2021.08.20.457096v3.47
  article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans
  publication-title: Clin Neurophysiol
– volume: 26
  start-page: 515
  year: 2015
  end-page: 21
  ident: 2021.08.20.457096v3.32
  article-title: Repeatability of functional anisotropy in navigated transcranial magnetic stimulation – coil-orientation versus response
  publication-title: Neuroreport
– volume: 17
  start-page: 1117
  year: 2002
  end-page: 30
  ident: 2021.08.20.457096v3.26
  article-title: Linking physics with physiology in TMS: A sphere field model to determine the cortical stimulation site in TMS
  publication-title: Neuroimage
SSID ssj0002961374
Score 1.6443877
SecondaryResourceType preprint
Snippet Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in...
Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Automation
Magnetic fields
Neurological diseases
Neuroscience
Patent applications
Transcranial magnetic stimulation
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60peDNJ1arrOA1uk02aeJFUFqK0FK0hd7CPqGHJjVp1f57Z5LVHgRPIYSEZHbnkW9nv4-QWwtZsSdi5qkkROhGa9ysDI7X1RY3MiahQkB_NI6GM_4yD-cOcCtdW-VPTKwCtc4VYuT3kJp5F6tr9rh691A1CldXnYTGPmlCCI5hhjef-uPJ6y_K4ieQrioqZj9K4A18FrqlTZiK-ONfEXj67I6HPYbE_S25yIuvxcef0Fzlm8EhaU7EyhRHZM9kx6RVC0ZuT8hyOnqjCJ1SK8o1FZmmQqkN0j3QnaANdf3nD3RZIYCQnSjUeTQvFm6nUUZLbFyvlSNobuEOnEHYmZcXFFWKP8W2PCWzQX_6PPScYIIncanWg2rJV_DBVnKhDYsUeBdPAganJtSoxsmVgpRt40BprXSowft8bpGtU2oZBWekkeWZOSdUxsx2NePKQEVlZSR60k-sCIQIEqMj1iY3zlLpqqbFSNGaKYvhmNbWbJPOjw1T5xlluhvHi_8vX5IDfGJFqsg6pLEuNuYKCoC1vHaj_A2QhK7i
  priority: 102
  providerName: ProQuest
Title TMS with fast and accurate electronic control: measuring the orientation sensitivity of corticomotor pathways
URI https://www.proquest.com/docview/2564148750
https://www.biorxiv.org/content/10.1101/2021.08.20.457096
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDmE6u1rOA1ZZNsXh6VliK0FG2ht7BP6KFJSdpq_70zSXyAHjyFBDYhszv7zc7rI-TeAipGImaOSgJ03WiNxcqgeK62WMiYBAod-uNJOJrz50Ww-EH1hWmVcpkX78tdFcfHhG3YfWvlZi6e1auemx7r8yAC-_uQtLHHGS7o4aL_5V7xEsCpiDdxzD9HgsXbfOnXPlyBy_CEtKdibYpTcmCyM3JUs0Puz8lqNn6l6CelVpQbCkd-KpTaYm8H-s1eQ5tk8we6qtx9AEUUjDqaF8umrCijJWap1zQRNLcwApcLpuHlBUVK4jexLy_IfDiYPY2chh3BkRiXdcA08hT8pJVcaMNCBarEE5_BrQk0Um9ypQCfbewrrZUONKiaxy225pRahv4laWV5Zq4IlTGzrmZcGTCfrAxFJL3ECl8IPzE6ZB1y10gqXdc9MFKUZspiuKa1NDuk-ynDtFGDMgV7irt4JGLX_3jFDTnGZ1UbRdYlrU2xNbcA-RvZI-3HwWT60qsm-QNjLakb
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BIgS3FqiA0rJIcDTdrNdOXAlVKg-FRyIEQeJm9inlgJ3aoTR_it_YGduBAxI3TpZleSXPzu43_nZmPoA9j6jYVT0emCQi6sZaKlbGhdexngoZk8gQoT8Yxv1beX4X3S3A87wWhtIq53titVHb3BBH_gOhWXYouua_Jn8CUo2i09W5hEbtFhdu9oS_bOXh2THO774Qpyejo37QqAoEms4zAwwphEEQ81oq63hs0AVlEnK8dZElyUppDOKa74XGWmMjiy4qpKeWltrqOMRxF6EtQwwVWtD-fTK8un5hdUSCI1etn0Wc4BcLHjVHqej6RDRUDUMFP5BRl5NQwJIe58W_8d83UFDh2-knaF-piSs-w4LLVmGpFqicrcHDaHDDiKplXpVTpjLLlDGP1F6CvQrosCbf_Sd7qBhHREOGcSXLi3FT2ZSxkhLla6UKlnt8gzyWMgHzgpEq8pOaletw-yGm_AKtLM_cBjDd475juTQOIzivY9XVIvEqVCpMnI35Juw2lkondRuOlKyZ8h5e09qam7A9t2HarMQyffWbrfcf78ByfzS4TC_PhhdfYYVGrxo68m1oTYtH9w2Dj6n-3sw4g_uPdrL_p5Xq5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4NAFJ5oG40311itOiZeIQMMm1eV1KVNE9ukNzILk_QgNNCq_fe-B7gkevBECGEID968760fIVcGrGIoImap2MfQjdbYrAyK52iDjYyxrzCgPxwFgyl_mPmzH70wWFYp50X5Pn-t8_hYsA27b6PczEFfvZ656TKb-yHgbxvD1PZCm03SxWFnWNaVzOyvOIsbg8EKeZvQ_HMJgL7tI39tyLWVSXZJdywWWblHNrJ8n2w1NJHrA_IyGT5TDJhSI6olBd-fCqVWOOSBftPY0Lbq_Jq-1HE_sEkU0B0tynnbX5TTCsvVG74IWhi4A_8brMcrSorcxG9iXR2SaXI3uRlYLU2CJTFBawFGchW8pJFc6IwFCnSKxx6D08zXyMHJlQJDbSJPaa20r0HnXG5wRqfUMvCOSCcv8uyYUBkx42jGVQY4yshAhNKNjfCE8OJMB6xHLltJpYtmGEaK0kxZBMe0kWaP9D9lmLb6UKUArLiDvhE7-ccSF2R7fJukT_ejx1Oyg5fr0YqsTzrLcpWdAQxYyvP6O38ABMqtYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMS+with+fast+and+accurate+electronic+control%3A+measuring+the+orientation+sensitivity+of+corticomotor+pathways&rft.jtitle=bioRxiv&rft.au=Souza%2C+Victor+Hugo&rft.au=Nieminen%2C+Jaakko+O.&rft.au=Tugin%2C+Sergei&rft.au=Koponen%2C+Lari+M.&rft.date=2021-12-30&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.08.20.457096&rft.externalDocID=2021.08.20.457096v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon