Using Deep Clustering to Improve fMRI Dynamic Functional Connectivity Analysis
Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means per- formance is hi...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
16.12.2021
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means per- formance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally, sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus affecting measurements of dFC state temporal properties such as dwell time and fractional occu- pancy. This may result in spurious conclusions regarding differences between groups (e.g. when comparing a clinical population to healthy controls). Therefore, is it important to quantify the ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple subjects, and to explore ways in which clustering performance can be maximised. Here, we explore the use of dimensionality reduction methods prior to clustering in order to map high-dimensional data to a lower dimensional space, providing salient features to the subse- quent clustering step. We assess the use of deep autoencoders for feature selection prior to applying k-means clustering to the encoded data. We compare this deep clustering method to feature selec- tion using principle component analysis (PCA), uniform manifold approximation and projection (UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using synthetic datasets, representing data from multiple heterogeneous subjects. In synthetic data we find that deep clus- tering gives the best performance, while other approaches are often insufficient to capture temporal properties of dFC states. We then demonstrate the application of each method to real-world data from human subjects and show that the choice of feature selection method has a significant effect on group-level measurements of state temporal properties. We therefore advocate for the use of deep clustering as a precursor to clustering in dFC. Competing Interest Statement The authors have declared no competing interest. |
---|---|
AbstractList | Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly performed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means performance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally, sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus affecting measurements of dFC state temporal properties such as dwell time and fractional occupancy. This may result in spurious conclusions regarding differences between groups (e.g. when comparing a clinical population to healthy controls). Therefore, is it important to quantify the ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple subjects, and to explore ways in which clustering performance can be maximised.
Here, we explore the use of dimensionality reduction methods prior to clustering in order to map high-dimensional data to a lower dimensional space, providing salient features to the subsequent clustering step. We assess the use of deep autoencoders for feature selection prior to applying k-means clustering to the encoded data. We compare this deep clustering method to feature selection using principle component analysis (PCA), uniform manifold approximation and projection (UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using synthetic datasets, representing data from multiple heterogeneous subjects. In synthetic data we find that deep clustering gives the best performance, while other approaches are often insufficient to capture temporal properties of dFC states. We then demonstrate the application of each method to real-world data from human subjects and show that the choice of feature selection method has a significant effect on group-level measurements of state temporal properties. We therefore advocate for the use of deep clustering as a precursor to clustering in dFC. Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means per- formance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally, sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus affecting measurements of dFC state temporal properties such as dwell time and fractional occu- pancy. This may result in spurious conclusions regarding differences between groups (e.g. when comparing a clinical population to healthy controls). Therefore, is it important to quantify the ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple subjects, and to explore ways in which clustering performance can be maximised. Here, we explore the use of dimensionality reduction methods prior to clustering in order to map high-dimensional data to a lower dimensional space, providing salient features to the subse- quent clustering step. We assess the use of deep autoencoders for feature selection prior to applying k-means clustering to the encoded data. We compare this deep clustering method to feature selec- tion using principle component analysis (PCA), uniform manifold approximation and projection (UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using synthetic datasets, representing data from multiple heterogeneous subjects. In synthetic data we find that deep clus- tering gives the best performance, while other approaches are often insufficient to capture temporal properties of dFC states. We then demonstrate the application of each method to real-world data from human subjects and show that the choice of feature selection method has a significant effect on group-level measurements of state temporal properties. We therefore advocate for the use of deep clustering as a precursor to clustering in dFC. Competing Interest Statement The authors have declared no competing interest. |
Author | Spencer, Arthur P C Goodfellow, Marc |
Author_xml | – sequence: 1 givenname: Arthur surname: Spencer middlename: P C fullname: Spencer, Arthur P C – sequence: 2 givenname: Marc surname: Goodfellow fullname: Goodfellow, Marc |
BookMark | eNpNkFFLwzAUhYNMcM79AN8CvvjSmpumafo4OqeDqSDuOaRpKhlbMpt2rP_elvng073n8nG459yiifPOIHQPJAYg8EQJhRhoDCxmGeWCXKEp5TmNBCXp5N9-g-Yh7AghNOeQZGyK3rfBum-8NOaIi30XWtOMuvV4fTg2_mRw_fa5xsveqYPVeNU53Vrv1B4X3jkziJNte7wYLn2w4Q5d12ofzPxvztB29fxVvEabj5d1sdhEJRBGIlMKpnjCRapUVbMqYVrpGrhgNc0p6MporoUuNU9zIapUmSxPjVIjACIpkxl6vPiW1jdne5LHxh5U08uxCglUApOXKgb04YIOcX46E1q5810z_Bsk5UA4z_JMJL-D2V_c |
ContentType | Paper |
Copyright | 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2021.12.14.472680 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2021.12.14.472680v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1040-eb84a63685aadf4d34cacf1684f2921cdec6c8cbc65988d5ae795eaa684f183b3 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 19:00:09 EST 2025 Fri Jul 25 09:14:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | deep learning autoencoders dimensionality reduction Dynamic functional connectivity sliding window correlations |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1040-eb84a63685aadf4d34cacf1684f2921cdec6c8cbc65988d5ae795eaa684f183b3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0001-7869-6261 |
OpenAccessLink | https://www.proquest.com/docview/2610667978?pq-origsite=%requestingapplication% |
PQID | 2610667978 |
PQPubID | 2050091 |
PageCount | 25 |
ParticipantIDs | biorxiv_primary_2021_12_14_472680 proquest_journals_2610667978 |
PublicationCentury | 2000 |
PublicationDate | 20211216 |
PublicationDateYYYYMMDD | 2021-12-16 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211216 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Calhoun, Miller, Pearlson, Adalı (2021.12.14.472680v1.13) 2014; 84 Kingma, Ba (2021.12.14.472680v1.42) 2014 Lin, Hou, Yang, Yan, Kim, Laurienti, Wu (2021.12.14.472680v1.49) 2021 McInnes, Healy, Melville (2021.12.14.472680v1.53) 2018 Wang, Li, Hu (2021.12.14.472680v1.79) 2020 Li, Zhu, Alexander Nguchu, Wang, Wang, Qiu, Wang (2021.12.14.472680v1.48) 2020; 13 Bullmore, Bassett (2021.12.14.472680v1.11) 2011; 7 Rabany, Brocke, Calhoun, Pittman, Corbera, Wexler, Bell, Pelphrey, Pearlson, Assaf (2021.12.14.472680v1.60) 2019; 24 Zhang, Löıc, Thirion, Bellec (2021.12.14.472680v1.83) 2021; 231 Matsui, Murakami, Ohki (2021.12.14.472680v1.52) 2019; 29 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (2021.12.14.472680v1.3) 2014; 24 Matthew Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Penna, Duyn, Glover, Gonzalez-Castillo (2021.12.14.472680v1.36) 2013; 80 Rashid, Damaraju, Pearlson, Calhoun (2021.12.14.472680v1.61) 2014; 8 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (2021.12.14.472680v1.74) 2002; 15 Suk, Chong-Yaw, Lee, Shen (2021.12.14.472680v1.72) 2016; 129 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (2021.12.14.472680v1.67) 2004; 23 Akkus, Galimzianova, Hoogi, Rubin, Erickson (2021.12.14.472680v1.2) 2017; 30 Matthew Hutchison, Bruce Morton (2021.12.14.472680v1.35) 2015; 35 Zhou, Cai, Zhang, Zhang, Calhoun, Wang (2021.12.14.472680v1.84) 2020; 221 Cai, Zhang, Zhang, Xiao, Hu, Stephen, Wilson, Calhoun, Wang (2021.12.14.472680v1.12) 2021; 42 Fiorenzato, Strafella, Kim, Schifano, Weis, Antonini, Biundo (2021.12.14.472680v1.23) 2019; 142 Shakil, Lee, Keilholz (2021.12.14.472680v1.65) 2016; 133 Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (2021.12.14.472680v1.34) 2016; 127 Fu, Iraji, Turner, Sui, Miller, Pearlson, Calhoun (2021.12.14.472680v1.24) 2021; 224 Xie, Girshick, Farhadi (2021.12.14.472680v1.80) 2016 Bassett, Sporns (2021.12.14.472680v1.6) 2017; 20 He, Li, Holland, Yuan, Altaye, Parikh (2021.12.14.472680v1.32) 2018b; 18 Quaak, van de Mortel, Thomas, van Wingen (2021.12.14.472680v1.59) 2021; 30 Du, Fryer, Fu, Lin, Sui, Chen, Damaraju, Mennigen, Stuart, Loewy (2021.12.14.472680v1.21) 2018; 180 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (2021.12.14.472680v1.75) 2013; 80 Lurie, Kessler, Bassett, Betzel, Breakspear, Kheilholz, Kucyi, Liègeois, Lindquist, Randal McIntosh (2021.12.14.472680v1.51) 2020; 4 Cameron Craddock, Andrew James, Holtzheimer, Hu, Mayberg (2021.12.14.472680v1.16) 2012; 33 Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (2021.12.14.472680v1.30) 2012; 63 Vincent, Larochelle, Bengio, Pierre-Antoine (2021.12.14.472680v1.78) 2008 Beckmann, Smith (2021.12.14.472680v1.7) 2004; 23 Hedley Thompson, Geoffrey Richter, Plavèn-Sigray, Fransson (2021.12.14.472680v1.73) 2018; 14 Su, Shen, Zeng, Qin, Liu, Hu (2021.12.14.472680v1.71) 2016; 27 Erhardt, Allen, Wei, Eichele, Calhoun (2021.12.14.472680v1.22) 2012; 59 Yang, Cameron Craddock, Margulies, Yan, Milham (2021.12.14.472680v1.82) 2014; 93 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (2021.12.14.472680v1.28) 2014; 95 Kam, Zhang, Jiao, Shen (2021.12.14.472680v1.38) 2019; 39 Shen, Tokoglu, Papademetris, Todd Constable (2021.12.14.472680v1.66) 2013; 82 Goodfellow, Bengio, Courville, Bengio (2021.12.14.472680v1.27) 2016; 1 Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms (2021.12.14.472680v1.69) 2013; 80 Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene (2021.12.14.472680v1.45) 2017; 27 Lehmann, White, Henson, Geerligs (2021.12.14.472680v1.46) 2017; 157 Bolton, Morgenroth, Preti, Van De Ville (2021.12.14.472680v1.9) 2020 Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda (2021.12.14.472680v1.17) 2014; 5 Damaraju, Tagliazucchi, Laufs, Calhoun (2021.12.14.472680v1.18) 2020; 220 Smith, Hyvärinen, Varoquaux, Miller, Beckmann (2021.12.14.472680v1.70) 2014; 101 He, Chen, Jian, Chen, Guo, Wang, Wu, Chen, Duan (2021.12.14.472680v1.31) 2018a; 11 Medaglia, Mary-Ellen, Bassett (2021.12.14.472680v1.54) 2015; 27 Caron, Bojanowski, Joulin, Douze (2021.12.14.472680v1.14) 2018 Du, Pearlson, Yu, He, Lin, Sui, Wu, Calhoun (2021.12.14.472680v1.20) 2016; 170 Anibal Sólon, Rosa Franco, Cameron Craddock, Buchweitz, Meneguzzi (2021.12.14.472680v1.33) 2018; 17 Assent (2021.12.14.472680v1.5) 2012; 2 Bullmore, Sporns (2021.12.14.472680v1.10) 2009; 10 Işik Karahanoğlu, Van De Ville (2021.12.14.472680v1.39) 2015; 6 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (2021.12.14.472680v1.62) 2014; 90 Vieira, Pinaya, Mechelli (2021.12.14.472680v1.77) 2017; 74 Díez-Cirarda, Strafella, Kim, Peña, Ojeda, Cabrera-Zubizarreta, Ibarretxe-Bilbao (2021.12.14.472680v1.19) 2018; 17 Aggarwal, Hinneburg, Keim (2021.12.14.472680v1.1) 2001 Savva, Kassinopoulos, Smyrnis, Matsopoulos, Mitsis (2021.12.14.472680v1.63) 2020; 330 Lindquist, Xu, Nebel, Caffo (2021.12.14.472680v1.50) 2014; 101 Kim, Criaud, Cho, Díez-Cirarda, Mihaescu, Coakeley, Ghadery, Valli, Jacobs, Houle (2021.12.14.472680v1.41) 2017; 140 Mokhtari, Akhlaghi, Simpson, Wu, Laurienti (2021.12.14.472680v1.56) 2019; 189 Arthur, Vassilvitskii (2021.12.14.472680v1.4) 2006 Xu, Shen, Wang, Zhong, Lei, Yang, Zeng, Zhou, Hu, Yang (2021.12.14.472680v1.81) 2018; 1688 Işık Karahanoğlu, Van De Ville (2021.12.14.472680v1.40) 2017; 3 Kiviniemi, Starck, Remes, Long, Nikkinen, Haapea, Veijola, Moilanen, Isohanni, Zang (2021.12.14.472680v1.43) 2009; 30 Preti, Bolton, Van De Ville (2021.12.14.472680v1.58) 2017; 160 Varoquaux, Gramfort, Poline, Thirion (2021.12.14.472680v1.76) 2010 Leonardi, Van De Ville (2021.12.14.472680v1.47) 2015; 104 Glasser, Sotiropoulos, Anthony Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (2021.12.14.472680v1.25) 2013; 80 Schumacher, Peraza, Firbank, Thomas, Kaiser, Gallagher, O’Brien, Blamire, Taylor (2021.12.14.472680v1.64) 2019; 22 Guo, Liu, Zhu, Yin (2021.12.14.472680v1.29) 2017 Cohen (2021.12.14.472680v1.15) 2018; 180 Gonzalez-Castillo, Hoy, Handwerker, Robinson, Buchanan, Saad, Bandettini (2021.12.14.472680v1.26) 2015; 112 Michel, Koenig (2021.12.14.472680v1.55) 2018; 180 Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (2021.12.14.472680v1.68) 2011; 54 Benjamini, Hochberg (2021.12.14.472680v1.8) 1995; 57 Kriegel, Kröger, Zimek (2021.12.14.472680v1.44) 2009; 3 Ou, Xie, Jin, Li, Zhu, Jiang, Chen, Zhang, Li, Liu (2021.12.14.472680v1.57) 2015; 28 Hyvarinen (2021.12.14.472680v1.37) 1999; 10 |
References_xml | – volume: 63 start-page: 1712 issue: 3 year: 2012 end-page: 1719 ident: 2021.12.14.472680v1.30 article-title: Periodic changes in fmri connectivity publication-title: Neuroimage – volume: 28 start-page: 666 issue: 5 year: 2015 end-page: 679 ident: 2021.12.14.472680v1.57 article-title: Characterizing and differentiating brain state dynamics via hidden markov models publication-title: Brain topography – volume: 160 start-page: 41 year: 2017 end-page: 54 ident: 2021.12.14.472680v1.58 article-title: The dynamic functional con-nectome: State-of-the-art and perspectives publication-title: Neuroimage – volume: 59 start-page: 4160 issue: 4 year: 2012 end-page: 4167 ident: 2021.12.14.472680v1.22 article-title: Simtb, a simulation toolbox for fmri data under a model of spatiotemporal separability publication-title: Neuroimage – volume: 30 start-page: 449 issue: 4 year: 2017 end-page: 459 ident: 2021.12.14.472680v1.2 article-title: Deep learning for brain mri segmentation: state of the art and future directions publication-title: Journal of digital imaging – start-page: 373 year: 2017 end-page: 382 ident: 2021.12.14.472680v1.29 publication-title: In International conference on neural information processing – volume: 8 start-page: 897 year: 2014 ident: 2021.12.14.472680v1.61 article-title: Dynamic connectivity states estimated from resting fmri identify differences among schizophrenia, bipolar disorder, and healthy control subjects publication-title: Frontiers in human neuroscience – volume: 6 start-page: 1 issue: 1 year: 2015 end-page: 10 ident: 2021.12.14.472680v1.39 article-title: Transient brain activity disentangles fmri resting-state dynamics in terms of spatially and temporally overlapping networks publication-title: Nature communications – volume: 112 start-page: 8762 issue: 28 year: 2015 end-page: 8767 ident: 2021.12.14.472680v1.26 article-title: Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns publication-title: Proceedings of the National Academy of Sciences – volume: 27 start-page: 4719 issue: 10 year: 2017 end-page: 4732 ident: 2021.12.14.472680v1.45 article-title: On the stability of bold fmri correlations publication-title: Cerebral cortex – volume: 3 start-page: 1 issue: 1 year: 2009 end-page: 58 ident: 2021.12.14.472680v1.44 article-title: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) – volume: 30 start-page: 102584 year: 2021 ident: 2021.12.14.472680v1.59 article-title: Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis publication-title: NeuroImage: Clinical – volume: 14 start-page: e1006196 issue: 5 year: 2018 ident: 2021.12.14.472680v1.73 article-title: Simulations to benchmark time-varying connectivity methods for fmri publication-title: PLoS computational biology – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: 2021.12.14.472680v1.36 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – volume: 30 start-page: 3865 issue: 12 year: 2009 end-page: 3886 ident: 2021.12.14.472680v1.43 article-title: Functional segmentation of the brain cortex using high model order group pica publication-title: Human brain mapping – volume: 93 start-page: 124 year: 2014 end-page: 137 ident: 2021.12.14.472680v1.82 article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: Insights from analysis of temporal dynamics publication-title: Neuroimage – volume: 15 start-page: 273 issue: 1 year: 2002 end-page: 289 ident: 2021.12.14.472680v1.74 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 180 start-page: 632 year: 2018 end-page: 645 ident: 2021.12.14.472680v1.21 article-title: Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis publication-title: Neuroimage – year: 2018 ident: 2021.12.14.472680v1.53 article-title: Umap: Uniform manifold approximation and projection for dimension reduction publication-title: arXiv preprint – volume: 74 start-page: 58 year: 2017 end-page: 75 ident: 2021.12.14.472680v1.77 article-title: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications publication-title: Neuroscience & Biobehavioral Reviews – year: 2006 ident: 2021.12.14.472680v1.4 article-title: k-means++: The advantages of careful seeding publication-title: Technical report, Stanford – volume: 231 start-page: 117847 year: 2021 ident: 2021.12.14.472680v1.83 article-title: Functional annotation of human cognitive states using deep graph convolution publication-title: NeuroImage – start-page: 420 year: 2001 end-page: 434 ident: 2021.12.14.472680v1.1 publication-title: In International conference on database theory – volume: 23 start-page: 137 issue: 2 year: 2004 end-page: 152 ident: 2021.12.14.472680v1.7 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE transactions on medical imaging – volume: 17 start-page: 847 year: 2018 end-page: 855 ident: 2021.12.14.472680v1.19 article-title: Dynamic functional connectivity in parkinson’s disease patients with mild cognitive impairment and normal cognition publication-title: NeuroImage: Clinical – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: 2021.12.14.472680v1.33 article-title: Identification of autism spectrum disorder using deep learning and the abide dataset publication-title: NeuroImage: Clinical – volume: 24 start-page: 663 issue: 3 year: 2014 end-page: 676 ident: 2021.12.14.472680v1.3 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebral cortex – volume: 330 start-page: 108519 year: 2020 ident: 2021.12.14.472680v1.63 article-title: Effects of motion related outliers in dynamic functional connectivity using the sliding window method publication-title: Journal of Neuroscience Methods – volume: 140 start-page: 2955 issue: 11 year: 2017 end-page: 2967 ident: 2021.12.14.472680v1.41 article-title: Abnormal intrinsic brain functional network dynamics in parkinson’s disease publication-title: Brain – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: 2021.12.14.472680v1.28 article-title: Ica-based artefact removal and accelerated fmri acquisition for improved resting state network imaging publication-title: Neuroimage – year: 2020 ident: 2021.12.14.472680v1.9 article-title: Tapping into multi-faceted human behavior and psychopathology using fmri brain dynamics publication-title: Trends in Neurosciences – start-page: 478 year: 2016 end-page: 487 ident: 2021.12.14.472680v1.80 article-title: Unsupervised deep embedding for clustering analysis publication-title: In International conference on machine learning – volume: 220 start-page: 117047 year: 2020 ident: 2021.12.14.472680v1.18 article-title: Connectivity dynamics from wakefulness to sleep publication-title: NeuroImage – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: 2021.12.14.472680v1.69 article-title: Resting-state fmri in the human connectome project publication-title: Neuroimage – volume: 189 start-page: 655 year: 2019 end-page: 666 ident: 2021.12.14.472680v1.56 article-title: Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state publication-title: Neuroimage – volume: 84 start-page: 262 issue: 2 year: 2014 end-page: 274 ident: 2021.12.14.472680v1.13 article-title: The chronnectome: timevarying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron – volume: 180 start-page: 577 year: 2018 end-page: 593 ident: 2021.12.14.472680v1.55 article-title: Eeg microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review publication-title: Neuroimage – start-page: 1 year: 2020 end-page: 13 ident: 2021.12.14.472680v1.79 article-title: Graph convolutional network for fmri analysis based on connectivity neighborhood publication-title: Network Neuroscience – volume: 33 start-page: 1914 issue: 8 year: 2012 end-page: 1928 ident: 2021.12.14.472680v1.16 article-title: A whole brain fmri atlas generated via spatially constrained spectral clustering publication-title: Human brain mapping – volume: 24 start-page: 101966 year: 2019 ident: 2021.12.14.472680v1.60 article-title: Dynamic functional connectivity in schizophrenia and autism spectrum disorder: Convergence, divergence and clas-sification publication-title: NeuroImage: Clinical – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: 2021.12.14.472680v1.25 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: 2021.12.14.472680v1.75 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage – year: 2014 ident: 2021.12.14.472680v1.42 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint – volume: 170 start-page: 55 issue: 1 year: 2016 end-page: 65 ident: 2021.12.14.472680v1.20 article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach publication-title: Schizophrenia research – volume: 39 start-page: 478 issue: 2 year: 2019 end-page: 487 ident: 2021.12.14.472680v1.38 article-title: Deep learning of static and dynamic brain functional networks for early mci detection publication-title: IEEE transactions on medical imaging – volume: 157 start-page: 635 year: 2017 end-page: 647 ident: 2021.12.14.472680v1.46 article-title: Assessing dynamic functional connectivity in heterogeneous samples publication-title: NeuroImage – volume: 5 start-page: 298 year: 2014 end-page: 308 ident: 2021.12.14.472680v1.17 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage: Clinical – volume: 180 start-page: 515 year: 2018 end-page: 525 ident: 2021.12.14.472680v1.15 article-title: The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity publication-title: NeuroImage – volume: 18 start-page: 290 year: 2018b end-page: 297 ident: 2021.12.14.472680v1.32 article-title: Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework publication-title: NeuroImage: Clinical – volume: 27 start-page: 843 issue: 11 year: 2016 end-page: 848 ident: 2021.12.14.472680v1.71 article-title: Heredity characteristics of schizophrenia shown by dynamic functional connectivity analysis of resting-state functional mri scans of unaffected siblings publication-title: Neuroreport – start-page: 1096 year: 2008 end-page: 1103 ident: 2021.12.14.472680v1.78 article-title: Extracting and composing robust features with denoising autoencoders publication-title: In Proceedings of the 25th international conference on Machine learning – volume: 133 start-page: 111 year: 2016 end-page: 128 ident: 2021.12.14.472680v1.65 article-title: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states publication-title: Neuroimage – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: 2021.12.14.472680v1.67 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 2 start-page: 340 issue: 4 year: 2012 end-page: 350 ident: 2021.12.14.472680v1.5 article-title: Clustering high dimensional data publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 35 start-page: 6849 issue: 17 year: 2015 end-page: 6859 ident: 2021.12.14.472680v1.35 article-title: Tracking the brain’s functional coupling dynamics over development publication-title: Journal of Neuroscience – volume: 1688 start-page: 22 year: 2018 end-page: 32 ident: 2021.12.14.472680v1.81 article-title: Impact of 36 h of total sleep deprivation on resting-state dynamic functional connectivity publication-title: Brain Research – volume: 27 start-page: 1471 issue: 8 year: 2015 end-page: 1491 ident: 2021.12.14.472680v1.54 article-title: Cognitive network neuroscience publication-title: Journal of cognitive neuroscience – volume: 4 start-page: 30 issue: 1 year: 2020 end-page: 69 ident: 2021.12.14.472680v1.51 article-title: Questions and controversies in the study of time-varying functional connectivity in resting fmri publication-title: Network Neuroscience – volume: 221 start-page: 117190 year: 2020 ident: 2021.12.14.472680v1.84 article-title: Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fmri publication-title: NeuroImage – volume: 104 start-page: 430 year: 2015 end-page: 436 ident: 2021.12.14.472680v1.47 article-title: On spurious and real fluctuations of dynamic functional connectivity during rest publication-title: Neuroimage – start-page: 117791 year: 2021 ident: 2021.12.14.472680v1.49 article-title: Learning dynamic graph embeddings for accurate detection of cognitive state changes in functional brain networks publication-title: NeuroImage – volume: 7 start-page: 113 year: 2011 end-page: 140 ident: 2021.12.14.472680v1.11 article-title: Brain graphs: graphical models of the human brain connectome publication-title: Annual review of clinical psychology – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: 2021.12.14.472680v1.66 article-title: Groupwise wholebrain parcellation from resting-state fmri data for network node identification publication-title: Neuroimage – volume: 10 start-page: 626 issue: 3 year: 1999 end-page: 634 ident: 2021.12.14.472680v1.37 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE transactions on Neural Networks – volume: 42 start-page: 2691 issue: 9 year: 2021 end-page: 2705 ident: 2021.12.14.472680v1.12 article-title: Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder publication-title: Human Brain Mapping – volume: 1 year: 2016 ident: 2021.12.14.472680v1.27 publication-title: Deep learning – volume: 29 start-page: 1496 issue: 4 year: 2019 end-page: 1508 ident: 2021.12.14.472680v1.52 article-title: Neuronal origin of the temporal dynamics of spontaneous bold activity correlation publication-title: Cerebral Cortex – volume: 11 start-page: 1479 issue: 11 year: 2018a end-page: 1493 ident: 2021.12.14.472680v1.31 article-title: Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain publication-title: Autism Research – volume: 224 start-page: 117385 year: 2021 ident: 2021.12.14.472680v1.24 article-title: Dynamic state with covarying brain activity-connectivity: On the pathophysiology of schizophrenia publication-title: Neuroimage – volume: 3 start-page: 28 year: 2017 end-page: 36 ident: 2021.12.14.472680v1.40 article-title: Dynamics of large-scale fmri networks: Deconstruct brain activity to build better models of brain function publication-title: Current Opinion in Biomedical Engineering – volume: 13 start-page: 230 issue: 2 year: 2020 end-page: 243 ident: 2021.12.14.472680v1.48 article-title: Dynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorder publication-title: Autism Research – volume: 54 start-page: 875 issue: 2 year: 2011 end-page: 891 ident: 2021.12.14.472680v1.68 article-title: Network modelling methods for fmri publication-title: Neuroimage – volume: 20 start-page: 353 issue: 3 year: 2017 ident: 2021.12.14.472680v1.6 article-title: Network neuroscience publication-title: Nature neuroscience – volume: 101 start-page: 738 year: 2014 end-page: 749 ident: 2021.12.14.472680v1.70 article-title: Group-pca for very large fmri datasets publication-title: Neuroimage – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: 2021.12.14.472680v1.62 article-title: Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – start-page: 132 year: 2018 end-page: 149 ident: 2021.12.14.472680v1.14 article-title: Deep clustering for unsupervised learning of visual features publication-title: In Proceedings of the European Conference on Computer Vision (ECCV) – volume: 101 start-page: 531 year: 2014 end-page: 546 ident: 2021.12.14.472680v1.50 article-title: Evaluating dynamic bivariate correlations in resting-state fmri: a comparison study and a new approach publication-title: NeuroImage – volume: 10 start-page: 186 issue: 3 year: 2009 ident: 2021.12.14.472680v1.10 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nature Reviews Neuroscience – volume: 22 start-page: 101812 year: 2019 ident: 2021.12.14.472680v1.64 article-title: Dynamic functional connectivity changes in dementia with lewy bodies and alzheimer’s disease publication-title: NeuroImage: Clinical – volume: 142 start-page: 2860 issue: 9 year: 2019 end-page: 2872 ident: 2021.12.14.472680v1.23 article-title: Dynamic functional connectivity changes associated with dementia in parkinson?s disease publication-title: Brain – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 ident: 2021.12.14.472680v1.8 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal statistical society: series B (Methodological) – volume: 129 start-page: 292 year: 2016 end-page: 307 ident: 2021.12.14.472680v1.72 article-title: State-space model with deep learning for functional dynamics estimation in resting-state fmri publication-title: NeuroImage – start-page: 2334 year: 2010 end-page: 2342 ident: 2021.12.14.472680v1.76 article-title: Brain covariance selection: better individual functional connectivity models using population prior publication-title: In Advances in neural information processing systems – volume: 127 start-page: 242 year: 2016 end-page: 256 ident: 2021.12.14.472680v1.34 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri? publication-title: Neuroimage |
SSID | ssj0002961374 |
Score | 1.643147 |
SecondaryResourceType | preprint |
Snippet | Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by... Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly performed by calculating sliding-window correlations (SWC), followed by... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Feature selection Functional magnetic resonance imaging Neuroscience |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3EInjzE6tVVvDa0k02m91za6hCi4iF3sJ-TKAgbamt6L93JpuKoAePCZsEJrv78mZe5jF2hyCkKkNMlcRhUnlcc077bgapCkiJEAHpf-fxRI2m8nGWzX5YfZGs0s2X64_5e13HJ8E27r5xcfcFcXVB-TshezJPlEa23sIpJcm1oZj1vtMriUGcymVTx_zzSvzibZ70ax-uwaU4Yq0nu4L1MduDxQk7iO6Qn6dsUpfz-RBgxQevW-poQMebJY-ZAODV-PmBD6OnPC8QoWJij9fqFR99Ifiu7cgZmxb3L4NRt7E_6DpBOj9wWlpFDeKtDZUMqfTWV0JpWSUmET6AV15751VmtA6ZhdxkYC0NwIXq0nO2v1gu4IJx0H0J2qdpakDmztOgYEKViMp5I12b3TahKFexyUVJ4SpFgtSgjOFqs84uSGUzz99K5F-kkkUqevmPW1yxQzpHahChOmx_s97CNWL6xt3Ub-8LSzObcg priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Using Deep Clustering to Improve fMRI Dynamic Functional Connectivity Analysis |
URI | https://www.proquest.com/docview/2610667978 https://www.biorxiv.org/content/10.1101/2021.12.14.472680 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFA1uY-CbnzidI4KvnUubZsmT4LYyhY0xHOyt5KswkLXuQ_Tfm9tm-iD4WBpKuUnu6Tm5PRehewdCLBPAVKE4jDLt9pziOohtxIyjRA4B4X_nyZSNF_RlGS-94Lb1ZZWHnFgmapNr0Mgf3Jc-1GM60vNYvAfQNQpOV30LjRpquBTMHflqPI2ms_mPyhIKB1elFXPIhHuNsBf7o023FIH4ExADCe3SfsjAGrKpVvnmc_XxJzWXeJOcoMZMFnZzio7s-gw1q4aRX-doWp7w46G1BR687cHkAK53Oa7EAYuzyfwZD6s28zhxoFVpfbgsaNFVqwh8cCK5QItk9DoYB74jQqAIlP5Zxalk4BkvpcmoiaiWOiOM0ywUIdHGaqa5VprFgnMTS9sXsZUSBri9q6JLVF_na3uFsOU9armOokhY2lcaBhlhspBkSguqWujOhyItKt-LFMKVktCxhbQKVwu1D0FK_dLfpr8Tdf3_7Rt0DE-E2hDC2qi-2-ztrUP4ner4aeygWrLsfgPzs6Pp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEJ4ghOjNZ3yg1kSPKNvtlu3BmCgQUCDESMJt3Xa7CYkBRPDxp_yNzuxDDybePG62adLptNOZfv0-gFMMQjJWlKkSOExIg2tO-6bqWVdGmBJhBKT3zr2-bA_F7cgbFeAzfwtDsMp8T0w26mhqqEZ-gSd9wmNi0nM1e66SahTdruYSGqlb3NmPN0zZXi47DZzfM85bzYebdjVTFahqh-BzVvsilMS7HoZRLCJXmNDEjvRFzBV3TGSNNL7RRnrK9yMvtHXl2TCkBuj_2sV-V6AkXExlilC6bvYH999VHa4wPCbUz1wqHDavedlVKro-FRocKj464lzUuSQqyrIeT-fv49dfoSCJb611KA3CmZ1vQMFONqGcClR-bEE_QRSwhrUzdvO0JFIF-l5MWVqMsCzu3XdYI5W1Zy0MkmltkSUAGpNKU7Cc-WQbhv9iqx0oTqYTuwvM-jVhfeO6rrKirg01ilQUcyfWRgm9ByeZKYJZyrMRkLkCh2N2EqTm2oNKbqQgW2ovwY9j7P_9-xhW2w-9btDt9O8OYI16J1yKIytQXMyX9hBPFwt9lE0pg8f_9qIv8azhFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66ofjmT5xOjeDrytKmafK8WTZ1Y4iDvZX8hIFsZW6i_725phNBH3wsDQlcc_n63X25Q-jOgxBzApgqiMMo097nFNed1CbMeErkERDuO4_GbDClD7N09uMuDMgq1Xy5-pi_V3l8EGz70zc4d5cAVycQvyM0olnMeDeCMHVUGreLmlDsDHZ2Pou-4yyx8ICV0Tqh-ecU_te3XvLXgVyhTH6ImhNZ2tUR2rGLY7QX2kR-nqBxldfHfWtL3HvdQGkDeF4vcQgJWOxGz0PcD83lce6hKkT4cCVj0aFBBN7WHzlF0_z-pTfo1H0QOoqA4M8qTiWDSvFSGkdNQrXUjjBOXSxioo3VTHOtNEsF5yaVNhOplRIGeI9VyRlqLJYLe46w5V1quU6SRFiaKQ2DjDAuJk5pQVUL3damKMpQ7aIAcxUk9hyhCOZqofbWSEW94d8KT8RALus56cU_prhB-5N-XjwNx4-X6ABeg0KEsDZqrFcbe-Vxfq2uqw_5BVOYoVo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Deep+Clustering+to+Improve+fMRI+Dynamic+Functional+Connectivity+Analysis&rft.jtitle=bioRxiv&rft.au=Spencer%2C+Arthur+P+C&rft.au=Goodfellow%2C+Marc&rft.date=2021-12-16&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.12.14.472680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |