Evaluation of cell segmentation methods without reference segmentations

Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particul...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Chen, Haoran, Murphy, Robert F
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 27.11.2022
Cold Spring Harbor Laboratory
Edition1.4
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2021.09.17.460800

Cover

Loading…
Abstract Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particular type of sample. The evaluation process has typically involved comparison of segmentations to those generated by humans, which can be expensive and subject to unknown bias. We present here an approach to evaluating cell segmentation methods without relying upon comparison to results from humans. For this, we defined a number of segmentation quality metrics that can be applied to multichannel fluorescence images. We calculated these metrics for 14 previously-described segmentation methods applied to datasets from 4 multiplexed microscope modalities covering 5 tissues. Using principal component analysis to combine the metrics we defined an overall cell segmentation quality score and ranked the segmentation methods. We found that two deep learning-based methods performed the best overall, but that results for all methods could be significantly improved by postprocessing to ensure proper matching of cell and nuclear masks. Our evaluation tool is available as open source and all code and data are available in a Reproducible Research Archive.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Revised to add newer versions of segmentation methods, to fix an issue with CellProfiler generated segmentations, and to add comparison of segmentation quality scores to measures typically used for comparison to human segmentation.* https://github.com/murphygroup/CellSegmentationEvaluator* https://github.com/murphygroup/ChenMurphy2DSegEvalRRA
AbstractList Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particular type of sample. The evaluation process has typically involved comparison of segmentations to those generated by humans, which can be expensive and subject to unknown bias. We present here an approach to evaluating cell segmentation methods without relying upon comparison to results from humans. For this, we defined a number of segmentation quality metrics that can be applied to multichannel fluorescence images. We calculated these metrics for 14 previously-described segmentation methods applied to datasets from 4 multiplexed microscope modalities covering 5 tissues. Using principal component analysis to combine the metrics we defined an overall cell segmentation quality score and ranked the segmentation methods. We found that two deep learning-based methods performed the best overall, but that results for all methods could be significantly improved by postprocessing to ensure proper matching of cell and nuclear masks. Our evaluation tool is available as open source and all code and data are available in a Reproducible Research Archive.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Revised to add newer versions of segmentation methods, to fix an issue with CellProfiler generated segmentations, and to add comparison of segmentation quality scores to measures typically used for comparison to human segmentation.* https://github.com/murphygroup/CellSegmentationEvaluator* https://github.com/murphygroup/ChenMurphy2DSegEvalRRA
Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particular type of sample. The evaluation process has typically involved comparison of segmentations to those generated by humans, which can be expensive and subject to unknown bias. We present here an approach to evaluating cell segmentation methods without relying upon comparison to results from humans. For this, we defined a number of segmentation quality metrics that can be applied to multichannel fluorescence images. We calculated these metrics for 14 previously-described segmentation methods applied to datasets from 4 multiplexed microscope modalities covering 5 tissues. Using principal component analysis to combine the metrics we defined an overall cell segmentation quality score and ranked the segmentation methods. We found that two deep learning-based methods performed the best overall, but that results for all methods could be significantly improved by postprocessing to ensure proper matching of cell and nuclear masks. Our evaluation tool is available as open source and all code and data are available in a Reproducible Research Archive.
Author Chen, Haoran
Murphy, Robert F
Author_xml – sequence: 1
  givenname: Haoran
  surname: Chen
  fullname: Chen, Haoran
– sequence: 2
  givenname: Robert
  surname: Murphy
  middlename: F
  fullname: Murphy, Robert F
BookMark eNpVkE9Lw0AQxRepYK39AN4CXrwkzm72T3KUUqtQ8KLnZZOdaEq6W3eTqt_elHjQeYc3DD-Gx7skM-cdEnJNIaMU6B0DRjMoM6oyLqEAOCNzJkuWFgzE7M9-QZYx7gCAlZLmis_JZn003WD61rvEN0mNXZdEfNuj66fjHvt3b2Py2Y4-9EnABgO6Gv9h8YqcN6aLuPz1BXl9WL-sHtPt8-Zpdb9NKwocUgvYiEbYHJt6HFRoa1aJnHGQSGtxkmIFFFaI0pbcCJnXBbdoFJUUTL4gt9PfqvXhqz3qQ2j3JnzrUwcaSk2VnjoY0ZsJPQT_MWDs9c4PwY3pNBOKcyYKKfMfo-peSw
ContentType Paper
Copyright 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2021.09.17.460800
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.4
ExternalDocumentID 2021.09.17.460800v4
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1040-d0ef5f5d3efcccce7edc2b532406e1c5c5c572808d559d94a563c84dea71610a3
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Tue Jan 07 18:52:41 EST 2025
Fri Jul 25 09:21:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1040-d0ef5f5d3efcccce7edc2b532406e1c5c5c572808d559d94a563c84dea71610a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0003-0358-901X
OpenAccessLink https://www.proquest.com/docview/2574425866?pq-origsite=%requestingapplication%
PQID 2574425866
PQPubID 2050091
PageCount 34
ParticipantIDs biorxiv_primary_2021_09_17_460800
proquest_journals_2574425866
PublicationCentury 2000
PublicationDate 20221127
PublicationDateYYYYMMDD 2022-11-27
PublicationDate_xml – month: 11
  year: 2022
  text: 20221127
  day: 27
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References (2021.09.17.460800v4.21) 2019; 574
Lv, Wen, Wu, Jin, An, He (2021.09.17.460800v4.32) 2019
Kromp, Fischer, Bozsaky, Ambros, Dorr, Beiske, Ambros, Hanbury, Taschner-Mandl (2021.09.17.460800v4.29) 2021; 40
Ronneberger, Fischer, Brox (2021.09.17.460800v4.39) 2015
Lin, Dollár, Girshick, He, Hariharan, Belongie (2021.09.17.460800v4.30) 2017
Jung, Lodhi, Kang (2021.09.17.460800v4.25) 2019; 1
Al-Kofahi, Zaltsman, Graves, Marshall, Rusu (2021.09.17.460800v4.1) 2018; 19
Moen, Borba, Miller, Schwartz, Bannon, Koe, Camplisson, Kyme, Pavelchek, Price (2021.09.17.460800v4.35) 2019; 803205
Kablan, Dogan, Ercin, Ersoz, Ekinci (2021.09.17.460800v4.26) 2020; 81
Vuola, Akram, Kannala (2021.09.17.460800v4.46) 2019
Dimopoulos, Mayer, Rudolf, Stelling (2021.09.17.460800v4.12) 2014; 30
Angelo, Bendall, Finck, Hale, Hitzman, Borowsky, Levenson, Lowe, Liu, Zhao, Natkunam, Nolan (2021.09.17.460800v4.2) 2014; 20
Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat, Golland, Sabatini (2021.09.17.460800v4.8) 2006; 7
Oyebode, Tapamo (2021.09.17.460800v4.36) 2016; 35
Hodneland, Kogel, Frei, Gerdes, Lundervold (2021.09.17.460800v4.20) 2013; 8
Bannon, Moen, Schwartz, Borba, Kudo, Greenwald, Vijayakumar, Chang, Pao, Osterman, Graf, Van Valen (2021.09.17.460800v4.4) 2021; 18
Ji, Li, Cheng, Yu, Wang (2021.09.17.460800v4.23) 2015
Kromp, Bozsaky, Rifatbegovic, Fischer, Ambros, Berneder, Weiss, Lazic, Dorr, Hanbury, Beiske, Ambros, Ambros, Taschner-Mandl (2021.09.17.460800v4.28) 2020; 7
Vicar, Balvan, Jaros, Jug, Kolar, Masarik, Gumulec (2021.09.17.460800v4.45) 2019; 20
Dayao, Brusko, Wasserfall, Bar-Joseph (2021.09.17.460800v4.11) 2022; 13
Johnson (2021.09.17.460800v4.24) 2018
Fujita, Han (2021.09.17.460800v4.15) 2020
Goltsev, Samusik, Kennedy-Darling, Bhate, Hale, Vazquez, Black, Nolan (2021.09.17.460800v4.18) 2018; 174
Shen, Tseng, Hansen, Wu, Gritton, Si, Han (2021.09.17.460800v4.42) 2018; 5
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (2021.09.17.460800v4.22) 2021; 18
Caicedo, Roth, Goodman, Becker, Karhohs, Broisin, Molnar, McQuin, Singh, Theis, Carpenter (2021.09.17.460800v4.7) 2019; 95
Sadanandan, Ranefall, Le Guyader, Wahlby (2021.09.17.460800v4.41) 2017; 7
Braiki, Benzinou, Nasreddine, Hymery (2021.09.17.460800v4.6) 2020; 195
Fan, Li, Fan, Zhang (2021.09.17.460800v4.14) 2013; 6
Greenwald, Miller, Moen, Kong, Kagel, Dougherty, Fullaway, McIntosh, Leow, Schwartz, Pavelchek, Cui, Camplisson, Bar-Tal, Singh, Fong, Chaudhry, Abraham, Moseley, Van Valen (2021.09.17.460800v4.19) 2022; 40
Panagiotakis, Argyros (2021.09.17.460800v4.37) 2018
Garay, Juhasz, Molnar, Eisenbauer, Czirok, Dekan, Laszlo, Hoda, Dome, Timar, Klepetko, Berger, Hegedus (2021.09.17.460800v4.16) 2013; 319
Stringer, Wang, Michaelos, Pachitariu (2021.09.17.460800v4.43) 2021; 18
Boland, Murphy (2021.09.17.460800v4.5) 2001; 17
Gerdes, Sevinsky, Sood, Adak, Bello, Bordwell, Can, Corwin, Dinn, Filkins, Hollman, Kamath, Kaanumalle, Kenny, Larsen, Lazare, Li, Lowes, McCulloch, Ginty (2021.09.17.460800v4.17) 2013; 110
Rittscher (2021.09.17.460800v4.38) 2010; 12
Ruan, Murphy (2021.09.17.460800v4.40) 2019; 35
Chen, Ding, Viana, Lee, Sluezwski, Morris, Hendershott, Yang, Mueller, Rafelski (2021.09.17.460800v4.10) 2020; 491035
Wu, Yi, Zhao, Huang, Qiu, Gao (2021.09.17.460800v4.48) 2015; 62
Van Valen, Kudo, Lane, Macklin, Quach, DeFelice, Maayan, Tanouchi, Ashley, Covert (2021.09.17.460800v4.44) 2016; 12
Bamford (2021.09.17.460800v4.3) 2003
Mayer, Dimopoulos, Rudolf, Stelling (2021.09.17.460800v4.34) 2013; 101
Chang, Ornatsky, Siddiqui, Loboda, Baranov, Hedley (2021.09.17.460800v4.9) 2017; 91
Falk, Mai, Bensch, Cicek, Abdulkadir, Marrakchi, Bohm, Deubner, Jackel, Seiwald, Dovzhenko, Tietz, Dal Bosco, Walsh, Saltukoglu, Tay, Prinz, Palme, Simons, Ronneberger (2021.09.17.460800v4.13) 2019; 16
Kamentsky, Jones, Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, Carpenter (2021.09.17.460800v4.27) 2011; 27
Long (2021.09.17.460800v4.31) 2020; 21
Wiesmann, Bergler, Palmisano, Prinzen, Franz, Wittenberg (2021.09.17.460800v4.47) 2017; 18
Maska, Ulman, Svoboda, Matula, Matula, Ederra, Urbiola, Espana, Venkatesan, Balak, Karas, Bolckova, Streitova, Carthel, Coraluppi, Harder, Rohr, Magnusson, Jalden, Ortiz-de-Solorzano (2021.09.17.460800v4.33) 2014; 30
References_xml – year: 2018
  ident: 2021.09.17.460800v4.24
  article-title: Adapting mask-rcnn for automatic nucleus segmentation
  publication-title: arXiv preprint arXiv:1805.00500
– volume: 319
  start-page: 3094
  issue: 20
  year: 2013
  end-page: 3103
  ident: 2021.09.17.460800v4.16
  article-title: Cell migration or cytokinesis and proliferation?--revisiting the “go or grow” hypothesis in cancer cells in vitro
  publication-title: Exp Cell Res
– volume: 12
  start-page: 315
  issue: 1
  year: 2010
  end-page: 344
  ident: 2021.09.17.460800v4.38
  article-title: Characterization of biological processes through automated image analysis
  publication-title: Annual Review of Biomedical Engineering
– volume: 174
  start-page: 968
  issue: 4
  year: 2018
  end-page: 981 e915
  ident: 2021.09.17.460800v4.18
  article-title: Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging
  publication-title: Cell
– volume: 12
  start-page: e1005177
  issue: 11
  year: 2016
  ident: 2021.09.17.460800v4.44
  article-title: Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments
  publication-title: PLoS Comput Biol
– year: 2020
  ident: 2021.09.17.460800v4.15
  article-title: Cell detection and segmentation in microscopy images with improved mask R-CNN
  publication-title: Proceedings of the Asian Conference on Computer Vision
– volume: 13
  start-page: 1999
  issue: 1
  year: 2022
  ident: 2021.09.17.460800v4.11
  article-title: Membrane marker selection for segmenting single cell spatial proteomics data
  publication-title: Nat Commun
– volume: 91
  start-page: 160
  issue: 2
  year: 2017
  end-page: 169
  ident: 2021.09.17.460800v4.9
  article-title: Imaging Mass Cytometry
  publication-title: Cytometry A
– volume: 62
  start-page: 284
  issue: 1
  year: 2015
  end-page: 295
  ident: 2021.09.17.460800v4.48
  article-title: Active contour-based cell segmentation during freezing and its application in cryopreservation
  publication-title: IEEE Trans Biomed Eng
– volume: 6
  start-page: 554
  issue: 10
  year: 2013
  ident: 2021.09.17.460800v4.14
  article-title: Color cell image segmentation based on Chan-Vese model for vector-valued images
  publication-title: Journal of Software Engineering and Applications
– volume: 40
  start-page: 555
  issue: 4
  year: 2022
  end-page: 565
  ident: 2021.09.17.460800v4.19
  article-title: Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning
  publication-title: Nat Biotechnol
– volume: 19
  start-page: 365
  issue: 1
  year: 2018
  ident: 2021.09.17.460800v4.1
  article-title: A deep learningbased algorithm for 2-D cell segmentation in microscopy images
  publication-title: BMC Bioinformatics
– year: 2018
  ident: 2021.09.17.460800v4.37
  article-title: Cell segmentation via region-based ellipse fitting
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– volume: 17
  start-page: 1213
  issue: 12
  year: 2001
  end-page: 1223
  ident: 2021.09.17.460800v4.5
  article-title: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
  publication-title: Bioinformatics
– volume: 803205
  year: 2019
  ident: 2021.09.17.460800v4.35
  article-title: Accurate cell tracking and lineage construction in livecell imaging experiments with deep learning
  publication-title: Biorxiv
– volume: 30
  start-page: 2644
  issue: 18
  year: 2014
  end-page: 2651
  ident: 2021.09.17.460800v4.12
  article-title: Accurate cell segmentation in microscopy images using membrane patterns
  publication-title: Bioinformatics
– volume: 95
  start-page: 952
  issue: 9
  year: 2019
  end-page: 965
  ident: 2021.09.17.460800v4.7
  article-title: Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images
  publication-title: Cytometry A
– volume: 7
  start-page: R100
  issue: 10
  year: 2006
  ident: 2021.09.17.460800v4.8
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol
– volume: 16
  start-page: 67
  issue: 1
  year: 2019
  end-page: 70
  ident: 2021.09.17.460800v4.13
  article-title: U-Net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat Methods
– volume: 35
  start-page: 2475
  issue: 14
  year: 2019
  end-page: 2485
  ident: 2021.09.17.460800v4.40
  article-title: Evaluation of methods for generative modeling of cell and nuclear shape
  publication-title: Bioinformatics
– volume: 491035
  year: 2020
  ident: 2021.09.17.460800v4.10
  article-title: The Allen Cell and Structure Segmenter: a new open source toolkit for segmenting 3D intracellular structures in fluorescence microscopy images
  publication-title: BioRxiv
– volume: 30
  start-page: 1609
  issue: 11
  year: 2014
  end-page: 1617
  ident: 2021.09.17.460800v4.33
  article-title: A benchmark for comparison of cell tracking algorithms
  publication-title: Bioinformatics
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  ident: 2021.09.17.460800v4.47
  article-title: Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms
  publication-title: BMC Bioinformatics
– volume: 18
  start-page: 43
  issue: 1
  year: 2021
  end-page: 45
  ident: 2021.09.17.460800v4.4
  article-title: DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes
  publication-title: Nat Methods
– year: 2017
  ident: 2021.09.17.460800v4.30
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 574
  start-page: 187
  issue: 7777
  year: 2019
  end-page: 192
  ident: 2021.09.17.460800v4.21
  article-title: The human body at cellular resolution: the NIH Human Biomolecular Atlas Program
  publication-title: Nature
– year: 2015
  ident: 2021.09.17.460800v4.39
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– volume: 110
  start-page: 11982
  issue: 29
  year: 2013
  end-page: 11987
  ident: 2021.09.17.460800v4.17
  article-title: Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue
  publication-title: Proc Natl Acad Sci U S A
– volume: 1
  start-page: 24
  year: 2019
  ident: 2021.09.17.460800v4.25
  article-title: An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images
  publication-title: BMC Biomed Eng
– year: 2019
  ident: 2021.09.17.460800v4.46
  article-title: Mask-RCNN and U-net ensembled for nuclei segmentation
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– volume: 40
  start-page: 1934
  issue: 7
  year: 2021
  end-page: 1949
  ident: 2021.09.17.460800v4.29
  article-title: Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 27
  start-page: 1179
  issue: 8
  year: 2011
  end-page: 1180
  ident: 2021.09.17.460800v4.27
  article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software
  publication-title: Bioinformatics
– volume: 7
  start-page: 262
  issue: 1
  year: 2020
  ident: 2021.09.17.460800v4.28
  article-title: An annotated fluorescence image dataset for training nuclear segmentation methods
  publication-title: Sci Data
– volume: 195
  start-page: 105520
  year: 2020
  ident: 2021.09.17.460800v4.6
  article-title: Automatic Human Dendritic Cells Segmentation Using K-Means Clustering and Chan-Vese Active Contour Model
  publication-title: Comput Methods Programs Biomed
– volume: 35
  start-page: 29
  issue: 1
  year: 2016
  end-page: 37
  ident: 2021.09.17.460800v4.36
  article-title: Adaptive parameter selection for graph cut-based segmentation on cell images
  publication-title: Image Analysis & Stereology
– volume: 81
  start-page: 106533
  year: 2020
  ident: 2021.09.17.460800v4.26
  article-title: An ensemble of finetuned fully convolutional neural networks for pleural effusion cell nuclei segmentation
  publication-title: Computers & Electrical Engineering
– volume: 101
  start-page: 14.22. 11
  issue: 1
  year: 2013
  end-page: 14.22. 20
  ident: 2021.09.17.460800v4.34
  article-title: Using CellX to quantify intracellular events
  publication-title: Current protocols in molecular biology
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  end-page: 211
  ident: 2021.09.17.460800v4.22
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat Methods
– year: 2015
  ident: 2021.09.17.460800v4.23
  article-title: Cell image segmentation based on an improved watershed algorithm
  publication-title: 2015 8th International Congress on Image and Signal Processing (CISP)
– volume: 20
  start-page: 360
  issue: 1
  year: 2019
  ident: 2021.09.17.460800v4.45
  article-title: Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
  publication-title: BMC Bioinformatics
– volume: 20
  start-page: 436
  issue: 4
  year: 2014
  end-page: 442
  ident: 2021.09.17.460800v4.2
  article-title: Multiplexed ion beam imaging of human breast tumors
  publication-title: Nat Med
– volume: 18
  start-page: 100
  issue: 1
  year: 2021
  end-page: 106
  ident: 2021.09.17.460800v4.43
  article-title: Cellpose: a generalist algorithm for cellular segmentation
  publication-title: Nat Methods
– year: 2019
  ident: 2021.09.17.460800v4.32
  article-title: Nuclei R-CNN: Improve mask R-CNN for nuclei segmentation
  publication-title: 2019 IEEE 2nd International Conference on Information Communication and Signal Processing (ICICSP)
– volume: 5
  issue: 5
  year: 2018
  ident: 2021.09.17.460800v4.42
  article-title: Automatic Cell Segmentation by Adaptive Thresholding (ACSAT) for Large-Scale Calcium Imaging Datasets
  publication-title: eNeuro
– volume: 8
  start-page: 16
  issue: 1
  year: 2013
  ident: 2021.09.17.460800v4.20
  article-title: CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation
  publication-title: Source Code Biol Med
– year: 2003
  ident: 2021.09.17.460800v4.3
  article-title: Empirical comparison of cell segmentation algorithms using an annotated dataset
  publication-title: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429)
– volume: 7
  start-page: 7860
  issue: 1
  year: 2017
  ident: 2021.09.17.460800v4.41
  article-title: Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
  publication-title: Sci Rep
– volume: 21
  start-page: 8
  issue: 1
  year: 2020
  ident: 2021.09.17.460800v4.31
  article-title: Microscopy cell nuclei segmentation with enhanced U-Net
  publication-title: BMC Bioinformatics
SSID ssj0002961374
Score 1.6745334
SecondaryResourceType preprint
Snippet Cell segmentation is a cornerstone of many bioimage informatics studies and inaccurate segmentation introduces error in downstream analysis. Evaluating...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bioinformatics
Computer applications
Informatics
Principal components analysis
Segmentation
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aInjzidUqK3hN2WTz2D1LaxEUDxZ6W_KYlR7cLd1W9N-b2V2LogeTax4wyWQemZmPkBsIWrTVmacqSB8qdAE0lZBSab1QhmccFGYjPzyq6Uzcz-X8G9QXhlXaRbV6X7w1__gYsB1e35a5Y4a2OsPCpEyPhEJtZ5f0w5USiNowmY-27hWeBTmlRfeP-efMoPF2O_16hxvhMjkg_SezhNUh2YHyiOy16JAfx-RuvK3EHVVFhC72qIaX1y5bqIxa9Oc6Ql9qtVlHW8iQH8PqEzKbjJ9vp7TDPaCWYYCfj6GQhfQJFC400OAdtxJL5ylgTmJHVKnUB3PAZ8JIlbhUeDDB-GGxSU5Jr6xKOCNREauCO6udSJVgPjYZt0yZRDtIQCg-INcdDfJlW90iRzrlcZYznbd0GpDhF3Xy7oLXeeB0Edg9Ver8H0tckH2OaQOMUa6HpLdebeAyCPO1vWqO7RMmP5oF
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Evaluation of cell segmentation methods without reference segmentations
URI https://www.proquest.com/docview/2574425866
https://www.biorxiv.org/content/10.1101/2021.09.17.460800
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA5uQ_DNK07nqOBrZpPm0j4JyuYQHEMc7K00yanswXZbN9F_b7JmExFsH9unk5Nz-ZLzfQjdgK2ilUwMFjb7YCZzwDGHGHNlmMhoQkG4aeTnkRhO2NOUTz3gVvlrlduYuAnUptQOI7-1rsWsf8VC3M0X2KlGudNVL6HRQC0bgmPbfLXu-6Pxyw5loYlNVxsqZioSu_VpyP3RpnVF1_gTx3JKZI8JVzrZIljNyuXn7ONPaN7km8Ehao2zOSyP0B4Ux2i_Foz8OkGP_R05d1DmgUPdgwre3v0AURHUgtBV4ODVcr0Kdioiv36rTtFk0H99GGIvhYAVcXf-TAg5z7mJINf2AQlGU8Udm54Aorl7ndBUbGyHYBKWcRHpmBnIbD9Ewiw6Q82iLOAcBXkocqqV1CwWjJgwS6giIoukhgiYoG107W2QzmvCi9TZKQ2TlMi0tlMbdbbWSb3PV-nPCl38__kSHVA3REAIprKDmqvlGq5sal-prl-_LmoMpr1vnACidg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsJAFL1BiNGdz_hArYkuq53pzLRdGBMVBHmEGEjY1bZza1xIkYLKT_mNztCCMSbuaJdturhzel8z9xyAM1RZdOh40hQq-pjMidF0ObomDyUTAfUoCj2N3GqLWo899Hm_AF_zWRh9rHLuE2eOWiaR7pFfKmgxhS9XiOvhm6lVo_Tu6lxCI4NFA6cfqmRLr-p3an3PKa1Wurc1M1cVMEOij89JC2Mec2ljHKkLHZQRDbkmphNIIq5vrdnkSpVsS48FXNiRyyQGqrQgVmCr765AidmqlClC6abS7jwuujrUU-FxRv1MhadcDbV4vpWqoK8bDUSzqhLnggmdqqmkO3xJRp8v739CwSy-VTeg1AmGONqEAg62YDUTqJxuw31lQQZuJLGhu_xGis-v-cDSwMgEqFNDt3OTydhYqJb8ei3dgd5SjLQLxUEywD0wYkvENAqdiLmCEWkFHg2JCGwnQhuZoPtwmtvAH2YEG762k295PnH8zE77UJ5bx8__sdT_QcTB_49PYK3WbTX9Zr3dOIR1qgcYCDGpU4bieDTBI5VWjMPjfC0NeFo2fL4B74PfEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagFYiNpygUCBJrotjxI5mhobyqDlTqZsXxBXWgqZoWwb_H14QKBAPxGtnS2ed7-O77CLkC50UblVhfOuvjc1WAHwuIfWEslxlLGEjsRn4ayP6I34_F-FsvDJZVmkk5f5-8rd7xsWDb3b61cocUY3WKwKRUBVyitxNgmjqY2WKTtBHsDE92Og7WeRaWOIOlePOg-ecUzvVtlvx1Ia-sTLpL2sNsBvM9sgHTfbJV00R-HJDb3hqS2ysLD3PtXgUvr03b0NSraaArD5Oq5XLhrblDfvxWHZJR2nu-7vsNAYJvKFb62RAKUQgbQZG7DxTYnBmBGHoSaC5wIL1UbF1cYBOeCRnlMbeQuSiIhll0RFrTcgrHxCtCWbDcqJzHklMbZgkzVGaRyiECLlmHXDYy0LMa5kKjnHSYaKp0LacO6X5JRzcnvdJO5bnT-1jKk39McUG2hzepfrwbPJySHYatBJT6THVJazFfwpkz8AtzvtrBTw5Nn-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+cell+segmentation+methods+without+reference+segmentations&rft.jtitle=bioRxiv&rft.au=Chen%2C+Haoran&rft.au=Murphy%2C+Robert+F&rft.date=2022-11-27&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.09.17.460800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon