Development of a 3D bioprinted airway smooth muscle model for manipulating structure and measuring contraction

The contractile function of airway smooth muscle (ASM) is inextricably linked to its mechanical properties and interaction with the surrounding mechanical environment. As tissue engineering approaches become more commonplace for studying lung biology, the inability to replicate realistic mechanical...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Osagie, Jeffery O, Syeda, Sanjana S, Turner-Brannen, Emily, Guimond, Michelle, Parrenas, Lumiere C, Haroon, Ahsen, Imasuen, Philip, West, Adrian R
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 19.12.2022
Cold Spring Harbor Laboratory
Edition1.2
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2022.12.15.520464

Cover

Loading…
Abstract The contractile function of airway smooth muscle (ASM) is inextricably linked to its mechanical properties and interaction with the surrounding mechanical environment. As tissue engineering approaches become more commonplace for studying lung biology, the inability to replicate realistic mechanical contexts for ASM will increasingly become a barrier to a fulsome understanding of lung health and disease. To address this knowledge gap, we describe the use of 3D bioprinting technology to generate a novel experimental model of ASM with a wide scope for modulating tissue mechanics. Using a stiffness modifiable alginate-collagen-fibrinogen bioink, we demonstrate that modulating the stiffness of free-floating ASM 'bare rings' is unfeasible; bioink conditions favorable for muscle formation produce structures that rapidly collapse. However, the creation of novel 'sandwich' and 'spiderweb' designs that encapsulate the ASM bundle within stiff acellular load bearing frames successfully created variable elastic loads opposing tissue collapse and contraction. Sandwich and spiderweb constructs demonstrated realistic actin filament organisation, generated significant baseline tone, and responded appropriately to acetylcholine, potassium chloride and cytochalasin D. Importantly, the two designs feasibly simulate different mechanical contexts within the lung. Specifically, the sandwich was relatively compliant and subject to plastic deformation under high contractile loads, whereas the stiffer spiderweb was more robust and only deformed minimally after repeated maximal contractions. Thus, our model represents a new paradigm for studying ASM contractile function in a realistic mechanical context. Moreover, it holds significant capacity to study the effects of ECM composition, multiple cell types and fibrosis on lung health and disease.Competing Interest StatementThe authors have declared no competing interest.
AbstractList The contractile function of airway smooth muscle (ASM) is inextricably linked to its mechanical properties and interaction with the surrounding mechanical environment. As tissue engineering approaches become more commonplace for studying lung biology, the inability to replicate realistic mechanical contexts for ASM will increasingly become a barrier to a fulsome understanding of lung health and disease. To address this knowledge gap, we describe the use of 3D bioprinting technology to generate a novel experimental model of ASM with a wide scope for modulating tissue mechanics. Using a stiffness modifiable alginate-collagen-fibrinogen bioink, we demonstrate that modulating the stiffness of free-floating ASM ‘bare rings’ is unfeasible; bioink conditions favorable for muscle formation produce structures that rapidly collapse. However, the creation of novel ‘sandwich’ and ‘spiderweb’ designs that encapsulate the ASM bundle within stiff acellular load bearing frames successfully created variable elastic loads opposing tissue collapse and contraction. Sandwich and spiderweb constructs demonstrated realistic actin filament organisation, generated significant baseline tone, and responded appropriately to acetylcholine, potassium chloride and cytochalasin D. Importantly, the two designs feasibly simulate different mechanical contexts within the lung. Specifically, the sandwich was relatively compliant and subject to plastic deformation under high contractile loads, whereas the stiffer spiderweb was more robust and only deformed minimally after repeated maximal contractions. Thus, our model represents a new paradigm for studying ASM contractile function in a realistic mechanical context. Moreover, it holds significant capacity to study the effects of ECM composition, multiple cell types and fibrosis on lung health and disease. Natural Sciences and Engineering Research Council, Discovery Grant (Adrian West) Research Manitoba, New Investigator Operating Grant (Adrian West) Children’s Hospital Research Institute of Manitoba, Operating Grant (Adrian West) Canadian Foundation for Innovation, John R. Evans Leaders Fund (Adrian West) University of Manitoba, Manitoba Graduate Scholarship (Jeffery Osagie) Research Manitoba, Master’s Studentship Award (Jeffery Osagie) Research Manitoba, Master’s Studentship Award (Sanjana Syeda) Children’s Hospital Research Institute of Manitoba, Summer Studentship (Michelle Guimond) University of Manitoba, Jack Prior Memorial Undergraduate Student Research Award (Lumiere Parrenas) University of Manitoba, Undergraduate Research Award (Ahsen Haroon) University of Manitoba, UMSU Undergraduate Research Award (Philip Imasuen) The grant bodies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
The contractile function of airway smooth muscle (ASM) is inextricably linked to its mechanical properties and interaction with the surrounding mechanical environment. As tissue engineering approaches become more commonplace for studying lung biology, the inability to replicate realistic mechanical contexts for ASM will increasingly become a barrier to a fulsome understanding of lung health and disease. To address this knowledge gap, we describe the use of 3D bioprinting technology to generate a novel experimental model of ASM with a wide scope for modulating tissue mechanics. Using a stiffness modifiable alginate-collagen-fibrinogen bioink, we demonstrate that modulating the stiffness of free-floating ASM 'bare rings' is unfeasible; bioink conditions favorable for muscle formation produce structures that rapidly collapse. However, the creation of novel 'sandwich' and 'spiderweb' designs that encapsulate the ASM bundle within stiff acellular load bearing frames successfully created variable elastic loads opposing tissue collapse and contraction. Sandwich and spiderweb constructs demonstrated realistic actin filament organisation, generated significant baseline tone, and responded appropriately to acetylcholine, potassium chloride and cytochalasin D. Importantly, the two designs feasibly simulate different mechanical contexts within the lung. Specifically, the sandwich was relatively compliant and subject to plastic deformation under high contractile loads, whereas the stiffer spiderweb was more robust and only deformed minimally after repeated maximal contractions. Thus, our model represents a new paradigm for studying ASM contractile function in a realistic mechanical context. Moreover, it holds significant capacity to study the effects of ECM composition, multiple cell types and fibrosis on lung health and disease.Competing Interest StatementThe authors have declared no competing interest.
Author Haroon, Ahsen
Guimond, Michelle
Osagie, Jeffery O
Parrenas, Lumiere C
Syeda, Sanjana S
Turner-Brannen, Emily
West, Adrian R
Imasuen, Philip
Author_xml – sequence: 1
  givenname: Jeffery
  surname: Osagie
  middlename: O
  fullname: Osagie, Jeffery O
– sequence: 2
  givenname: Sanjana
  surname: Syeda
  middlename: S
  fullname: Syeda, Sanjana S
– sequence: 3
  givenname: Emily
  surname: Turner-Brannen
  fullname: Turner-Brannen, Emily
– sequence: 4
  givenname: Michelle
  surname: Guimond
  fullname: Guimond, Michelle
– sequence: 5
  givenname: Lumiere
  surname: Parrenas
  middlename: C
  fullname: Parrenas, Lumiere C
– sequence: 6
  givenname: Ahsen
  surname: Haroon
  fullname: Haroon, Ahsen
– sequence: 7
  givenname: Philip
  surname: Imasuen
  fullname: Imasuen, Philip
– sequence: 8
  givenname: Adrian
  surname: West
  middlename: R
  fullname: West, Adrian R
BookMark eNpNUE1LxDAUDLKC67o_wFvAi5euyctH26Ps-gULXvRc0jTRLm1Sk3R1_71d1oMw8IbHMMzMJZo57wxC15SsKCX0DgjAik4QKwGES36G5iBLyAogYvaPX6BljDtCCJSSspzPkduYven80BuXsLdYYbbBdeuH0LpkGqza8K0OOPbep0_cj1F3Bve-MR22PuBeuXYYO5Va94FjCqNOYzBYuQb3RsUxHP_auxSUTq13V-jcqi6a5d9doPfHh7f1c7Z9fXpZ32-zmhLOMyCsaTgzVmpb1LoRghEjgGtjawqq0VaX3BY2lzUrC10oyEUugbKaQalJzhbo9uQ7VQk_7b6a-vQqHKrjVBWdIKrTVJP05iQdgv8aTUzVzo_BTemqyVVImUsB7Bf0s2wo
ContentType Paper
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2022.12.15.520464
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.2
ExternalDocumentID 2022.12.15.520464v2
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1044-203dd43ef6cf8bcd5530e524cefb12adcfc94f8f76b398c8a27576213b329c073
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:50:46 EST 2025
Fri Jul 25 09:17:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Relaxation
3D bioprinting
Airway smooth muscle
Contraction
Mechanobiology
Language English
License This pre-print is available under a Creative Commons License (Attribution-NoDerivs 4.0 International), CC BY-ND 4.0, as described at http://creativecommons.org/licenses/by-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1044-203dd43ef6cf8bcd5530e524cefb12adcfc94f8f76b398c8a27576213b329c073
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-8079-6915
OpenAccessLink https://www.biorxiv.org/content/10.1101/2022.12.15.520464
PQID 2755667652
PQPubID 2050091
PageCount 32
ParticipantIDs biorxiv_primary_2022_12_15_520464
proquest_journals_2755667652
PublicationCentury 2000
PublicationDate 20221219
20230102
PublicationDateYYYYMMDD 2022-12-19
2023-01-02
PublicationDate_xml – month: 12
  year: 2022
  text: 20221219
  day: 19
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Long, Bell, Gerthoffer, Zlokovic, Miano (2022.12.15.520464v2.16) 2008; 28
van Riet, van Schadewijk, Khedoe, Limpens, Barcena, Stolk, Hiemstra, van der Does (2022.12.15.520464v2.10) 2022; 322
Shi, Laude, Yeong (2022.12.15.520464v2.23) 2017; 105
Wright, Sharma, Ryu, Risse, Ngo, Maarsingh, Koziol-White, Jha, Halayko, West (2022.12.15.520464v2.13) 2013; 26
Dickman, Russo, Thain, Pan, Beyer, Walus, Getsios, Mohamed, Wadsworth (2022.12.15.520464v2.21) 2020; 34
Morris, Bridge, Eltboli, Lewis, Knox, Aylott, Brightling, Ghaemmaghami, Rose (2022.12.15.520464v2.20) 2014; 307
Tliba, Amrani, Panettieri (2022.12.15.520464v2.11) 2008; 133
Lai, Frey, Kerandi, Lake, Tranquillo, Barocas (2022.12.15.520464v2.32) 2012; 8
Chen, Huang, de Carvalho, Ho, Islam, Volpi, Notarangelo, Ciancanelli, Casanova, Bhattacharya, Liang, Palermo, Porotto, Moscona, Snoeck (2022.12.15.520464v2.7) 2017; 19
Huang, Liu, Liao, Maharjan, Xie, Perez, Anaya, Wang, Tirado Mayer, Kang, Kong, Mainardi, Garciamendez-Mijares, Garcia Martinez, Moretti, Zhang, Gu, Ghaemmaghami, Zhang (2022.12.15.520464v2.2) 2021; 118
West, Zaman, Cole, Walker, Legant, Boudou, Chen, Favreau, Gaudette, Cowley, Maksym (2022.12.15.520464v2.18) 2013; 304
Wu, Su, Xu, Kong, Sun, Mi (2022.12.15.520464v2.26) 2016; 6
Boecking, Walentek, Zlock, Sun, Wolters, Ishikawa, Jin, Haggie, Marshall, Verkman, Finkbeiner (2022.12.15.520464v2.9) 2022; 322
Jamieson, Stasiak, Polio, Augspurg, McCormick, Ruberti, Parameswaran (2022.12.15.520464v2.30) 2021; 130
Araujo, Dolhnikoff, Silva, Elliot, Lindeman, Ferreira, Mulder, Gomes, Fernezlian, James, Mauad (2022.12.15.520464v2.33) 2008; 32
Iskandar, Rojo, Di Silvio, Deb (2022.12.15.520464v2.27) 2019; 34
Park, Ryu, Lee, Ha, Ahn, Kim, Kim, Jeon, Cho (2022.12.15.520464v2.4) 2018; 11
Zhang, Wehrle, Vetsch, Paul, Rubert, Muller (2022.12.15.520464v2.22) 2019; 14
Nizamoglu, de Hilster, Zhao, Sharma, Borghuis, Harmsen, Burgess (2022.12.15.520464v2.31) 2022; 147
Noble, Pascoe, Lan, Ito, Kistemaker, Tatler, Pera, Brook, Gosens, West (2022.12.15.520464v2.14) 2014; 29
Shin, Shafranek, Tsui, Walcott, Nelson, Kim (2022.12.15.520464v2.36) 2021; 119
Adams, Bell, Bodine, Brooks, Bunnett, Joe, Keehan, Kleyman, Marette, Morty, Ramirez, Thomsen, Yates, Zucker (2022.12.15.520464v2.1) 2020; 319
Huh, Matthews, Mammoto, Montoya-Zavala, Hsin, Ingber (2022.12.15.520464v2.3) 2010; 328
De Santis, Alsafadi, Tas, Bolukbas, Prithiviraj, Da Silva, Mittendorfer, Ota, Stegmayr, Daoud, Konigshoff, Sward, Wood, Tassieri, Bourgine, Lindstedt, Mohlin, Wagner (2022.12.15.520464v2.37) 2021; 33
Cheng, Jiang, Xu, Liu, Mao (2022.12.15.520464v2.24) 2020; 164
Jablonska-Trypuc, Matejczyk, Rosochacki (2022.12.15.520464v2.35) 2016; 31
Chin, Bosse, Jiao, Solomon, Hackett, Pare, Seow (2022.12.15.520464v2.28) 2010; 36
Humayun, Chow, Young (2022.12.15.520464v2.5) 2018; 18
Panitch, Deoras, Wolfson, Shaffer (2022.12.15.520464v2.29) 1992; 31
Miller, George, Niklason (2022.12.15.520464v2.6) 2010; 4
Tadokoro, Wang, Barak, Bai, Randell, Hogan (2022.12.15.520464v2.8) 2014; 111
Cooper, McParland, Mitchell, Noble, Politi, Ressmeyer, West (2022.12.15.520464v2.12) 2009; 22
Elshaw, Henderson, Knox, Watson, Buttle, Johnson (2022.12.15.520464v2.34) 2004; 142
Lueckgen, Garske, Ellinghaus, Mooney, Duda, Cipitria (2022.12.15.520464v2.25) 2019; 217
Nesmith, Agarwal, McCain, Parker (2022.12.15.520464v2.19) 2014; 14
Matsumoto, Moir, Oliver, Burgess, Roth, Black, McParland (2022.12.15.520464v2.17) 2007; 62
Ceresa, Knox, Johnson (2022.12.15.520464v2.15) 2009; 296
References_xml – volume: 296
  start-page: L1059
  year: 2009
  end-page: 1066
  ident: 2022.12.15.520464v2.15
  article-title: Use of a three-dimensional cell culture model to study airway smooth muscle-mast cell interactions in airway remodeling
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 36
  start-page: 170
  year: 2010
  end-page: 177
  ident: 2022.12.15.520464v2.28
  article-title: Human airway smooth muscle is structurally and mechanically similar to that of other species
  publication-title: Eur Respir J
– volume: 29
  start-page: 96
  year: 2014
  end-page: 107
  ident: 2022.12.15.520464v2.14
  article-title: Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling
  publication-title: Pulm Pharmacol Ther
– volume: 8
  start-page: 4031
  year: 2012
  end-page: 4042
  ident: 2022.12.15.520464v2.32
  article-title: Microstructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels
  publication-title: Acta biomaterialia
– volume: 322
  start-page: L420
  year: 2022
  end-page: L437
  ident: 2022.12.15.520464v2.9
  article-title: A simple method to generate human airway epithelial organoids with externally orientated apical membranes
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 28
  start-page: 1505
  year: 2008
  end-page: 1510
  ident: 2022.12.15.520464v2.16
  article-title: Myocardin is sufficient for a smooth muscle-like contractile phenotype
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 319
  start-page: L266
  year: 2020
  end-page: L272
  ident: 2022.12.15.520464v2.1
  article-title: An American Physiological Society cross-journal Call for Papers on “Deconstructing Organs: Single-Cell Analyses, Decellularized Organs, Organoids, and Organ-on-a-Chip Models”
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 19
  start-page: 542
  year: 2017
  end-page: 549
  ident: 2022.12.15.520464v2.7
  article-title: A three-dimensional model of human lung development and disease from pluripotent stem cells
  publication-title: Nat Cell Biol
– volume: 307
  start-page: L38
  year: 2014
  end-page: 47
  ident: 2022.12.15.520464v2.20
  article-title: Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 22
  start-page: 398
  year: 2009
  end-page: 406
  ident: 2022.12.15.520464v2.12
  article-title: Airway mechanics and methods used to visualize smooth muscle dynamics in vitro
  publication-title: Pulm Pharmacol Ther
– volume: 118
  year: 2021
  ident: 2022.12.15.520464v2.2
  article-title: Reversed-engineered human alveolar lung-on-a-chip model
  publication-title: Proc Natl Acad Sci U S A
– volume: 6
  start-page: 24474
  year: 2016
  ident: 2022.12.15.520464v2.26
  article-title: Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation
  publication-title: Sci Rep
– volume: 133
  start-page: 236
  year: 2008
  end-page: 242
  ident: 2022.12.15.520464v2.11
  article-title: Is airway smooth muscle the “missing link” modulating airway inflammation in asthma?
  publication-title: Chest
– volume: 322
  start-page: L526
  year: 2022
  end-page: L538
  ident: 2022.12.15.520464v2.10
  article-title: Organoid-based expansion of patient-derived primary alveolar type 2 cells for establishment of alveolus epithelial Lung-Chip cultures
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 11
  start-page: 015002
  year: 2018
  ident: 2022.12.15.520464v2.4
  article-title: Development of a functional airway-on-a-chip by 3D cell printing
  publication-title: Biofabrication
– volume: 62
  start-page: 848
  year: 2007
  end-page: 854
  ident: 2022.12.15.520464v2.17
  article-title: Comparison of gel contraction mediated by airway smooth muscle cells from patients with and without asthma
  publication-title: Thorax
– volume: 142
  start-page: 1318
  year: 2004
  end-page: 1324
  ident: 2022.12.15.520464v2.34
  article-title: Matrix metalloproteinase expression and activity in human airway smooth muscle cells
  publication-title: Br J Pharmacol
– volume: 34
  start-page: 573
  year: 2019
  end-page: 584
  ident: 2022.12.15.520464v2.27
  article-title: The effect of chelation of sodium alginate with osteogenic ions, calcium, zinc, and strontium
  publication-title: J Biomater Appl
– volume: 26
  start-page: 24
  year: 2013
  end-page: 36
  ident: 2022.12.15.520464v2.13
  article-title: Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro: implications in understanding asthma
  publication-title: Pulm Pharmacol Ther
– volume: 111
  start-page: E3641
  year: 2014
  end-page: 3649
  ident: 2022.12.15.520464v2.8
  article-title: IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 119
  start-page: 75
  year: 2021
  end-page: 88
  ident: 2022.12.15.520464v2.36
  article-title: 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix
  publication-title: Acta biomaterialia
– volume: 31
  start-page: 151
  year: 1992
  end-page: 156
  ident: 2022.12.15.520464v2.29
  article-title: Maturational changes in airway smooth muscle structure-function relationships
  publication-title: Pediatr Res
– volume: 130
  start-page: 1635
  year: 2021
  end-page: 1645
  ident: 2022.12.15.520464v2.30
  article-title: Stiffening of the extracellular matrix is a sufficient condition for airway hyperreactivity
  publication-title: J Appl Physiol (1985)
– volume: 217
  start-page: 119294
  year: 2019
  ident: 2022.12.15.520464v2.25
  article-title: Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration
  publication-title: Biomaterials
– volume: 18
  start-page: 1298
  year: 2018
  end-page: 1309
  ident: 2022.12.15.520464v2.5
  article-title: Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions
  publication-title: Lab on a chip
– volume: 4
  start-page: 619
  year: 2010
  end-page: 627
  ident: 2022.12.15.520464v2.6
  article-title: Developing a tissue-engineered model of the human bronchiole
  publication-title: J Tissue Eng Regen Med
– volume: 14
  start-page: 065009
  year: 2019
  ident: 2022.12.15.520464v2.22
  article-title: Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology
  publication-title: Biomed Mater
– volume: 304
  start-page: L4
  year: 2013
  end-page: 16
  ident: 2022.12.15.520464v2.18
  article-title: Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 105
  start-page: 1009
  year: 2017
  end-page: 1018
  ident: 2022.12.15.520464v2.23
  article-title: Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness
  publication-title: Journal of biomedical materials research Part A
– volume: 14
  start-page: 3925
  year: 2014
  end-page: 3936
  ident: 2022.12.15.520464v2.19
  article-title: Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation
  publication-title: Lab on a chip
– volume: 164
  start-page: 1304
  year: 2020
  end-page: 1320
  ident: 2022.12.15.520464v2.24
  article-title: Characteristics and applications of alginate lyases: A review
  publication-title: Int J Biol Macromol
– volume: 328
  start-page: 1662
  year: 2010
  end-page: 1668
  ident: 2022.12.15.520464v2.3
  article-title: Reconstituting organlevel lung functions on a chip
  publication-title: Science
– volume: 31
  start-page: 177
  year: 2016
  end-page: 183
  ident: 2022.12.15.520464v2.35
  article-title: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs
  publication-title: J Enzyme Inhib Med Chem
– volume: 32
  start-page: 61
  year: 2008
  end-page: 69
  ident: 2022.12.15.520464v2.33
  article-title: Extracellular matrix components and regulators in the airway smooth muscle in asthma
  publication-title: Eur Respir J
– volume: 33
  start-page: e2005476
  year: 2021
  ident: 2022.12.15.520464v2.37
  article-title: Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue
  publication-title: Adv Mater
– volume: 34
  start-page: 1652
  year: 2020
  end-page: 1664
  ident: 2022.12.15.520464v2.21
  article-title: Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology
  publication-title: FASEB J
– volume: 147
  start-page: 50
  year: 2022
  end-page: 62
  ident: 2022.12.15.520464v2.31
  article-title: An in vitro model of fibrosis using crosslinked native extracellular matrix-derived hydrogels to modulate biomechanics without changing composition
  publication-title: Acta biomaterialia
SSID ssj0002961374
Score 1.6777917
SecondaryResourceType preprint
Snippet The contractile function of airway smooth muscle (ASM) is inextricably linked to its mechanical properties and interaction with the surrounding mechanical...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Actin
Alginic acid
Collagen
Cytochalasin D
Extracellular matrix
Fibrinogen
Fibrosis
Lung diseases
Mechanical properties
Muscle contraction
Physiology
Potassium chloride
Respiratory tract
Smooth muscle
Tissue engineering
Webs
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6IXjzE6dTInitrknTJidB3RgexhAHu5V8yg5r5-rU_fe-tJkKgtBTW3J4eV_5vZf3Q-iKSKUI74lIWcGjREkayYynkYXUARSIJ9LWDbKjdDhJHqdsGgC3KrRVbnxi7ahNqT1GfkMyxnw_JiO3i9fIs0b56mqg0NhGbXDBHDS8fdcfjZ--URYiIFzVo5hJKsD0SY-F0iaooj_4Ew8GxuyaEV_jgyRYzcrl5-z9j2uu481gD7XHcmGX-2jLFgdopyGMXB-i4lePDy4dlpg-YFjLo3OQOmI5W37INa7mJWwAnq8qUApck91gSE6xn3XR8HUVL7iZHLtaWiwLg-c1Vujf183rzXWHIzQZ9J_vh1FgTIgUHKsSUHlqTEKtS7XjShvPCWQZSbR1KibSaKdF4rjLUkUF11yCVMEbxlRRIjRY-zFqFWVhTxBOIe5To61kOkuc09KkKvY_WwEZU0w76DKIKl80czFyL848hofljTg7qLsRYh5Mo8p_NvL0_89naNev6HtHYtFFLZCKPYcM4E1dhG3-AmCpr18
  priority: 102
  providerName: ProQuest
Title Development of a 3D bioprinted airway smooth muscle model for manipulating structure and measuring contraction
URI https://www.proquest.com/docview/2755667652
https://www.biorxiv.org/content/10.1101/2022.12.15.520464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB60RfDmitVaRvCa0syS5ejSUoSWYi30FmYmMxLQtKRW7b_3vSRKQQ9CTtkGvrw3b837CLlmSmsW9WJP2zjyhFbcU2EUeBZcBxCgSChbNsiOg-FMPMzlfIvqC9sqdbYoPrP3so6PDduw-1bK3fMxVmeYv_NlVzIsy-2SJs44Q4EezLs_6RUWg50KRV3H_PNJ8HjrlX7tw6VxGRyQ5kQtbXFIdmx-RPYqdsjNMcm3GnrowlFF-T2Fq5iKAz-R3mTFh9rQ6esC0Kaj9QokgCK32QsFT5SOVJ5V5Fz5M52WY2LXhaUqT-moTAzieRxOVVT_NpyQ2aD_dDf0anoET0MMJUC-eZoKbl1gXKRNigRAVjJhrNM-U6lxJhYucmGgeRyZSLEQggvmc81ZbEC1T0kjX-T2jNAAjDxPjVXShMI5o9JA-3izjcE98nmLXNVQJctqCEaCcCY-HDKp4GyR9jeISa0HqwSWlNhFK9n5P15xQfaRzb3McLA2aQA09hJs_pvukOZtfzx57JRf-QuMf6hJ
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB7WXURvPvFtBD1WbR7d5iCCrrK-FhEFbzVJE9nDtuuur_1T_kYnbVcFwZvQUxtSmHyZfJlM5gPYpkprGu_LQFsZB1wrFqhmHAUWqQMCKObKFgmynah9x8_vxX0NPsZ3YXxa5dgnFo46zY2Pke_RphA-H1PQw_5T4FWj_OnqWEKjhMWFHb3hlm14cNbC8d2h9PTk9rgdVKoCgcatB0dYsDTlzLrIuFib1OvmWEG5sU6HVKXGGcld7JqRZjI2scI_o8cImWZUGpwR2O8ENDhDqlCHxtFJ5_rmK6pDJS6PRelnGkl0NXRfVEepCH0faKA--BiKXUH9mSKSbt3NB-_d119LQbG-nc5A41r17WAWajabg8lSoHI0D9mPnCKSO6IIaxHsy0cDkaoS1R28qREZ9nIccNJ7GSIISSGuQ5AME19bo9QHyx5JWan2ZWCJylLSK2KT_n2RLF9er1iAu3-x5SLUszyzS0Ai5BksNVYJ0-TOGZVGOvSNrUSGFrJl2KpMlfTLOhyJN2cS4iOS0pzLsDY2YlJNxWHyDZyVvz9vwlT79uoyuTzrXKzCtO_d562Ecg3qaCG7juzjWW9UQ07g4b9R9glw_-w-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvC1Y03Sr0dxlvmxMZiDvZUkTWSg7eicuv_eu7bKQB-EPrUlgV_ucpe7X-4IuWJSKRZ2I0eZKHSEktyRQeg7BlwHEKBQSFMSZId-fyLup9507S4M0irVLC8-Z-9lHh8J27D7VsrddfGszjB-53odj2FaroNh6s48tZukicXOkNYVTzs_cRYWgcEKRJ3Q_HMIcH3rKX9tyKWViXdJcyTnptgjGybbJ1tVm8jVAcnWmD00t1RS3qPwFWNy4DDS61nxIVd0_JoD7HSwXIAoUGxy9kLBJaUDmc2qLl3ZMx2X9WKXhaEyS-mgjBDie6xSVVSXHA7JJL59uuk7dZ8ER8FhSoCg8zQV3Fhf21DpFDsBGY8JbaxymUy11ZGwoQ18xaNQh5IFcMpgLlecRRp0_Ig0sjwzx4T6YO15qo30dCCs1TL1lYs_mwj8JJe3yGUNVTKvqmEkCGfiwuMlFZwt0v4GMakVYpHAlB7SaT128o8hLsj2qBcnj3fDh1Oygx3ey6gHa5MGoGTOwA94U-flQn8BM3Csjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+3D+Bioprinted+Airway+Smooth+Muscle+Model+for+Manipulating+Structure+and+Measuring+Contraction&rft.jtitle=bioRxiv&rft.au=Osagie%2C+Jeffery+O&rft.au=Syeda%2C+Sanjana+S&rft.au=Turner-Brannen%2C+Emily&rft.au=Guimond%2C+Michelle&rft.date=2023-01-02&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.12.15.520464&rft.externalDocID=2022.12.15.520464v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon