Boosting GPT Models for Genomics Analysis: Generating Trusted Genetic Variant Annotations and Interpretations through RAG and fine-tuning
Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related va...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
15.11.2024
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related variants among millions of variants identified by genetic sequencing. In our project, we aimed to improve LLM performance in genomics by adding variant annotation data to LLMs by retrieval-augmented generation (RAG) and fine-tuning techniques. Using RAG, we successfully integrated 190 million highly accurate variant annotations, curated from 5 major annotation datasets and tools, into GPT-4o. This integration empowers users to query specific variants and receive accurate variant annotations and interpretations supported by advanced reasoning and language understanding capabilities of LLMs. Additionally, fine-tuning GPT-4 on variant annotation data also improved model performance in some annotation fields, although the accuracy across more fields remains suboptimal. Our model significantly improved the accessibility and efficiency of the variant interpretation process by leveraging LLM capabilities. Our project also revealed that RAG outperforms fine-tuning in factual knowledge injection in terms of data volume, accuracy, and cost-effectiveness. As a pioneering study for adding genomics knowledge to LLMs, our work paves the way for developing more comprehensive and informative genomics AI systems to support clinical diagnosis and research projects, and it demonstrates the potential of LLMs in specialized domains.Competing Interest StatementMicrosoft Health Future genomics team supported this work by hosting S.L. through the 2024 Microsoft Research Intern Program. E.C. is a Senior Data and Applied Scientist at Microsoft Research on the Health Future genomics Team. S.L. was a Summer Research Intern on the same team during Summer 2024. We used Microsoft Azure Cloud as the cloud provider for this project. |
---|---|
AbstractList | Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related variants among millions of variants identified by genetic sequencing. In our project, we aimed to improve LLM performance in genomics by adding variant annotation data to LLMs by retrieval-augmented generation (RAG) and fine-tuning techniques. Using RAG, we successfully integrated 190 million highly accurate variant annotations, curated from 5 major annotation datasets and tools, into GPT-4o. This integration empowers users to query specific variants and receive accurate variant annotations and interpretations supported by advanced reasoning and language understanding capabilities of LLMs. Additionally, fine-tuning GPT-4 on variant annotation data also improved model performance in some annotation fields, although the accuracy across more fields remains suboptimal. Our model significantly improved the accessibility and efficiency of the variant interpretation process by leveraging LLM capabilities. Our project also revealed that RAG outperforms fine-tuning in factual knowledge injection in terms of data volume, accuracy, and cost-effectiveness. As a pioneering study for adding genomics knowledge to LLMs, our work paves the way for developing more comprehensive and informative genomics AI systems to support clinical diagnosis and research projects, and it demonstrates the potential of LLMs in specialized domains. Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains such as genomics. Variant annotation data, an important component of genomics, is crucial for interpreting and prioritizing disease-related variants among millions of variants identified by genetic sequencing. In our project, we aimed to improve LLM performance in genomics by adding variant annotation data to LLMs by retrieval-augmented generation (RAG) and fine-tuning techniques. Using RAG, we successfully integrated 190 million highly accurate variant annotations, curated from 5 major annotation datasets and tools, into GPT-4o. This integration empowers users to query specific variants and receive accurate variant annotations and interpretations supported by advanced reasoning and language understanding capabilities of LLMs. Additionally, fine-tuning GPT-4 on variant annotation data also improved model performance in some annotation fields, although the accuracy across more fields remains suboptimal. Our model significantly improved the accessibility and efficiency of the variant interpretation process by leveraging LLM capabilities. Our project also revealed that RAG outperforms fine-tuning in factual knowledge injection in terms of data volume, accuracy, and cost-effectiveness. As a pioneering study for adding genomics knowledge to LLMs, our work paves the way for developing more comprehensive and informative genomics AI systems to support clinical diagnosis and research projects, and it demonstrates the potential of LLMs in specialized domains.Competing Interest StatementMicrosoft Health Future genomics team supported this work by hosting S.L. through the 2024 Microsoft Research Intern Program. E.C. is a Senior Data and Applied Scientist at Microsoft Research on the Health Future genomics Team. S.L. was a Summer Research Intern on the same team during Summer 2024. We used Microsoft Azure Cloud as the cloud provider for this project. |
Author | Lu, Shuangjia Cosgun, Erdal |
Author_xml | – sequence: 1 givenname: Shuangjia surname: Lu fullname: Lu, Shuangjia – sequence: 2 givenname: Erdal surname: Cosgun fullname: Cosgun, Erdal |
BookMark | eNpNkM1OAjEUhRuDiYg8gLsmbtwM9nc64w6JjiQYjUG3k3amAyXQYtsx8gi-tQNo4uqenPvdk9xzDnrWWQ3AJUYjjBG-IYiwTo0wGaWEEsFPQJ-kOUkygnjvnz4DwxBWCCGSp5gK1gffd86FaOwCFi9z-ORqvQ6wcR4W2rqNqQIcW7neBRNu95b28gDPfRuirg9WNBV8l95IGzvYutghzgYobQ2nNmq_9frPi0vv2sUSvo6Lw74xViextV3mBTht5Dro4e8cgLeH-_nkMZk9F9PJeJYojBhPMNWsSWVFkVZailQhsf-GpQrTjOeI55lGtKaIcCYapjTDVc4VzQXpDpWgA3B9zFXG-S_zWW692Ui_K_ctlhiXmJTHFjv06ohuvftodYjlyrW-6yOUFJMsEzylgv4ABVVz7g |
ContentType | Paper |
Copyright | 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2024.11.12.623275 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2024.11.12.623275v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1045-13e4f6ac30ebea76b07029646b138590598e03d302547f4be41c95b3972e4fb73 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:53:15 EST 2025 Fri Jul 25 09:14:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | variant annotation retrieval-augmented generation fine-tuning large language model |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1045-13e4f6ac30ebea76b07029646b138590598e03d302547f4be41c95b3972e4fb73 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: Microsoft Health Future genomics team supported this work by hosting S.L. through the 2024 Microsoft Research Intern Program. E.C. is a Senior Data and Applied Scientist at Microsoft Research on the Health Future genomics Team. S.L. was a Summer Research Intern on the same team during Summer 2024. We used Microsoft Azure Cloud as the cloud provider for this project. |
ORCID | 0000-0002-1068-6523 0000-0001-8571-6902 |
OpenAccessLink | https://www.proquest.com/docview/3128875637?pq-origsite=%requestingapplication% |
PQID | 3128875637 |
PQPubID | 2050091 |
PageCount | 9 |
ParticipantIDs | biorxiv_primary_2024_11_12_623275 proquest_journals_3128875637 |
PublicationCentury | 2000 |
PublicationDate | 20241115 |
PublicationDateYYYYMMDD | 2024-11-15 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241115 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2024 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Shringarpure (2024.11.12.623275v1.8) 2024 Dolgin (2024.11.12.623275v1.17) 2017; 551 Yang (2024.11.12.623275v1.7) 2024 Robinson (2024.11.12.623275v1.18) 2011; 29 Edge (2024.11.12.623275v1.21) 2024 Cingolani (2024.11.12.623275v1.3) 2012; 6 Unlu (2024.11.12.623275v1.9) 2024 Achiam (2024.11.12.623275v1.5) 2023 Karczewski (2024.11.12.623275v1.2) 2020; 581 Landrum (2024.11.12.623275v1.1) 2018; 46 Lewis (2024.11.12.623275v1.12) 2020; 33 (2024.11.12.623275v1.20) 2024 McLaren (2024.11.12.623275v1.4) 2016; 17 Ovadia, Brief, Mishaeli, Elisha (2024.11.12.623275v1.11) 2023 Abdin (2024.11.12.623275v1.19) 2024 Whirl-Carrillo (2024.11.12.623275v1.15) 2012; 92 Whirl-Carrillo (2024.11.12.623275v1.14) 2021; 110 Danecek (2024.11.12.623275v1.16) 2021; 10 Gupta (2024.11.12.623275v1.10) 2024 Touvron (2024.11.12.623275v1.6) 2023 Sollis (2024.11.12.623275v1.13) 2023; 51 |
References_xml | – year: 2024 ident: 2024.11.12.623275v1.10 article-title: RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture publication-title: arXiv preprint – volume: 51 start-page: D977 year: 2023 end-page: D985 ident: 2024.11.12.623275v1.13 article-title: The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource publication-title: Nucleic acids research – volume: 581 start-page: 434 year: 2020 end-page: 443 ident: 2024.11.12.623275v1.2 article-title: The mutational constraint spectrum quantified from variation in 141,456 humans publication-title: Nature – volume: 17 start-page: 122 year: 2016 ident: 2024.11.12.623275v1.4 article-title: The Ensembl Variant Effect Predictor publication-title: Genome Biol – year: 2023 ident: 2024.11.12.623275v1.5 article-title: Gpt-4 technical report publication-title: arXiv preprint – volume: 10 start-page: giab008 year: 2021 ident: 2024.11.12.623275v1.16 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience – volume: 551 start-page: 427 year: 2017 end-page: 432 ident: 2024.11.12.623275v1.17 article-title: The most popular genes in the human genome publication-title: Nature – year: 2024 ident: 2024.11.12.623275v1.8 article-title: Large language models identify causal genes in complex trait GWAS publication-title: medRxiv – year: 2023 ident: 2024.11.12.623275v1.11 article-title: Fine-tuning or retrieval? comparing knowledge injection in llms publication-title: arXiv preprint – volume: 110 start-page: 563 year: 2021 end-page: 572 ident: 2024.11.12.623275v1.14 article-title: An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine publication-title: Clinical Pharmacology Therapeutics – volume: 33 start-page: 9459 year: 2020 end-page: 9474 ident: 2024.11.12.623275v1.12 article-title: Retrieval-augmented generation for knowledge-intensive nlp tasks publication-title: Advances in Neural Information Processing Systems – volume: 29 start-page: 24 year: 2011 end-page: 26 ident: 2024.11.12.623275v1.18 article-title: Integrative genomics viewer publication-title: Nat Biotechnol – year: 2024 ident: 2024.11.12.623275v1.21 article-title: From local to global: A graph rag approach to query-focused summarization publication-title: arXiv preprint – year: 2024 ident: 2024.11.12.623275v1.19 article-title: Phi-3 technical report: A highly capable language model locally on your phone publication-title: arXiv preprint – volume: 46 start-page: D1062 year: 2018 end-page: d1067 ident: 2024.11.12.623275v1.1 article-title: ClinVar: improving access to variant interpretations and supporting evidence publication-title: Nucleic Acids Res – volume: 92 start-page: 414 year: 2012 end-page: 417 ident: 2024.11.12.623275v1.15 article-title: Pharmacogenomics knowledge for personalized medicine publication-title: Clinical Pharmacology Therapeutics – volume: 6 start-page: 80 year: 2012 end-page: 92 ident: 2024.11.12.623275v1.3 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 publication-title: Fly (Austin) – year: 2024 ident: 2024.11.12.623275v1.9 article-title: Retrieval Augmented Generation Enabled Generative Pre-Trained Transformer 4 (GPT-4) Performance for Clinical Trial Screening publication-title: medRxiv – year: 2023 ident: 2024.11.12.623275v1.6 article-title: Llama: Open and efficient foundation language models publication-title: arXiv preprint – year: 2024 ident: 2024.11.12.623275v1.7 article-title: Advancing multimodal medical capabilities of Gemini publication-title: arXiv preprint – year: 2024 ident: 2024.11.12.623275v1.20 publication-title: GitHub |
SSID | ssj0002961374 |
Score | 1.742586 |
SecondaryResourceType | preprint |
Snippet | Large language models (LLMs) have acquired a remarkable level of knowledge through their initial training. However, they lack expertise in particular domains... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Annotations Genetic analysis Genetic diversity Genetics Genomic analysis Genomics Large language models |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66IfjmFadTIvhaaXNdfVNxG4IyZJO9lSZNYSDtWDfRn-C_9py0E0UffCtp0sJJTs537oRcWBZqbbkIcpBmgchUFvQkADlmFVzJzKS5r87_8KiGE3E_ldNvrb4wrNLMysXb7NX78TFgG27fmrnDCHV1AU9owgPBzbTcJG04UgK7NvSnl1_mFRaDnNKi8WP-uRIQb_OnX_ewFy79HdIepXO32CUbrtgjW3V3yPd98nFTlhVGJdPBaEyxadlLRQFj0oHzucQVXVcUuaJ19Wg_eYxZFC7zQ3Aq6DNow0A-mFyUtd-9ommR0Z_hhhVtOvbQp-uBf58D_gyWK7SbHJBJ_258OwyazgmBAfVKBhF3Ilep5SHsUaqVAcZG_6oyEe_JGCBVz4U845gKr3NhnIhsLA1gEwYLjeaHpFWUhTsilMcg8UGr0iy3wtrQZBj1pVmW29Q5KTrkvKFiMq_rYyRIadAskoglNaU7pLumb9KwSJVwkIygLCmuj__xiROyjWOYBRjJLmktFyt3CnBgac78xn8CtJ6wHw priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Boosting GPT Models for Genomics Analysis: Generating Trusted Genetic Variant Annotations and Interpretations through RAG and fine-tuning |
URI | https://www.proquest.com/docview/3128875637 https://www.biorxiv.org/content/10.1101/2024.11.12.623275 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA66MfDNK07niOBrtc2lWX0RJ7sgOMbYZG-lSVMYSDvXTfQn-K89STNFBN9Kk_bh5JyT79wRulLEF0JR5mVwm3ksDVOvwwHIERWCSiYyyWx3_qdROJyxxzmfO4db6dIqtzrRKuq0UMZHfkNBkQK2Dqm4W756ZmqUia66ERq7qA4quAPGV73bG40n314WEsF1ZVsxkzAC0Sc-d6FNYEVj-DN4Mv5AQAHE5Bo25KJYvS_e_qhme9_091F9nCz16gDt6PwQNaqBkR9H6LNbFKVJVMaD8RSbOWYvJQbYiQfalheXeNtk5BZXDaXt5qkprNCpfQWMgp_BQAaKwua8qELxJU7yFP_OQCyxG-KDJ_cDu54BJPXWG-NKOUazfm_6MPTcMAVPgsXFvYBqloWJoj4cWyJCCbJuQq6hDGiHR4CyOtqnKTXV8SJjUrNARVwCXCHwoRT0BNXyItenCNMIQAAYWoJkiinly9QkggmSZirRmrMmunRUjJdVy4zYUBqMjTggcUXpJmpt6Rs7qSnjnzM--3_5HO2ZP5qawIC3UG292ugLAAdr2XYc0Ea7_fn1F3ZbuJY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB60RfTNE-u5gj4Gk91N0goinq1XKVLFt5jdbECQpDb1-gn-GX-jMzkUEXzzLSSbJcxOZr65ATY1t31fC2nFqM0sGXmR1XQRyHHtoUjmKozz7vyXXa9zLc9u3dsx-KhqYSitspKJuaCOUk0-8m2BghSxtSf8vcGjRVOjKLpajdAo2OLcvL2gyZbtnh7h-W5xfnLcP-xY5VQBS6Hp4VqOMDL2Qi1s_P7Q9xQyPcUePeWIpttCuNE0togElYn7sVRGOrrlKtTbHF9UvsB9x6EuBZoyNagfHHd7V19eHdzIEXnrZ-61UNRw2y1Dqcj65GiQeEX-R0QdnHIbJ9R9Ony9f_6lCnL9djIN9V44MMMZGDPJLEwUAyrf5uD9IE0zSoxm7V6f0dy0h4whzGVtk5czZ6xqarLDigbW-eI-FXKYKL-FjMlu0CDHE8TFSVqE_jMWJhH7mfGYsXJoELvab-fPY4TA1uiJXDfzcP0vZF6AWpImZhGYaCHoQMPO57GWWtsqosQzn0exDo1xZQM2SioGg6JFR0CURuMmcHhQULoBKxV9g_IvzYJvnlr6-_E6THb6lxfBxWn3fBmmaHeqR3TcFaiNhk9mFYHJSK2V3MDg7r8Z8BPtG_JC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66ofjmFadTI_ja0SZps_rmbZu3MWSTvZUmTWAg7Vg30Z_gv_acthNFH3wrTZrCyUnOd-6EnGnmSqm5cCxIM0ckQeK0fQByTAdwJTMV26I6_2M_6I3E3dgff8uFwbBKNclmb5PXwo-PAdtw-5aH2_VQVxfwhCY8ENxM-i00U7emiV0ldSx2hpzdGbe-7CwsBIElReXQ_HMJgL7VL39dyIWU6WyS-iCemtkWWTHpNlkr20S-75CPyyzLMTyZdgdDit3LXnIKYJN2TZFUnNNlaZFzWpaRLiYPMZ3CJMUrYA_6DGox0BEmp1npgM9pnCb0Z9xhTqvWPfTpoluMWwCiznyBBpRdMurcDK96TtVCwVGgZ_mOx42wQay5C5sVy0DBCUdHa6A83vZDwFZt4_KEY068tEIZ4enQVwBSGHyoJN8jtTRLzT6hPATRD-qVZFYLrV2VYPiXZInVsTG-aJDTiorRtCyUESGlQcWIPBaVlG6Q5pK-UXVW8oiDiAStKeDy4B9LnJD1wXUnerjt3x-SDRzGzEDPb5LafLYwRwAR5uq44IFPba62Bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+GPT+Models+for+Genomics+Analysis%3A+Generating+Trusted+Genetic+Variant+Annotations+and+Interpretations+through+RAG+and+fine-tuning&rft.jtitle=bioRxiv&rft.au=Lu%2C+Shuangjia&rft.au=Cosgun%2C+Erdal&rft.date=2024-11-15&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.11.12.623275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |