Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere

On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy et al . now propose that war...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 459; no. 7249; pp. 978 - 982
Main Authors Roy, Mousumi, Jordan, Thomas H., Pederson, Joel
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.06.2009
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature08052

Cover

Loading…
Abstract On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy et al . now propose that warming of the thicker, more iron-depleted Colorado plateau lithosphere over the 35–40 million years following removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. This model can also provide an explanation for the observed contrasts between the Colorado plateau margins and interior. There has been a long-standing debate about the forces that drove uplift of the low-relief and tectonically-stable Colorado plateau, which experienced about 2 km of rock uplift without significant internal deformation. Warming of the thicker, more iron-depleted Colorado plateau lithosphere over 35–40 million years—following removal of the Farallon plate from beneath North America—is now proposed to be the primary mechanism for driving rock uplift. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate 1 , 2 , 3 , 4 , 5 . While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension 6 , the plateau experienced ∼2 km of rock uplift 7 without significant internal deformation 2 , 3 , 4 . Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere 8 , 9 , 10 over 35–40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America 11 , 12 is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3–6 km Myr -1 and is consistent with lower seismic velocities 13 and more negative Bouguer gravity 14 at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
AbstractList On the up in Colorado
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate (1-5). While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension (6), the plateau experienced ~2km of rock uplift (7) without significant internal deformation (2-4). Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere (8-10) over 35-40Myr following mid-Cenozoic removal of the Farallon plate from beneath North America (11,12) is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km [Myr.sup.-1] and is consistent with lower seismic velocities (13) and more negative Bouguer gravity (14) at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy et al . now propose that warming of the thicker, more iron-depleted Colorado plateau lithosphere over the 35–40 million years following removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. This model can also provide an explanation for the observed contrasts between the Colorado plateau margins and interior. There has been a long-standing debate about the forces that drove uplift of the low-relief and tectonically-stable Colorado plateau, which experienced about 2 km of rock uplift without significant internal deformation. Warming of the thicker, more iron-depleted Colorado plateau lithosphere over 35–40 million years—following removal of the Farallon plate from beneath North America—is now proposed to be the primary mechanism for driving rock uplift. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate 1 , 2 , 3 , 4 , 5 . While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension 6 , the plateau experienced ∼2 km of rock uplift 7 without significant internal deformation 2 , 3 , 4 . Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere 8 , 9 , 10 over 35–40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America 11 , 12 is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3–6 km Myr -1 and is consistent with lower seismic velocities 13 and more negative Bouguer gravity 14 at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
Here we show that even if the contributions from minor Laramide deformation4 and flexural isostatic responses to extension at the plateau margins and to net Cenozoic erosion are removed, there is >1.6 km of residual rock uplift that must be explained by post- Laramide tectonic processes. The voluminous mid-Tertiary (23-40 Myr ago) ignimbrite flare-up accompanied the transition in deformation styles in the western United States from Mesozoic subduction to Neogene- present extension.\n Additionally, part of the discrepancy between predicted and observed rock uplift may be due to non-zero average Laramide rock uplift.
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension6, the plateau experienced ~2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35–40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3–6 km Myr-1 and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy et al. now propose that warming of the thicker, more iron-depleted Colorado plateau lithosphere over the 35-40 million years following removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. This model can also provide an explanation for the observed contrasts between the Colorado plateau margins and interior. There has been a long-standing debate about the forces that drove uplift of the low-relief and tectonically-stable Colorado plateau, which experienced about 2 km of rock uplift without significant internal deformation. Warming of the thicker, more iron-depleted Colorado plateau lithosphere over 35-40 million years--following removal of the Farallon plate from beneath North America--is now proposed to be the primary mechanism for driving rock uplift. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate.sup.1,2,3,4,5. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension.sup.6, the plateau experienced ~2 km of rock uplift.sup.7 without significant internal deformation.sup.2,3,4. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere.sup.8,9,10 over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America.sup.11,12 is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr.sup.-1 and is consistent with lower seismic velocities.sup.13 and more negative Bouguer gravity.sup.14 at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.
Audience Academic
Author Roy, Mousumi
Jordan, Thomas H.
Pederson, Joel
Author_xml – sequence: 1
  givenname: Mousumi
  surname: Roy
  fullname: Roy, Mousumi
  email: mroy@unm.edu
  organization: Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
– sequence: 2
  givenname: Thomas H.
  surname: Jordan
  fullname: Jordan, Thomas H.
  organization: Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA
– sequence: 3
  givenname: Joel
  surname: Pederson
  fullname: Pederson, Joel
  organization: Department of Geology, Utah State University, Logan, Utah 84322, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21549798$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19536263$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1564649$$D View this record in Osti.gov
BookMark eNqV011v0zAUBuAIDbFucMU9ikAgIchwbMdOLquKj0njQzDEpeU4J62nxO5sR7B_j0tLm0qdBsqFJes5r08Sn5PkyFgDSfI4R2c5IuUbI8PgAJWowPeSSU45yygr-VEyQQiXGSoJO05OvL9CCBU5pw-S47wqCMOMTJKPM9tZJxubfulkADmkvZz3Mmjfp9I06bDsdBvS-ib9KV2vzTy1bbqAAM7OwYAdfNrpsLB-uQAHD5P7rew8PNqsp8n3d28vZx-yi8_vz2fTi0yWiIdM8aap85JzTnBTK0pqDgiKoiESqZogjlRDm9VKGGllheMuLXGjSgUMaEtOk6frXOuDFl7pAGqhrDGggsgLRhmtInqxRktnrwfwQfTaK-g6-advwTgpCcJ0l7aFV3ZwJr6AwIhSRiq2Snu2RnPZgdCmtcFJtUoUUxZjEKNFHlV2QK2-lJNd_G2tjtv_7THCBcMFqnat7nm11NdiHHorGiedHUDxaaDX6mCr_1QwPuHlXkE0AX6FuRy8F-ffvu6H32XHua9ut9PLH7NP-8l363H2k81VGOoeGrF0upfuRvwdmAieb4D0Snatk0Zpv3U4L2jFqzK6fO2Us947aEW8pHGs4ulO6k7kSKyGV4yGd9fqtmZ7_EH9eq19VGYObndrD_HfqO9LAg
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_epsl_2012_06_047
crossref_primary_10_1016_j_jog_2011_12_003
crossref_primary_10_1029_2019TC005489
crossref_primary_10_1016_j_tecto_2015_10_010
crossref_primary_10_1016_j_geomorph_2018_08_001
crossref_primary_10_1029_2024JB029220
crossref_primary_10_1111_j_1365_246X_2011_04990_x
crossref_primary_10_1130_GES00724_1
crossref_primary_10_1016_j_epsl_2010_06_047
crossref_primary_10_1016_j_pepi_2020_106639
crossref_primary_10_1016_j_earscirev_2021_103505
crossref_primary_10_1038_s41561_017_0035_y
crossref_primary_10_1130_GES02019_1
crossref_primary_10_1029_2022TC007737
crossref_primary_10_1002_2015JB012112
crossref_primary_10_1029_2017TC004914
crossref_primary_10_1029_2022GC010843
crossref_primary_10_1002_2016GC006349
crossref_primary_10_1016_j_pepi_2010_11_007
crossref_primary_10_1130_G34550C_1
crossref_primary_10_1029_2011GC003611
crossref_primary_10_1002_2015GL063733
crossref_primary_10_1016_j_geomorph_2021_107964
crossref_primary_10_1029_2012TC003107
crossref_primary_10_1016_j_pepi_2011_08_009
crossref_primary_10_1144_SP389_12
crossref_primary_10_1029_2010TC002694
crossref_primary_10_1038_s41561_023_01298_w
crossref_primary_10_1126_science_aaf6542
crossref_primary_10_1130_GES01619_1
crossref_primary_10_1016_j_epsl_2014_04_020
crossref_primary_10_1016_j_jappgeo_2016_08_008
crossref_primary_10_1007_s11434_016_1034_x
crossref_primary_10_1029_2018JF004905
crossref_primary_10_1016_j_tecto_2016_03_040
crossref_primary_10_1029_2012GC004056
crossref_primary_10_1016_j_geomorph_2019_106855
crossref_primary_10_1029_2018GC007476
crossref_primary_10_1002_2015GC005937
crossref_primary_10_1016_j_ympev_2013_11_005
crossref_primary_10_1130_GES01292_1
crossref_primary_10_1007_s12517_015_1941_1
crossref_primary_10_1111_j_1365_246X_2010_04847_x
crossref_primary_10_1130_G31611_1
crossref_primary_10_1029_2018GC008073
crossref_primary_10_1002_2016TC004166
crossref_primary_10_1029_2011JB009007
crossref_primary_10_1002_2014JF003169
crossref_primary_10_1029_2018JF004979
crossref_primary_10_1130_GES02419_1
crossref_primary_10_1029_2010JB007704
crossref_primary_10_1029_2025AV001669
crossref_primary_10_1130_B31223_1
crossref_primary_10_1130_focus072010_1
crossref_primary_10_1002_2015TC004000
crossref_primary_10_1016_j_jvolgeores_2013_05_014
crossref_primary_10_1016_j_epsl_2021_116964
crossref_primary_10_1029_2011GC003563
crossref_primary_10_1130_G34937Y_1
crossref_primary_10_1130_L150_1
crossref_primary_10_1029_2022TC007370
crossref_primary_10_1029_2010GL044799
crossref_primary_10_1029_2010TC002661
crossref_primary_10_1029_2018GC007559
crossref_primary_10_1016_j_epsl_2010_08_012
crossref_primary_10_1016_j_epsl_2014_06_002
crossref_primary_10_1016_j_tecto_2017_05_025
crossref_primary_10_1130_L282_1
crossref_primary_10_1130_GES00801_1
crossref_primary_10_1016_j_chemgeo_2017_09_028
crossref_primary_10_1029_2021JB022097
crossref_primary_10_1038_nature10001
crossref_primary_10_1007_s12583_018_0825_1
crossref_primary_10_1029_2022GC010488
crossref_primary_10_1002_2016JB013389
crossref_primary_10_1093_gji_ggs050
crossref_primary_10_1038_s41467_024_48223_2
crossref_primary_10_1016_j_geomorph_2016_02_022
crossref_primary_10_1029_2009GL039778
crossref_primary_10_1002_2015JB011872
crossref_primary_10_1002_2015RG000489
crossref_primary_10_1029_2012JB009212
crossref_primary_10_1016_j_epsl_2013_11_026
crossref_primary_10_1029_2024AV001359
crossref_primary_10_1130_GES02020_1
crossref_primary_10_1016_j_epsl_2016_01_032
crossref_primary_10_1130_B30951_1
crossref_primary_10_1038_nature09912
crossref_primary_10_1130_G31031_1
crossref_primary_10_1111_jmg_12772
crossref_primary_10_1130_GES02576_1
crossref_primary_10_1130_GES00917_1
crossref_primary_10_1093_gji_ggv079
crossref_primary_10_1130_G34051_1
crossref_primary_10_1029_2021GC010252
crossref_primary_10_1016_j_earscirev_2024_104901
crossref_primary_10_1130_GES01604_1
crossref_primary_10_1002_2014GC005483
crossref_primary_10_1007_s11430_011_4180_7
crossref_primary_10_26443_seismica_v2i2_272
crossref_primary_10_1007_s12517_020_05885_8
crossref_primary_10_1130_B35623_1
crossref_primary_10_1016_j_gloplacha_2011_05_005
crossref_primary_10_1029_2020GC009565
crossref_primary_10_1002_2016JB013049
crossref_primary_10_1002_2013JB010607
crossref_primary_10_1130_GES00921_1
crossref_primary_10_1002_2014GC005641
crossref_primary_10_1130_GES01415_1
crossref_primary_10_1016_j_epsl_2022_117483
crossref_primary_10_1002_2015JB012149
crossref_primary_10_1007_s00531_020_01953_2
crossref_primary_10_1146_annurev_earth_032320_111432
crossref_primary_10_1016_j_epsl_2013_10_012
crossref_primary_10_1016_j_epsl_2014_09_050
crossref_primary_10_1029_2011JB008522
crossref_primary_10_1029_2023GC011381
crossref_primary_10_1130_GES02405_1
crossref_primary_10_1130_G32619_1
Cites_doi 10.1016/j.gca.2004.03.025
10.1007/s004100050293
10.3133/pp1443
10.1029/2002GC000399
10.1130/0091-7613(2000)028<0091:RTCP>2.0.CO;2
10.1029/GL013i009p00965
10.1029/93JB00124
10.1130/G24577A.1
10.1093/petrology/30.4.1033
10.1130/B26231.1
10.1130/0091-7613(1995)023<0987:PLROTF>2.3.CO;2
10.1016/0016-7037(96)00167-6
10.1007/s004100050288
10.1144/GSL.SP.1987.028.01.15
10.1016/0377-0273(79)90009-X
10.1029/95JB00373
10.1038/35075048
10.1016/0016-7037(88)90101-9
10.3133/pp279
10.1029/2002GC000433
10.56577/FFC-56.105
10.1130/0016-7606(1978)89<451:UAMIAM>2.0.CO;2
10.1029/2000JB000049
10.1016/0012-821X(76)90031-5
10.1093/petrology/egi042
10.1029/94JB00960
10.1029/91JB01397
10.1029/94JB02883
10.2747/0020-6814.45.7.575
10.1130/1052-5173(2002)012<0004:CPUAEE>2.0.CO;2
10.1016/j.lithos.2006.09.008
10.1093/petrology/23.4.507
10.1016/0264-3707(85)90021-3
10.1093/petrology/32.1.169
10.1029/96JB00818
10.1029/2005GC001008
10.1016/S0012-821X(03)00399-6
10.1029/JB084iB13p07561
10.1016/0012-821X(78)90130-9
10.1029/94JB01555
10.1029/2000JB900103
10.1130/B25712.1
10.1017/S026359330001083X
10.1029/2002JB001859
10.1029/2008GL033391
10.1016/0012-821X(81)90139-4
10.1016/0016-7037(71)90108-6
10.1038/381037a0
10.1029/2001JB000209
10.1029/2003JB002950
10.1007/BF00371227
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2009
2009 INIST-CNRS
COPYRIGHT 2009 Nature Publishing Group
Copyright Nature Publishing Group Jun 18, 2009
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2009
– notice: 2009 INIST-CNRS
– notice: COPYRIGHT 2009 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jun 18, 2009
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
IQODW
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OTOTI
DOI 10.1038/nature08052
DatabaseName CrossRef
Pascal-Francis
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Agricultural Science Database



MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Geology
EISSN 1476-4687
EndPage 982
ExternalDocumentID 1564649
1759859431
A630206451
A202562509
19536263
21549798
10_1038_nature08052
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
Colorado Plateau
GeographicLocations_xml – name: United States
– name: Colorado Plateau
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
0R~
0WA
123
186
1VR
29M
2KS
2XV
354
39C
3O-
3V.
4.4
41X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZHY
ZKB
~02
~7V
~88
~8M
~G0
~KM
08P
1CY
1OL
1VW
3EH
41~
42X
663
79B
AAJYS
AARCD
AAVBQ
AAYXX
ABDPE
ABFSG
ACBNA
ACBTR
ACMFV
ACSTC
ACTDY
ADGHP
ADRHT
ADXHL
AETEA
AEZWR
AFANA
AFBBN
AFHIU
AFHKK
AGQPQ
AHWEU
AIXLP
AJUXI
ALPWD
ATHPR
CITATION
FA8
FAC
HG6
J5H
LGEZI
LOTEE
N4W
NADUK
NFIDA
NXXTH
ODYON
PHGZM
PHGZT
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZE2
ZGI
ZY4
IQODW
PJZUB
PPXIY
PQGLB
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
OTOTI
ID FETCH-LOGICAL-a807t-c7ddb1877732dbc43b7e0e55d3a0cb3070cd4d3070363fa920cb482dc8ce6e4f3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Mon Jun 23 02:30:31 EDT 2025
Thu Aug 07 14:48:15 EDT 2025
Sat Aug 23 12:38:34 EDT 2025
Tue Jun 17 22:04:46 EDT 2025
Fri Jun 13 00:06:52 EDT 2025
Fri Jun 13 00:43:21 EDT 2025
Tue Jun 10 15:35:02 EDT 2025
Tue Jun 10 15:34:52 EDT 2025
Tue Jun 10 21:02:20 EDT 2025
Tue Jun 10 21:23:24 EDT 2025
Fri Jun 27 05:51:03 EDT 2025
Fri Jun 27 06:03:49 EDT 2025
Fri Jun 27 06:01:32 EDT 2025
Fri Jun 27 06:00:34 EDT 2025
Thu Apr 03 07:04:06 EDT 2025
Mon Jul 21 09:14:12 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Tue Jul 01 02:42:38 EDT 2025
Fri Feb 21 02:37:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7249
Keywords seismology
lithosphere
gravimetry
crustal shortening
velocity
North America
heterogeneity
thermal evolution
magmatism
Farallon Plate
extension tectonics
gravity anomalies
geodynamics
interpretation
uplifts
deformation
Phanerozoic
Bouguer anomalies
Cenozoic
mechanism
seismic waves
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a807t-c7ddb1877732dbc43b7e0e55d3a0cb3070cd4d3070363fa920cb482dc8ce6e4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
NONE
USDOE Office of Science (SC)
PMID 19536263
PQID 204463969
PQPubID 40569
PageCount 5
ParticipantIDs osti_scitechconnect_1564649
proquest_miscellaneous_67383024
proquest_journals_204463969
gale_infotracmisc_A630206451
gale_infotracgeneralonefile_A630206451
gale_infotracgeneralonefile_A202562509
gale_infotraccpiq_630206451
gale_infotraccpiq_202562509
gale_infotracacademiconefile_A630206451
gale_infotracacademiconefile_A202562509
gale_incontextgauss_ISR_A630206451
gale_incontextgauss_ISR_A202562509
gale_incontextgauss_ATWCN_A630206451
gale_incontextgauss_ATWCN_A202562509
pubmed_primary_19536263
pascalfrancis_primary_21549798
crossref_citationtrail_10_1038_nature08052
crossref_primary_10_1038_nature08052
springer_journals_10_1038_nature08052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-18
PublicationDateYYYYMMDD 2009-06-18
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-18
  day: 18
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2009
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BaldridgeWSMafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphereJ. Volcanol. Geotherm. Res.197963193511979JVGR....6..319B1:CAS:528:DyaL3cXnvFOiuw%3D%3D
LauglinAWBrookinsDGChemical and strontium isotopic investigations of ultramafic inclusions and basalt, Bandera Crater, New MexicoGeochim. Cosmochim. Acta1971351071131971GeCoA..35..107L
WilshireHGMcGuireAVNollerJSTurrinBDPetrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, CaliforniaJ. Petrol.1991321692001991JPet...32..169W1:CAS:528:DyaK3MXisFSrtbs%3D
BermanSCFolandKASperaFJOn the origin of an amphibole-rich vein in a peridotite inclusions from the Lunar Crater Volcanic Field, Nevada, U.S.AEarth Planet. Sci. Lett.1981563433611981E&PSL..56..343B
HumphreysEDPost-Laramide removal of the Farallon slab, western United StatesGeology1995239879901995Geo....23..987H
JonesCHUnruhJRSonderLJThe role of gravitational potential energy in active deformation in the southwestern United StatesNature199638137411996Natur.381...37J1:CAS:528:DyaK28XislCrur0%3D
FodorRVUltramafic and mafic inclusions and megacrysts in Pliocene basalt, Black Range, New MexicoBull. Geol. Soc. Am.1978894514591:CAS:528:DyaE1cXhslertL4%3D
HumphreysEDHow Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United StatesInt. Geol. Rev.200345575595
Wilshire, H. G. et al. Mafic and ultramafic xenoliths from volcanic rocks of the western United States. Prof. Pap. US Geol. Surv.1443, (1988)
SpencerJEUplift of the Colorado Plateau due to lithospheric attenuation during Laramide low-angle subductionJ. Geophys. Res.199610113595136091996JGR...10113595S
PedersonJLMackleyRDEddlemanJLColorado Plateau uplift and erosion evaluated using GISGSA Today200212410
PetersonCRoyMGeology of the Chama Basin2005105114
WenrichKJSpatial migration and compositional changes of Miocene-Quaternary magmatism in the western Grand CanyonJ. Geophys. Res.199510010417104401995JGR...10010417W1:CAS:528:DyaK2MXnt1ertLs%3D
SmithDInsights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisonsJ. Geophys. Res.200010516769167812000JGR...10516769S1:CAS:528:DC%2BD3cXlsFGksb0%3D
TynerGNSmithDPeridotite xenoliths in silica-rich, potassic latite from the transition zone of the Colorado Plateau in north-central ArizonaContrib. Mineral. Petrol.19869463711986CoMP...94...63T1:CAS:528:DyaL28XlslKiur0%3D
WernickeBChristiansenRLEnglandPCSonderLJTectonomagmatic evolution of Cenozoic extension in the North American CordilleraSpec. Publ. Geol. Soc. (Lond.)1987282032211987GSLSP..28..203W
BussodGYAThermal and Kinematic History of Mantle Xenoliths from Kilbourne Hole, New Mexico.1983
MouchaRMantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valleyGeology2008364394422008Geo....36..439M
BirdPContinental delamination and the Colorado PlateauJ. Geophys. Res.197984756175711979JGR....84.7561B
Sine, C. R. et al. Mantle structure beneath the western edge of the Colorado Plateau. Geophys. Res. Lett.35 10.1029/2008GL033391 (2008)
Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res.111 10.1029/2003JB002950 (2006)
LowryASmithRBFlexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topographyJ. Geophys. Res.19949920123201401994JGR....9920123L
McGuireAVMukasaSBMagmatic modification of the uppermost mantle beneath the Basin and Range to Colorado Plateau Transition Zone; evidence from xenoliths, Wikieup, ArizonaContrib. Mineral. Petrol.199712852651997CoMP..128...52M1:CAS:528:DyaK2sXks1GqsLs%3D
RodenMFShimizuNIon microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado Plateau provincesJ. Geophys. Res.19939814091141081993JGR....9814091R1:CAS:528:DyaK2cXhtF2qsA%3D%3D
FlowersRWernickeBPFarleyKAUnroofing, incision and uplift history of the southwestern Colorado Plateau from (U-Th)/He apatite thermochronometryBull. Geol. Soc. Am.20081205715871:CAS:528:DC%2BD1cXhsVSjtbrL
MorganPSwanbergCAOn the Cenozoic uplift and tectonic stability of the Colorado PlateauJ. Geodyn.198533963
GalerSJGO’NionsRKChemical and isotopic studies of ultramafic inclusions from the San Carlos Volcanic Field, Arizona: a bearing on their petrogenesisJ. Petrol.198930103310641989JPet...30.1033G1:CAS:528:DyaK3cXlslGlsLk%3D
EvansSHNashWPPetrogenesis of xenolith-bearing basalts from southeastern ArizonaAm. Mineral.1979642492671:CAS:528:DyaE1MXhvFSjsbY%3D
Goes, S. & van der Lee, S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res.107 10.1029/2000JB000049 (2002)
Lenardic, A., Moresi, L.-N. & Mülhaus, H. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res.108 10.1029/2002JB001859 (2003)
HervigRLSmithJVDawsonJBLherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinelTrans. R. Soc. Edinb. Earth Sci.1986771812021:CAS:528:DyaL2sXhvF2nsbs%3D
EhrenbergSNPetrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo Volcanic FieldJ. Petrol.1982235075471982JPet...23..507E1:CAS:528:DyaL3sXhvFOmtA%3D%3D
RiterJCAGeochemical and Tectonic Evolution of the Colorado Plateau Mantle Lithosphere: Evidence from Grand Canyon Mantle Xenoliths1999
Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parametrization of hydrous melting. Geochem. Geophys. Geosyst.4 10.1029/2002GC000433 (2003)
JohnsonKEAn Appraisal of Mantle Metasomatism based upon Oxidation States, Trace Element and Isotope Geochemistry, and Fluid/Rock Ratios in Spinel Lherzolite Xenoliths1990
SmithDLevySPetrology of Green Knobs diatreme, New Mexico, and implications for the mantle below the Colorado PlateauEarth Planet. Sci. Lett.1976191071251976E&PSL..29..107S
Kelly, R. K., Kelemen, P. B. & Jull, M. Buoyancy of the continental upper mantle. Geochem. Geophys. Geosyst.4 10.1029/2002GC000399 (2003)
SmithDRiterJCAGenesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USAContrib. Mineral. Petrol.19971273914041997CoMP..127..391S1:CAS:528:DyaK2sXjvVClsr0%3D
MenziesMXuYZhangHFanWIntegration of geology, geophysics and geochemistry: a key to understanding the North China CratonLithos2007961212007Litho..96....1M1:CAS:528:DC%2BD2sXlsFeht78%3D
RosenbaumJMZindlerARubenstoneJLMantle fluids: evidence from fluid inclusionsGeochim. Cosmochim. Acta199660322932521996GeCoA..60.3229R1:CAS:528:DyaK28XmtFKnur4%3D
EnglishJMJohnstonSTWangKLThermal modeling of the Laramide orogeny: testing the flat-slab subduction hypothesisEarth Planet. Sci. Lett.20032146196322003E&PSL.214..619E1:CAS:528:DC%2BD3sXnt1Cgtbk%3D
CondieKCCoxJO’ReillySYGriffinWLKerrichRDistribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the Southwestern United States: the role of grain-boundary phasesGeochim. Cosmochim. Acta200468391939422004GeCoA..68.3919C1:CAS:528:DC%2BD2cXnvVerurc%3D
FreyFAPrinzMUltramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesisEarth Planet. Sci. Lett.1978381291761978E&PSL..38..129F1:CAS:528:DyaE1cXhtl2ltr8%3D
RodenMFIrvingAJMurthyVRIsotopic and trace element composition of the upper mantle beneath a young continental rift: results from Kilbourne Hole, New MexicoGeochim. Cosmochim. Acta1988524614731988GeCoA..52..461R1:CAS:528:DyaL1cXhtlGhsL8%3D
LipmanPWGlaznerAFIntroduction to middle Tertiary Cordilleran volcanism – Magma sources and relations to regional tectonicsJ. Geophys. Res.19919613193131991991JGR....9613193L
SmithDGriffinWLGarnetite xenoliths and mantle-water interactions below the Colorado Plateau, southwestern United StatesJ. Petrol.200546190119242005JPet...46.1901S1:CAS:528:DC%2BD2MXos1Chur0%3D
BeardBLGlaznerAFTrace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, CaliforniaJ. Geophys. Res.1985100416941811995JGR...100.4169B
LeeC-TPreservation of ancient and fertile lithospheric mantle beneath the southwestern United StatesNature200141169732001Natur.411...69L1:CAS:528:DC%2BD3MXjsFGntb0%3D11333978
Wang, K., Plank, T., Walker, J. D. & Smith, E. I. A melting profile across the Basin and Range, SW USA. J. Geophys. Res.107 10.1029/2001JB000209 (2002)
Hunt, C. B. Cenozoic geology of the Colorado Plateau. Prof. Pap. US Geol. Surv.279, (1956)
Roy, M., MacCarthy, J. K. & Selverstone, J. Upper mantle structure beneath the eastern Colorado Plateau and Rio Grande rift revealed by Bouguer gravity, seismic velocities, and xenolith data. Geochem. Geophys. Geosyst.6 10.1029/2005GC001008 (2005)
McMillanMEHellerPLWingSLHistory and causes of post-Laramide relief in the Rocky Mountain orogenic plateauBull. Geol. Soc. Am.2006118393405
McQuarrieNChaseCGRaising the Colorado PlateauGeology20002891942000Geo....28...91M
AlibertCPeridotite xenoliths from the western Grand Canyon and the Thumb: a probe into the subcontinental mantle of the Colorado PlateauJ. Geophys. Res.19909921605216201994JGR....9921605A
FeigensonMDContinental alkali basalts of kimberlite and depleted mantle: evidence from Kilbourne Hole maar, New MexicoGeophys. Res. Lett.1986139659681986GeoRL..13..965F1:CAS:528:DyaL28XlslKitL4%3D
MF Roden (BFnature08052_CR38) 1988; 52
D Smith (BFnature08052_CR52) 1997; 127
D Smith (BFnature08052_CR53) 1976; 19
ME McMillan (BFnature08052_CR16) 2006; 118
SJG Galer (BFnature08052_CR47) 1989; 30
JE Spencer (BFnature08052_CR4) 1996; 101
KJ Wenrich (BFnature08052_CR25) 1995; 100
RV Fodor (BFnature08052_CR45) 1978; 89
BL Beard (BFnature08052_CR42) 1985; 100
RL Hervig (BFnature08052_CR48) 1986; 77
JM English (BFnature08052_CR27) 2003; 214
P Morgan (BFnature08052_CR3) 1985; 3
KE Johnson (BFnature08052_CR49) 1990
MD Feigenson (BFnature08052_CR35) 1986; 13
C Peterson (BFnature08052_CR31) 2005
PW Lipman (BFnature08052_CR20) 1991; 96
SH Evans (BFnature08052_CR44) 1979; 64
D Smith (BFnature08052_CR26) 2005; 46
KC Condie (BFnature08052_CR33) 2004; 68
GN Tyner (BFnature08052_CR55) 1986; 94
HG Wilshire (BFnature08052_CR56) 1991; 32
BFnature08052_CR21
N McQuarrie (BFnature08052_CR5) 2000; 28
R Moucha (BFnature08052_CR18) 2008; 36
BFnature08052_CR24
BFnature08052_CR23
C-T Lee (BFnature08052_CR10) 2001; 411
BFnature08052_CR22
BFnature08052_CR29
BFnature08052_CR28
CH Jones (BFnature08052_CR30) 1996; 381
JL Pederson (BFnature08052_CR7) 2002; 12
FA Frey (BFnature08052_CR46) 1978; 38
D Smith (BFnature08052_CR39) 1997; 127
D Smith (BFnature08052_CR9) 2000; 105
ED Humphreys (BFnature08052_CR11) 1995; 23
AV McGuire (BFnature08052_CR37) 1997; 128
AW Lauglin (BFnature08052_CR36) 1971; 35
WS Baldridge (BFnature08052_CR41) 1979; 6
BFnature08052_CR14
BFnature08052_CR13
GYA Bussod (BFnature08052_CR43) 1983
M Menzies (BFnature08052_CR15) 2007; 96
SN Ehrenberg (BFnature08052_CR34) 1982; 23
JCA Riter (BFnature08052_CR50) 1999
BFnature08052_CR1
P Bird (BFnature08052_CR2) 1979; 84
JM Rosenbaum (BFnature08052_CR51) 1996; 60
MF Roden (BFnature08052_CR54) 1993; 98
B Wernicke (BFnature08052_CR6) 1987; 28
R Flowers (BFnature08052_CR17) 2008; 120
C Alibert (BFnature08052_CR8) 1990; 99
SC Berman (BFnature08052_CR32) 1981; 56
BFnature08052_CR40
A Lowry (BFnature08052_CR19) 1994; 99
ED Humphreys (BFnature08052_CR12) 2003; 45
11333978 - Nature. 2001 May 3;411(6833):69-73
References_xml – reference: HervigRLSmithJVDawsonJBLherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinelTrans. R. Soc. Edinb. Earth Sci.1986771812021:CAS:528:DyaL2sXhvF2nsbs%3D
– reference: BirdPContinental delamination and the Colorado PlateauJ. Geophys. Res.197984756175711979JGR....84.7561B
– reference: Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parametrization of hydrous melting. Geochem. Geophys. Geosyst.4 10.1029/2002GC000433 (2003)
– reference: McQuarrieNChaseCGRaising the Colorado PlateauGeology20002891942000Geo....28...91M
– reference: LipmanPWGlaznerAFIntroduction to middle Tertiary Cordilleran volcanism – Magma sources and relations to regional tectonicsJ. Geophys. Res.19919613193131991991JGR....9613193L
– reference: SmithDInsights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisonsJ. Geophys. Res.200010516769167812000JGR...10516769S1:CAS:528:DC%2BD3cXlsFGksb0%3D
– reference: McGuireAVMukasaSBMagmatic modification of the uppermost mantle beneath the Basin and Range to Colorado Plateau Transition Zone; evidence from xenoliths, Wikieup, ArizonaContrib. Mineral. Petrol.199712852651997CoMP..128...52M1:CAS:528:DyaK2sXks1GqsLs%3D
– reference: LeeC-TPreservation of ancient and fertile lithospheric mantle beneath the southwestern United StatesNature200141169732001Natur.411...69L1:CAS:528:DC%2BD3MXjsFGntb0%3D11333978
– reference: TynerGNSmithDPeridotite xenoliths in silica-rich, potassic latite from the transition zone of the Colorado Plateau in north-central ArizonaContrib. Mineral. Petrol.19869463711986CoMP...94...63T1:CAS:528:DyaL28XlslKiur0%3D
– reference: Lenardic, A., Moresi, L.-N. & Mülhaus, H. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res.108 10.1029/2002JB001859 (2003)
– reference: Goes, S. & van der Lee, S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res.107 10.1029/2000JB000049 (2002)
– reference: BaldridgeWSMafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphereJ. Volcanol. Geotherm. Res.197963193511979JVGR....6..319B1:CAS:528:DyaL3cXnvFOiuw%3D%3D
– reference: FreyFAPrinzMUltramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesisEarth Planet. Sci. Lett.1978381291761978E&PSL..38..129F1:CAS:528:DyaE1cXhtl2ltr8%3D
– reference: FeigensonMDContinental alkali basalts of kimberlite and depleted mantle: evidence from Kilbourne Hole maar, New MexicoGeophys. Res. Lett.1986139659681986GeoRL..13..965F1:CAS:528:DyaL28XlslKitL4%3D
– reference: Kelly, R. K., Kelemen, P. B. & Jull, M. Buoyancy of the continental upper mantle. Geochem. Geophys. Geosyst.4 10.1029/2002GC000399 (2003)
– reference: PedersonJLMackleyRDEddlemanJLColorado Plateau uplift and erosion evaluated using GISGSA Today200212410
– reference: JohnsonKEAn Appraisal of Mantle Metasomatism based upon Oxidation States, Trace Element and Isotope Geochemistry, and Fluid/Rock Ratios in Spinel Lherzolite Xenoliths1990
– reference: HumphreysEDHow Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United StatesInt. Geol. Rev.200345575595
– reference: RodenMFShimizuNIon microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado Plateau provincesJ. Geophys. Res.19939814091141081993JGR....9814091R1:CAS:528:DyaK2cXhtF2qsA%3D%3D
– reference: SpencerJEUplift of the Colorado Plateau due to lithospheric attenuation during Laramide low-angle subductionJ. Geophys. Res.199610113595136091996JGR...10113595S
– reference: FlowersRWernickeBPFarleyKAUnroofing, incision and uplift history of the southwestern Colorado Plateau from (U-Th)/He apatite thermochronometryBull. Geol. Soc. Am.20081205715871:CAS:528:DC%2BD1cXhsVSjtbrL
– reference: LowryASmithRBFlexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topographyJ. Geophys. Res.19949920123201401994JGR....9920123L
– reference: BussodGYAThermal and Kinematic History of Mantle Xenoliths from Kilbourne Hole, New Mexico.1983
– reference: Wang, K., Plank, T., Walker, J. D. & Smith, E. I. A melting profile across the Basin and Range, SW USA. J. Geophys. Res.107 10.1029/2001JB000209 (2002)
– reference: FodorRVUltramafic and mafic inclusions and megacrysts in Pliocene basalt, Black Range, New MexicoBull. Geol. Soc. Am.1978894514591:CAS:528:DyaE1cXhslertL4%3D
– reference: EhrenbergSNPetrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo Volcanic FieldJ. Petrol.1982235075471982JPet...23..507E1:CAS:528:DyaL3sXhvFOmtA%3D%3D
– reference: Roy, M., MacCarthy, J. K. & Selverstone, J. Upper mantle structure beneath the eastern Colorado Plateau and Rio Grande rift revealed by Bouguer gravity, seismic velocities, and xenolith data. Geochem. Geophys. Geosyst.6 10.1029/2005GC001008 (2005)
– reference: RiterJCAGeochemical and Tectonic Evolution of the Colorado Plateau Mantle Lithosphere: Evidence from Grand Canyon Mantle Xenoliths1999
– reference: Wilshire, H. G. et al. Mafic and ultramafic xenoliths from volcanic rocks of the western United States. Prof. Pap. US Geol. Surv.1443, (1988)
– reference: BermanSCFolandKASperaFJOn the origin of an amphibole-rich vein in a peridotite inclusions from the Lunar Crater Volcanic Field, Nevada, U.S.AEarth Planet. Sci. Lett.1981563433611981E&PSL..56..343B
– reference: BeardBLGlaznerAFTrace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, CaliforniaJ. Geophys. Res.1985100416941811995JGR...100.4169B
– reference: HumphreysEDPost-Laramide removal of the Farallon slab, western United StatesGeology1995239879901995Geo....23..987H
– reference: RodenMFIrvingAJMurthyVRIsotopic and trace element composition of the upper mantle beneath a young continental rift: results from Kilbourne Hole, New MexicoGeochim. Cosmochim. Acta1988524614731988GeCoA..52..461R1:CAS:528:DyaL1cXhtlGhsL8%3D
– reference: MouchaRMantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valleyGeology2008364394422008Geo....36..439M
– reference: Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res.111 10.1029/2003JB002950 (2006)
– reference: SmithDLevySPetrology of Green Knobs diatreme, New Mexico, and implications for the mantle below the Colorado PlateauEarth Planet. Sci. Lett.1976191071251976E&PSL..29..107S
– reference: AlibertCPeridotite xenoliths from the western Grand Canyon and the Thumb: a probe into the subcontinental mantle of the Colorado PlateauJ. Geophys. Res.19909921605216201994JGR....9921605A
– reference: RosenbaumJMZindlerARubenstoneJLMantle fluids: evidence from fluid inclusionsGeochim. Cosmochim. Acta199660322932521996GeCoA..60.3229R1:CAS:528:DyaK28XmtFKnur4%3D
– reference: SmithDRiterJCAGenesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USAContrib. Mineral. Petrol.19971273914041997CoMP..127..391S1:CAS:528:DyaK2sXjvVClsr0%3D
– reference: GalerSJGO’NionsRKChemical and isotopic studies of ultramafic inclusions from the San Carlos Volcanic Field, Arizona: a bearing on their petrogenesisJ. Petrol.198930103310641989JPet...30.1033G1:CAS:528:DyaK3cXlslGlsLk%3D
– reference: Sine, C. R. et al. Mantle structure beneath the western edge of the Colorado Plateau. Geophys. Res. Lett.35 10.1029/2008GL033391 (2008)
– reference: LauglinAWBrookinsDGChemical and strontium isotopic investigations of ultramafic inclusions and basalt, Bandera Crater, New MexicoGeochim. Cosmochim. Acta1971351071131971GeCoA..35..107L
– reference: PetersonCRoyMGeology of the Chama Basin2005105114
– reference: CondieKCCoxJO’ReillySYGriffinWLKerrichRDistribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the Southwestern United States: the role of grain-boundary phasesGeochim. Cosmochim. Acta200468391939422004GeCoA..68.3919C1:CAS:528:DC%2BD2cXnvVerurc%3D
– reference: WernickeBChristiansenRLEnglandPCSonderLJTectonomagmatic evolution of Cenozoic extension in the North American CordilleraSpec. Publ. Geol. Soc. (Lond.)1987282032211987GSLSP..28..203W
– reference: MorganPSwanbergCAOn the Cenozoic uplift and tectonic stability of the Colorado PlateauJ. Geodyn.198533963
– reference: Hunt, C. B. Cenozoic geology of the Colorado Plateau. Prof. Pap. US Geol. Surv.279, (1956)
– reference: EnglishJMJohnstonSTWangKLThermal modeling of the Laramide orogeny: testing the flat-slab subduction hypothesisEarth Planet. Sci. Lett.20032146196322003E&PSL.214..619E1:CAS:528:DC%2BD3sXnt1Cgtbk%3D
– reference: JonesCHUnruhJRSonderLJThe role of gravitational potential energy in active deformation in the southwestern United StatesNature199638137411996Natur.381...37J1:CAS:528:DyaK28XislCrur0%3D
– reference: McMillanMEHellerPLWingSLHistory and causes of post-Laramide relief in the Rocky Mountain orogenic plateauBull. Geol. Soc. Am.2006118393405
– reference: MenziesMXuYZhangHFanWIntegration of geology, geophysics and geochemistry: a key to understanding the North China CratonLithos2007961212007Litho..96....1M1:CAS:528:DC%2BD2sXlsFeht78%3D
– reference: WenrichKJSpatial migration and compositional changes of Miocene-Quaternary magmatism in the western Grand CanyonJ. Geophys. Res.199510010417104401995JGR...10010417W1:CAS:528:DyaK2MXnt1ertLs%3D
– reference: EvansSHNashWPPetrogenesis of xenolith-bearing basalts from southeastern ArizonaAm. Mineral.1979642492671:CAS:528:DyaE1MXhvFSjsbY%3D
– reference: WilshireHGMcGuireAVNollerJSTurrinBDPetrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, CaliforniaJ. Petrol.1991321692001991JPet...32..169W1:CAS:528:DyaK3MXisFSrtbs%3D
– reference: SmithDGriffinWLGarnetite xenoliths and mantle-water interactions below the Colorado Plateau, southwestern United StatesJ. Petrol.200546190119242005JPet...46.1901S1:CAS:528:DC%2BD2MXos1Chur0%3D
– volume: 68
  start-page: 3919
  year: 2004
  ident: BFnature08052_CR33
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.03.025
– volume: 128
  start-page: 52
  year: 1997
  ident: BFnature08052_CR37
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s004100050293
– ident: BFnature08052_CR40
  doi: 10.3133/pp1443
– ident: BFnature08052_CR22
  doi: 10.1029/2002GC000399
– volume: 28
  start-page: 91
  year: 2000
  ident: BFnature08052_CR5
  publication-title: Geology
  doi: 10.1130/0091-7613(2000)028<0091:RTCP>2.0.CO;2
– volume: 13
  start-page: 965
  year: 1986
  ident: BFnature08052_CR35
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL013i009p00965
– volume: 98
  start-page: 14091
  year: 1993
  ident: BFnature08052_CR54
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JB00124
– volume: 36
  start-page: 439
  year: 2008
  ident: BFnature08052_CR18
  publication-title: Geology
  doi: 10.1130/G24577A.1
– volume: 30
  start-page: 1033
  year: 1989
  ident: BFnature08052_CR47
  publication-title: J. Petrol.
  doi: 10.1093/petrology/30.4.1033
– volume-title: Geochemical and Tectonic Evolution of the Colorado Plateau Mantle Lithosphere: Evidence from Grand Canyon Mantle Xenoliths
  year: 1999
  ident: BFnature08052_CR50
– volume: 120
  start-page: 571
  year: 2008
  ident: BFnature08052_CR17
  publication-title: Bull. Geol. Soc. Am.
  doi: 10.1130/B26231.1
– volume: 23
  start-page: 987
  year: 1995
  ident: BFnature08052_CR11
  publication-title: Geology
  doi: 10.1130/0091-7613(1995)023<0987:PLROTF>2.3.CO;2
– volume: 60
  start-page: 3229
  year: 1996
  ident: BFnature08052_CR51
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(96)00167-6
– volume: 127
  start-page: 391
  year: 1997
  ident: BFnature08052_CR52
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s004100050288
– volume: 28
  start-page: 203
  year: 1987
  ident: BFnature08052_CR6
  publication-title: Spec. Publ. Geol. Soc. (Lond.)
  doi: 10.1144/GSL.SP.1987.028.01.15
– volume: 6
  start-page: 319
  year: 1979
  ident: BFnature08052_CR41
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/0377-0273(79)90009-X
– volume: 100
  start-page: 10417
  year: 1995
  ident: BFnature08052_CR25
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JB00373
– volume: 411
  start-page: 69
  year: 2001
  ident: BFnature08052_CR10
  publication-title: Nature
  doi: 10.1038/35075048
– volume: 52
  start-page: 461
  year: 1988
  ident: BFnature08052_CR38
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(88)90101-9
– ident: BFnature08052_CR1
  doi: 10.3133/pp279
– volume: 64
  start-page: 249
  year: 1979
  ident: BFnature08052_CR44
  publication-title: Am. Mineral.
– ident: BFnature08052_CR28
  doi: 10.1029/2002GC000433
– start-page: 105
  volume-title: Geology of the Chama Basin
  year: 2005
  ident: BFnature08052_CR31
  doi: 10.56577/FFC-56.105
– volume: 89
  start-page: 451
  year: 1978
  ident: BFnature08052_CR45
  publication-title: Bull. Geol. Soc. Am.
  doi: 10.1130/0016-7606(1978)89<451:UAMIAM>2.0.CO;2
– ident: BFnature08052_CR29
  doi: 10.1029/2000JB000049
– volume: 19
  start-page: 107
  year: 1976
  ident: BFnature08052_CR53
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(76)90031-5
– volume: 46
  start-page: 1901
  year: 2005
  ident: BFnature08052_CR26
  publication-title: J. Petrol.
  doi: 10.1093/petrology/egi042
– volume: 99
  start-page: 20123
  year: 1994
  ident: BFnature08052_CR19
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB00960
– volume: 96
  start-page: 13193
  year: 1991
  ident: BFnature08052_CR20
  publication-title: J. Geophys. Res.
  doi: 10.1029/91JB01397
– volume: 100
  start-page: 4169
  year: 1985
  ident: BFnature08052_CR42
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB02883
– volume: 127
  start-page: 391
  year: 1997
  ident: BFnature08052_CR39
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s004100050288
– volume: 45
  start-page: 575
  year: 2003
  ident: BFnature08052_CR12
  publication-title: Int. Geol. Rev.
  doi: 10.2747/0020-6814.45.7.575
– volume: 12
  start-page: 4
  year: 2002
  ident: BFnature08052_CR7
  publication-title: GSA Today
  doi: 10.1130/1052-5173(2002)012<0004:CPUAEE>2.0.CO;2
– volume: 96
  start-page: 1
  year: 2007
  ident: BFnature08052_CR15
  publication-title: Lithos
  doi: 10.1016/j.lithos.2006.09.008
– volume: 23
  start-page: 507
  year: 1982
  ident: BFnature08052_CR34
  publication-title: J. Petrol.
  doi: 10.1093/petrology/23.4.507
– volume: 3
  start-page: 39
  year: 1985
  ident: BFnature08052_CR3
  publication-title: J. Geodyn.
  doi: 10.1016/0264-3707(85)90021-3
– volume: 32
  start-page: 169
  year: 1991
  ident: BFnature08052_CR56
  publication-title: J. Petrol.
  doi: 10.1093/petrology/32.1.169
– volume: 101
  start-page: 13595
  year: 1996
  ident: BFnature08052_CR4
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JB00818
– ident: BFnature08052_CR14
  doi: 10.1029/2005GC001008
– volume: 214
  start-page: 619
  year: 2003
  ident: BFnature08052_CR27
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/S0012-821X(03)00399-6
– volume-title: An Appraisal of Mantle Metasomatism based upon Oxidation States, Trace Element and Isotope Geochemistry, and Fluid/Rock Ratios in Spinel Lherzolite Xenoliths
  year: 1990
  ident: BFnature08052_CR49
– volume: 84
  start-page: 7561
  year: 1979
  ident: BFnature08052_CR2
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB084iB13p07561
– volume: 38
  start-page: 129
  year: 1978
  ident: BFnature08052_CR46
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(78)90130-9
– volume: 99
  start-page: 21605
  year: 1990
  ident: BFnature08052_CR8
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JB01555
– volume: 105
  start-page: 16769
  year: 2000
  ident: BFnature08052_CR9
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JB900103
– volume-title: Thermal and Kinematic History of Mantle Xenoliths from Kilbourne Hole, New Mexico.
  year: 1983
  ident: BFnature08052_CR43
– volume: 118
  start-page: 393
  year: 2006
  ident: BFnature08052_CR16
  publication-title: Bull. Geol. Soc. Am.
  doi: 10.1130/B25712.1
– volume: 77
  start-page: 181
  year: 1986
  ident: BFnature08052_CR48
  publication-title: Trans. R. Soc. Edinb. Earth Sci.
  doi: 10.1017/S026359330001083X
– ident: BFnature08052_CR24
  doi: 10.1029/2002JB001859
– ident: BFnature08052_CR13
  doi: 10.1029/2008GL033391
– volume: 56
  start-page: 343
  year: 1981
  ident: BFnature08052_CR32
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/0012-821X(81)90139-4
– volume: 35
  start-page: 107
  year: 1971
  ident: BFnature08052_CR36
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(71)90108-6
– volume: 381
  start-page: 37
  year: 1996
  ident: BFnature08052_CR30
  publication-title: Nature
  doi: 10.1038/381037a0
– ident: BFnature08052_CR21
  doi: 10.1029/2001JB000209
– ident: BFnature08052_CR23
  doi: 10.1029/2003JB002950
– volume: 94
  start-page: 63
  year: 1986
  ident: BFnature08052_CR55
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/BF00371227
– reference: 11333978 - Nature. 2001 May 3;411(6833):69-73
SSID ssj0005174
Score 2.3448539
Snippet On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the...
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the...
On the up in Colorado
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate (1-5). While...
On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the...
Here we show that even if the contributions from minor Laramide deformation4 and flexural isostatic responses to extension at the plateau margins and to net...
SourceID osti
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 978
SubjectTerms Analysis
Cenozoic
Crystalline rocks
Discovery and exploration
Earth sciences
Earth, ocean, space
Environmental aspects
Exact sciences and technology
Geology
Humanities and Social Sciences
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Influence
Internal geophysics
letter
Lithosphere
Magma
Magmatism
Mesozoic
multidisciplinary
Neogene
Rocks
Science
Science & Technology - Other Topics
Solid-earth geophysics, tectonophysics, gravimetry
Thermal properties
Uplift (Geology)
Title Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere
URI https://link.springer.com/article/10.1038/nature08052
https://www.ncbi.nlm.nih.gov/pubmed/19536263
https://www.proquest.com/docview/204463969
https://www.proquest.com/docview/67383024
https://www.osti.gov/biblio/1564649
Volume 459
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLagExIviI1b2SgW4jopIolzfUKlWjeQVk1jE32zfEuHtDXd0gjt33NO4rYJdOUlquqTE9c55_hL_eUzIW-Va1jqSeEoz2NO4OnIkS5TDkwtuEgltBC4ons8io7Og-_jcGy5OYWlVS5qYlWoda7wP3J4SIcHF5ZG6ZfZtYObRuHiqt1B4z7ZQuUyZHTF43jF8PhLhNm-nuey5HOtmuminn9rQrJluZNDfiFNUhQwUlm9xcU6DPrP-mk1LQ0fk0cWT9J-HQDb5J6Z7pAHh9V-vbfwqWJ4qmKHbNssLuhHKzX96Qk5HoDdjdA5PbkE0ClKeiUmiGGLKyqmmpYAUbM5lbf0t0DSzITmGb1ABk0OgWfysqAA4y_yAsUJzFNyPjw4Gxw5doMFRyRuPHdUrLX0UBGQ-VqqgMnYuCYMNROuklgNlA50VRUilonUh2-DxNcqUSYyQcaekc40n5oXhDJATizITBrGPmASk3hZ7Ao_kUam0hesS_YXo8yVVR_HTTAuebUKzhLeuCVdiKGF8awW3bjDDG8XRxmLKfJkJqIsCt4_-zkY8b6PaA4AXrrZLGIAmKMg9LrkzTqzbz9OW77uNmp4-mCNshx-oxL2TQcYKRTbarn7j2XD527LUs1-XfOGnzWtjXPft1ondZSt685mw4bHvZYhlCTV7iwmEAcQh0rECilbas5RlygK4Cq9Vl4tb7GPcoFxmsDpi0TjtqIWfJn_XfJ62YrXRZJgFfBIUUQ1u6BLntfZuQoeJCn4EUThu0W6rjyviayXG3uwSx7Wa4qR4yV7pDO_Kc0rgKZz2asKEByTgYfH4WGPbH09GJ2c_gFpSoxX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYIXxMZX2NgsxIAhRSRxmo8HhKrCaNlaIehE34xjOx3S1nRLq6l_FP8jd_loE-jK096q-nJxfR8-986_I-SltDQL7UiY0raZ6drKMyOLSRO2FkxSCSUEZnR7fa9z4n4ZNocb5Hd5FwbLKkufmDlqlUj8jxwO6XBwYaEXfphcmNg0CpOrZQeNXCuO9PwKTmzp--5HEO--4xx-GrQ7ZtFUwBSB5U9N6SsV2YiCxxwVSZdFvrZ0s6mYsGSEFiCVqzJL8FgsQge-dQNHyUBqT7sxA763yG3Ydy00KH_oLytK_gJ9Lq4DWix4l6N0Wtg_oLYBFttAIwF7xrJMkYJk4rylxqqY9598bbYNHj4g94v4lbZyhdskG3q8Re58zvoDz-FTVlEq0y2yWXiNlL4poK0PHpJeG-guhUro1zMIcsWMnosRxszpORVjRWcQEsdTGs3plcAinRFNYnqKFTsJKLpOZimFY8NpkiIYgn5ETm5k7R-TxjgZ66eEMojUmBvrsOk7IAsd2LFvCSeIdBRGjmAGeVuuMpcF2jk23TjjWdadBbwiEgN0tiSe5CAf15ChuDjCZoyxLmckZmnKW4Mf7T5vORg9QkAZrifzGATontu0DfJiFVn3-7car-uJKpxeF0RxAr9RiuJmBawUgnvV2P2HssJzu0YpJ78ueIXPitHKs69qo6Ncy1ZNZz1hheNOjRBcoKxPFg2IQ9CIyMcSS8TklCMOkufCW3ZrdrUQsYPwhH4YwOOlofHCg6d84W8MsrcYxfdiUWKm8FgSieh5rkGe5Na5VB4sinA80ML90lyXnFdo1rO1M9gjdzuD3jE_7vaPtsm9PJ_pmXawQxrTy5l-DmHxNNrNnBElP2_a-_0B0YPGow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEWgviI2PlY3NQgwYUrQkzucDQlVHWRmrJthE34xjOx3S1nRLq6l_Gv8dd_loE-jK096q-nJx7bvzz_X5d4S8lqZmoRUJQ1oWMxxLeUZkMmnA0oKHVEIJgSe6xz3v8Mz50nf7K-R3eRcG0yrLmJgFapVI_I8cNumwcWGhF-7HRVbEyUHn4-jKwAJSeNBaVtPILeRIT29g95Z-6B7AVO_adufTafvQKAoMGCIw_bEhfaUiCxnxmK0i6bDI16Z2XcWEKSP0BqkclXmFx2IR2vCtE9hKBlJ72okZ6L1H7vvMtdDF_L4_zy75iwC6uBposmA_Z-w0sZZAbTEsloRGAr6NKZoihVmK8_Iai_DvP2e32ZLYeUweFViWtnLjWyMrerhOHnzOagVP4VOWXSrTdbJWRJCUvitorveekOM2yF0LldCTCwC8YkIvxQDxc3pJxVDRCcDjeEyjKb0RmLAzoElMzzF7JwGj18kkpbCFOE9SJEbQT8nZnYz9M9IYJkO9QSgD1MacWIeubwMe0oEV-6awg0hHYWQL1iTvy1HmsmA-xwIcFzw7gWcBr0xJE-y3FB7lhB-3iOF0caTQGKI1DsQkTXnr9Ee7x1s2IkkAl-FyMY8BWPcc12qSV4vEut-_1XTdLlTR9LYQihP4jVIUtyxgpJDoq6buP5IVnZs1STn6dcUreha0Vp59U2sd5Fa2qDvLBSsat2qCEA5lvbPoQBwAJLIgS0wXk2OOnEieA2_ZrvnVbIptpCr0wwAeLx2NF9E85bPY0yQ7s1Z8LyYoZgaP6ZHIpOc0yfPcO-fGgwkStgdWuFu661zzAst6sbQHO-QhxD3-tds72iSr-dGmZ1jBFmmMryf6JSDkcbSdxSJKft518PsDiF7K2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorado+Plateau+magmatism+and+uplift+by+warming+of+heterogeneous+lithosphere&rft.jtitle=Nature+%28London%29&rft.au=Roy%2C+Mousumi&rft.au=Jordan%2C+Thomas+H&rft.au=Pederson%2C+Joel&rft.date=2009-06-18&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=459&rft.issue=7249&rft.spage=978&rft_id=info:doi/10.1038%2Fnature08052&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon