Using Deep Clustering to Improve fMRI Dynamic Functional Connectivity Analysis

Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means per- formance is hi...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Spencer, Arthur P C, Goodfellow, Marc
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 16.12.2021
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means per- formance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally, sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus affecting measurements of dFC state temporal properties such as dwell time and fractional occu- pancy. This may result in spurious conclusions regarding differences between groups (e.g. when comparing a clinical population to healthy controls). Therefore, is it important to quantify the ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple subjects, and to explore ways in which clustering performance can be maximised. Here, we explore the use of dimensionality reduction methods prior to clustering in order to map high-dimensional data to a lower dimensional space, providing salient features to the subse- quent clustering step. We assess the use of deep autoencoders for feature selection prior to applying k-means clustering to the encoded data. We compare this deep clustering method to feature selec- tion using principle component analysis (PCA), uniform manifold approximation and projection (UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using synthetic datasets, representing data from multiple heterogeneous subjects. In synthetic data we find that deep clus- tering gives the best performance, while other approaches are often insufficient to capture temporal properties of dFC states. We then demonstrate the application of each method to real-world data from human subjects and show that the choice of feature selection method has a significant effect on group-level measurements of state temporal properties. We therefore advocate for the use of deep clustering as a precursor to clustering in dFC. Competing Interest Statement The authors have declared no competing interest.
AbstractList Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly performed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means performance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally, sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus affecting measurements of dFC state temporal properties such as dwell time and fractional occupancy. This may result in spurious conclusions regarding differences between groups (e.g. when comparing a clinical population to healthy controls). Therefore, is it important to quantify the ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple subjects, and to explore ways in which clustering performance can be maximised. Here, we explore the use of dimensionality reduction methods prior to clustering in order to map high-dimensional data to a lower dimensional space, providing salient features to the subsequent clustering step. We assess the use of deep autoencoders for feature selection prior to applying k-means clustering to the encoded data. We compare this deep clustering method to feature selection using principle component analysis (PCA), uniform manifold approximation and projection (UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using synthetic datasets, representing data from multiple heterogeneous subjects. In synthetic data we find that deep clustering gives the best performance, while other approaches are often insufficient to capture temporal properties of dFC states. We then demonstrate the application of each method to real-world data from human subjects and show that the choice of feature selection method has a significant effect on group-level measurements of state temporal properties. We therefore advocate for the use of deep clustering as a precursor to clustering in dFC.
Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means per- formance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally, sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus affecting measurements of dFC state temporal properties such as dwell time and fractional occu- pancy. This may result in spurious conclusions regarding differences between groups (e.g. when comparing a clinical population to healthy controls). Therefore, is it important to quantify the ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple subjects, and to explore ways in which clustering performance can be maximised. Here, we explore the use of dimensionality reduction methods prior to clustering in order to map high-dimensional data to a lower dimensional space, providing salient features to the subse- quent clustering step. We assess the use of deep autoencoders for feature selection prior to applying k-means clustering to the encoded data. We compare this deep clustering method to feature selec- tion using principle component analysis (PCA), uniform manifold approximation and projection (UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using synthetic datasets, representing data from multiple heterogeneous subjects. In synthetic data we find that deep clus- tering gives the best performance, while other approaches are often insufficient to capture temporal properties of dFC states. We then demonstrate the application of each method to real-world data from human subjects and show that the choice of feature selection method has a significant effect on group-level measurements of state temporal properties. We therefore advocate for the use of deep clustering as a precursor to clustering in dFC. Competing Interest Statement The authors have declared no competing interest.
Author Spencer, Arthur P C
Goodfellow, Marc
Author_xml – sequence: 1
  givenname: Arthur
  surname: Spencer
  middlename: P C
  fullname: Spencer, Arthur P C
– sequence: 2
  givenname: Marc
  surname: Goodfellow
  fullname: Goodfellow, Marc
BookMark eNpNkFFLwzAUhYNMcM79AN8CvvjSmpumafo4OqeDqSDuOaRpKhlbMpt2rP_elvng073n8nG459yiifPOIHQPJAYg8EQJhRhoDCxmGeWCXKEp5TmNBCXp5N9-g-Yh7AghNOeQZGyK3rfBum-8NOaIi30XWtOMuvV4fTg2_mRw_fa5xsveqYPVeNU53Vrv1B4X3jkziJNte7wYLn2w4Q5d12ofzPxvztB29fxVvEabj5d1sdhEJRBGIlMKpnjCRapUVbMqYVrpGrhgNc0p6MporoUuNU9zIapUmSxPjVIjACIpkxl6vPiW1jdne5LHxh5U08uxCglUApOXKgb04YIOcX46E1q5810z_Bsk5UA4z_JMJL-D2V_c
ContentType Paper
Copyright 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2021.12.14.472680
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2021.12.14.472680v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1040-eb84a63685aadf4d34cacf1684f2921cdec6c8cbc65988d5ae795eaa684f183b3
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 19:00:09 EST 2025
Fri Jul 25 09:14:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords deep learning
autoencoders
dimensionality reduction
Dynamic functional connectivity
sliding window correlations
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1040-eb84a63685aadf4d34cacf1684f2921cdec6c8cbc65988d5ae795eaa684f183b3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-7869-6261
OpenAccessLink https://www.proquest.com/docview/2610667978?pq-origsite=%requestingapplication%
PQID 2610667978
PQPubID 2050091
PageCount 25
ParticipantIDs biorxiv_primary_2021_12_14_472680
proquest_journals_2610667978
PublicationCentury 2000
PublicationDate 20211216
PublicationDateYYYYMMDD 2021-12-16
PublicationDate_xml – month: 12
  year: 2021
  text: 20211216
  day: 16
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Calhoun, Miller, Pearlson, Adalı (2021.12.14.472680v1.13) 2014; 84
Kingma, Ba (2021.12.14.472680v1.42) 2014
Lin, Hou, Yang, Yan, Kim, Laurienti, Wu (2021.12.14.472680v1.49) 2021
McInnes, Healy, Melville (2021.12.14.472680v1.53) 2018
Wang, Li, Hu (2021.12.14.472680v1.79) 2020
Li, Zhu, Alexander Nguchu, Wang, Wang, Qiu, Wang (2021.12.14.472680v1.48) 2020; 13
Bullmore, Bassett (2021.12.14.472680v1.11) 2011; 7
Rabany, Brocke, Calhoun, Pittman, Corbera, Wexler, Bell, Pelphrey, Pearlson, Assaf (2021.12.14.472680v1.60) 2019; 24
Zhang, Löıc, Thirion, Bellec (2021.12.14.472680v1.83) 2021; 231
Matsui, Murakami, Ohki (2021.12.14.472680v1.52) 2019; 29
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (2021.12.14.472680v1.3) 2014; 24
Matthew Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Penna, Duyn, Glover, Gonzalez-Castillo (2021.12.14.472680v1.36) 2013; 80
Rashid, Damaraju, Pearlson, Calhoun (2021.12.14.472680v1.61) 2014; 8
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (2021.12.14.472680v1.74) 2002; 15
Suk, Chong-Yaw, Lee, Shen (2021.12.14.472680v1.72) 2016; 129
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (2021.12.14.472680v1.67) 2004; 23
Akkus, Galimzianova, Hoogi, Rubin, Erickson (2021.12.14.472680v1.2) 2017; 30
Matthew Hutchison, Bruce Morton (2021.12.14.472680v1.35) 2015; 35
Zhou, Cai, Zhang, Zhang, Calhoun, Wang (2021.12.14.472680v1.84) 2020; 221
Cai, Zhang, Zhang, Xiao, Hu, Stephen, Wilson, Calhoun, Wang (2021.12.14.472680v1.12) 2021; 42
Fiorenzato, Strafella, Kim, Schifano, Weis, Antonini, Biundo (2021.12.14.472680v1.23) 2019; 142
Shakil, Lee, Keilholz (2021.12.14.472680v1.65) 2016; 133
Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (2021.12.14.472680v1.34) 2016; 127
Fu, Iraji, Turner, Sui, Miller, Pearlson, Calhoun (2021.12.14.472680v1.24) 2021; 224
Xie, Girshick, Farhadi (2021.12.14.472680v1.80) 2016
Bassett, Sporns (2021.12.14.472680v1.6) 2017; 20
He, Li, Holland, Yuan, Altaye, Parikh (2021.12.14.472680v1.32) 2018b; 18
Quaak, van de Mortel, Thomas, van Wingen (2021.12.14.472680v1.59) 2021; 30
Du, Fryer, Fu, Lin, Sui, Chen, Damaraju, Mennigen, Stuart, Loewy (2021.12.14.472680v1.21) 2018; 180
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (2021.12.14.472680v1.75) 2013; 80
Lurie, Kessler, Bassett, Betzel, Breakspear, Kheilholz, Kucyi, Liègeois, Lindquist, Randal McIntosh (2021.12.14.472680v1.51) 2020; 4
Cameron Craddock, Andrew James, Holtzheimer, Hu, Mayberg (2021.12.14.472680v1.16) 2012; 33
Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (2021.12.14.472680v1.30) 2012; 63
Vincent, Larochelle, Bengio, Pierre-Antoine (2021.12.14.472680v1.78) 2008
Beckmann, Smith (2021.12.14.472680v1.7) 2004; 23
Hedley Thompson, Geoffrey Richter, Plavèn-Sigray, Fransson (2021.12.14.472680v1.73) 2018; 14
Su, Shen, Zeng, Qin, Liu, Hu (2021.12.14.472680v1.71) 2016; 27
Erhardt, Allen, Wei, Eichele, Calhoun (2021.12.14.472680v1.22) 2012; 59
Yang, Cameron Craddock, Margulies, Yan, Milham (2021.12.14.472680v1.82) 2014; 93
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (2021.12.14.472680v1.28) 2014; 95
Kam, Zhang, Jiao, Shen (2021.12.14.472680v1.38) 2019; 39
Shen, Tokoglu, Papademetris, Todd Constable (2021.12.14.472680v1.66) 2013; 82
Goodfellow, Bengio, Courville, Bengio (2021.12.14.472680v1.27) 2016; 1
Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (2021.12.14.472680v1.69) 2013; 80
Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene (2021.12.14.472680v1.45) 2017; 27
Lehmann, White, Henson, Geerligs (2021.12.14.472680v1.46) 2017; 157
Bolton, Morgenroth, Preti, Van De Ville (2021.12.14.472680v1.9) 2020
Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda (2021.12.14.472680v1.17) 2014; 5
Damaraju, Tagliazucchi, Laufs, Calhoun (2021.12.14.472680v1.18) 2020; 220
Smith, Hyvärinen, Varoquaux, Miller, Beckmann (2021.12.14.472680v1.70) 2014; 101
He, Chen, Jian, Chen, Guo, Wang, Wu, Chen, Duan (2021.12.14.472680v1.31) 2018a; 11
Medaglia, Mary-Ellen, Bassett (2021.12.14.472680v1.54) 2015; 27
Caron, Bojanowski, Joulin, Douze (2021.12.14.472680v1.14) 2018
Du, Pearlson, Yu, He, Lin, Sui, Wu, Calhoun (2021.12.14.472680v1.20) 2016; 170
Anibal Sólon, Rosa Franco, Cameron Craddock, Buchweitz, Meneguzzi (2021.12.14.472680v1.33) 2018; 17
Assent (2021.12.14.472680v1.5) 2012; 2
Bullmore, Sporns (2021.12.14.472680v1.10) 2009; 10
Işik Karahanoğlu, Van De Ville (2021.12.14.472680v1.39) 2015; 6
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (2021.12.14.472680v1.62) 2014; 90
Vieira, Pinaya, Mechelli (2021.12.14.472680v1.77) 2017; 74
Díez-Cirarda, Strafella, Kim, Peña, Ojeda, Cabrera-Zubizarreta, Ibarretxe-Bilbao (2021.12.14.472680v1.19) 2018; 17
Aggarwal, Hinneburg, Keim (2021.12.14.472680v1.1) 2001
Savva, Kassinopoulos, Smyrnis, Matsopoulos, Mitsis (2021.12.14.472680v1.63) 2020; 330
Lindquist, Xu, Nebel, Caffo (2021.12.14.472680v1.50) 2014; 101
Kim, Criaud, Cho, Díez-Cirarda, Mihaescu, Coakeley, Ghadery, Valli, Jacobs, Houle (2021.12.14.472680v1.41) 2017; 140
Mokhtari, Akhlaghi, Simpson, Wu, Laurienti (2021.12.14.472680v1.56) 2019; 189
Arthur, Vassilvitskii (2021.12.14.472680v1.4) 2006
Xu, Shen, Wang, Zhong, Lei, Yang, Zeng, Zhou, Hu, Yang (2021.12.14.472680v1.81) 2018; 1688
Işık Karahanoğlu, Van De Ville (2021.12.14.472680v1.40) 2017; 3
Kiviniemi, Starck, Remes, Long, Nikkinen, Haapea, Veijola, Moilanen, Isohanni, Zang (2021.12.14.472680v1.43) 2009; 30
Preti, Bolton, Van De Ville (2021.12.14.472680v1.58) 2017; 160
Varoquaux, Gramfort, Poline, Thirion (2021.12.14.472680v1.76) 2010
Leonardi, Van De Ville (2021.12.14.472680v1.47) 2015; 104
Glasser, Sotiropoulos, Anthony Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (2021.12.14.472680v1.25) 2013; 80
Schumacher, Peraza, Firbank, Thomas, Kaiser, Gallagher, O’Brien, Blamire, Taylor (2021.12.14.472680v1.64) 2019; 22
Guo, Liu, Zhu, Yin (2021.12.14.472680v1.29) 2017
Cohen (2021.12.14.472680v1.15) 2018; 180
Gonzalez-Castillo, Hoy, Handwerker, Robinson, Buchanan, Saad, Bandettini (2021.12.14.472680v1.26) 2015; 112
Michel, Koenig (2021.12.14.472680v1.55) 2018; 180
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (2021.12.14.472680v1.68) 2011; 54
Benjamini, Hochberg (2021.12.14.472680v1.8) 1995; 57
Kriegel, Kröger, Zimek (2021.12.14.472680v1.44) 2009; 3
Ou, Xie, Jin, Li, Zhu, Jiang, Chen, Zhang, Li, Liu (2021.12.14.472680v1.57) 2015; 28
Hyvarinen (2021.12.14.472680v1.37) 1999; 10
References_xml – volume: 63
  start-page: 1712
  issue: 3
  year: 2012
  end-page: 1719
  ident: 2021.12.14.472680v1.30
  article-title: Periodic changes in fmri connectivity
  publication-title: Neuroimage
– volume: 28
  start-page: 666
  issue: 5
  year: 2015
  end-page: 679
  ident: 2021.12.14.472680v1.57
  article-title: Characterizing and differentiating brain state dynamics via hidden markov models
  publication-title: Brain topography
– volume: 160
  start-page: 41
  year: 2017
  end-page: 54
  ident: 2021.12.14.472680v1.58
  article-title: The dynamic functional con-nectome: State-of-the-art and perspectives
  publication-title: Neuroimage
– volume: 59
  start-page: 4160
  issue: 4
  year: 2012
  end-page: 4167
  ident: 2021.12.14.472680v1.22
  article-title: Simtb, a simulation toolbox for fmri data under a model of spatiotemporal separability
  publication-title: Neuroimage
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  end-page: 459
  ident: 2021.12.14.472680v1.2
  article-title: Deep learning for brain mri segmentation: state of the art and future directions
  publication-title: Journal of digital imaging
– start-page: 373
  year: 2017
  end-page: 382
  ident: 2021.12.14.472680v1.29
  publication-title: In International conference on neural information processing
– volume: 8
  start-page: 897
  year: 2014
  ident: 2021.12.14.472680v1.61
  article-title: Dynamic connectivity states estimated from resting fmri identify differences among schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Frontiers in human neuroscience
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  end-page: 10
  ident: 2021.12.14.472680v1.39
  article-title: Transient brain activity disentangles fmri resting-state dynamics in terms of spatially and temporally overlapping networks
  publication-title: Nature communications
– volume: 112
  start-page: 8762
  issue: 28
  year: 2015
  end-page: 8767
  ident: 2021.12.14.472680v1.26
  article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns
  publication-title: Proceedings of the National Academy of Sciences
– volume: 27
  start-page: 4719
  issue: 10
  year: 2017
  end-page: 4732
  ident: 2021.12.14.472680v1.45
  article-title: On the stability of bold fmri correlations
  publication-title: Cerebral cortex
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  end-page: 58
  ident: 2021.12.14.472680v1.44
  article-title: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
– volume: 30
  start-page: 102584
  year: 2021
  ident: 2021.12.14.472680v1.59
  article-title: Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis
  publication-title: NeuroImage: Clinical
– volume: 14
  start-page: e1006196
  issue: 5
  year: 2018
  ident: 2021.12.14.472680v1.73
  article-title: Simulations to benchmark time-varying connectivity methods for fmri
  publication-title: PLoS computational biology
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: 2021.12.14.472680v1.36
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 30
  start-page: 3865
  issue: 12
  year: 2009
  end-page: 3886
  ident: 2021.12.14.472680v1.43
  article-title: Functional segmentation of the brain cortex using high model order group pica
  publication-title: Human brain mapping
– volume: 93
  start-page: 124
  year: 2014
  end-page: 137
  ident: 2021.12.14.472680v1.82
  article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: Insights from analysis of temporal dynamics
  publication-title: Neuroimage
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  end-page: 289
  ident: 2021.12.14.472680v1.74
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 180
  start-page: 632
  year: 2018
  end-page: 645
  ident: 2021.12.14.472680v1.21
  article-title: Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis
  publication-title: Neuroimage
– year: 2018
  ident: 2021.12.14.472680v1.53
  article-title: Umap: Uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv preprint
– volume: 74
  start-page: 58
  year: 2017
  end-page: 75
  ident: 2021.12.14.472680v1.77
  article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications
  publication-title: Neuroscience & Biobehavioral Reviews
– year: 2006
  ident: 2021.12.14.472680v1.4
  article-title: k-means++: The advantages of careful seeding
  publication-title: Technical report, Stanford
– volume: 231
  start-page: 117847
  year: 2021
  ident: 2021.12.14.472680v1.83
  article-title: Functional annotation of human cognitive states using deep graph convolution
  publication-title: NeuroImage
– start-page: 420
  year: 2001
  end-page: 434
  ident: 2021.12.14.472680v1.1
  publication-title: In International conference on database theory
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  end-page: 152
  ident: 2021.12.14.472680v1.7
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE transactions on medical imaging
– volume: 17
  start-page: 847
  year: 2018
  end-page: 855
  ident: 2021.12.14.472680v1.19
  article-title: Dynamic functional connectivity in parkinson’s disease patients with mild cognitive impairment and normal cognition
  publication-title: NeuroImage: Clinical
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: 2021.12.14.472680v1.33
  article-title: Identification of autism spectrum disorder using deep learning and the abide dataset
  publication-title: NeuroImage: Clinical
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  ident: 2021.12.14.472680v1.3
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebral cortex
– volume: 330
  start-page: 108519
  year: 2020
  ident: 2021.12.14.472680v1.63
  article-title: Effects of motion related outliers in dynamic functional connectivity using the sliding window method
  publication-title: Journal of Neuroscience Methods
– volume: 140
  start-page: 2955
  issue: 11
  year: 2017
  end-page: 2967
  ident: 2021.12.14.472680v1.41
  article-title: Abnormal intrinsic brain functional network dynamics in parkinson’s disease
  publication-title: Brain
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: 2021.12.14.472680v1.28
  article-title: Ica-based artefact removal and accelerated fmri acquisition for improved resting state network imaging
  publication-title: Neuroimage
– year: 2020
  ident: 2021.12.14.472680v1.9
  article-title: Tapping into multi-faceted human behavior and psychopathology using fmri brain dynamics
  publication-title: Trends in Neurosciences
– start-page: 478
  year: 2016
  end-page: 487
  ident: 2021.12.14.472680v1.80
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: In International conference on machine learning
– volume: 220
  start-page: 117047
  year: 2020
  ident: 2021.12.14.472680v1.18
  article-title: Connectivity dynamics from wakefulness to sleep
  publication-title: NeuroImage
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: 2021.12.14.472680v1.69
  article-title: Resting-state fmri in the human connectome project
  publication-title: Neuroimage
– volume: 189
  start-page: 655
  year: 2019
  end-page: 666
  ident: 2021.12.14.472680v1.56
  article-title: Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state
  publication-title: Neuroimage
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  end-page: 274
  ident: 2021.12.14.472680v1.13
  article-title: The chronnectome: timevarying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– volume: 180
  start-page: 577
  year: 2018
  end-page: 593
  ident: 2021.12.14.472680v1.55
  article-title: Eeg microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review
  publication-title: Neuroimage
– start-page: 1
  year: 2020
  end-page: 13
  ident: 2021.12.14.472680v1.79
  article-title: Graph convolutional network for fmri analysis based on connectivity neighborhood
  publication-title: Network Neuroscience
– volume: 33
  start-page: 1914
  issue: 8
  year: 2012
  end-page: 1928
  ident: 2021.12.14.472680v1.16
  article-title: A whole brain fmri atlas generated via spatially constrained spectral clustering
  publication-title: Human brain mapping
– volume: 24
  start-page: 101966
  year: 2019
  ident: 2021.12.14.472680v1.60
  article-title: Dynamic functional connectivity in schizophrenia and autism spectrum disorder: Convergence, divergence and clas-sification
  publication-title: NeuroImage: Clinical
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: 2021.12.14.472680v1.25
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: 2021.12.14.472680v1.75
  article-title: The wu-minn human connectome project: an overview
  publication-title: Neuroimage
– year: 2014
  ident: 2021.12.14.472680v1.42
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint
– volume: 170
  start-page: 55
  issue: 1
  year: 2016
  end-page: 65
  ident: 2021.12.14.472680v1.20
  article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach
  publication-title: Schizophrenia research
– volume: 39
  start-page: 478
  issue: 2
  year: 2019
  end-page: 487
  ident: 2021.12.14.472680v1.38
  article-title: Deep learning of static and dynamic brain functional networks for early mci detection
  publication-title: IEEE transactions on medical imaging
– volume: 157
  start-page: 635
  year: 2017
  end-page: 647
  ident: 2021.12.14.472680v1.46
  article-title: Assessing dynamic functional connectivity in heterogeneous samples
  publication-title: NeuroImage
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  ident: 2021.12.14.472680v1.17
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage: Clinical
– volume: 180
  start-page: 515
  year: 2018
  end-page: 525
  ident: 2021.12.14.472680v1.15
  article-title: The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity
  publication-title: NeuroImage
– volume: 18
  start-page: 290
  year: 2018b
  end-page: 297
  ident: 2021.12.14.472680v1.32
  article-title: Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework
  publication-title: NeuroImage: Clinical
– volume: 27
  start-page: 843
  issue: 11
  year: 2016
  end-page: 848
  ident: 2021.12.14.472680v1.71
  article-title: Heredity characteristics of schizophrenia shown by dynamic functional connectivity analysis of resting-state functional mri scans of unaffected siblings
  publication-title: Neuroreport
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: 2021.12.14.472680v1.78
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: In Proceedings of the 25th international conference on Machine learning
– volume: 133
  start-page: 111
  year: 2016
  end-page: 128
  ident: 2021.12.14.472680v1.65
  article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states
  publication-title: Neuroimage
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: 2021.12.14.472680v1.67
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 2
  start-page: 340
  issue: 4
  year: 2012
  end-page: 350
  ident: 2021.12.14.472680v1.5
  article-title: Clustering high dimensional data
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 35
  start-page: 6849
  issue: 17
  year: 2015
  end-page: 6859
  ident: 2021.12.14.472680v1.35
  article-title: Tracking the brain’s functional coupling dynamics over development
  publication-title: Journal of Neuroscience
– volume: 1688
  start-page: 22
  year: 2018
  end-page: 32
  ident: 2021.12.14.472680v1.81
  article-title: Impact of 36 h of total sleep deprivation on resting-state dynamic functional connectivity
  publication-title: Brain Research
– volume: 27
  start-page: 1471
  issue: 8
  year: 2015
  end-page: 1491
  ident: 2021.12.14.472680v1.54
  article-title: Cognitive network neuroscience
  publication-title: Journal of cognitive neuroscience
– volume: 4
  start-page: 30
  issue: 1
  year: 2020
  end-page: 69
  ident: 2021.12.14.472680v1.51
  article-title: Questions and controversies in the study of time-varying functional connectivity in resting fmri
  publication-title: Network Neuroscience
– volume: 221
  start-page: 117190
  year: 2020
  ident: 2021.12.14.472680v1.84
  article-title: Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fmri
  publication-title: NeuroImage
– volume: 104
  start-page: 430
  year: 2015
  end-page: 436
  ident: 2021.12.14.472680v1.47
  article-title: On spurious and real fluctuations of dynamic functional connectivity during rest
  publication-title: Neuroimage
– start-page: 117791
  year: 2021
  ident: 2021.12.14.472680v1.49
  article-title: Learning dynamic graph embeddings for accurate detection of cognitive state changes in functional brain networks
  publication-title: NeuroImage
– volume: 7
  start-page: 113
  year: 2011
  end-page: 140
  ident: 2021.12.14.472680v1.11
  article-title: Brain graphs: graphical models of the human brain connectome
  publication-title: Annual review of clinical psychology
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: 2021.12.14.472680v1.66
  article-title: Groupwise wholebrain parcellation from resting-state fmri data for network node identification
  publication-title: Neuroimage
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  end-page: 634
  ident: 2021.12.14.472680v1.37
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE transactions on Neural Networks
– volume: 42
  start-page: 2691
  issue: 9
  year: 2021
  end-page: 2705
  ident: 2021.12.14.472680v1.12
  article-title: Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder
  publication-title: Human Brain Mapping
– volume: 1
  year: 2016
  ident: 2021.12.14.472680v1.27
  publication-title: Deep learning
– volume: 29
  start-page: 1496
  issue: 4
  year: 2019
  end-page: 1508
  ident: 2021.12.14.472680v1.52
  article-title: Neuronal origin of the temporal dynamics of spontaneous bold activity correlation
  publication-title: Cerebral Cortex
– volume: 11
  start-page: 1479
  issue: 11
  year: 2018a
  end-page: 1493
  ident: 2021.12.14.472680v1.31
  article-title: Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain
  publication-title: Autism Research
– volume: 224
  start-page: 117385
  year: 2021
  ident: 2021.12.14.472680v1.24
  article-title: Dynamic state with covarying brain activity-connectivity: On the pathophysiology of schizophrenia
  publication-title: Neuroimage
– volume: 3
  start-page: 28
  year: 2017
  end-page: 36
  ident: 2021.12.14.472680v1.40
  article-title: Dynamics of large-scale fmri networks: Deconstruct brain activity to build better models of brain function
  publication-title: Current Opinion in Biomedical Engineering
– volume: 13
  start-page: 230
  issue: 2
  year: 2020
  end-page: 243
  ident: 2021.12.14.472680v1.48
  article-title: Dynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorder
  publication-title: Autism Research
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  end-page: 891
  ident: 2021.12.14.472680v1.68
  article-title: Network modelling methods for fmri
  publication-title: Neuroimage
– volume: 20
  start-page: 353
  issue: 3
  year: 2017
  ident: 2021.12.14.472680v1.6
  article-title: Network neuroscience
  publication-title: Nature neuroscience
– volume: 101
  start-page: 738
  year: 2014
  end-page: 749
  ident: 2021.12.14.472680v1.70
  article-title: Group-pca for very large fmri datasets
  publication-title: Neuroimage
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: 2021.12.14.472680v1.62
  article-title: Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– start-page: 132
  year: 2018
  end-page: 149
  ident: 2021.12.14.472680v1.14
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: In Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 101
  start-page: 531
  year: 2014
  end-page: 546
  ident: 2021.12.14.472680v1.50
  article-title: Evaluating dynamic bivariate correlations in resting-state fmri: a comparison study and a new approach
  publication-title: NeuroImage
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 2021.12.14.472680v1.10
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nature Reviews Neuroscience
– volume: 22
  start-page: 101812
  year: 2019
  ident: 2021.12.14.472680v1.64
  article-title: Dynamic functional connectivity changes in dementia with lewy bodies and alzheimer’s disease
  publication-title: NeuroImage: Clinical
– volume: 142
  start-page: 2860
  issue: 9
  year: 2019
  end-page: 2872
  ident: 2021.12.14.472680v1.23
  article-title: Dynamic functional connectivity changes associated with dementia in parkinson?s disease
  publication-title: Brain
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  ident: 2021.12.14.472680v1.8
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal statistical society: series B (Methodological)
– volume: 129
  start-page: 292
  year: 2016
  end-page: 307
  ident: 2021.12.14.472680v1.72
  article-title: State-space model with deep learning for functional dynamics estimation in resting-state fmri
  publication-title: NeuroImage
– start-page: 2334
  year: 2010
  end-page: 2342
  ident: 2021.12.14.472680v1.76
  article-title: Brain covariance selection: better individual functional connectivity models using population prior
  publication-title: In Advances in neural information processing systems
– volume: 127
  start-page: 242
  year: 2016
  end-page: 256
  ident: 2021.12.14.472680v1.34
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri?
  publication-title: Neuroimage
SSID ssj0002961374
Score 1.643147
SecondaryResourceType preprint
Snippet Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by...
Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly performed by calculating sliding-window correlations (SWC), followed by...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Feature selection
Functional magnetic resonance imaging
Neuroscience
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3EInjzE6tVVvDa0k02m91za6hCi4iF3sJ-TKAgbamt6L93JpuKoAePCZsEJrv78mZe5jF2hyCkKkNMlcRhUnlcc077bgapCkiJEAHpf-fxRI2m8nGWzX5YfZGs0s2X64_5e13HJ8E27r5xcfcFcXVB-TshezJPlEa23sIpJcm1oZj1vtMriUGcymVTx_zzSvzibZ70ax-uwaU4Yq0nu4L1MduDxQk7iO6Qn6dsUpfz-RBgxQevW-poQMebJY-ZAODV-PmBD6OnPC8QoWJij9fqFR99Ifiu7cgZmxb3L4NRt7E_6DpBOj9wWlpFDeKtDZUMqfTWV0JpWSUmET6AV15751VmtA6ZhdxkYC0NwIXq0nO2v1gu4IJx0H0J2qdpakDmztOgYEKViMp5I12b3TahKFexyUVJ4SpFgtSgjOFqs84uSGUzz99K5F-kkkUqevmPW1yxQzpHahChOmx_s97CNWL6xt3Ub-8LSzObcg
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Using Deep Clustering to Improve fMRI Dynamic Functional Connectivity Analysis
URI https://www.proquest.com/docview/2610667978
https://www.biorxiv.org/content/10.1101/2021.12.14.472680
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFA1uY-CbnzidI4KvnUubZsmT4LYyhY0xHOyt5KswkLXuQ_Tfm9tm-iD4WBpKuUnu6Tm5PRehewdCLBPAVKE4jDLt9pziOohtxIyjRA4B4X_nyZSNF_RlGS-94Lb1ZZWHnFgmapNr0Mgf3Jc-1GM60vNYvAfQNQpOV30LjRpquBTMHflqPI2ms_mPyhIKB1elFXPIhHuNsBf7o023FIH4ExADCe3SfsjAGrKpVvnmc_XxJzWXeJOcoMZMFnZzio7s-gw1q4aRX-doWp7w46G1BR687cHkAK53Oa7EAYuzyfwZD6s28zhxoFVpfbgsaNFVqwh8cCK5QItk9DoYB74jQqAIlP5Zxalk4BkvpcmoiaiWOiOM0ywUIdHGaqa5VprFgnMTS9sXsZUSBri9q6JLVF_na3uFsOU9armOokhY2lcaBhlhspBkSguqWujOhyItKt-LFMKVktCxhbQKVwu1D0FK_dLfpr8Tdf3_7Rt0DE-E2hDC2qi-2-ztrUP4ner4aeygWrLsfgPzs6Pp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4ghOjNZ3yg1kSPKNvtlu3BmCgQUCDESMJt3Xa7CYkBRPDxp_yNzuxDDybePG62adLptNOZfv0-gFMMQjJWlKkSOExIg2tO-6bqWVdGmBJhBKT3zr2-bA_F7cgbFeAzfwtDsMp8T0w26mhqqEZ-gSd9wmNi0nM1e66SahTdruYSGqlb3NmPN0zZXi47DZzfM85bzYebdjVTFahqh-BzVvsilMS7HoZRLCJXmNDEjvRFzBV3TGSNNL7RRnrK9yMvtHXl2TCkBuj_2sV-V6AkXExlilC6bvYH999VHa4wPCbUz1wqHDavedlVKro-FRocKj464lzUuSQqyrIeT-fv49dfoSCJb611KA3CmZ1vQMFONqGcClR-bEE_QRSwhrUzdvO0JFIF-l5MWVqMsCzu3XdYI5W1Zy0MkmltkSUAGpNKU7Cc-WQbhv9iqx0oTqYTuwvM-jVhfeO6rrKirg01ilQUcyfWRgm9ByeZKYJZyrMRkLkCh2N2EqTm2oNKbqQgW2ovwY9j7P_9-xhW2w-9btDt9O8OYI16J1yKIytQXMyX9hBPFwt9lE0pg8f_9qIv8azhFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66ofjmT5xOjeDrytKmafK8WTZ1Y4iDvZX8hIFsZW6i_725phNBH3wsDQlcc_n63X25Q-jOgxBzApgqiMMo097nFNed1CbMeErkERDuO4_GbDClD7N09uMuDMgq1Xy5-pi_V3l8EGz70zc4d5cAVycQvyM0olnMeDeCMHVUGreLmlDsDHZ2Pou-4yyx8ICV0Tqh-ecU_te3XvLXgVyhTH6ImhNZ2tUR2rGLY7QX2kR-nqBxldfHfWtL3HvdQGkDeF4vcQgJWOxGz0PcD83lce6hKkT4cCVj0aFBBN7WHzlF0_z-pTfo1H0QOoqA4M8qTiWDSvFSGkdNQrXUjjBOXSxioo3VTHOtNEsF5yaVNhOplRIGeI9VyRlqLJYLe46w5V1quU6SRFiaKQ2DjDAuJk5pQVUL3damKMpQ7aIAcxUk9hyhCOZqofbWSEW94d8KT8RALus56cU_prhB-5N-XjwNx4-X6ABeg0KEsDZqrFcbe-Vxfq2uqw_5BVOYoVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Deep+Clustering+to+Improve+fMRI+Dynamic+Functional+Connectivity+Analysis&rft.jtitle=bioRxiv&rft.au=Spencer%2C+Arthur+P+C&rft.au=Goodfellow%2C+Marc&rft.date=2021-12-16&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.12.14.472680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon