Evaluation of cell segmentation methods without reference segmentations
Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particul...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
27.11.2022
Cold Spring Harbor Laboratory |
Edition | 1.4 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2021.09.17.460800 |
Cover
Loading…
Abstract | Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particular type of sample. The evaluation process has typically involved comparison of segmentations to those generated by humans, which can be expensive and subject to unknown bias. We present here an approach to evaluating cell segmentation methods without relying upon comparison to results from humans. For this, we defined a number of segmentation quality metrics that can be applied to multichannel fluorescence images. We calculated these metrics for 14 previously-described segmentation methods applied to datasets from 4 multiplexed microscope modalities covering 5 tissues. Using principal component analysis to combine the metrics we defined an overall cell segmentation quality score and ranked the segmentation methods. We found that two deep learning-based methods performed the best overall, but that results for all methods could be significantly improved by postprocessing to ensure proper matching of cell and nuclear masks. Our evaluation tool is available as open source and all code and data are available in a Reproducible Research Archive.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Revised to add newer versions of segmentation methods, to fix an issue with CellProfiler generated segmentations, and to add comparison of segmentation quality scores to measures typically used for comparison to human segmentation.* https://github.com/murphygroup/CellSegmentationEvaluator* https://github.com/murphygroup/ChenMurphy2DSegEvalRRA |
---|---|
AbstractList | Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particular type of sample. The evaluation process has typically involved comparison of segmentations to those generated by humans, which can be expensive and subject to unknown bias. We present here an approach to evaluating cell segmentation methods without relying upon comparison to results from humans. For this, we defined a number of segmentation quality metrics that can be applied to multichannel fluorescence images. We calculated these metrics for 14 previously-described segmentation methods applied to datasets from 4 multiplexed microscope modalities covering 5 tissues. Using principal component analysis to combine the metrics we defined an overall cell segmentation quality score and ranked the segmentation methods. We found that two deep learning-based methods performed the best overall, but that results for all methods could be significantly improved by postprocessing to ensure proper matching of cell and nuclear masks. Our evaluation tool is available as open source and all code and data are available in a Reproducible Research Archive.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Revised to add newer versions of segmentation methods, to fix an issue with CellProfiler generated segmentations, and to add comparison of segmentation quality scores to measures typically used for comparison to human segmentation.* https://github.com/murphygroup/CellSegmentationEvaluator* https://github.com/murphygroup/ChenMurphy2DSegEvalRRA Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particular type of sample. The evaluation process has typically involved comparison of segmentations to those generated by humans, which can be expensive and subject to unknown bias. We present here an approach to evaluating cell segmentation methods without relying upon comparison to results from humans. For this, we defined a number of segmentation quality metrics that can be applied to multichannel fluorescence images. We calculated these metrics for 14 previously-described segmentation methods applied to datasets from 4 multiplexed microscope modalities covering 5 tissues. Using principal component analysis to combine the metrics we defined an overall cell segmentation quality score and ranked the segmentation methods. We found that two deep learning-based methods performed the best overall, but that results for all methods could be significantly improved by postprocessing to ensure proper matching of cell and nuclear masks. Our evaluation tool is available as open source and all code and data are available in a Reproducible Research Archive. |
Author | Chen, Haoran Murphy, Robert F |
Author_xml | – sequence: 1 givenname: Haoran surname: Chen fullname: Chen, Haoran – sequence: 2 givenname: Robert surname: Murphy middlename: F fullname: Murphy, Robert F |
BookMark | eNpVkE9Lw0AQxRepYK39AN4CXrwkzm72T3KUUqtQ8KLnZZOdaEq6W3eTqt_elHjQeYc3DD-Gx7skM-cdEnJNIaMU6B0DRjMoM6oyLqEAOCNzJkuWFgzE7M9-QZYx7gCAlZLmis_JZn003WD61rvEN0mNXZdEfNuj66fjHvt3b2Py2Y4-9EnABgO6Gv9h8YqcN6aLuPz1BXl9WL-sHtPt8-Zpdb9NKwocUgvYiEbYHJt6HFRoa1aJnHGQSGtxkmIFFFaI0pbcCJnXBbdoFJUUTL4gt9PfqvXhqz3qQ2j3JnzrUwcaSk2VnjoY0ZsJPQT_MWDs9c4PwY3pNBOKcyYKKfMfo-peSw |
ContentType | Paper |
Copyright | 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2021.09.17.460800 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.4 |
ExternalDocumentID | 2021.09.17.460800v4 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1040-d0ef5f5d3efcccce7edc2b532406e1c5c5c572808d559d94a563c84dea71610a3 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:52:41 EST 2025 Fri Jul 25 09:21:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1040-d0ef5f5d3efcccce7edc2b532406e1c5c5c572808d559d94a563c84dea71610a3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0003-0358-901X |
OpenAccessLink | https://www.proquest.com/docview/2574425866?pq-origsite=%requestingapplication% |
PQID | 2574425866 |
PQPubID | 2050091 |
PageCount | 34 |
ParticipantIDs | biorxiv_primary_2021_09_17_460800 proquest_journals_2574425866 |
PublicationCentury | 2000 |
PublicationDate | 20221127 |
PublicationDateYYYYMMDD | 2022-11-27 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221127 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | (2021.09.17.460800v4.21) 2019; 574 Lv, Wen, Wu, Jin, An, He (2021.09.17.460800v4.32) 2019 Kromp, Fischer, Bozsaky, Ambros, Dorr, Beiske, Ambros, Hanbury, Taschner-Mandl (2021.09.17.460800v4.29) 2021; 40 Ronneberger, Fischer, Brox (2021.09.17.460800v4.39) 2015 Lin, Dollár, Girshick, He, Hariharan, Belongie (2021.09.17.460800v4.30) 2017 Jung, Lodhi, Kang (2021.09.17.460800v4.25) 2019; 1 Al-Kofahi, Zaltsman, Graves, Marshall, Rusu (2021.09.17.460800v4.1) 2018; 19 Moen, Borba, Miller, Schwartz, Bannon, Koe, Camplisson, Kyme, Pavelchek, Price (2021.09.17.460800v4.35) 2019; 803205 Kablan, Dogan, Ercin, Ersoz, Ekinci (2021.09.17.460800v4.26) 2020; 81 Vuola, Akram, Kannala (2021.09.17.460800v4.46) 2019 Dimopoulos, Mayer, Rudolf, Stelling (2021.09.17.460800v4.12) 2014; 30 Angelo, Bendall, Finck, Hale, Hitzman, Borowsky, Levenson, Lowe, Liu, Zhao, Natkunam, Nolan (2021.09.17.460800v4.2) 2014; 20 Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat, Golland, Sabatini (2021.09.17.460800v4.8) 2006; 7 Oyebode, Tapamo (2021.09.17.460800v4.36) 2016; 35 Hodneland, Kogel, Frei, Gerdes, Lundervold (2021.09.17.460800v4.20) 2013; 8 Bannon, Moen, Schwartz, Borba, Kudo, Greenwald, Vijayakumar, Chang, Pao, Osterman, Graf, Van Valen (2021.09.17.460800v4.4) 2021; 18 Ji, Li, Cheng, Yu, Wang (2021.09.17.460800v4.23) 2015 Kromp, Bozsaky, Rifatbegovic, Fischer, Ambros, Berneder, Weiss, Lazic, Dorr, Hanbury, Beiske, Ambros, Ambros, Taschner-Mandl (2021.09.17.460800v4.28) 2020; 7 Vicar, Balvan, Jaros, Jug, Kolar, Masarik, Gumulec (2021.09.17.460800v4.45) 2019; 20 Dayao, Brusko, Wasserfall, Bar-Joseph (2021.09.17.460800v4.11) 2022; 13 Johnson (2021.09.17.460800v4.24) 2018 Fujita, Han (2021.09.17.460800v4.15) 2020 Goltsev, Samusik, Kennedy-Darling, Bhate, Hale, Vazquez, Black, Nolan (2021.09.17.460800v4.18) 2018; 174 Shen, Tseng, Hansen, Wu, Gritton, Si, Han (2021.09.17.460800v4.42) 2018; 5 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (2021.09.17.460800v4.22) 2021; 18 Caicedo, Roth, Goodman, Becker, Karhohs, Broisin, Molnar, McQuin, Singh, Theis, Carpenter (2021.09.17.460800v4.7) 2019; 95 Sadanandan, Ranefall, Le Guyader, Wahlby (2021.09.17.460800v4.41) 2017; 7 Braiki, Benzinou, Nasreddine, Hymery (2021.09.17.460800v4.6) 2020; 195 Fan, Li, Fan, Zhang (2021.09.17.460800v4.14) 2013; 6 Greenwald, Miller, Moen, Kong, Kagel, Dougherty, Fullaway, McIntosh, Leow, Schwartz, Pavelchek, Cui, Camplisson, Bar-Tal, Singh, Fong, Chaudhry, Abraham, Moseley, Van Valen (2021.09.17.460800v4.19) 2022; 40 Panagiotakis, Argyros (2021.09.17.460800v4.37) 2018 Garay, Juhasz, Molnar, Eisenbauer, Czirok, Dekan, Laszlo, Hoda, Dome, Timar, Klepetko, Berger, Hegedus (2021.09.17.460800v4.16) 2013; 319 Stringer, Wang, Michaelos, Pachitariu (2021.09.17.460800v4.43) 2021; 18 Boland, Murphy (2021.09.17.460800v4.5) 2001; 17 Gerdes, Sevinsky, Sood, Adak, Bello, Bordwell, Can, Corwin, Dinn, Filkins, Hollman, Kamath, Kaanumalle, Kenny, Larsen, Lazare, Li, Lowes, McCulloch, Ginty (2021.09.17.460800v4.17) 2013; 110 Rittscher (2021.09.17.460800v4.38) 2010; 12 Ruan, Murphy (2021.09.17.460800v4.40) 2019; 35 Chen, Ding, Viana, Lee, Sluezwski, Morris, Hendershott, Yang, Mueller, Rafelski (2021.09.17.460800v4.10) 2020; 491035 Wu, Yi, Zhao, Huang, Qiu, Gao (2021.09.17.460800v4.48) 2015; 62 Van Valen, Kudo, Lane, Macklin, Quach, DeFelice, Maayan, Tanouchi, Ashley, Covert (2021.09.17.460800v4.44) 2016; 12 Bamford (2021.09.17.460800v4.3) 2003 Mayer, Dimopoulos, Rudolf, Stelling (2021.09.17.460800v4.34) 2013; 101 Chang, Ornatsky, Siddiqui, Loboda, Baranov, Hedley (2021.09.17.460800v4.9) 2017; 91 Falk, Mai, Bensch, Cicek, Abdulkadir, Marrakchi, Bohm, Deubner, Jackel, Seiwald, Dovzhenko, Tietz, Dal Bosco, Walsh, Saltukoglu, Tay, Prinz, Palme, Simons, Ronneberger (2021.09.17.460800v4.13) 2019; 16 Kamentsky, Jones, Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, Carpenter (2021.09.17.460800v4.27) 2011; 27 Long (2021.09.17.460800v4.31) 2020; 21 Wiesmann, Bergler, Palmisano, Prinzen, Franz, Wittenberg (2021.09.17.460800v4.47) 2017; 18 Maska, Ulman, Svoboda, Matula, Matula, Ederra, Urbiola, Espana, Venkatesan, Balak, Karas, Bolckova, Streitova, Carthel, Coraluppi, Harder, Rohr, Magnusson, Jalden, Ortiz-de-Solorzano (2021.09.17.460800v4.33) 2014; 30 |
References_xml | – year: 2018 ident: 2021.09.17.460800v4.24 article-title: Adapting mask-rcnn for automatic nucleus segmentation publication-title: arXiv preprint arXiv:1805.00500 – volume: 319 start-page: 3094 issue: 20 year: 2013 end-page: 3103 ident: 2021.09.17.460800v4.16 article-title: Cell migration or cytokinesis and proliferation?--revisiting the “go or grow” hypothesis in cancer cells in vitro publication-title: Exp Cell Res – volume: 12 start-page: 315 issue: 1 year: 2010 end-page: 344 ident: 2021.09.17.460800v4.38 article-title: Characterization of biological processes through automated image analysis publication-title: Annual Review of Biomedical Engineering – volume: 174 start-page: 968 issue: 4 year: 2018 end-page: 981 e915 ident: 2021.09.17.460800v4.18 article-title: Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging publication-title: Cell – volume: 12 start-page: e1005177 issue: 11 year: 2016 ident: 2021.09.17.460800v4.44 article-title: Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments publication-title: PLoS Comput Biol – year: 2020 ident: 2021.09.17.460800v4.15 article-title: Cell detection and segmentation in microscopy images with improved mask R-CNN publication-title: Proceedings of the Asian Conference on Computer Vision – volume: 13 start-page: 1999 issue: 1 year: 2022 ident: 2021.09.17.460800v4.11 article-title: Membrane marker selection for segmenting single cell spatial proteomics data publication-title: Nat Commun – volume: 91 start-page: 160 issue: 2 year: 2017 end-page: 169 ident: 2021.09.17.460800v4.9 article-title: Imaging Mass Cytometry publication-title: Cytometry A – volume: 62 start-page: 284 issue: 1 year: 2015 end-page: 295 ident: 2021.09.17.460800v4.48 article-title: Active contour-based cell segmentation during freezing and its application in cryopreservation publication-title: IEEE Trans Biomed Eng – volume: 6 start-page: 554 issue: 10 year: 2013 ident: 2021.09.17.460800v4.14 article-title: Color cell image segmentation based on Chan-Vese model for vector-valued images publication-title: Journal of Software Engineering and Applications – volume: 40 start-page: 555 issue: 4 year: 2022 end-page: 565 ident: 2021.09.17.460800v4.19 article-title: Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning publication-title: Nat Biotechnol – volume: 19 start-page: 365 issue: 1 year: 2018 ident: 2021.09.17.460800v4.1 article-title: A deep learningbased algorithm for 2-D cell segmentation in microscopy images publication-title: BMC Bioinformatics – year: 2018 ident: 2021.09.17.460800v4.37 article-title: Cell segmentation via region-based ellipse fitting publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – volume: 17 start-page: 1213 issue: 12 year: 2001 end-page: 1223 ident: 2021.09.17.460800v4.5 article-title: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells publication-title: Bioinformatics – volume: 803205 year: 2019 ident: 2021.09.17.460800v4.35 article-title: Accurate cell tracking and lineage construction in livecell imaging experiments with deep learning publication-title: Biorxiv – volume: 30 start-page: 2644 issue: 18 year: 2014 end-page: 2651 ident: 2021.09.17.460800v4.12 article-title: Accurate cell segmentation in microscopy images using membrane patterns publication-title: Bioinformatics – volume: 95 start-page: 952 issue: 9 year: 2019 end-page: 965 ident: 2021.09.17.460800v4.7 article-title: Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images publication-title: Cytometry A – volume: 7 start-page: R100 issue: 10 year: 2006 ident: 2021.09.17.460800v4.8 article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol – volume: 16 start-page: 67 issue: 1 year: 2019 end-page: 70 ident: 2021.09.17.460800v4.13 article-title: U-Net: deep learning for cell counting, detection, and morphometry publication-title: Nat Methods – volume: 35 start-page: 2475 issue: 14 year: 2019 end-page: 2485 ident: 2021.09.17.460800v4.40 article-title: Evaluation of methods for generative modeling of cell and nuclear shape publication-title: Bioinformatics – volume: 491035 year: 2020 ident: 2021.09.17.460800v4.10 article-title: The Allen Cell and Structure Segmenter: a new open source toolkit for segmenting 3D intracellular structures in fluorescence microscopy images publication-title: BioRxiv – volume: 30 start-page: 1609 issue: 11 year: 2014 end-page: 1617 ident: 2021.09.17.460800v4.33 article-title: A benchmark for comparison of cell tracking algorithms publication-title: Bioinformatics – volume: 18 start-page: 1 issue: 1 year: 2017 end-page: 12 ident: 2021.09.17.460800v4.47 article-title: Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms publication-title: BMC Bioinformatics – volume: 18 start-page: 43 issue: 1 year: 2021 end-page: 45 ident: 2021.09.17.460800v4.4 article-title: DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes publication-title: Nat Methods – year: 2017 ident: 2021.09.17.460800v4.30 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 574 start-page: 187 issue: 7777 year: 2019 end-page: 192 ident: 2021.09.17.460800v4.21 article-title: The human body at cellular resolution: the NIH Human Biomolecular Atlas Program publication-title: Nature – year: 2015 ident: 2021.09.17.460800v4.39 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – volume: 110 start-page: 11982 issue: 29 year: 2013 end-page: 11987 ident: 2021.09.17.460800v4.17 article-title: Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue publication-title: Proc Natl Acad Sci U S A – volume: 1 start-page: 24 year: 2019 ident: 2021.09.17.460800v4.25 article-title: An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images publication-title: BMC Biomed Eng – year: 2019 ident: 2021.09.17.460800v4.46 article-title: Mask-RCNN and U-net ensembled for nuclei segmentation publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) – volume: 40 start-page: 1934 issue: 7 year: 2021 end-page: 1949 ident: 2021.09.17.460800v4.29 article-title: Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation publication-title: IEEE Trans Med Imaging – volume: 27 start-page: 1179 issue: 8 year: 2011 end-page: 1180 ident: 2021.09.17.460800v4.27 article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software publication-title: Bioinformatics – volume: 7 start-page: 262 issue: 1 year: 2020 ident: 2021.09.17.460800v4.28 article-title: An annotated fluorescence image dataset for training nuclear segmentation methods publication-title: Sci Data – volume: 195 start-page: 105520 year: 2020 ident: 2021.09.17.460800v4.6 article-title: Automatic Human Dendritic Cells Segmentation Using K-Means Clustering and Chan-Vese Active Contour Model publication-title: Comput Methods Programs Biomed – volume: 35 start-page: 29 issue: 1 year: 2016 end-page: 37 ident: 2021.09.17.460800v4.36 article-title: Adaptive parameter selection for graph cut-based segmentation on cell images publication-title: Image Analysis & Stereology – volume: 81 start-page: 106533 year: 2020 ident: 2021.09.17.460800v4.26 article-title: An ensemble of finetuned fully convolutional neural networks for pleural effusion cell nuclei segmentation publication-title: Computers & Electrical Engineering – volume: 101 start-page: 14.22. 11 issue: 1 year: 2013 end-page: 14.22. 20 ident: 2021.09.17.460800v4.34 article-title: Using CellX to quantify intracellular events publication-title: Current protocols in molecular biology – volume: 18 start-page: 203 issue: 2 year: 2021 end-page: 211 ident: 2021.09.17.460800v4.22 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat Methods – year: 2015 ident: 2021.09.17.460800v4.23 article-title: Cell image segmentation based on an improved watershed algorithm publication-title: 2015 8th International Congress on Image and Signal Processing (CISP) – volume: 20 start-page: 360 issue: 1 year: 2019 ident: 2021.09.17.460800v4.45 article-title: Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison publication-title: BMC Bioinformatics – volume: 20 start-page: 436 issue: 4 year: 2014 end-page: 442 ident: 2021.09.17.460800v4.2 article-title: Multiplexed ion beam imaging of human breast tumors publication-title: Nat Med – volume: 18 start-page: 100 issue: 1 year: 2021 end-page: 106 ident: 2021.09.17.460800v4.43 article-title: Cellpose: a generalist algorithm for cellular segmentation publication-title: Nat Methods – year: 2019 ident: 2021.09.17.460800v4.32 article-title: Nuclei R-CNN: Improve mask R-CNN for nuclei segmentation publication-title: 2019 IEEE 2nd International Conference on Information Communication and Signal Processing (ICICSP) – volume: 5 issue: 5 year: 2018 ident: 2021.09.17.460800v4.42 article-title: Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets publication-title: eNeuro – volume: 8 start-page: 16 issue: 1 year: 2013 ident: 2021.09.17.460800v4.20 article-title: CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation publication-title: Source Code Biol Med – year: 2003 ident: 2021.09.17.460800v4.3 article-title: Empirical comparison of cell segmentation algorithms using an annotated dataset publication-title: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429) – volume: 7 start-page: 7860 issue: 1 year: 2017 ident: 2021.09.17.460800v4.41 article-title: Automated Training of Deep Convolutional Neural Networks for Cell Segmentation publication-title: Sci Rep – volume: 21 start-page: 8 issue: 1 year: 2020 ident: 2021.09.17.460800v4.31 article-title: Microscopy cell nuclei segmentation with enhanced U-Net publication-title: BMC Bioinformatics |
SSID | ssj0002961374 |
Score | 1.6745334 |
SecondaryResourceType | preprint |
Snippet | Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Bioinformatics Computer applications Informatics Principal components analysis Segmentation |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aInjzidUqK3hN2WTz2D1LaxEUDxZ6W_KYlR7cLd1W9N-b2V2LogeTax4wyWQemZmPkBsIWrTVmacqSB8qdAE0lZBSab1QhmccFGYjPzyq6Uzcz-X8G9QXhlXaRbV6X7w1__gYsB1e35a5Y4a2OsPCpEyPhEJtZ5f0w5USiNowmY-27hWeBTmlRfeP-efMoPF2O_16hxvhMjkg_SezhNUh2YHyiOy16JAfx-RuvK3EHVVFhC72qIaX1y5bqIxa9Oc6Ql9qtVlHW8iQH8PqEzKbjJ9vp7TDPaCWYYCfj6GQhfQJFC400OAdtxJL5ylgTmJHVKnUB3PAZ8JIlbhUeDDB-GGxSU5Jr6xKOCNREauCO6udSJVgPjYZt0yZRDtIQCg-INcdDfJlW90iRzrlcZYznbd0GpDhF3Xy7oLXeeB0Edg9Ver8H0tckH2OaQOMUa6HpLdebeAyCPO1vWqO7RMmP5oF priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Evaluation of cell segmentation methods without reference segmentations |
URI | https://www.proquest.com/docview/2574425866 https://www.biorxiv.org/content/10.1101/2021.09.17.460800 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5uQ_DNK07nqOBrZpPm0j4JyuYQHEMc7K00yanswXZbN9F_b7JmExFsH9unk5Nz-ZLzfQjdgK2ilUwMFjb7YCZzwDGHGHNlmMhoQkG4aeTnkRhO2NOUTz3gVvlrlduYuAnUptQOI7-1rsWsf8VC3M0X2KlGudNVL6HRQC0bgmPbfLXu-6Pxyw5loYlNVxsqZioSu_VpyP3RpnVF1_gTx3JKZI8JVzrZIljNyuXn7ONPaN7km8Ehao2zOSyP0B4Ux2i_Foz8OkGP_R05d1DmgUPdgwre3v0AURHUgtBV4ODVcr0Kdioiv36rTtFk0H99GGIvhYAVcXf-TAg5z7mJINf2AQlGU8Udm54Aorl7ndBUbGyHYBKWcRHpmBnIbD9Ewiw6Q82iLOAcBXkocqqV1CwWjJgwS6giIoukhgiYoG107W2QzmvCi9TZKQ2TlMi0tlMbdbbWSb3PV-nPCl38__kSHVA3REAIprKDmqvlGq5sal-prl-_LmoMpr1vnACidg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsJAFL1BiNGdz_hArYkuq53pzLRdGBMVBHmEGEjY1bZza1xIkYLKT_mNztCCMSbuaJdturhzel8z9xyAM1RZdOh40hQq-pjMidF0ObomDyUTAfUoCj2N3GqLWo899Hm_AF_zWRh9rHLuE2eOWiaR7pFfKmgxhS9XiOvhm6lVo_Tu6lxCI4NFA6cfqmRLr-p3an3PKa1Wurc1M1cVMEOij89JC2Mec2ljHKkLHZQRDbkmphNIIq5vrdnkSpVsS48FXNiRyyQGqrQgVmCr765AidmqlClC6abS7jwuujrUU-FxRv1MhadcDbV4vpWqoK8bDUSzqhLnggmdqqmkO3xJRp8v739CwSy-VTeg1AmGONqEAg62YDUTqJxuw31lQQZuJLGhu_xGis-v-cDSwMgEqFNDt3OTydhYqJb8ei3dgd5SjLQLxUEywD0wYkvENAqdiLmCEWkFHg2JCGwnQhuZoPtwmtvAH2YEG762k295PnH8zE77UJ5bx8__sdT_QcTB_49PYK3WbTX9Zr3dOIR1qgcYCDGpU4bieDTBI5VWjMPjfC0NeFo2fL4B74PfEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagFYiNpygUCBJrotjxI5mhobyqDlTqZsXxBXWgqZoWwb_H14QKBAPxGtnS2ed7-O77CLkC50UblVhfOuvjc1WAHwuIfWEslxlLGEjsRn4ayP6I34_F-FsvDJZVmkk5f5-8rd7xsWDb3b61cocUY3WKwKRUBVyitxNgmjqY2WKTtBHsDE92Og7WeRaWOIOlePOg-ecUzvVtlvx1Ia-sTLpL2sNsBvM9sgHTfbJV00R-HJDb3hqS2ysLD3PtXgUvr03b0NSraaArD5Oq5XLhrblDfvxWHZJR2nu-7vsNAYJvKFb62RAKUQgbQZG7DxTYnBmBGHoSaC5wIL1UbF1cYBOeCRnlMbeQuSiIhll0RFrTcgrHxCtCWbDcqJzHklMbZgkzVGaRyiECLlmHXDYy0LMa5kKjnHSYaKp0LacO6X5JRzcnvdJO5bnT-1jKk39McUG2hzepfrwbPJySHYatBJT6THVJazFfwpkz8AtzvtrBTw5Nn-0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+cell+segmentation+methods+without+reference+segmentations&rft.jtitle=bioRxiv&rft.au=Chen%2C+Haoran&rft.au=Murphy%2C+Robert+F&rft.date=2022-11-27&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.09.17.460800 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |