Nanotechnology in Textiles Advances and Developments in Polymer Nanocomposites

In recent times, polymer nanocomposites have attracted a great deal of scientific interest due to their unique advantages over conventional plastic materials, such as superior strength, modulus, thermal stability, thermal and electrical conductivity, and gas barrier. They are finding real and fast-g...

Full description

Saved in:
Bibliographic Details
Main Author Joshi, Mangala
Format eBook
LanguageEnglish
Published Milton CRC Press 2020
Jenny Stanford Publishing
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 6.1.1.1 Silk fibroin protein -- 6.1.1.2 Silk sericin protein -- 6.1.2 Nanoclays Used for the Formation of Silk Bionanocomposite -- 6.2 Methods for the Formation of Silk Protein and Nanoclay Bionanocomposites -- 6.2.1 Formation of Nanocomposite Films -- 6.2.1.1 Film formation through the spin coating method -- 6.2.1.2 Film formation through the solution intercalation method -- 6.2.1.3 Nanocomposite films through the LBL technique -- 6.2.2 Formation of Nanocomposites Hydrogels -- 6.2.3 Formation of Nanocomposite Nanofibers -- 6.3 Properties of Silk Protein and Nanoclay Composites -- 6.3.1 Structural Properties -- 6.3.1.1 Conformation properties of silk fibroin nanocomposite through FTIR -- 6.3.2 Thermal Properties -- 6.3.3 Mechanical Properties -- 6.3.4 Gas Barrier Properties -- 6.3.5 Optical Properties -- 6.4 Applications of Silk/Clay Bionanocomposites -- 6.4.1 Biomaterials for Bone Tissue Engineering -- 6.4.2 Wound Dressing Material -- 6.4.3 Biodegradable Packaging -- 6.4.4 Protective Mask -- 6.5 Conclusions -- 7: Recent Developments on Antimicrobial Polymer Nanocomposites: Focus on Fibers and Yarns -- 7.1 Introduction -- 7.2 Recent Developments in Antimicrobial Polymer Nanocomposites -- 7.2.1 Ag NP-Based Polymer Nanocomposites -- 7.2.2 Cu NP-Based Polymer Nanocomposites -- 7.2.3 TiO2 NP-Based Polymer Nanocomposites -- 7.2.4 ZnO NP-Based Polymer Nanocomposites -- 7.2.5 Modified Clays and Modified Clay-Based Antimicrobial Polymer Nanocomposites -- 7.2.5.1 Silver-exchanged montmorillonite -- 7.2.5.2 Copper-exchanged montmorillonite -- 7.2.5.3 Modified clay-based antimicrobial polymer nanocomposites -- 7.3 Antimicrobial Polymer Nanocomposite Yarns, Filaments, and Fibers -- 7.4 Mechanism of Antimicrobial Action -- 7.4.1 Mechanism in Metal-Based Antimicrobials -- 7.4.2 Mechanism of Antimicrobial Activity in Other Systems -- 7.5 Conclusions
  • 4.2.3 Effect of Processing Parameters on Electrical Conductivity -- 4.3 Electrical Conductivity of Nanocomposite Fibers -- 4.3.1 Recent Developments to Improve Electrical Properties -- 4.3.1.1 Morphological control of nanofiller networks -- 4.3.1.2 Combination of different nanomaterials -- 4.3.1.3 Combination of carbon nanomaterials with conducting polymers -- 4.3.1.4 Layer-by-layer deposition technique -- 4.3.1.5 In situ polymerization technique -- 4.4 Applications of Nanocomposite Fibers -- 4.4.1 Application in Sensors and Biosensors -- 4.4.2 Application in Textile-Based Humidity Sensors -- 4.4.3 Application in Electromechanical Sensing -- 4.4.4 Application in Supercapacitors -- 4.4.5 Application in Tissue Engineering -- 4.4.6 Application in Electronic Textiles -- 4.5 Conclusions -- 5: Dyeability of Polymer Nanocomposite Fibers -- 5.1 Introduction -- 5.2 Nanomaterials and Polymer Nanocomposites -- 5.2.1 Potential of Nanomaterials for Improving Dyeability of Synthetic Fibers -- 5.2.2 Nanomaterials Used for Improving the Dyeability of Fibers -- 5.2.2.1 Nanoclay -- 5.2.2.2 POSS -- 5.2.2.3 Other nanomaterials -- 5.3 Evaluation of Dyeing Behavior of Polymer Nanocomposite Fibers -- 5.4 Dyeability of PP Nanocomposite Fibers -- 5.4.1 PP/Clay Nanocomposites -- 5.4.2 Compatibilized PP/Clay Nanocomposites -- 5.4.3 PP/POSS Nanocomposites -- 5.4.4 PP/Phosphor Strontium Aluminate Nanocomposite -- 5.5 Dyeability of PET Nanocomposite Fibers -- 5.5.1 PET/Clay Nanocomposites -- 5.5.2 PET/Silica Nanocomposites -- 5.5.3 PET/Silver Nanocomposites -- 5.5.4 PET/Nano-TiO2/Nano-ZnO Nanocomposites -- 5.6 Dyeability of Polyamide Nanocomposite Fibers -- 5.7 Dyeability of Polyurethane Nanocomposite Fibers -- 5.8 Dyeability of PLA Nanocomposite Fibers -- 5.9 Conclusion -- 6: Bionanocomposites Based on Silk Proteins and Nanoclay -- 6.1 Introduction -- 6.1.1 Silk Protein
  • Part II: Polymer Nanocomposite Nanofibers -- 8: Electrospun Nanofibrous Webs for Gas Sensing Applications -- 8.1 Introduction -- 8.2 Sensors Based on Electrochemical Methods -- 8.2.1 Metal Oxide Semiconductors -- 8.2.2 Conductive Polymers -- 8.2.3 Carbon-Based Nanomaterials -- 8.3 Colorimetric Method -- 8.3.1 Conjugated Polymers -- 8.3.2 Colorimetric Detection through an Embedded Dye -- 8.4 Conclusions and Perspectives -- 9: Recent Advances in Electrospun Nanocomposite NanofibrousWebs for Filtration -- 9.1 Introduction -- 9.2 Current Scenario of the Nanofiber Filtration Market -- 9.3 Electrospinning Technique and Influence of Parameters on Fiber Morphology -- 9.3.1 Parameters Affecting the Electrospinning Process -- 9.3.2 Electrospinning of Nanofibers on an Industrial Scale -- 9.4 Filtration Mechanism -- 9.5 Surface Characterization and Filter Efficiency Testing Methods -- 9.6 Filtration Performance of Nanofibers -- 9.7 Dust Holding Capacity and Regeneration Efficiency -- 9.8 Depth and Surface Filters -- 9.9 Filter Regulatory Standards -- 9.10 Effect of Nanofiber Property on Filtration -- 9.11 Structural Arrangement of Filters for Increased Performance -- 9.11.1 Multilayer Stacking of a Nanofibrous Mat -- 9.11.2 Multilevel/Hierarchically Structured Filter Media -- 9.11.3 Nanonets -- 9.11.4 Nanofibrous Aerogels -- 9.11.5 Electrets -- 9.11.6 Surface Modification of Nanofibers -- 9.11.7 Uniformity of Nanofiber Deposition -- 9.11.8 Adhesion of Nanofibers over a Substrate -- 9.12 Polymeric Composite Nanofibers for Filtration Applications -- 9.12.1 Polymer/Polymer Composite Nanofibers -- 9.12.2 Polymer/Nanoparticle Composite Nanofibers -- 9.12.3 Polymer/Biomaterial Composite Nanofibers -- 9.12.4 Polymer/MOF Composite Nanofibers -- 9.13 Other Filtration Applications -- 9.13.1 Fuel Filtration -- 9.13.2 Water Filtration -- 9.13.3 Antimicrobial Filters
  • 12.5 Application of Nanofibers inWater/Air Filtration
  • Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Part I: Polymer Nanocomposite Fibers -- 1: Advances in High-Strength Fibers Based on Nylon-Clay Nanocomposites -- 1.1 Introduction -- 1.2 Review on Research for Nylon 6/Clay Hybrid -- 1.2.1 Flame Retardancy/Thermal Stability -- 1.2.2 Abrasion/Wear Resistance -- 1.2.3 Dyeability -- 1.2.4 Tensile Properties -- 1.3 General Characteristics of NCH in Fiber Processing -- 1.3.1 Crystallization Behavior under Quiescent Condition -- 1.3.2 Rheological Characteristics and Spinning Behavior -- 1.3.3 Structure and Properties of As-Spun Fibers -- 1.3.4 Improvement of Mechanical Properties through In-Line Drawing -- 1.3.5 Fiber Structure Formation in a Bicomponent High-Speed Spinning Process -- 1.4 Summary -- 2: POSS-Based Polymer Nanocomposite Fibers and Nanofibers: A Review on Recent Developments -- 2.1 Introduction -- 2.2 Synthesis and Structure Development in POSS -- 2.3 POSS-Based Polymer Nanocomposites -- 2.3.1 Vinyl-Based POSS Nanocomposites -- 2.3.2 Polyamide- and Polyimide-Based POSS Nanocomposites -- 2.3.3 Polyurethane-Based POSS Nanocomposites -- 2.3.4 Epoxy-Based POSS Nanocomposites -- 2.3.5 POSS Nanocomposites Based on Other Polymers -- 2.4 POSS-Based Nanocomposite Fibers -- 2.5 POSS-Based Nanofibers -- 2.6 Conclusion -- 3: Development in PCL-Based Antimicrobial Nanocomposites Fibers -- 3.1 Introduction -- 3.2 Nanofillers in Electrospun PCL Fibers -- 3.2.1 Nanohydroxyapatite -- 3.2.2 Nanoclay -- 3.2.3 Nanochitosan -- 3.2.4 Nanosilver -- 3.2.5 Zinc Oxide Nanoparticles -- 3.3 Conclusions -- 4: Polymer Nanocomposite Fibers Based on Carbon Nanomaterial for Enhanced Electrical Properties -- 4.1 Introduction -- 4.2 Production of Nanocomposite Fibers -- 4.2.1 Production Techniques -- 4.2.2 Dispersion of Carbon Nanomaterials in Polymers
  • 9.13.4 High-Temperature Filters -- 9.13.5 Nanofibers in Protective Clothing Applications -- 9.13.6 Personal Respiratory Masks for Protection from Air-Borne Pollution -- 9.13.7 Vehicle and Indoor Air Filtration -- 9.13.8 Salt Separation/Desalination -- 9.13.9 Membrane Distillation -- 9.13.10 Metal Ion Separation or Heavy Metal Ion Removal -- 9.13.11 Food and Beverage Industry -- 9.14 Future Perspective -- 10: Developments in Antimicrobial Biopolymer Composite-Based ElectrospunWebs -- 10.1 Introduction -- 10.2 Alginate Biopolymer-Based Electrospun Nanocomposites for Antibacterial Applications -- 10.3 Gelatin Biopolymer-Based Electrospun Nanocomposite for Antibacterial Applications -- 10.4 Cellulose Biopolymer-Based Electrospun Nanocomposite for Antibacterial Applications -- 10.5 Chitosan Biopolymer-Based Electrospun Nanocomposite for Antibacterial Applications -- 10.6 Conclusions -- 11: Recent Developments in Transdermal Drug Delivery Systems Based on an Electrospun Nanofibrous Scaffold -- 11.1 Human Dermal Physiology -- 11.2 Skin and Drug Delivery -- 11.3 Electrospun Nanofibrous Scaffolds for Topical Drug Delivery -- 11.4 Topical Application of Electrospun Scaffolds as a Drug Delivery System -- 11.4.1 InfectiousWound Healing -- 11.4.2 ChronicWound Healing -- 11.4.3 Cosmetic -- 11.4.4 Anesthetics -- 11.4.5 Keloids -- 11.4.6 Electrospun Sutures -- 11.5 Conclusion -- 12: Developments in Antimicrobial Composite Nanofibers for Bacterial Filtration -- 12.1 Introduction -- 12.2 Nanofibers and Composite Nanofibers -- 12.3 Metal Oxide Nanoparticle-Polymer Composite Nanofibers -- 12.4 Metal Nanoparticle-Polymer Composite Nanofibers -- 12.4.1 In situ Inclusion of Nanoparticles in Polymer Solution -- 12.4.2 Ag-Polymer Composite Nanofibers by a Silver Mirror Reaction -- 12.4.3 Atmospheric Plasma Treatment -- 12.4.4 Bimetallic-Polymer Composite Nanofibers