GIFAIR-FL: A Framework for Group and Individual Fairness in Federated Learning

In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated \textbf{L}earning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of client groups to drive the optimizer to...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Yue, Xubo, Maher Nouiehed, Raed Al Kontar
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated \textbf{L}earning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of client groups to drive the optimizer to fair solutions. Our framework \texttt{GIFAIR-FL} can accommodate both global and personalized settings. Theoretically, we show convergence in non-convex and strongly convex settings. Our convergence guarantees hold for both \(i.i.d.\) and non-\(i.i.d.\) data. To demonstrate the empirical performance of our algorithm, we apply our method to image classification and text prediction tasks. Compared to existing algorithms, our method shows improved fairness results while retaining superior or similar prediction accuracy.
AbstractList Informs Journal on Data Science, 2022 In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated \textbf{L}earning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of client groups to drive the optimizer to fair solutions. Our framework \texttt{GIFAIR-FL} can accommodate both global and personalized settings. Theoretically, we show convergence in non-convex and strongly convex settings. Our convergence guarantees hold for both $i.i.d.$ and non-$i.i.d.$ data. To demonstrate the empirical performance of our algorithm, we apply our method to image classification and text prediction tasks. Compared to existing algorithms, our method shows improved fairness results while retaining superior or similar prediction accuracy.
In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated \textbf{L}earning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of client groups to drive the optimizer to fair solutions. Our framework \texttt{GIFAIR-FL} can accommodate both global and personalized settings. Theoretically, we show convergence in non-convex and strongly convex settings. Our convergence guarantees hold for both \(i.i.d.\) and non-\(i.i.d.\) data. To demonstrate the empirical performance of our algorithm, we apply our method to image classification and text prediction tasks. Compared to existing algorithms, our method shows improved fairness results while retaining superior or similar prediction accuracy.
Author Yue, Xubo
Raed Al Kontar
Maher Nouiehed
Author_xml – sequence: 1
  givenname: Xubo
  surname: Yue
  fullname: Yue, Xubo
– sequence: 2
  fullname: Maher Nouiehed
– sequence: 3
  fullname: Raed Al Kontar
BackLink https://doi.org/10.48550/arXiv.2108.02741$$DView paper in arXiv
https://doi.org/10.1287/ijds.2022.0022$$DView published paper (Access to full text may be restricted)
BookMark eNotj01LwzAAhoMoOOd-gCcDnlvz2SbexjC1UBRk95I2iWRuaU3Xqf_ebvP0Xh5enucGXIYuWADuMEqZ4Bw96vjjDynBSKSI5AxfgBmhFCeCEXINFsOwQQiRLCec0xl4LUq1LN8TVT3BJVRR7-x3Fz-h6yIsYjf2UAcDy2D8wZtRb6HSPgY7DNAHqKyxUe-tgZXVMfjwcQuunN4OdvG_c7BWz-vVS1K9FeVqWSVacpyQhknjMGZHwbZFmRME8YZTioTQjBLEeMOclBLJ1rTaOMpNznLZNiyTuaBzcH--PcXWffQ7HX_rY3R9ip6IhzPRx-5rtMO-3nRjDJNTPYVLlgmCKf0DdIlYuw
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/publicdomain/zero/1.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/publicdomain/zero/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2108.02741
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2108_02741
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a951-2b49df1140274cc06f8205b533088a432045b4f99909cdcadf35d7479cb469783
IEDL.DBID BENPR
IngestDate Mon Jan 08 05:39:01 EST 2024
Thu Oct 10 18:22:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a951-2b49df1140274cc06f8205b533088a432045b4f99909cdcadf35d7479cb469783
OpenAccessLink https://www.proquest.com/docview/2559468213?pq-origsite=%requestingapplication%
PQID 2559468213
PQPubID 2050157
ParticipantIDs arxiv_primary_2108_02741
proquest_journals_2559468213
PublicationCentury 2000
PublicationDate 20220308
PublicationDateYYYYMMDD 2022-03-08
PublicationDate_xml – month: 03
  year: 2022
  text: 20220308
  day: 08
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8358879
SecondaryResourceType preprint
Snippet In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated...
Informs Journal on Data Science, 2022 In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Computer Science - Distributed, Parallel, and Cluster Computing
Computer Science - Learning
Convergence
Image classification
Machine learning
Regularization
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwGP3YdvIiisqmU3LwWt3yo6behphtIhNkwm4lP2WXKtsU_3y_pK0eROipJBC-tHnvtS8vAJeBUVe49CIZkXGWm0yPnM3y3BiEE7x0cvku8tkLf1iJVQdIuxdGb77Wn3U-sNleox6RVylhpQtdSqNla_q0qn9Opiiupv1vO-SY6dafpTXhhTqA_YbokUk9M4fQ8dURLKZzNZk_Z-rxlkyIao1RBJkjSV-BCAp7Mv_ZJEWUXm_iYkTWFVEx9wGpoSNNKOrrMSzV_fJuljUnGmQ6HmdPDS9cQAUSh2rtKA-Iv8JEg6eUmrMYDW94QM42Kqyz2gUmHPL9whpUsTeSnUCveqt8HwgTmnM_DhHuuRWhsIhBeuw91Z5JEQbQT3Uo3-vQijKWqEwlGsCwLU3ZPLDbMioLnks6Zqf_9zyDPRrd_9GCJYfQ220-_Dli8s5cpIn5BggViNw
  priority: 102
  providerName: Cornell University
Title GIFAIR-FL: A Framework for Group and Individual Fairness in Federated Learning
URI https://www.proquest.com/docview/2559468213
https://arxiv.org/abs/2108.02741
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4IxMSbz4Ai2YPX5dHdlq0Xg4YFjCIhmHBr9lXDpWBB48nf7uxS8GBi0jTpNk2a2Xbmm9lvv0HoJqWBiY3_kVRIGI0UkW2jSRQpBeEEDulZvuNo-Moe5-G8KLitC1rlzid6R22W2tXIWw76sogHHXq3eieua5RbXS1aaJRQJYBMoV1Glfv-eDLdV1mCqAsP0u1yphfvasn8a_HZhEyHN712C6BSP_THGfsII45RZSJXNj9BBzY7RYeemKnXZ2g8GIneaErE0y3uYbGjUmHAmtjXjbDMDB7tt1VhIRe5c194kWHhlCIATBpcyKi-naOZ6M8ehqTogUAkYB8SKBabFHIW96pat6MUInaoHCWUc8moE5NXLAWU14610dKkNDSQIcRaQd7b5fQClbNlZqsI01AyZjupAwhMh2msIWrJjrWBtJSHaQ1VvR2S1VbmInEmSryJaqi-M01SfOLr5HdCLv-_fYWOArdnwBG3eB2VN_mHvYZIvlENVOJi0CgmDa4GL3M4P3_3fwBb354O
link.rule.ids 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oxOjNZ0BR9-B1eXS3pfVi0FCpYkMIJtyafRIuBQsaf76zS8GDiUlP2zTZzG5nvpn99huE7gz1VKTcjyR8wmggCG8rSYJACAgn8HDH8k2DwTt7mfrTsuC2KmmVW5_oHLVaSFsjb1noy4LQ69CH5QexXaPs6WrZQmMfVa1UFSRf1cd-Ohrvqixe0IUP6eY404l3tXjxPf9qQqYTNp12C6BSN_THGbsIEx-j6ogvdXGC9nR-ig4cMVOuzlD6nMS9ZEzi4T3u4XhLpcKANbGrG2GeK5zsrlXhmM8L677wPMexVYoAMKlwKaM6O0eTuD95GpCyBwLhgH2IJ1ikDOQsdqpStgMDEdsXlhIahpxRKyYvmAGU146kklwZ6ivIECIpIO_thvQCVfJFrmsIU58zpjvGAgQmfRNJiFq8o7XHNQ19U0c1Z4dsuZG5yKyJMmeiOmpsTZOVW3yV_S7I5f-vb9HhYPI2zIZJ-nqFjjx7f8CSuMIGqqyLT30NUX0tbsql-wHfZJ3i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIFAIR-FL%3A+A+Framework+for+Group+and+Individual+Fairness+in+Federated+Learning&rft.jtitle=arXiv.org&rft.au=Yue%2C+Xubo&rft.au=Maher+Nouiehed&rft.au=Raed+Al+Kontar&rft.date=2022-03-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2108.02741