Machine Learning and Principles and Practice of Knowledge Discovery in Databases International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part II

This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The...

Full description

Saved in:
Bibliographic Details
Main Authors Kamp, Michael, Koprinska, Irena, Bibal, Adrien, Bouadi, Tassadit, énay, Benoît, Galárraga, Luis, Oramas, José, Adilova, Linara, Krishnamurthy, Yamuna, Kang, Bo
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2022
Springer International Publishing
Edition1
SeriesCommunications in computer and information science
Subjects
Online AccessGet full text
ISBN9783030937324
3030937321

Cover

Loading…
Abstract This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops:Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021)Workshop on Parallel, Distributed and Federated Learning (PDFL 2021)Workshop on Graph Embedding and Mining  (GEM 2021)Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021)Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021)Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021)Workshop on Bias and Fairness in AI (BIAS 2021)Workshop on Workshop on Active Inference (IWAI 2021)Workshop on Machine Learning for Cybersecurity (MLCS 2021)Workshop on Machine Learning in Software Engineering (MLiSE 2021)Workshop on MIning Data for financial applications (MIDAS 2021)Sixth Workshop on Data Science for Social Good (SoGood 2021)Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021)Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020)Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021)
AbstractList This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops:Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021)Workshop on Parallel, Distributed and Federated Learning (PDFL 2021)Workshop on Graph Embedding and Mining  (GEM 2021)Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021)Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021)Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021)Workshop on Bias and Fairness in AI (BIAS 2021)Workshop on Workshop on Active Inference (IWAI 2021)Workshop on Machine Learning for Cybersecurity (MLCS 2021)Workshop on Machine Learning in Software Engineering (MLiSE 2021)Workshop on MIning Data for financial applications (MIDAS 2021)Sixth Workshop on Data Science for Social Good (SoGood 2021)Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021)Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020)Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021)
Author Bouadi, Tassadit
Krishnamurthy, Yamuna
énay, Benoît
Kamp, Michael
Adilova, Linara
Kang, Bo
Oramas, José
Galárraga, Luis
Bibal, Adrien
Koprinska, Irena
Author_xml – sequence: 1
  fullname: Kamp, Michael
– sequence: 2
  fullname: Koprinska, Irena
– sequence: 3
  fullname: Bibal, Adrien
– sequence: 4
  fullname: Bouadi, Tassadit
– sequence: 5
  fullname: énay, Benoît
– sequence: 6
  fullname: Galárraga, Luis
– sequence: 7
  fullname: Oramas, José
– sequence: 8
  fullname: Adilova, Linara
– sequence: 9
  fullname: Krishnamurthy, Yamuna
– sequence: 10
  fullname: Kang, Bo
BookMark eNpVkMtOwzAURI14CFr6D94hFpWc2I7tJbTlIYLoAtbRjX3dhkZ2iUMLf09Fu-lmRkc6msUMyFmIAU_IyCjNGWeGK86z0yPOxQUZZJxJLXaRX5JRSp-MsVzlQgl2ReavYJdNQFoidKEJCwrB0XnXBNusW0wHBNs3Fmn09CXEbYtugXTaJBs32P3SJtAp9FBDwnRNzj20CUeHHpKPh9n75Glcvj0-T-7KMRiT_YzRKSd4LaTWihW1y7RglnklZVY4D8YpbSXzXjIohKgRauO1tqaoNSCwnA_J7X4X0gq3aRnbPlWbFusYV6k6umTn3uzddRe_vjH11b9mMfQdtNXsflJok2dS8z-EqmFx
ContentType eBook
DEWEY 006.31
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030937331
303093733X
Edition 1
ExternalDocumentID 9783030937331
EBC6892158
GroupedDBID 38.
9-X
AABBV
AABLV
ABNDO
ACBPT
ACWLQ
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
I4C
IEZ
OCUHQ
ORHYB
SBO
SNUHX
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-a991x-ed7d43b4588706bd1840c0f75516dfa9d78c50ff50a644beab9f88c96b8aea023
ISBN 9783030937324
3030937321
IngestDate Fri Nov 08 03:32:04 EST 2024
Fri May 30 22:53:28 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a991x-ed7d43b4588706bd1840c0f75516dfa9d78c50ff50a644beab9f88c96b8aea023
OCLC 1305843052
PQID EBC6892158
PageCount 601
ParticipantIDs askewsholts_vlebooks_9783030937331
proquest_ebookcentral_EBC6892158
PublicationCentury 2000
PublicationDate 2022
2022-02-18
PublicationDateYYYYMMDD 2022-01-01
2022-02-18
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Communications in computer and information science
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
SSID ssj0002724740
Score 2.273884
Snippet This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Artificial intelligence
Machine learning
Subtitle International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part II
TableOfContents On Neural Forecasting and News Emotions: The Case of the Spanish Stock Market -- 1 Introduction -- 2 Data -- 3 Methodology -- 3.1 Neural Machine Translation -- 3.2 Emotion Classification -- 3.3 DeepAR -- 4 Preliminary Findings -- 5 Conclusions -- References -- Adaptive Supervised Learning for Financial Markets Volatility Targeting Models -- 1 Introduction -- 1.1 Related Works -- 1.2 Contributions -- 2 Models Presentation -- 2.1 Volatility Targeting Models -- 2.2 Supervised Learning Overlay -- 2.3 Features -- 2.4 Walk-Forward Methodology -- 3 Financial Data Experiments -- 3.1 Market Data -- 3.2 Hyperparameters Selection and Used Features -- 3.3 Comparison with Benchmark -- 3.4 Future Works -- 4 Conclusion -- References -- Efficient Analysis of Transactional Data Using Graph Convolutional Networks -- 1 Introduction -- 2 Related Work -- 2.1 Graph Methods and Graph Neural Networks (GNNs) -- 2.2 Fraud Analysis -- 3 Methodology -- 3.1 Constructing Transaction Graphs -- 3.2 Graph Convolutional Networks -- 3.3 Parameter Setup -- 4 Experiments -- 4.1 Datasets -- 4.2 Node Classification -- 4.3 Mitigating Imbalance with Downsampling -- 5 Results and Discussion -- 5.1 Down Sampling -- 5.2 Visualization -- 6 Conclusion -- References -- A Reasoning Approach to Financial Data Exchange with Statistical Confidentiality -- 1 Introduction and Problem Setting -- 2 The VADA-SA Framework -- 3 Experiments -- 4 Conclusion -- References -- Forecasting Longevity for Financial Applications: A First Experiment with Deep Learning Methods -- 1 Introduction -- 2 Materials and Methods -- 2.1 Generalised Age-Period-Cohort Stochastic Mortality Models -- 2.2 RNN with LSTM Architecture -- 2.3 RNN with GRU Architecture -- 2.4 Forecasting Accuracy Metrics -- 2.5 Data -- 3 Results -- 3.1 Hyperparameter Calibration -- 3.2 Forecasts of Life Annuity Prices and Mortality Rates -- 4 Conclusion
References -- Sixth Workshop on Data Science for Social Good (SoGood 2021) -- Workshop on Data Science for Social Good (SoGood 2021) -- Organization -- Workshop Co-chairs -- Program Committee -- Ensuring the Inclusive Use of NLP in the Global Response to COVID-19 -- 1 Introduction and Context -- 2 Low-Resource Languages -- 3 Alternative Modalities -- 4 Out-of-the-Box Tools for Infodemic Management -- 5 Importance of Partnerships -- 6 Conclusion -- References -- A Framework for Building pro-bono Data for Good Projects -- 1 Introduction -- 2 Stakeholders -- 2.1 Beneficiary -- 2.2 Volunteers -- 2.3 DSSG PT Lead Team -- 2.4 Ethics Committee -- 3 Project -- 3.1 Project Roles and Responsibilities -- 3.2 Project Lifecycle -- 4 Sustainability of the Framework -- 4.1 Sponsors -- 4.2 Partners -- 5 Future Improvements -- 5.1 Information Management -- 5.2 Marketing and Communication -- 5.3 Volunteer Engagement -- 5.4 Post-project Maintenance -- 6 Conclusions -- References -- Improving Smart Waste Collectionpg Using AutoML -- 1 Introduction -- 2 Smart Waste Management -- 3 Case Study -- 3.1 Data Set -- 3.2 Data Preprocessing -- 3.3 Exploratory Data Analysis -- 4 Experimental Results and Discussion -- 4.1 Experimental Setup -- 4.2 Classification Task: Prediction of Presence of Waste in Containers -- 4.3 Regression Task: Prediction of Quantity of Containers with Waste -- 4.4 AutoML - Classification and Regression Tasks -- 5 Conclusions -- References -- Applying Machine Learning for Traffic Forecasting in Porto, Portugal -- 1 Introduction -- 2 Methodology -- 2.1 Data Set Description -- 2.2 Exploratory Data Analysis -- 2.3 Target Definition -- 2.4 Data Processing and Feature Extraction -- 2.5 Modeling and Evaluation -- 3 Results -- 4 Discussion -- 5 Conclusion and Future Work -- References
IRLCov19: A Large COVID-19 Multilingual Twitter Dataset of Indian Regional Languages
Intro -- Preface -- Organization -- Contents - Part II -- Contents - Part I -- Machine Learning for CyberSecurity -- Workshop on Machine Learning for Cybersecurity (MLCS 2021) -- Organization -- MLCS 2021 Chairs -- Program Committee -- Dealing with Imbalanced Data in Multi-class Network Intrusion Detection Systems Using XGBoost -- 1 Introduction -- 2 Related Work -- 3 Materials and Methods -- 3.1 Oversampling -- 3.2 Feature Selection -- 3.3 XGBoost -- 3.4 OneVsOne and OneVsRest -- 3.5 Implementation Details -- 4 Evaluation Study -- 4.1 Dataset Description -- 4.2 Experimental Setting and Evaluation Metrics -- 4.3 Pipeline Analysis -- 4.4 Oversampling Versus Feature Relevance Analysis -- 4.5 Related Method Analysis -- 5 Conclusion -- References -- Adversarial Robustness of Probabilistic Network Embedding for Link Prediction -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Link Prediction with Probabilistic Network Embedding -- 3.2 Virtual Adversarial Attack -- 4 Quantifying the Sensitivity to Small Perturbations -- 4.1 Problem Statement and Re-Embedding (RE) -- 4.2 Incremental Partial Re-Embedding (IPRE) -- 4.3 Theoretical Approximation of the KL-Divergence -- 5 Experiments -- 5.1 Case Studies -- 5.2 Quality and Runtime of Approximations -- 6 Conclusion -- References -- Practical Black Box Model Inversion Attacks Against Neural Nets -- 1 Introduction -- 2 Background -- 2.1 The Fredrikson et al. Attack -- 2.2 Jacobian Dataset Augmentation -- 3 Methodology -- 3.1 Threat Model -- 3.2 Attack Pipeline -- 4 Experimental Evaluation -- 4.1 Experimental Set up -- 4.2 Effects of Training Data Composition -- 4.3 Realistic Scenario: Where the Target and Substitute Models Are Different -- 4.4 Inverting a CNN -- 4.5 Numerical Approximation -- 5 Related Work -- 6 Discussion -- 7 Conclusion and Future Work -- References
3.1 Conditional Variational Autoencoders for Generating Fixes -- 3.2 Enabling Diverse Samples Using a Best of Many Objective -- 3.3 DS-SampleFix: Encouraging Diversity with a Diversity-Sensitive Regularizer -- 3.4 Beam Search Decoding for Generating Fixes -- 3.5 Selecting Diverse Candidate Fixes -- 3.6 Model Architecture and Implementation Details -- 4 Experiments -- 4.1 Dataset -- 4.2 Evaluation -- 5 Conclusion -- References -- Linguistic Analysis of Stack Overflow Data: Native English vs Non-native English Speakers -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 4 Results -- 5 Conclusion -- References -- IReEn: Reverse-Engineering of Black-Box Functions via Iterative Neural Program Synthesis -- 1 Introduction -- 2 Related Work -- 3 Problem Overview -- 4 IReEn: Iterative Reverse-Engineering of Black-Box Functions -- 4.1 Finding Programs Given Input-Output Constraints -- 4.2 Sample Rejection Strategy -- 4.3 Iterative Refinement -- 4.4 Fine-Tuning -- 5 Experiments -- 5.1 The Karel Task and Dataset -- 5.2 Training and Inference -- 5.3 Functional Equivalence Metric -- 5.4 Evaluation -- 6 Conclusion -- References -- Machine Learning for Intelligent Industrial Design -- 1 Introduction -- 2 Industrial Design -- 3 Methodology -- 4 Machine Learning in Industrial Design -- 4.1 Data -- 4.2 Recent Studies -- 5 Research Opportunities -- 6 Conclusion -- References -- MIning DAta for financial applicationS -- 6th Workshop on MIning DAta for financial applicationS (MIDAS 2021) -- Organization -- Program Chairs -- Program Committee -- Financial Forecasting with Word Embeddings Extracted from News: A Preliminary Analysis -- 1 Introduction -- 2 Preliminary Notions -- 2.1 Word Representation -- 2.2 Contextual Word Embeddings -- 2.3 Neural Forecasting -- 3 Data -- 4 Experiments Setup -- 5 Preliminary Results -- 6 Conclusion and Overlook -- References
NBcoded: Network Attack Classifiers Based on Encoder and Naive Bayes Model for Resource Limited Devices -- 1 Introduction -- 2 Background -- 2.1 The Naive Bayes Classifier -- 2.2 Autoencoders -- 2.3 Related Work -- 3 Proposal -- 3.1 NBcoded Architecture -- 3.2 NBcoded Learning -- 4 Experimental Framework -- 4.1 Dataset Overview -- 4.2 Dataset Preprocess and Feature Selection -- 4.3 Evaluation Metrics -- 4.4 Machine Learning Models Parameters and Computer Characteristics -- 5 Experimental Study -- 6 Results -- 6.1 Discussion -- 7 Conclusions and Future Works -- References -- Workshop on Machine Learning in Software Engineering -- 1st Workshop on Machine Learning in Software Engineering (MLiSE 2021) -- Organization -- Organizing Committee -- Program Committee -- A Stacked Bidirectional LSTM Model for Classifying Source Codes Built in MPLs -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Bi-LSTM Neural Network -- 3.2 Stacked Bi-LSTM -- 4 Dataset and Preprocessing -- 5 Experimental Results -- 5.1 Hyperparameters -- 5.2 Activation Functions -- 5.3 Evaluation Methods -- 5.4 Results -- 6 Conclusion -- References -- Metamorphic Malware Behavior Analysis Using Sequential Pattern Mining -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 4 Analyzing API Calls with SPM -- 5 Results and Discussion -- 6 Conclusion -- References -- Applying Machine Learning to Risk Assessment in Software Projects -- 1 Introduction -- 2 Risk and Risk Management in Software Projects -- 3 Data and Methods -- 4 Results and Discussion -- 4.1 Risk Impact -- 4.2 Risk Likelihood -- 5 Conclusion -- References -- SampleFix: Learning to Generate Functionally Diverse Fixes -- 1 Introduction -- 2 Related Work -- 2.1 Neural Machine Translation -- 2.2 Variational Autoencoders -- 2.3 Learning-Based Program Repair -- 3 SampleFix: Generative Model for Diversified Code Fixes
Title Machine Learning and Principles and Practice of Knowledge Discovery in Databases
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6892158
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030937331
Volume 1525
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9EIvvEV5aYW4OUZ-xQ9uJTFqmhb1kKLeol3vukQFJ4odhPhV3Ph7zKzXazvlAFws78ZxIs8nz-zs980Q8iZw8swRgW9L35N2kGENyIBLmwvXEa4IcldtF5x_DE8ug9Or8dVg8LPDWtpV_G3244-6kv-xKsyBXVEl-w-WNTeFCTgH-8IRLAzHveDXDHXvJUWBlE111GvN-dd581IPa_0ThoPzJnOG1TYzZG0qud-UVQzdmKLF9XODmEQvP683iumRTs7PrIv5dGp54KwVNXa1VcKTFOmSKoMqN5XE5iKWi8VIcaq59sL4SN0UYFtZM5OsnbOvm33-vpLiYMaxvFGx7WwrizZxsKqbFFjHAms0m-n1jglFTVjAegBO600HtIMs-zoYRQHOdDsLXX7KiDgtHRN00yGwksbmLPGtdOjeQ2tzer31s682giO_lnEbhzCutdh7hbg716Nw_04UxUNycJyenn0yWT0v8oIocFBE1Nzarcs8tT91SA5ZeQMuDNxbVd6KAVRgs7hPDiSqXR6QgSwekntNjw-qX_mPyC8NNdpAjcLzoi3U9LCGGl3n1ECNGqjRVUEN1N7R3jOjBmj4ZQQaRaBRBM-IaphRBbMRNSCjCmQjfVUHYDAAeNHZ7DG5_JAuJie2bvZhM1iifLeliOCVwVE4HTkhvCriwMmcPMKNXJGzRERxNnbyfOwwCOG5ZDzJ4zhLQh4zySDyfEKGxbqQTwn8hQxWJT54l0gGOTitzIsZFyFPHJjg4oi87hhg-e2L4iWUy56Bjwht7LJUn2uy9DJ9PwnjBCLl-Nnf3Oc5udvC9AUZVtudfAlxbMVfafD8Bp7joSE
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+Learning+and+Principles+and+Practice+of+Knowledge+Discovery+in+Databases%3A+International+Workshops+of+ECML+PKDD+2021%2C+Virtual+Event%2C+September+13-17%2C+2021%2C+Proceedings%2C+Part+II&rft.au=Kamp%2C+Michael&rft.au=Koprinska%2C+Irena&rft.au=Bibal%2C+Adrien&rft.au=Bouadi%2C+Tassadit&rft.series=Communications+in+computer+and+information+science&rft.date=2022-02-18&rft.pub=Springer+International+Publishing&rft.isbn=9783030937324&rft.volume=1525&rft.externalDocID=9783030937331
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830309%2F9783030937331.jpg