Boosting GPT Models for Genomics Analysis: Generating Trusted Genetic Variant Annotations and Interpretations through RAG and fine-tuning

Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related va...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Lu, Shuangjia, Cosgun, Erdal
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 15.11.2024
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related variants among millions of variants identified by genetic sequencing. In our project, we aimed to improve LLM performance in genomics by adding variant annotation data to LLMs by retrieval-augmented generation (RAG) and fine-tuning techniques. Using RAG, we successfully integrated 190 million highly accurate variant annotations, curated from 5 major annotation datasets and tools, into GPT-4o. This integration empowers users to query specific variants and receive accurate variant annotations and interpretations supported by advanced reasoning and language understanding capabilities of LLMs. Additionally, fine-tuning GPT-4 on variant annotation data also improved model performance in some annotation fields, although the accuracy across more fields remains suboptimal. Our model significantly improved the accessibility and efficiency of the variant interpretation process by leveraging LLM capabilities. Our project also revealed that RAG outperforms fine-tuning in factual knowledge injection in terms of data volume, accuracy, and cost-effectiveness. As a pioneering study for adding genomics knowledge to LLMs, our work paves the way for developing more comprehensive and informative genomics AI systems to support clinical diagnosis and research projects, and it demonstrates the potential of LLMs in specialized domains.Competing Interest StatementMicrosoft Health Future genomics team supported this work by hosting S.L. through the 2024 Microsoft Research Intern Program. E.C. is a Senior Data and Applied Scientist at Microsoft Research on the Health Future genomics Team. S.L. was a Summer Research Intern on the same team during Summer 2024. We used Microsoft Azure Cloud as the cloud provider for this project.
AbstractList Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related variants among millions of variants identified by genetic sequencing. In our project, we aimed to improve LLM performance in genomics by adding variant annotation data to LLMs by retrieval-augmented generation (RAG) and fine-tuning techniques. Using RAG, we successfully integrated 190 million highly accurate variant annotations, curated from 5 major annotation datasets and tools, into GPT-4o. This integration empowers users to query specific variants and receive accurate variant annotations and interpretations supported by advanced reasoning and language understanding capabilities of LLMs. Additionally, fine-tuning GPT-4 on variant annotation data also improved model performance in some annotation fields, although the accuracy across more fields remains suboptimal. Our model significantly improved the accessibility and efficiency of the variant interpretation process by leveraging LLM capabilities. Our project also revealed that RAG outperforms fine-tuning in factual knowledge injection in terms of data volume, accuracy, and cost-effectiveness. As a pioneering study for adding genomics knowledge to LLMs, our work paves the way for developing more comprehensive and informative genomics AI systems to support clinical diagnosis and research projects, and it demonstrates the potential of LLMs in specialized domains.
Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related variants among millions of variants identified by genetic sequencing. In our project, we aimed to improve LLM performance in genomics by adding variant annotation data to LLMs by retrieval-augmented generation (RAG) and fine-tuning techniques. Using RAG, we successfully integrated 190 million highly accurate variant annotations, curated from 5 major annotation datasets and tools, into GPT-4o. This integration empowers users to query specific variants and receive accurate variant annotations and interpretations supported by advanced reasoning and language understanding capabilities of LLMs. Additionally, fine-tuning GPT-4 on variant annotation data also improved model performance in some annotation fields, although the accuracy across more fields remains suboptimal. Our model significantly improved the accessibility and efficiency of the variant interpretation process by leveraging LLM capabilities. Our project also revealed that RAG outperforms fine-tuning in factual knowledge injection in terms of data volume, accuracy, and cost-effectiveness. As a pioneering study for adding genomics knowledge to LLMs, our work paves the way for developing more comprehensive and informative genomics AI systems to support clinical diagnosis and research projects, and it demonstrates the potential of LLMs in specialized domains.Competing Interest StatementMicrosoft Health Future genomics team supported this work by hosting S.L. through the 2024 Microsoft Research Intern Program. E.C. is a Senior Data and Applied Scientist at Microsoft Research on the Health Future genomics Team. S.L. was a Summer Research Intern on the same team during Summer 2024. We used Microsoft Azure Cloud as the cloud provider for this project.
Author Lu, Shuangjia
Cosgun, Erdal
Author_xml – sequence: 1
  givenname: Shuangjia
  surname: Lu
  fullname: Lu, Shuangjia
– sequence: 2
  givenname: Erdal
  surname: Cosgun
  fullname: Cosgun, Erdal
BookMark eNpNkM1OAjEUhRuDiYg8gLsmbtwM9nc64w6JjiQYjUG3k3amAyXQYtsx8gi-tQNo4uqenPvdk9xzDnrWWQ3AJUYjjBG-IYiwTo0wGaWEEsFPQJ-kOUkygnjvnz4DwxBWCCGSp5gK1gffd86FaOwCFi9z-ORqvQ6wcR4W2rqNqQIcW7neBRNu95b28gDPfRuirg9WNBV8l95IGzvYutghzgYobQ2nNmq_9frPi0vv2sUSvo6Lw74xViextV3mBTht5Dro4e8cgLeH-_nkMZk9F9PJeJYojBhPMNWsSWVFkVZailQhsf-GpQrTjOeI55lGtKaIcCYapjTDVc4VzQXpDpWgA3B9zFXG-S_zWW692Ui_K_ctlhiXmJTHFjv06ohuvftodYjlyrW-6yOUFJMsEzylgv4ABVVz7g
ContentType Paper
Copyright 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2024.11.12.623275
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2024.11.12.623275v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1045-13e4f6ac30ebea76b07029646b138590598e03d302547f4be41c95b3972e4fb73
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 18:53:15 EST 2025
Fri Jul 25 09:14:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords variant annotation
retrieval-augmented generation
fine-tuning
large language model
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1045-13e4f6ac30ebea76b07029646b138590598e03d302547f4be41c95b3972e4fb73
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: Microsoft Health Future genomics team supported this work by hosting S.L. through the 2024 Microsoft Research Intern Program. E.C. is a Senior Data and Applied Scientist at Microsoft Research on the Health Future genomics Team. S.L. was a Summer Research Intern on the same team during Summer 2024. We used Microsoft Azure Cloud as the cloud provider for this project.
ORCID 0000-0002-1068-6523
0000-0001-8571-6902
OpenAccessLink https://www.proquest.com/docview/3128875637?pq-origsite=%requestingapplication%
PQID 3128875637
PQPubID 2050091
PageCount 9
ParticipantIDs biorxiv_primary_2024_11_12_623275
proquest_journals_3128875637
PublicationCentury 2000
PublicationDate 20241115
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 20241115
  day: 15
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Shringarpure (2024.11.12.623275v1.8) 2024
Dolgin (2024.11.12.623275v1.17) 2017; 551
Yang (2024.11.12.623275v1.7) 2024
Robinson (2024.11.12.623275v1.18) 2011; 29
Edge (2024.11.12.623275v1.21) 2024
Cingolani (2024.11.12.623275v1.3) 2012; 6
Unlu (2024.11.12.623275v1.9) 2024
Achiam (2024.11.12.623275v1.5) 2023
Karczewski (2024.11.12.623275v1.2) 2020; 581
Landrum (2024.11.12.623275v1.1) 2018; 46
Lewis (2024.11.12.623275v1.12) 2020; 33
(2024.11.12.623275v1.20) 2024
McLaren (2024.11.12.623275v1.4) 2016; 17
Ovadia, Brief, Mishaeli, Elisha (2024.11.12.623275v1.11) 2023
Abdin (2024.11.12.623275v1.19) 2024
Whirl-Carrillo (2024.11.12.623275v1.15) 2012; 92
Whirl-Carrillo (2024.11.12.623275v1.14) 2021; 110
Danecek (2024.11.12.623275v1.16) 2021; 10
Gupta (2024.11.12.623275v1.10) 2024
Touvron (2024.11.12.623275v1.6) 2023
Sollis (2024.11.12.623275v1.13) 2023; 51
References_xml – year: 2024
  ident: 2024.11.12.623275v1.10
  article-title: RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture
  publication-title: arXiv preprint
– volume: 51
  start-page: D977
  year: 2023
  end-page: D985
  ident: 2024.11.12.623275v1.13
  article-title: The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource
  publication-title: Nucleic acids research
– volume: 581
  start-page: 434
  year: 2020
  end-page: 443
  ident: 2024.11.12.623275v1.2
  article-title: The mutational constraint spectrum quantified from variation in 141,456 humans
  publication-title: Nature
– volume: 17
  start-page: 122
  year: 2016
  ident: 2024.11.12.623275v1.4
  article-title: The Ensembl Variant Effect Predictor
  publication-title: Genome Biol
– year: 2023
  ident: 2024.11.12.623275v1.5
  article-title: Gpt-4 technical report
  publication-title: arXiv preprint
– volume: 10
  start-page: giab008
  year: 2021
  ident: 2024.11.12.623275v1.16
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: Gigascience
– volume: 551
  start-page: 427
  year: 2017
  end-page: 432
  ident: 2024.11.12.623275v1.17
  article-title: The most popular genes in the human genome
  publication-title: Nature
– year: 2024
  ident: 2024.11.12.623275v1.8
  article-title: Large language models identify causal genes in complex trait GWAS
  publication-title: medRxiv
– year: 2023
  ident: 2024.11.12.623275v1.11
  article-title: Fine-tuning or retrieval? comparing knowledge injection in llms
  publication-title: arXiv preprint
– volume: 110
  start-page: 563
  year: 2021
  end-page: 572
  ident: 2024.11.12.623275v1.14
  article-title: An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine
  publication-title: Clinical Pharmacology Therapeutics
– volume: 33
  start-page: 9459
  year: 2020
  end-page: 9474
  ident: 2024.11.12.623275v1.12
  article-title: Retrieval-augmented generation for knowledge-intensive nlp tasks
  publication-title: Advances in Neural Information Processing Systems
– volume: 29
  start-page: 24
  year: 2011
  end-page: 26
  ident: 2024.11.12.623275v1.18
  article-title: Integrative genomics viewer
  publication-title: Nat Biotechnol
– year: 2024
  ident: 2024.11.12.623275v1.21
  article-title: From local to global: A graph rag approach to query-focused summarization
  publication-title: arXiv preprint
– year: 2024
  ident: 2024.11.12.623275v1.19
  article-title: Phi-3 technical report: A highly capable language model locally on your phone
  publication-title: arXiv preprint
– volume: 46
  start-page: D1062
  year: 2018
  end-page: d1067
  ident: 2024.11.12.623275v1.1
  article-title: ClinVar: improving access to variant interpretations and supporting evidence
  publication-title: Nucleic Acids Res
– volume: 92
  start-page: 414
  year: 2012
  end-page: 417
  ident: 2024.11.12.623275v1.15
  article-title: Pharmacogenomics knowledge for personalized medicine
  publication-title: Clinical Pharmacology Therapeutics
– volume: 6
  start-page: 80
  year: 2012
  end-page: 92
  ident: 2024.11.12.623275v1.3
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
  publication-title: Fly (Austin)
– year: 2024
  ident: 2024.11.12.623275v1.9
  article-title: Retrieval Augmented Generation Enabled Generative Pre-Trained Transformer 4 (GPT-4) Performance for Clinical Trial Screening
  publication-title: medRxiv
– year: 2023
  ident: 2024.11.12.623275v1.6
  article-title: Llama: Open and efficient foundation language models
  publication-title: arXiv preprint
– year: 2024
  ident: 2024.11.12.623275v1.7
  article-title: Advancing multimodal medical capabilities of Gemini
  publication-title: arXiv preprint
– year: 2024
  ident: 2024.11.12.623275v1.20
  publication-title: GitHub
SSID ssj0002961374
Score 1.742586
SecondaryResourceType preprint
Snippet Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Annotations
Genetic analysis
Genetic diversity
Genetics
Genomic analysis
Genomics
Large language models
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66IfjmFadTIvhaaXNdfVNxG4IyZJO9lSZNYSDtWDfRn-C_9py0E0UffCtp0sJJTs537oRcWBZqbbkIcpBmgchUFvQkADlmFVzJzKS5r87_8KiGE3E_ldNvrb4wrNLMysXb7NX78TFgG27fmrnDCHV1AU9owgPBzbTcJG04UgK7NvSnl1_mFRaDnNKi8WP-uRIQb_OnX_ewFy79HdIepXO32CUbrtgjW3V3yPd98nFTlhVGJdPBaEyxadlLRQFj0oHzucQVXVcUuaJ19Wg_eYxZFC7zQ3Aq6DNow0A-mFyUtd-9ommR0Z_hhhVtOvbQp-uBf58D_gyWK7SbHJBJ_258OwyazgmBAfVKBhF3Ilep5SHsUaqVAcZG_6oyEe_JGCBVz4U845gKr3NhnIhsLA1gEwYLjeaHpFWUhTsilMcg8UGr0iy3wtrQZBj1pVmW29Q5KTrkvKFiMq_rYyRIadAskoglNaU7pLumb9KwSJVwkIygLCmuj__xiROyjWOYBRjJLmktFyt3CnBgac78xn8CtJ6wHw
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Boosting GPT Models for Genomics Analysis: Generating Trusted Genetic Variant Annotations and Interpretations through RAG and fine-tuning
URI https://www.proquest.com/docview/3128875637
https://www.biorxiv.org/content/10.1101/2024.11.12.623275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66MfDNK07niOBrtc2lWX0RJ7sgOMbYZG-lSVMYSDvXTfQn-K89STNFBN9Kk_bh5JyT79wRulLEF0JR5mVwm3ksDVOvwwHIERWCSiYyyWx3_qdROJyxxzmfO4db6dIqtzrRKuq0UMZHfkNBkQK2Dqm4W756ZmqUia66ERq7qA4quAPGV73bG40n314WEsF1ZVsxkzAC0Sc-d6FNYEVj-DN4Mv5AQAHE5Bo25KJYvS_e_qhme9_091F9nCz16gDt6PwQNaqBkR9H6LNbFKVJVMaD8RSbOWYvJQbYiQfalheXeNtk5BZXDaXt5qkprNCpfQWMgp_BQAaKwua8qELxJU7yFP_OQCyxG-KDJ_cDu54BJPXWG-NKOUazfm_6MPTcMAVPgsXFvYBqloWJoj4cWyJCCbJuQq6hDGiHR4CyOtqnKTXV8SJjUrNARVwCXCHwoRT0BNXyItenCNMIQAAYWoJkiinly9QkggmSZirRmrMmunRUjJdVy4zYUBqMjTggcUXpJmpt6Rs7qSnjnzM--3_5HO2ZP5qawIC3UG292ugLAAdr2XYc0Ea7_fn1F3ZbuJY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB60RfTNE-u5gj4Gk91N0goinq1XKVLFt5jdbECQpDb1-gn-GX-jMzkUEXzzLSSbJcxOZr65ATY1t31fC2nFqM0sGXmR1XQRyHHtoUjmKozz7vyXXa9zLc9u3dsx-KhqYSitspKJuaCOUk0-8m2BghSxtSf8vcGjRVOjKLpajdAo2OLcvL2gyZbtnh7h-W5xfnLcP-xY5VQBS6Hp4VqOMDL2Qi1s_P7Q9xQyPcUePeWIpttCuNE0togElYn7sVRGOrrlKtTbHF9UvsB9x6EuBZoyNagfHHd7V19eHdzIEXnrZ-61UNRw2y1Dqcj65GiQeEX-R0QdnHIbJ9R9Ony9f_6lCnL9djIN9V44MMMZGDPJLEwUAyrf5uD9IE0zSoxm7V6f0dy0h4whzGVtk5czZ6xqarLDigbW-eI-FXKYKL-FjMlu0CDHE8TFSVqE_jMWJhH7mfGYsXJoELvab-fPY4TA1uiJXDfzcP0vZF6AWpImZhGYaCHoQMPO57GWWtsqosQzn0exDo1xZQM2SioGg6JFR0CURuMmcHhQULoBKxV9g_IvzYJvnlr6-_E6THb6lxfBxWn3fBmmaHeqR3TcFaiNhk9mFYHJSK2V3MDg7r8Z8BPtG_JC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66ofjmFadTI_ja0SZps_rmbZu3MWSTvZUmTWAg7Vg30Z_gv_acthNFH3wrTZrCyUnOd-6EnGnmSqm5cCxIM0ckQeK0fQByTAdwJTMV26I6_2M_6I3E3dgff8uFwbBKNclmb5PXwo-PAdtw-5aH2_VQVxfwhCY8ENxM-i00U7emiV0ldSx2hpzdGbe-7CwsBIElReXQ_HMJgL7VL39dyIWU6WyS-iCemtkWWTHpNlkr20S-75CPyyzLMTyZdgdDit3LXnIKYJN2TZFUnNNlaZFzWpaRLiYPMZ3CJMUrYA_6DGox0BEmp1npgM9pnCb0Z9xhTqvWPfTpoluMWwCiznyBBpRdMurcDK96TtVCwVGgZ_mOx42wQay5C5sVy0DBCUdHa6A83vZDwFZt4_KEY068tEIZ4enQVwBSGHyoJN8jtTRLzT6hPATRD-qVZFYLrV2VYPiXZInVsTG-aJDTiorRtCyUESGlQcWIPBaVlG6Q5pK-UXVW8oiDiAStKeDy4B9LnJD1wXUnerjt3x-SDRzGzEDPb5LafLYwRwAR5uq44IFPba62Bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+GPT+Models+for+Genomics+Analysis%3A+Generating+Trusted+Genetic+Variant+Annotations+and+Interpretations+through+RAG+and+fine-tuning&rft.jtitle=bioRxiv&rft.au=Lu%2C+Shuangjia&rft.au=Cosgun%2C+Erdal&rft.date=2024-11-15&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.11.12.623275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon