GIFAIR-FL: A Framework for Group and Individual Fairness in Federated Learning
In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated \textbf{L}earning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of client groups to drive the optimizer to...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
08.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated \textbf{L}earning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of client groups to drive the optimizer to fair solutions. Our framework \texttt{GIFAIR-FL} can accommodate both global and personalized settings. Theoretically, we show convergence in non-convex and strongly convex settings. Our convergence guarantees hold for both \(i.i.d.\) and non-\(i.i.d.\) data. To demonstrate the empirical performance of our algorithm, we apply our method to image classification and text prediction tasks. Compared to existing algorithms, our method shows improved fairness results while retaining superior or similar prediction accuracy. |
---|---|
AbstractList | Informs Journal on Data Science, 2022 In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes
\textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated
\textbf{L}earning settings. By adding a regularization term, our algorithm
penalizes the spread in the loss of client groups to drive the optimizer to
fair solutions. Our framework \texttt{GIFAIR-FL} can accommodate both global
and personalized settings. Theoretically, we show convergence in non-convex and
strongly convex settings. Our convergence guarantees hold for both $i.i.d.$ and
non-$i.i.d.$ data. To demonstrate the empirical performance of our algorithm,
we apply our method to image classification and text prediction tasks. Compared
to existing algorithms, our method shows improved fairness results while
retaining superior or similar prediction accuracy. In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated \textbf{L}earning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of client groups to drive the optimizer to fair solutions. Our framework \texttt{GIFAIR-FL} can accommodate both global and personalized settings. Theoretically, we show convergence in non-convex and strongly convex settings. Our convergence guarantees hold for both \(i.i.d.\) and non-\(i.i.d.\) data. To demonstrate the empirical performance of our algorithm, we apply our method to image classification and text prediction tasks. Compared to existing algorithms, our method shows improved fairness results while retaining superior or similar prediction accuracy. |
Author | Yue, Xubo Raed Al Kontar Maher Nouiehed |
Author_xml | – sequence: 1 givenname: Xubo surname: Yue fullname: Yue, Xubo – sequence: 2 fullname: Maher Nouiehed – sequence: 3 fullname: Raed Al Kontar |
BackLink | https://doi.org/10.48550/arXiv.2108.02741$$DView paper in arXiv https://doi.org/10.1287/ijds.2022.0022$$DView published paper (Access to full text may be restricted) |
BookMark | eNotj01LwzAAhoMoOOd-gCcDnlvz2SbexjC1UBRk95I2iWRuaU3Xqf_ebvP0Xh5enucGXIYuWADuMEqZ4Bw96vjjDynBSKSI5AxfgBmhFCeCEXINFsOwQQiRLCec0xl4LUq1LN8TVT3BJVRR7-x3Fz-h6yIsYjf2UAcDy2D8wZtRb6HSPgY7DNAHqKyxUe-tgZXVMfjwcQuunN4OdvG_c7BWz-vVS1K9FeVqWSVacpyQhknjMGZHwbZFmRME8YZTioTQjBLEeMOclBLJ1rTaOMpNznLZNiyTuaBzcH--PcXWffQ7HX_rY3R9ip6IhzPRx-5rtMO-3nRjDJNTPYVLlgmCKf0DdIlYuw |
ContentType | Paper Journal Article |
Copyright | 2022. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/publicdomain/zero/1.0 |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://creativecommons.org/publicdomain/zero/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKY GOX |
DOI | 10.48550/arxiv.2108.02741 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2108_02741 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS AKY GOX |
ID | FETCH-LOGICAL-a951-2b49df1140274cc06f8205b533088a432045b4f99909cdcadf35d7479cb469783 |
IEDL.DBID | BENPR |
IngestDate | Mon Jan 08 05:39:01 EST 2024 Thu Oct 10 18:22:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a951-2b49df1140274cc06f8205b533088a432045b4f99909cdcadf35d7479cb469783 |
OpenAccessLink | https://www.proquest.com/docview/2559468213?pq-origsite=%requestingapplication% |
PQID | 2559468213 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2108_02741 proquest_journals_2559468213 |
PublicationCentury | 2000 |
PublicationDate | 20220308 |
PublicationDateYYYYMMDD | 2022-03-08 |
PublicationDate_xml | – month: 03 year: 2022 text: 20220308 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.8358879 |
SecondaryResourceType | preprint |
Snippet | In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual \textbf{FAIR}ness to \textbf{F}ederated... Informs Journal on Data Science, 2022 In this paper we propose \texttt{GIFAIR-FL}: a framework that imposes \textbf{G}roup and \textbf{I}ndividual... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Algorithms Computer Science - Distributed, Parallel, and Cluster Computing Computer Science - Learning Convergence Image classification Machine learning Regularization |
SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwGP3YdvIiisqmU3LwWt3yo6behphtIhNkwm4lP2WXKtsU_3y_pK0eROipJBC-tHnvtS8vAJeBUVe49CIZkXGWm0yPnM3y3BiEE7x0cvku8tkLf1iJVQdIuxdGb77Wn3U-sNleox6RVylhpQtdSqNla_q0qn9Opiiupv1vO-SY6dafpTXhhTqA_YbokUk9M4fQ8dURLKZzNZk_Z-rxlkyIao1RBJkjSV-BCAp7Mv_ZJEWUXm_iYkTWFVEx9wGpoSNNKOrrMSzV_fJuljUnGmQ6HmdPDS9cQAUSh2rtKA-Iv8JEg6eUmrMYDW94QM42Kqyz2gUmHPL9whpUsTeSnUCveqt8HwgTmnM_DhHuuRWhsIhBeuw91Z5JEQbQT3Uo3-vQijKWqEwlGsCwLU3ZPLDbMioLnks6Zqf_9zyDPRrd_9GCJYfQ220-_Dli8s5cpIn5BggViNw priority: 102 providerName: Cornell University |
Title | GIFAIR-FL: A Framework for Group and Individual Fairness in Federated Learning |
URI | https://www.proquest.com/docview/2559468213 https://arxiv.org/abs/2108.02741 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4IxMSbz4Ai2YPX5dHdlq0Xg4YFjCIhmHBr9lXDpWBB48nf7uxS8GBi0jTpNk2a2Xbmm9lvv0HoJqWBiY3_kVRIGI0UkW2jSRQpBeEEDulZvuNo-Moe5-G8KLitC1rlzid6R22W2tXIWw76sogHHXq3eieua5RbXS1aaJRQJYBMoV1Glfv-eDLdV1mCqAsP0u1yphfvasn8a_HZhEyHN712C6BSP_THGfsII45RZSJXNj9BBzY7RYeemKnXZ2g8GIneaErE0y3uYbGjUmHAmtjXjbDMDB7tt1VhIRe5c194kWHhlCIATBpcyKi-naOZ6M8ehqTogUAkYB8SKBabFHIW96pat6MUInaoHCWUc8moE5NXLAWU14610dKkNDSQIcRaQd7b5fQClbNlZqsI01AyZjupAwhMh2msIWrJjrWBtJSHaQ1VvR2S1VbmInEmSryJaqi-M01SfOLr5HdCLv-_fYWOArdnwBG3eB2VN_mHvYZIvlENVOJi0CgmDa4GL3M4P3_3fwBb354O |
link.rule.ids | 228,230,783,787,888,12777,21400,27937,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oxOjNZ0BR9-B1eXS3pfVi0FCpYkMIJtyafRIuBQsaf76zS8GDiUlP2zTZzG5nvpn99huE7gz1VKTcjyR8wmggCG8rSYJACAgn8HDH8k2DwTt7mfrTsuC2KmmVW5_oHLVaSFsjb1noy4LQ69CH5QexXaPs6WrZQmMfVa1UFSRf1cd-Ohrvqixe0IUP6eY404l3tXjxPf9qQqYTNp12C6BSN_THGbsIEx-j6ogvdXGC9nR-ig4cMVOuzlD6nMS9ZEzi4T3u4XhLpcKANbGrG2GeK5zsrlXhmM8L677wPMexVYoAMKlwKaM6O0eTuD95GpCyBwLhgH2IJ1ikDOQsdqpStgMDEdsXlhIahpxRKyYvmAGU146kklwZ6ivIECIpIO_thvQCVfJFrmsIU58zpjvGAgQmfRNJiFq8o7XHNQ19U0c1Z4dsuZG5yKyJMmeiOmpsTZOVW3yV_S7I5f-vb9HhYPI2zIZJ-nqFjjx7f8CSuMIGqqyLT30NUX0tbsql-wHfZJ3i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIFAIR-FL%3A+A+Framework+for+Group+and+Individual+Fairness+in+Federated+Learning&rft.jtitle=arXiv.org&rft.au=Yue%2C+Xubo&rft.au=Maher+Nouiehed&rft.au=Raed+Al+Kontar&rft.date=2022-03-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2108.02741 |