DEXTER: Deep Encoding of External Knowledge for Named Entity Recognition in Virtual Assistants

Named entity recognition (NER) is usually developed and tested on text from well-written sources. However, in intelligent voice assistants, where NER is an important component, input to NER may be noisy because of user or speech recognition error. In applications, entity labels may change frequently...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Muralidharan, Deepak, Joel Ruben Antony Moniz, Zhang, Weicheng, Pulman, Stephen, Li, Lin, Barnes, Megan, Pan, Jingjing, Williams, Jason, Acero, Alex
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Named entity recognition (NER) is usually developed and tested on text from well-written sources. However, in intelligent voice assistants, where NER is an important component, input to NER may be noisy because of user or speech recognition error. In applications, entity labels may change frequently, and non-textual properties like topicality or popularity may be needed to choose among alternatives. We describe a NER system intended to address these problems. We test and train this system on a proprietary user-derived dataset. We compare with a baseline text-only NER system; the baseline enhanced with external gazetteers; and the baseline enhanced with the search and indirect labelling techniques we describe below. The final configuration gives around 6% reduction in NER error rate. We also show that this technique improves related tasks, such as semantic parsing, with an improvement of up to 5% in error rate.
AbstractList Named entity recognition (NER) is usually developed and tested on text from well-written sources. However, in intelligent voice assistants, where NER is an important component, input to NER may be noisy because of user or speech recognition error. In applications, entity labels may change frequently, and non-textual properties like topicality or popularity may be needed to choose among alternatives. We describe a NER system intended to address these problems. We test and train this system on a proprietary user-derived dataset. We compare with a baseline text-only NER system; the baseline enhanced with external gazetteers; and the baseline enhanced with the search and indirect labelling techniques we describe below. The final configuration gives around 6% reduction in NER error rate. We also show that this technique improves related tasks, such as semantic parsing, with an improvement of up to 5% in error rate.
Named entity recognition (NER) is usually developed and tested on text from well-written sources. However, in intelligent voice assistants, where NER is an important component, input to NER may be noisy because of user or speech recognition error. In applications, entity labels may change frequently, and non-textual properties like topicality or popularity may be needed to choose among alternatives. We describe a NER system intended to address these problems. We test and train this system on a proprietary user-derived dataset. We compare with a baseline text-only NER system; the baseline enhanced with external gazetteers; and the baseline enhanced with the search and indirect labelling techniques we describe below. The final configuration gives around 6% reduction in NER error rate. We also show that this technique improves related tasks, such as semantic parsing, with an improvement of up to 5% in error rate.
Author Barnes, Megan
Li, Lin
Pan, Jingjing
Acero, Alex
Muralidharan, Deepak
Zhang, Weicheng
Pulman, Stephen
Williams, Jason
Joel Ruben Antony Moniz
Author_xml – sequence: 1
  givenname: Deepak
  surname: Muralidharan
  fullname: Muralidharan, Deepak
– sequence: 2
  fullname: Joel Ruben Antony Moniz
– sequence: 3
  givenname: Weicheng
  surname: Zhang
  fullname: Zhang, Weicheng
– sequence: 4
  givenname: Stephen
  surname: Pulman
  fullname: Pulman, Stephen
– sequence: 5
  givenname: Lin
  surname: Li
  fullname: Li, Lin
– sequence: 6
  givenname: Megan
  surname: Barnes
  fullname: Barnes, Megan
– sequence: 7
  givenname: Jingjing
  surname: Pan
  fullname: Pan, Jingjing
– sequence: 8
  givenname: Jason
  surname: Williams
  fullname: Williams, Jason
– sequence: 9
  givenname: Alex
  surname: Acero
  fullname: Acero, Alex
BackLink https://doi.org/10.48550/arXiv.2108.06633$$DView paper in arXiv
https://doi.org/10.21437/Interspeech.2021-1877$$DView published paper (Access to full text may be restricted)
BookMark eNotkE1PAjEURRujiYj8AFc2cT34pu10ijsC40ckmhBiXDkpM6-kBFqcFoV_7wCu7ubcm5x7Rc6dd0jITQp9obIM7nWzsz99loLqg5Scn5EO4zxNlGDskvRCWAIAkznLMt4hX-Pic1ZMH-gYcUMLV_naugX1hha7iI3TK_rq_O8K6wVS4xv6ptdYt2C0cU-nWPmFs9F6R62jH7aJ27YxDMGGqF0M1-TC6FXA3n92yeyxmI2ek8n708toOEn0IOOJUQOBKatyNpcIlUZjDBfK1HMYyNoI5BkTslUSkCLIFCvODU8hVwxyQMG75PY0e5QvN41d62ZfHk4ojye0xN2J2DT-e4shlku_PeiFkmWSgVIH6g9ssGAO
ContentType Paper
Journal Article
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2108.06633
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2108_06633
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a953-f894e12c72b6e0caefff348fdb096df4e35246210401e061ec33f310782070e43
IEDL.DBID BENPR
IngestDate Mon Jan 08 05:42:44 EST 2024
Thu Oct 10 19:23:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a953-f894e12c72b6e0caefff348fdb096df4e35246210401e061ec33f310782070e43
OpenAccessLink https://www.proquest.com/docview/2562088633?pq-origsite=%requestingapplication%
PQID 2562088633
PQPubID 2050157
ParticipantIDs arxiv_primary_2108_06633
proquest_journals_2562088633
PublicationCentury 2000
PublicationDate 20210815
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 20210815
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8147776
SecondaryResourceType preprint
Snippet Named entity recognition (NER) is usually developed and tested on text from well-written sources. However, in intelligent voice assistants, where NER is an...
Named entity recognition (NER) is usually developed and tested on text from well-written sources. However, in intelligent voice assistants, where NER is an...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Computer Science - Artificial Intelligence
Computer Science - Computation and Language
Computer Science - Learning
Errors
Labels
Speech recognition
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3BToNAEN3UnrwYjZpWq9mD141ld6HgzVhqo7EmphpOEmaZTXqBpq1G_97ZBeLBeIWBhDebeW9g9sHYlY3CErQBUeigFJoIQACAFGiS0qKloul9tp8W0fxVP2Rh1mO82wtTbL5Wn40_MGyvqR9x9pqRUntsT0o3snX_nDUfJ70VVxv_G0ca0x_6U1o9X8wO2UEr9Phtk5kj1sPqmL1P04z04w2fIq55WpnaUQevLU9bN2b-2L3k4iQn-aIgtqJAyuk3f-mGfeqKryr-ttq4zR-cEHYisNptT9hyli7v5qL9w4EoklAJGycaA2kmEiIcmwKttUrHtgRqLEqrkdSRjujhqAlCIl40SlnSY87jbjJGrU5Zv6orHDAeuNvEMZDAQ-Jom0CcmHEEMgETaIAhG3hc8nVjYpE7yHIP2ZCNOqjydgFvc1JCkgoQnT77_8pzti_diIdziA1HrL_bfOAFcfQOLn2ifgDF3ZEE
  priority: 102
  providerName: Cornell University
Title DEXTER: Deep Encoding of External Knowledge for Named Entity Recognition in Virtual Assistants
URI https://www.proquest.com/docview/2562088633
https://arxiv.org/abs/2108.06633
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT4MwFG7ciIk3f2bqXHrwWgelY-DFRMe2aDaXZRpOElraZBdAmEYv_u2-dqAHEy8k_AgJr-V933t9_R5Cl8obpJwJThLmpIQBABDOOSVSBKmSCpym0dmezb3pE7uPBlGdcKvqssrGJxpHneZC58j7AM0U_gjPdW-KV6K7RunV1bqFRgtZFCIFu42s23C-WP5kWag3BM7sbpczjXhXPyk_1u9XEOlo4U5PN8y1zKU_ztggzHgfWYukkOUB2pHZIdo1hZmiOkIvozACxnmNR1IWOMxErsEG5wqHtX4zfmjSYhgIKJ4ngG_wIMyCT7xsyoPyDK8z_Lwu9XYRDGOiaWO2qY7Rahyu7qak7olAkmDgEuUHTDpUDCn3pC0SqZRyma9SDqFIqpgEPsU8-DgImyRAtRSuq4DBaVW8oS2Ze4LaWZ7JDsKOfo3vc6CEElBdBdwPhO1xGnDhMM5PUcfYJS62shexNllsTHaKuo2p4nrKV_HvAJ39f_sc7VFdGKJ1ZQdd1N6Ub_ICkH3De6jljye9ehDhbPIYwXH2FX4D_XemKg
link.rule.ids 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgFYKNT1Eo4IE1tI0dN2FhoCmFfgihgjoRxc5Z6pKEpCD495zdBAYk1iSKlDvn3rvz-R0hl1p4ieRKOjHvJQ5HAHCklK4DKkg0aAyaVmd7OhOjZ_6w8BZVwa2s2irrmGgDdZIpUyPvIDS7-EcIxm7yN8dMjTK7q9UIjU3S5Ayx2pwUH9791Fhc0UfGzNabmVa6qxMXn8uPK8xzjGynMONym_bSn1Bs8WW4S5qPcQ7FHtmAdJ9s2bZMVR6Q10G4QL55TQcAOQ1TlRmooZmmYaXeTMd1UYwi_aSzGNENH8Q18EWf6uagLKXLlL4sC3NYhKJHDGlMV-UhmQ_D-e3IqSYiOHHgMUf7AYeeq_quFNBVMWitGfd1IjERSTQHZFNc4Mdh0gQI1KAY08jfjCZevwucHZFGmqVwTGjPvMb3JRJCQEzXgfQD1RXSDaTqcSlb5NjaJcrXoheRMVlkTdYi7dpUUbXgy-jXPSf_374g26P5dBJN7mfjU7LjmhYRozDrtUljVbzDGWL8Sp5bR34Dawakjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEXTER%3A+Deep+Encoding+of+External+Knowledge+for+Named+Entity+Recognition+in+Virtual+Assistants&rft.jtitle=arXiv.org&rft.au=Muralidharan%2C+Deepak&rft.au=Joel+Ruben+Antony+Moniz&rft.au=Zhang%2C+Weicheng&rft.au=Pulman%2C+Stephen&rft.date=2021-08-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2108.06633