Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere
On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy et al . now propose that war...
Saved in:
Published in | Nature (London) Vol. 459; no. 7249; pp. 978 - 982 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.06.2009
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/nature08052 |
Cover
Loading…
Abstract | On the up in Colorado
There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy
et al
. now propose that warming of the thicker, more iron-depleted Colorado plateau lithosphere over the 35–40 million years following removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. This model can also provide an explanation for the observed contrasts between the Colorado plateau margins and interior.
There has been a long-standing debate about the forces that drove uplift of the low-relief and tectonically-stable Colorado plateau, which experienced about 2 km of rock uplift without significant internal deformation. Warming of the thicker, more iron-depleted Colorado plateau lithosphere over 35–40 million years—following removal of the Farallon plate from beneath North America—is now proposed to be the primary mechanism for driving rock uplift.
The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate
1
,
2
,
3
,
4
,
5
. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension
6
, the plateau experienced ∼2 km of rock uplift
7
without significant internal deformation
2
,
3
,
4
. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere
8
,
9
,
10
over 35–40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America
11
,
12
is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3–6 km Myr
-1
and is consistent with lower seismic velocities
13
and more negative Bouguer gravity
14
at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings. |
---|---|
AbstractList | On the up in Colorado The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate (1-5). While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension (6), the plateau experienced ~2km of rock uplift (7) without significant internal deformation (2-4). Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere (8-10) over 35-40Myr following mid-Cenozoic removal of the Farallon plate from beneath North America (11,12) is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km [Myr.sup.-1] and is consistent with lower seismic velocities (13) and more negative Bouguer gravity (14) at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings. On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy et al . now propose that warming of the thicker, more iron-depleted Colorado plateau lithosphere over the 35–40 million years following removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. This model can also provide an explanation for the observed contrasts between the Colorado plateau margins and interior. There has been a long-standing debate about the forces that drove uplift of the low-relief and tectonically-stable Colorado plateau, which experienced about 2 km of rock uplift without significant internal deformation. Warming of the thicker, more iron-depleted Colorado plateau lithosphere over 35–40 million years—following removal of the Farallon plate from beneath North America—is now proposed to be the primary mechanism for driving rock uplift. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate 1 , 2 , 3 , 4 , 5 . While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension 6 , the plateau experienced ∼2 km of rock uplift 7 without significant internal deformation 2 , 3 , 4 . Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere 8 , 9 , 10 over 35–40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America 11 , 12 is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3–6 km Myr -1 and is consistent with lower seismic velocities 13 and more negative Bouguer gravity 14 at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings. Here we show that even if the contributions from minor Laramide deformation4 and flexural isostatic responses to extension at the plateau margins and to net Cenozoic erosion are removed, there is >1.6 km of residual rock uplift that must be explained by post- Laramide tectonic processes. The voluminous mid-Tertiary (23-40 Myr ago) ignimbrite flare-up accompanied the transition in deformation styles in the western United States from Mesozoic subduction to Neogene- present extension.\n Additionally, part of the discrepancy between predicted and observed rock uplift may be due to non-zero average Laramide rock uplift. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension6, the plateau experienced ~2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35–40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3–6 km Myr-1 and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings. On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the continent far from plate boundaries, which was raised by about 2 km without significant internal deformation. Roy et al. now propose that warming of the thicker, more iron-depleted Colorado plateau lithosphere over the 35-40 million years following removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. This model can also provide an explanation for the observed contrasts between the Colorado plateau margins and interior. There has been a long-standing debate about the forces that drove uplift of the low-relief and tectonically-stable Colorado plateau, which experienced about 2 km of rock uplift without significant internal deformation. Warming of the thicker, more iron-depleted Colorado plateau lithosphere over 35-40 million years--following removal of the Farallon plate from beneath North America--is now proposed to be the primary mechanism for driving rock uplift. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate.sup.1,2,3,4,5. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension.sup.6, the plateau experienced ~2 km of rock uplift.sup.7 without significant internal deformation.sup.2,3,4. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere.sup.8,9,10 over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America.sup.11,12 is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr.sup.-1 and is consistent with lower seismic velocities.sup.13 and more negative Bouguer gravity.sup.14 at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings. The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings. |
Audience | Academic |
Author | Roy, Mousumi Jordan, Thomas H. Pederson, Joel |
Author_xml | – sequence: 1 givenname: Mousumi surname: Roy fullname: Roy, Mousumi email: mroy@unm.edu organization: Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA – sequence: 2 givenname: Thomas H. surname: Jordan fullname: Jordan, Thomas H. organization: Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA – sequence: 3 givenname: Joel surname: Pederson fullname: Pederson, Joel organization: Department of Geology, Utah State University, Logan, Utah 84322, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21549798$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19536263$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1564649$$D View this record in Osti.gov |
BookMark | eNqV011v0zAUBuAIDbFucMU9ikAgIchwbMdOLquKj0njQzDEpeU4J62nxO5sR7B_j0tLm0qdBsqFJes5r08Sn5PkyFgDSfI4R2c5IuUbI8PgAJWowPeSSU45yygr-VEyQQiXGSoJO05OvL9CCBU5pw-S47wqCMOMTJKPM9tZJxubfulkADmkvZz3Mmjfp9I06bDsdBvS-ib9KV2vzTy1bbqAAM7OwYAdfNrpsLB-uQAHD5P7rew8PNqsp8n3d28vZx-yi8_vz2fTi0yWiIdM8aap85JzTnBTK0pqDgiKoiESqZogjlRDm9VKGGllheMuLXGjSgUMaEtOk6frXOuDFl7pAGqhrDGggsgLRhmtInqxRktnrwfwQfTaK-g6-advwTgpCcJ0l7aFV3ZwJr6AwIhSRiq2Snu2RnPZgdCmtcFJtUoUUxZjEKNFHlV2QK2-lJNd_G2tjtv_7THCBcMFqnat7nm11NdiHHorGiedHUDxaaDX6mCr_1QwPuHlXkE0AX6FuRy8F-ffvu6H32XHua9ut9PLH7NP-8l363H2k81VGOoeGrF0upfuRvwdmAieb4D0Snatk0Zpv3U4L2jFqzK6fO2Us947aEW8pHGs4ulO6k7kSKyGV4yGd9fqtmZ7_EH9eq19VGYObndrD_HfqO9LAg |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_epsl_2012_06_047 crossref_primary_10_1016_j_jog_2011_12_003 crossref_primary_10_1029_2019TC005489 crossref_primary_10_1016_j_tecto_2015_10_010 crossref_primary_10_1016_j_geomorph_2018_08_001 crossref_primary_10_1029_2024JB029220 crossref_primary_10_1111_j_1365_246X_2011_04990_x crossref_primary_10_1130_GES00724_1 crossref_primary_10_1016_j_epsl_2010_06_047 crossref_primary_10_1016_j_pepi_2020_106639 crossref_primary_10_1016_j_earscirev_2021_103505 crossref_primary_10_1038_s41561_017_0035_y crossref_primary_10_1130_GES02019_1 crossref_primary_10_1029_2022TC007737 crossref_primary_10_1002_2015JB012112 crossref_primary_10_1029_2017TC004914 crossref_primary_10_1029_2022GC010843 crossref_primary_10_1002_2016GC006349 crossref_primary_10_1016_j_pepi_2010_11_007 crossref_primary_10_1130_G34550C_1 crossref_primary_10_1029_2011GC003611 crossref_primary_10_1002_2015GL063733 crossref_primary_10_1016_j_geomorph_2021_107964 crossref_primary_10_1029_2012TC003107 crossref_primary_10_1016_j_pepi_2011_08_009 crossref_primary_10_1144_SP389_12 crossref_primary_10_1029_2010TC002694 crossref_primary_10_1038_s41561_023_01298_w crossref_primary_10_1126_science_aaf6542 crossref_primary_10_1130_GES01619_1 crossref_primary_10_1016_j_epsl_2014_04_020 crossref_primary_10_1016_j_jappgeo_2016_08_008 crossref_primary_10_1007_s11434_016_1034_x crossref_primary_10_1029_2018JF004905 crossref_primary_10_1016_j_tecto_2016_03_040 crossref_primary_10_1029_2012GC004056 crossref_primary_10_1016_j_geomorph_2019_106855 crossref_primary_10_1029_2018GC007476 crossref_primary_10_1002_2015GC005937 crossref_primary_10_1016_j_ympev_2013_11_005 crossref_primary_10_1130_GES01292_1 crossref_primary_10_1007_s12517_015_1941_1 crossref_primary_10_1111_j_1365_246X_2010_04847_x crossref_primary_10_1130_G31611_1 crossref_primary_10_1029_2018GC008073 crossref_primary_10_1002_2016TC004166 crossref_primary_10_1029_2011JB009007 crossref_primary_10_1002_2014JF003169 crossref_primary_10_1029_2018JF004979 crossref_primary_10_1130_GES02419_1 crossref_primary_10_1029_2010JB007704 crossref_primary_10_1029_2025AV001669 crossref_primary_10_1130_B31223_1 crossref_primary_10_1130_focus072010_1 crossref_primary_10_1002_2015TC004000 crossref_primary_10_1016_j_jvolgeores_2013_05_014 crossref_primary_10_1016_j_epsl_2021_116964 crossref_primary_10_1029_2011GC003563 crossref_primary_10_1130_G34937Y_1 crossref_primary_10_1130_L150_1 crossref_primary_10_1029_2022TC007370 crossref_primary_10_1029_2010GL044799 crossref_primary_10_1029_2010TC002661 crossref_primary_10_1029_2018GC007559 crossref_primary_10_1016_j_epsl_2010_08_012 crossref_primary_10_1016_j_epsl_2014_06_002 crossref_primary_10_1016_j_tecto_2017_05_025 crossref_primary_10_1130_L282_1 crossref_primary_10_1130_GES00801_1 crossref_primary_10_1016_j_chemgeo_2017_09_028 crossref_primary_10_1029_2021JB022097 crossref_primary_10_1038_nature10001 crossref_primary_10_1007_s12583_018_0825_1 crossref_primary_10_1029_2022GC010488 crossref_primary_10_1002_2016JB013389 crossref_primary_10_1093_gji_ggs050 crossref_primary_10_1038_s41467_024_48223_2 crossref_primary_10_1016_j_geomorph_2016_02_022 crossref_primary_10_1029_2009GL039778 crossref_primary_10_1002_2015JB011872 crossref_primary_10_1002_2015RG000489 crossref_primary_10_1029_2012JB009212 crossref_primary_10_1016_j_epsl_2013_11_026 crossref_primary_10_1029_2024AV001359 crossref_primary_10_1130_GES02020_1 crossref_primary_10_1016_j_epsl_2016_01_032 crossref_primary_10_1130_B30951_1 crossref_primary_10_1038_nature09912 crossref_primary_10_1130_G31031_1 crossref_primary_10_1111_jmg_12772 crossref_primary_10_1130_GES02576_1 crossref_primary_10_1130_GES00917_1 crossref_primary_10_1093_gji_ggv079 crossref_primary_10_1130_G34051_1 crossref_primary_10_1029_2021GC010252 crossref_primary_10_1016_j_earscirev_2024_104901 crossref_primary_10_1130_GES01604_1 crossref_primary_10_1002_2014GC005483 crossref_primary_10_1007_s11430_011_4180_7 crossref_primary_10_26443_seismica_v2i2_272 crossref_primary_10_1007_s12517_020_05885_8 crossref_primary_10_1130_B35623_1 crossref_primary_10_1016_j_gloplacha_2011_05_005 crossref_primary_10_1029_2020GC009565 crossref_primary_10_1002_2016JB013049 crossref_primary_10_1002_2013JB010607 crossref_primary_10_1130_GES00921_1 crossref_primary_10_1002_2014GC005641 crossref_primary_10_1130_GES01415_1 crossref_primary_10_1016_j_epsl_2022_117483 crossref_primary_10_1002_2015JB012149 crossref_primary_10_1007_s00531_020_01953_2 crossref_primary_10_1146_annurev_earth_032320_111432 crossref_primary_10_1016_j_epsl_2013_10_012 crossref_primary_10_1016_j_epsl_2014_09_050 crossref_primary_10_1029_2011JB008522 crossref_primary_10_1029_2023GC011381 crossref_primary_10_1130_GES02405_1 crossref_primary_10_1130_G32619_1 |
Cites_doi | 10.1016/j.gca.2004.03.025 10.1007/s004100050293 10.3133/pp1443 10.1029/2002GC000399 10.1130/0091-7613(2000)028<0091:RTCP>2.0.CO;2 10.1029/GL013i009p00965 10.1029/93JB00124 10.1130/G24577A.1 10.1093/petrology/30.4.1033 10.1130/B26231.1 10.1130/0091-7613(1995)023<0987:PLROTF>2.3.CO;2 10.1016/0016-7037(96)00167-6 10.1007/s004100050288 10.1144/GSL.SP.1987.028.01.15 10.1016/0377-0273(79)90009-X 10.1029/95JB00373 10.1038/35075048 10.1016/0016-7037(88)90101-9 10.3133/pp279 10.1029/2002GC000433 10.56577/FFC-56.105 10.1130/0016-7606(1978)89<451:UAMIAM>2.0.CO;2 10.1029/2000JB000049 10.1016/0012-821X(76)90031-5 10.1093/petrology/egi042 10.1029/94JB00960 10.1029/91JB01397 10.1029/94JB02883 10.2747/0020-6814.45.7.575 10.1130/1052-5173(2002)012<0004:CPUAEE>2.0.CO;2 10.1016/j.lithos.2006.09.008 10.1093/petrology/23.4.507 10.1016/0264-3707(85)90021-3 10.1093/petrology/32.1.169 10.1029/96JB00818 10.1029/2005GC001008 10.1016/S0012-821X(03)00399-6 10.1029/JB084iB13p07561 10.1016/0012-821X(78)90130-9 10.1029/94JB01555 10.1029/2000JB900103 10.1130/B25712.1 10.1017/S026359330001083X 10.1029/2002JB001859 10.1029/2008GL033391 10.1016/0012-821X(81)90139-4 10.1016/0016-7037(71)90108-6 10.1038/381037a0 10.1029/2001JB000209 10.1029/2003JB002950 10.1007/BF00371227 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited. All rights reserved 2009 2009 INIST-CNRS COPYRIGHT 2009 Nature Publishing Group Copyright Nature Publishing Group Jun 18, 2009 |
Copyright_xml | – notice: Macmillan Publishers Limited. All rights reserved 2009 – notice: 2009 INIST-CNRS – notice: COPYRIGHT 2009 Nature Publishing Group – notice: Copyright Nature Publishing Group Jun 18, 2009 |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION IQODW NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OTOTI |
DOI | 10.1038/nature08052 |
DatabaseName | CrossRef Pascal-Francis PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Geology |
EISSN | 1476-4687 |
EndPage | 982 |
ExternalDocumentID | 1564649 1759859431 A630206451 A202562509 19536263 21549798 10_1038_nature08052 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | United States Colorado Plateau |
GeographicLocations_xml | – name: United States – name: Colorado Plateau |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .GJ .HR .XZ 00M 07C 0R~ 0WA 123 186 1VR 29M 2KS 2XV 354 39C 3O- 3V. 4.4 41X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYOK AAYZH ABAWZ ABDBF ABDQB ABEFU ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7L X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YYP YZZ Z5M ZCA ZHY ZKB ~02 ~7V ~88 ~8M ~G0 ~KM 08P 1CY 1OL 1VW 3EH 41~ 42X 663 79B AAJYS AARCD AAVBQ AAYXX ABDPE ABFSG ACBNA ACBTR ACMFV ACSTC ACTDY ADGHP ADRHT ADXHL AETEA AEZWR AFANA AFBBN AFHIU AFHKK AGQPQ AHWEU AIXLP AJUXI ALPWD ATHPR CITATION FA8 FAC HG6 J5H LGEZI LOTEE N4W NADUK NFIDA NXXTH ODYON PHGZM PHGZT PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH XOL YJ6 YQI YQJ YV5 YXA YYQ ZCG ZE2 ZGI ZY4 IQODW PJZUB PPXIY PQGLB NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 OTOTI |
ID | FETCH-LOGICAL-a807t-c7ddb1877732dbc43b7e0e55d3a0cb3070cd4d3070363fa920cb482dc8ce6e4f3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Jun 23 02:30:31 EDT 2025 Thu Aug 07 14:48:15 EDT 2025 Sat Aug 23 12:38:34 EDT 2025 Tue Jun 17 22:04:46 EDT 2025 Fri Jun 13 00:06:52 EDT 2025 Fri Jun 13 00:43:21 EDT 2025 Tue Jun 10 15:35:02 EDT 2025 Tue Jun 10 15:34:52 EDT 2025 Tue Jun 10 21:02:20 EDT 2025 Tue Jun 10 21:23:24 EDT 2025 Fri Jun 27 05:51:03 EDT 2025 Fri Jun 27 06:03:49 EDT 2025 Fri Jun 27 06:01:32 EDT 2025 Fri Jun 27 06:00:34 EDT 2025 Thu Apr 03 07:04:06 EDT 2025 Mon Jul 21 09:14:12 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Tue Jul 01 02:42:38 EDT 2025 Fri Feb 21 02:37:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7249 |
Keywords | seismology lithosphere gravimetry crustal shortening velocity North America heterogeneity thermal evolution magmatism Farallon Plate extension tectonics gravity anomalies geodynamics interpretation uplifts deformation Phanerozoic Bouguer anomalies Cenozoic mechanism seismic waves |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a807t-c7ddb1877732dbc43b7e0e55d3a0cb3070cd4d3070363fa920cb482dc8ce6e4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 NONE USDOE Office of Science (SC) |
PMID | 19536263 |
PQID | 204463969 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1564649 proquest_miscellaneous_67383024 proquest_journals_204463969 gale_infotracmisc_A630206451 gale_infotracgeneralonefile_A630206451 gale_infotracgeneralonefile_A202562509 gale_infotraccpiq_630206451 gale_infotraccpiq_202562509 gale_infotracacademiconefile_A630206451 gale_infotracacademiconefile_A202562509 gale_incontextgauss_ISR_A630206451 gale_incontextgauss_ISR_A202562509 gale_incontextgauss_ATWCN_A630206451 gale_incontextgauss_ATWCN_A202562509 pubmed_primary_19536263 pascalfrancis_primary_21549798 crossref_citationtrail_10_1038_nature08052 crossref_primary_10_1038_nature08052 springer_journals_10_1038_nature08052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-18 |
PublicationDateYYYYMMDD | 2009-06-18 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-18 day: 18 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2009 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | BaldridgeWSMafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphereJ. Volcanol. Geotherm. Res.197963193511979JVGR....6..319B1:CAS:528:DyaL3cXnvFOiuw%3D%3D LauglinAWBrookinsDGChemical and strontium isotopic investigations of ultramafic inclusions and basalt, Bandera Crater, New MexicoGeochim. Cosmochim. Acta1971351071131971GeCoA..35..107L WilshireHGMcGuireAVNollerJSTurrinBDPetrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, CaliforniaJ. Petrol.1991321692001991JPet...32..169W1:CAS:528:DyaK3MXisFSrtbs%3D BermanSCFolandKASperaFJOn the origin of an amphibole-rich vein in a peridotite inclusions from the Lunar Crater Volcanic Field, Nevada, U.S.AEarth Planet. Sci. Lett.1981563433611981E&PSL..56..343B HumphreysEDPost-Laramide removal of the Farallon slab, western United StatesGeology1995239879901995Geo....23..987H JonesCHUnruhJRSonderLJThe role of gravitational potential energy in active deformation in the southwestern United StatesNature199638137411996Natur.381...37J1:CAS:528:DyaK28XislCrur0%3D FodorRVUltramafic and mafic inclusions and megacrysts in Pliocene basalt, Black Range, New MexicoBull. Geol. Soc. Am.1978894514591:CAS:528:DyaE1cXhslertL4%3D HumphreysEDHow Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United StatesInt. Geol. Rev.200345575595 Wilshire, H. G. et al. Mafic and ultramafic xenoliths from volcanic rocks of the western United States. Prof. Pap. US Geol. Surv.1443, (1988) SpencerJEUplift of the Colorado Plateau due to lithospheric attenuation during Laramide low-angle subductionJ. Geophys. Res.199610113595136091996JGR...10113595S PedersonJLMackleyRDEddlemanJLColorado Plateau uplift and erosion evaluated using GISGSA Today200212410 PetersonCRoyMGeology of the Chama Basin2005105114 WenrichKJSpatial migration and compositional changes of Miocene-Quaternary magmatism in the western Grand CanyonJ. Geophys. Res.199510010417104401995JGR...10010417W1:CAS:528:DyaK2MXnt1ertLs%3D SmithDInsights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisonsJ. Geophys. Res.200010516769167812000JGR...10516769S1:CAS:528:DC%2BD3cXlsFGksb0%3D TynerGNSmithDPeridotite xenoliths in silica-rich, potassic latite from the transition zone of the Colorado Plateau in north-central ArizonaContrib. Mineral. Petrol.19869463711986CoMP...94...63T1:CAS:528:DyaL28XlslKiur0%3D WernickeBChristiansenRLEnglandPCSonderLJTectonomagmatic evolution of Cenozoic extension in the North American CordilleraSpec. Publ. Geol. Soc. (Lond.)1987282032211987GSLSP..28..203W BussodGYAThermal and Kinematic History of Mantle Xenoliths from Kilbourne Hole, New Mexico.1983 MouchaRMantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valleyGeology2008364394422008Geo....36..439M BirdPContinental delamination and the Colorado PlateauJ. Geophys. Res.197984756175711979JGR....84.7561B Sine, C. R. et al. Mantle structure beneath the western edge of the Colorado Plateau. Geophys. Res. Lett.35 10.1029/2008GL033391 (2008) Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res.111 10.1029/2003JB002950 (2006) LowryASmithRBFlexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topographyJ. Geophys. Res.19949920123201401994JGR....9920123L McGuireAVMukasaSBMagmatic modification of the uppermost mantle beneath the Basin and Range to Colorado Plateau Transition Zone; evidence from xenoliths, Wikieup, ArizonaContrib. Mineral. Petrol.199712852651997CoMP..128...52M1:CAS:528:DyaK2sXks1GqsLs%3D RodenMFShimizuNIon microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado Plateau provincesJ. Geophys. Res.19939814091141081993JGR....9814091R1:CAS:528:DyaK2cXhtF2qsA%3D%3D FlowersRWernickeBPFarleyKAUnroofing, incision and uplift history of the southwestern Colorado Plateau from (U-Th)/He apatite thermochronometryBull. Geol. Soc. Am.20081205715871:CAS:528:DC%2BD1cXhsVSjtbrL MorganPSwanbergCAOn the Cenozoic uplift and tectonic stability of the Colorado PlateauJ. Geodyn.198533963 GalerSJGO’NionsRKChemical and isotopic studies of ultramafic inclusions from the San Carlos Volcanic Field, Arizona: a bearing on their petrogenesisJ. Petrol.198930103310641989JPet...30.1033G1:CAS:528:DyaK3cXlslGlsLk%3D EvansSHNashWPPetrogenesis of xenolith-bearing basalts from southeastern ArizonaAm. Mineral.1979642492671:CAS:528:DyaE1MXhvFSjsbY%3D Goes, S. & van der Lee, S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res.107 10.1029/2000JB000049 (2002) Lenardic, A., Moresi, L.-N. & Mülhaus, H. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res.108 10.1029/2002JB001859 (2003) HervigRLSmithJVDawsonJBLherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinelTrans. R. Soc. Edinb. Earth Sci.1986771812021:CAS:528:DyaL2sXhvF2nsbs%3D EhrenbergSNPetrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo Volcanic FieldJ. Petrol.1982235075471982JPet...23..507E1:CAS:528:DyaL3sXhvFOmtA%3D%3D RiterJCAGeochemical and Tectonic Evolution of the Colorado Plateau Mantle Lithosphere: Evidence from Grand Canyon Mantle Xenoliths1999 Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parametrization of hydrous melting. Geochem. Geophys. Geosyst.4 10.1029/2002GC000433 (2003) JohnsonKEAn Appraisal of Mantle Metasomatism based upon Oxidation States, Trace Element and Isotope Geochemistry, and Fluid/Rock Ratios in Spinel Lherzolite Xenoliths1990 SmithDLevySPetrology of Green Knobs diatreme, New Mexico, and implications for the mantle below the Colorado PlateauEarth Planet. Sci. Lett.1976191071251976E&PSL..29..107S Kelly, R. K., Kelemen, P. B. & Jull, M. Buoyancy of the continental upper mantle. Geochem. Geophys. Geosyst.4 10.1029/2002GC000399 (2003) SmithDRiterJCAGenesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USAContrib. Mineral. Petrol.19971273914041997CoMP..127..391S1:CAS:528:DyaK2sXjvVClsr0%3D MenziesMXuYZhangHFanWIntegration of geology, geophysics and geochemistry: a key to understanding the North China CratonLithos2007961212007Litho..96....1M1:CAS:528:DC%2BD2sXlsFeht78%3D RosenbaumJMZindlerARubenstoneJLMantle fluids: evidence from fluid inclusionsGeochim. Cosmochim. Acta199660322932521996GeCoA..60.3229R1:CAS:528:DyaK28XmtFKnur4%3D EnglishJMJohnstonSTWangKLThermal modeling of the Laramide orogeny: testing the flat-slab subduction hypothesisEarth Planet. Sci. Lett.20032146196322003E&PSL.214..619E1:CAS:528:DC%2BD3sXnt1Cgtbk%3D CondieKCCoxJO’ReillySYGriffinWLKerrichRDistribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the Southwestern United States: the role of grain-boundary phasesGeochim. Cosmochim. Acta200468391939422004GeCoA..68.3919C1:CAS:528:DC%2BD2cXnvVerurc%3D FreyFAPrinzMUltramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesisEarth Planet. Sci. Lett.1978381291761978E&PSL..38..129F1:CAS:528:DyaE1cXhtl2ltr8%3D RodenMFIrvingAJMurthyVRIsotopic and trace element composition of the upper mantle beneath a young continental rift: results from Kilbourne Hole, New MexicoGeochim. Cosmochim. Acta1988524614731988GeCoA..52..461R1:CAS:528:DyaL1cXhtlGhsL8%3D LipmanPWGlaznerAFIntroduction to middle Tertiary Cordilleran volcanism – Magma sources and relations to regional tectonicsJ. Geophys. Res.19919613193131991991JGR....9613193L SmithDGriffinWLGarnetite xenoliths and mantle-water interactions below the Colorado Plateau, southwestern United StatesJ. Petrol.200546190119242005JPet...46.1901S1:CAS:528:DC%2BD2MXos1Chur0%3D BeardBLGlaznerAFTrace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, CaliforniaJ. Geophys. Res.1985100416941811995JGR...100.4169B LeeC-TPreservation of ancient and fertile lithospheric mantle beneath the southwestern United StatesNature200141169732001Natur.411...69L1:CAS:528:DC%2BD3MXjsFGntb0%3D11333978 Wang, K., Plank, T., Walker, J. D. & Smith, E. I. A melting profile across the Basin and Range, SW USA. J. Geophys. Res.107 10.1029/2001JB000209 (2002) Hunt, C. B. Cenozoic geology of the Colorado Plateau. Prof. Pap. US Geol. Surv.279, (1956) Roy, M., MacCarthy, J. K. & Selverstone, J. Upper mantle structure beneath the eastern Colorado Plateau and Rio Grande rift revealed by Bouguer gravity, seismic velocities, and xenolith data. Geochem. Geophys. Geosyst.6 10.1029/2005GC001008 (2005) McMillanMEHellerPLWingSLHistory and causes of post-Laramide relief in the Rocky Mountain orogenic plateauBull. Geol. Soc. Am.2006118393405 McQuarrieNChaseCGRaising the Colorado PlateauGeology20002891942000Geo....28...91M AlibertCPeridotite xenoliths from the western Grand Canyon and the Thumb: a probe into the subcontinental mantle of the Colorado PlateauJ. Geophys. Res.19909921605216201994JGR....9921605A FeigensonMDContinental alkali basalts of kimberlite and depleted mantle: evidence from Kilbourne Hole maar, New MexicoGeophys. Res. Lett.1986139659681986GeoRL..13..965F1:CAS:528:DyaL28XlslKitL4%3D MF Roden (BFnature08052_CR38) 1988; 52 D Smith (BFnature08052_CR52) 1997; 127 D Smith (BFnature08052_CR53) 1976; 19 ME McMillan (BFnature08052_CR16) 2006; 118 SJG Galer (BFnature08052_CR47) 1989; 30 JE Spencer (BFnature08052_CR4) 1996; 101 KJ Wenrich (BFnature08052_CR25) 1995; 100 RV Fodor (BFnature08052_CR45) 1978; 89 BL Beard (BFnature08052_CR42) 1985; 100 RL Hervig (BFnature08052_CR48) 1986; 77 JM English (BFnature08052_CR27) 2003; 214 P Morgan (BFnature08052_CR3) 1985; 3 KE Johnson (BFnature08052_CR49) 1990 MD Feigenson (BFnature08052_CR35) 1986; 13 C Peterson (BFnature08052_CR31) 2005 PW Lipman (BFnature08052_CR20) 1991; 96 SH Evans (BFnature08052_CR44) 1979; 64 D Smith (BFnature08052_CR26) 2005; 46 KC Condie (BFnature08052_CR33) 2004; 68 GN Tyner (BFnature08052_CR55) 1986; 94 HG Wilshire (BFnature08052_CR56) 1991; 32 BFnature08052_CR21 N McQuarrie (BFnature08052_CR5) 2000; 28 R Moucha (BFnature08052_CR18) 2008; 36 BFnature08052_CR24 BFnature08052_CR23 C-T Lee (BFnature08052_CR10) 2001; 411 BFnature08052_CR22 BFnature08052_CR29 BFnature08052_CR28 CH Jones (BFnature08052_CR30) 1996; 381 JL Pederson (BFnature08052_CR7) 2002; 12 FA Frey (BFnature08052_CR46) 1978; 38 D Smith (BFnature08052_CR39) 1997; 127 D Smith (BFnature08052_CR9) 2000; 105 ED Humphreys (BFnature08052_CR11) 1995; 23 AV McGuire (BFnature08052_CR37) 1997; 128 AW Lauglin (BFnature08052_CR36) 1971; 35 WS Baldridge (BFnature08052_CR41) 1979; 6 BFnature08052_CR14 BFnature08052_CR13 GYA Bussod (BFnature08052_CR43) 1983 M Menzies (BFnature08052_CR15) 2007; 96 SN Ehrenberg (BFnature08052_CR34) 1982; 23 JCA Riter (BFnature08052_CR50) 1999 BFnature08052_CR1 P Bird (BFnature08052_CR2) 1979; 84 JM Rosenbaum (BFnature08052_CR51) 1996; 60 MF Roden (BFnature08052_CR54) 1993; 98 B Wernicke (BFnature08052_CR6) 1987; 28 R Flowers (BFnature08052_CR17) 2008; 120 C Alibert (BFnature08052_CR8) 1990; 99 SC Berman (BFnature08052_CR32) 1981; 56 BFnature08052_CR40 A Lowry (BFnature08052_CR19) 1994; 99 ED Humphreys (BFnature08052_CR12) 2003; 45 11333978 - Nature. 2001 May 3;411(6833):69-73 |
References_xml | – reference: HervigRLSmithJVDawsonJBLherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinelTrans. R. Soc. Edinb. Earth Sci.1986771812021:CAS:528:DyaL2sXhvF2nsbs%3D – reference: BirdPContinental delamination and the Colorado PlateauJ. Geophys. Res.197984756175711979JGR....84.7561B – reference: Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parametrization of hydrous melting. Geochem. Geophys. Geosyst.4 10.1029/2002GC000433 (2003) – reference: McQuarrieNChaseCGRaising the Colorado PlateauGeology20002891942000Geo....28...91M – reference: LipmanPWGlaznerAFIntroduction to middle Tertiary Cordilleran volcanism – Magma sources and relations to regional tectonicsJ. Geophys. Res.19919613193131991991JGR....9613193L – reference: SmithDInsights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisonsJ. Geophys. Res.200010516769167812000JGR...10516769S1:CAS:528:DC%2BD3cXlsFGksb0%3D – reference: McGuireAVMukasaSBMagmatic modification of the uppermost mantle beneath the Basin and Range to Colorado Plateau Transition Zone; evidence from xenoliths, Wikieup, ArizonaContrib. Mineral. Petrol.199712852651997CoMP..128...52M1:CAS:528:DyaK2sXks1GqsLs%3D – reference: LeeC-TPreservation of ancient and fertile lithospheric mantle beneath the southwestern United StatesNature200141169732001Natur.411...69L1:CAS:528:DC%2BD3MXjsFGntb0%3D11333978 – reference: TynerGNSmithDPeridotite xenoliths in silica-rich, potassic latite from the transition zone of the Colorado Plateau in north-central ArizonaContrib. Mineral. Petrol.19869463711986CoMP...94...63T1:CAS:528:DyaL28XlslKiur0%3D – reference: Lenardic, A., Moresi, L.-N. & Mülhaus, H. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res.108 10.1029/2002JB001859 (2003) – reference: Goes, S. & van der Lee, S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res.107 10.1029/2000JB000049 (2002) – reference: BaldridgeWSMafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphereJ. Volcanol. Geotherm. Res.197963193511979JVGR....6..319B1:CAS:528:DyaL3cXnvFOiuw%3D%3D – reference: FreyFAPrinzMUltramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesisEarth Planet. Sci. Lett.1978381291761978E&PSL..38..129F1:CAS:528:DyaE1cXhtl2ltr8%3D – reference: FeigensonMDContinental alkali basalts of kimberlite and depleted mantle: evidence from Kilbourne Hole maar, New MexicoGeophys. Res. Lett.1986139659681986GeoRL..13..965F1:CAS:528:DyaL28XlslKitL4%3D – reference: Kelly, R. K., Kelemen, P. B. & Jull, M. Buoyancy of the continental upper mantle. Geochem. Geophys. Geosyst.4 10.1029/2002GC000399 (2003) – reference: PedersonJLMackleyRDEddlemanJLColorado Plateau uplift and erosion evaluated using GISGSA Today200212410 – reference: JohnsonKEAn Appraisal of Mantle Metasomatism based upon Oxidation States, Trace Element and Isotope Geochemistry, and Fluid/Rock Ratios in Spinel Lherzolite Xenoliths1990 – reference: HumphreysEDHow Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United StatesInt. Geol. Rev.200345575595 – reference: RodenMFShimizuNIon microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado Plateau provincesJ. Geophys. Res.19939814091141081993JGR....9814091R1:CAS:528:DyaK2cXhtF2qsA%3D%3D – reference: SpencerJEUplift of the Colorado Plateau due to lithospheric attenuation during Laramide low-angle subductionJ. Geophys. Res.199610113595136091996JGR...10113595S – reference: FlowersRWernickeBPFarleyKAUnroofing, incision and uplift history of the southwestern Colorado Plateau from (U-Th)/He apatite thermochronometryBull. Geol. Soc. Am.20081205715871:CAS:528:DC%2BD1cXhsVSjtbrL – reference: LowryASmithRBFlexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topographyJ. Geophys. Res.19949920123201401994JGR....9920123L – reference: BussodGYAThermal and Kinematic History of Mantle Xenoliths from Kilbourne Hole, New Mexico.1983 – reference: Wang, K., Plank, T., Walker, J. D. & Smith, E. I. A melting profile across the Basin and Range, SW USA. J. Geophys. Res.107 10.1029/2001JB000209 (2002) – reference: FodorRVUltramafic and mafic inclusions and megacrysts in Pliocene basalt, Black Range, New MexicoBull. Geol. Soc. Am.1978894514591:CAS:528:DyaE1cXhslertL4%3D – reference: EhrenbergSNPetrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo Volcanic FieldJ. Petrol.1982235075471982JPet...23..507E1:CAS:528:DyaL3sXhvFOmtA%3D%3D – reference: Roy, M., MacCarthy, J. K. & Selverstone, J. Upper mantle structure beneath the eastern Colorado Plateau and Rio Grande rift revealed by Bouguer gravity, seismic velocities, and xenolith data. Geochem. Geophys. Geosyst.6 10.1029/2005GC001008 (2005) – reference: RiterJCAGeochemical and Tectonic Evolution of the Colorado Plateau Mantle Lithosphere: Evidence from Grand Canyon Mantle Xenoliths1999 – reference: Wilshire, H. G. et al. Mafic and ultramafic xenoliths from volcanic rocks of the western United States. Prof. Pap. US Geol. Surv.1443, (1988) – reference: BermanSCFolandKASperaFJOn the origin of an amphibole-rich vein in a peridotite inclusions from the Lunar Crater Volcanic Field, Nevada, U.S.AEarth Planet. Sci. Lett.1981563433611981E&PSL..56..343B – reference: BeardBLGlaznerAFTrace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, CaliforniaJ. Geophys. Res.1985100416941811995JGR...100.4169B – reference: HumphreysEDPost-Laramide removal of the Farallon slab, western United StatesGeology1995239879901995Geo....23..987H – reference: RodenMFIrvingAJMurthyVRIsotopic and trace element composition of the upper mantle beneath a young continental rift: results from Kilbourne Hole, New MexicoGeochim. Cosmochim. Acta1988524614731988GeCoA..52..461R1:CAS:528:DyaL1cXhtlGhsL8%3D – reference: MouchaRMantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valleyGeology2008364394422008Geo....36..439M – reference: Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res.111 10.1029/2003JB002950 (2006) – reference: SmithDLevySPetrology of Green Knobs diatreme, New Mexico, and implications for the mantle below the Colorado PlateauEarth Planet. Sci. Lett.1976191071251976E&PSL..29..107S – reference: AlibertCPeridotite xenoliths from the western Grand Canyon and the Thumb: a probe into the subcontinental mantle of the Colorado PlateauJ. Geophys. Res.19909921605216201994JGR....9921605A – reference: RosenbaumJMZindlerARubenstoneJLMantle fluids: evidence from fluid inclusionsGeochim. Cosmochim. Acta199660322932521996GeCoA..60.3229R1:CAS:528:DyaK28XmtFKnur4%3D – reference: SmithDRiterJCAGenesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USAContrib. Mineral. Petrol.19971273914041997CoMP..127..391S1:CAS:528:DyaK2sXjvVClsr0%3D – reference: GalerSJGO’NionsRKChemical and isotopic studies of ultramafic inclusions from the San Carlos Volcanic Field, Arizona: a bearing on their petrogenesisJ. Petrol.198930103310641989JPet...30.1033G1:CAS:528:DyaK3cXlslGlsLk%3D – reference: Sine, C. R. et al. Mantle structure beneath the western edge of the Colorado Plateau. Geophys. Res. Lett.35 10.1029/2008GL033391 (2008) – reference: LauglinAWBrookinsDGChemical and strontium isotopic investigations of ultramafic inclusions and basalt, Bandera Crater, New MexicoGeochim. Cosmochim. Acta1971351071131971GeCoA..35..107L – reference: PetersonCRoyMGeology of the Chama Basin2005105114 – reference: CondieKCCoxJO’ReillySYGriffinWLKerrichRDistribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the Southwestern United States: the role of grain-boundary phasesGeochim. Cosmochim. Acta200468391939422004GeCoA..68.3919C1:CAS:528:DC%2BD2cXnvVerurc%3D – reference: WernickeBChristiansenRLEnglandPCSonderLJTectonomagmatic evolution of Cenozoic extension in the North American CordilleraSpec. Publ. Geol. Soc. (Lond.)1987282032211987GSLSP..28..203W – reference: MorganPSwanbergCAOn the Cenozoic uplift and tectonic stability of the Colorado PlateauJ. Geodyn.198533963 – reference: Hunt, C. B. Cenozoic geology of the Colorado Plateau. Prof. Pap. US Geol. Surv.279, (1956) – reference: EnglishJMJohnstonSTWangKLThermal modeling of the Laramide orogeny: testing the flat-slab subduction hypothesisEarth Planet. Sci. Lett.20032146196322003E&PSL.214..619E1:CAS:528:DC%2BD3sXnt1Cgtbk%3D – reference: JonesCHUnruhJRSonderLJThe role of gravitational potential energy in active deformation in the southwestern United StatesNature199638137411996Natur.381...37J1:CAS:528:DyaK28XislCrur0%3D – reference: McMillanMEHellerPLWingSLHistory and causes of post-Laramide relief in the Rocky Mountain orogenic plateauBull. Geol. Soc. Am.2006118393405 – reference: MenziesMXuYZhangHFanWIntegration of geology, geophysics and geochemistry: a key to understanding the North China CratonLithos2007961212007Litho..96....1M1:CAS:528:DC%2BD2sXlsFeht78%3D – reference: WenrichKJSpatial migration and compositional changes of Miocene-Quaternary magmatism in the western Grand CanyonJ. Geophys. Res.199510010417104401995JGR...10010417W1:CAS:528:DyaK2MXnt1ertLs%3D – reference: EvansSHNashWPPetrogenesis of xenolith-bearing basalts from southeastern ArizonaAm. Mineral.1979642492671:CAS:528:DyaE1MXhvFSjsbY%3D – reference: WilshireHGMcGuireAVNollerJSTurrinBDPetrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, CaliforniaJ. Petrol.1991321692001991JPet...32..169W1:CAS:528:DyaK3MXisFSrtbs%3D – reference: SmithDGriffinWLGarnetite xenoliths and mantle-water interactions below the Colorado Plateau, southwestern United StatesJ. Petrol.200546190119242005JPet...46.1901S1:CAS:528:DC%2BD2MXos1Chur0%3D – volume: 68 start-page: 3919 year: 2004 ident: BFnature08052_CR33 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.03.025 – volume: 128 start-page: 52 year: 1997 ident: BFnature08052_CR37 publication-title: Contrib. Mineral. Petrol. doi: 10.1007/s004100050293 – ident: BFnature08052_CR40 doi: 10.3133/pp1443 – ident: BFnature08052_CR22 doi: 10.1029/2002GC000399 – volume: 28 start-page: 91 year: 2000 ident: BFnature08052_CR5 publication-title: Geology doi: 10.1130/0091-7613(2000)028<0091:RTCP>2.0.CO;2 – volume: 13 start-page: 965 year: 1986 ident: BFnature08052_CR35 publication-title: Geophys. Res. Lett. doi: 10.1029/GL013i009p00965 – volume: 98 start-page: 14091 year: 1993 ident: BFnature08052_CR54 publication-title: J. Geophys. Res. doi: 10.1029/93JB00124 – volume: 36 start-page: 439 year: 2008 ident: BFnature08052_CR18 publication-title: Geology doi: 10.1130/G24577A.1 – volume: 30 start-page: 1033 year: 1989 ident: BFnature08052_CR47 publication-title: J. Petrol. doi: 10.1093/petrology/30.4.1033 – volume-title: Geochemical and Tectonic Evolution of the Colorado Plateau Mantle Lithosphere: Evidence from Grand Canyon Mantle Xenoliths year: 1999 ident: BFnature08052_CR50 – volume: 120 start-page: 571 year: 2008 ident: BFnature08052_CR17 publication-title: Bull. Geol. Soc. Am. doi: 10.1130/B26231.1 – volume: 23 start-page: 987 year: 1995 ident: BFnature08052_CR11 publication-title: Geology doi: 10.1130/0091-7613(1995)023<0987:PLROTF>2.3.CO;2 – volume: 60 start-page: 3229 year: 1996 ident: BFnature08052_CR51 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(96)00167-6 – volume: 127 start-page: 391 year: 1997 ident: BFnature08052_CR52 publication-title: Contrib. Mineral. Petrol. doi: 10.1007/s004100050288 – volume: 28 start-page: 203 year: 1987 ident: BFnature08052_CR6 publication-title: Spec. Publ. Geol. Soc. (Lond.) doi: 10.1144/GSL.SP.1987.028.01.15 – volume: 6 start-page: 319 year: 1979 ident: BFnature08052_CR41 publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/0377-0273(79)90009-X – volume: 100 start-page: 10417 year: 1995 ident: BFnature08052_CR25 publication-title: J. Geophys. Res. doi: 10.1029/95JB00373 – volume: 411 start-page: 69 year: 2001 ident: BFnature08052_CR10 publication-title: Nature doi: 10.1038/35075048 – volume: 52 start-page: 461 year: 1988 ident: BFnature08052_CR38 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(88)90101-9 – ident: BFnature08052_CR1 doi: 10.3133/pp279 – volume: 64 start-page: 249 year: 1979 ident: BFnature08052_CR44 publication-title: Am. Mineral. – ident: BFnature08052_CR28 doi: 10.1029/2002GC000433 – start-page: 105 volume-title: Geology of the Chama Basin year: 2005 ident: BFnature08052_CR31 doi: 10.56577/FFC-56.105 – volume: 89 start-page: 451 year: 1978 ident: BFnature08052_CR45 publication-title: Bull. Geol. Soc. Am. doi: 10.1130/0016-7606(1978)89<451:UAMIAM>2.0.CO;2 – ident: BFnature08052_CR29 doi: 10.1029/2000JB000049 – volume: 19 start-page: 107 year: 1976 ident: BFnature08052_CR53 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(76)90031-5 – volume: 46 start-page: 1901 year: 2005 ident: BFnature08052_CR26 publication-title: J. Petrol. doi: 10.1093/petrology/egi042 – volume: 99 start-page: 20123 year: 1994 ident: BFnature08052_CR19 publication-title: J. Geophys. Res. doi: 10.1029/94JB00960 – volume: 96 start-page: 13193 year: 1991 ident: BFnature08052_CR20 publication-title: J. Geophys. Res. doi: 10.1029/91JB01397 – volume: 100 start-page: 4169 year: 1985 ident: BFnature08052_CR42 publication-title: J. Geophys. Res. doi: 10.1029/94JB02883 – volume: 127 start-page: 391 year: 1997 ident: BFnature08052_CR39 publication-title: Contrib. Mineral. Petrol. doi: 10.1007/s004100050288 – volume: 45 start-page: 575 year: 2003 ident: BFnature08052_CR12 publication-title: Int. Geol. Rev. doi: 10.2747/0020-6814.45.7.575 – volume: 12 start-page: 4 year: 2002 ident: BFnature08052_CR7 publication-title: GSA Today doi: 10.1130/1052-5173(2002)012<0004:CPUAEE>2.0.CO;2 – volume: 96 start-page: 1 year: 2007 ident: BFnature08052_CR15 publication-title: Lithos doi: 10.1016/j.lithos.2006.09.008 – volume: 23 start-page: 507 year: 1982 ident: BFnature08052_CR34 publication-title: J. Petrol. doi: 10.1093/petrology/23.4.507 – volume: 3 start-page: 39 year: 1985 ident: BFnature08052_CR3 publication-title: J. Geodyn. doi: 10.1016/0264-3707(85)90021-3 – volume: 32 start-page: 169 year: 1991 ident: BFnature08052_CR56 publication-title: J. Petrol. doi: 10.1093/petrology/32.1.169 – volume: 101 start-page: 13595 year: 1996 ident: BFnature08052_CR4 publication-title: J. Geophys. Res. doi: 10.1029/96JB00818 – ident: BFnature08052_CR14 doi: 10.1029/2005GC001008 – volume: 214 start-page: 619 year: 2003 ident: BFnature08052_CR27 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(03)00399-6 – volume-title: An Appraisal of Mantle Metasomatism based upon Oxidation States, Trace Element and Isotope Geochemistry, and Fluid/Rock Ratios in Spinel Lherzolite Xenoliths year: 1990 ident: BFnature08052_CR49 – volume: 84 start-page: 7561 year: 1979 ident: BFnature08052_CR2 publication-title: J. Geophys. Res. doi: 10.1029/JB084iB13p07561 – volume: 38 start-page: 129 year: 1978 ident: BFnature08052_CR46 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(78)90130-9 – volume: 99 start-page: 21605 year: 1990 ident: BFnature08052_CR8 publication-title: J. Geophys. Res. doi: 10.1029/94JB01555 – volume: 105 start-page: 16769 year: 2000 ident: BFnature08052_CR9 publication-title: J. Geophys. Res. doi: 10.1029/2000JB900103 – volume-title: Thermal and Kinematic History of Mantle Xenoliths from Kilbourne Hole, New Mexico. year: 1983 ident: BFnature08052_CR43 – volume: 118 start-page: 393 year: 2006 ident: BFnature08052_CR16 publication-title: Bull. Geol. Soc. Am. doi: 10.1130/B25712.1 – volume: 77 start-page: 181 year: 1986 ident: BFnature08052_CR48 publication-title: Trans. R. Soc. Edinb. Earth Sci. doi: 10.1017/S026359330001083X – ident: BFnature08052_CR24 doi: 10.1029/2002JB001859 – ident: BFnature08052_CR13 doi: 10.1029/2008GL033391 – volume: 56 start-page: 343 year: 1981 ident: BFnature08052_CR32 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(81)90139-4 – volume: 35 start-page: 107 year: 1971 ident: BFnature08052_CR36 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(71)90108-6 – volume: 381 start-page: 37 year: 1996 ident: BFnature08052_CR30 publication-title: Nature doi: 10.1038/381037a0 – ident: BFnature08052_CR21 doi: 10.1029/2001JB000209 – ident: BFnature08052_CR23 doi: 10.1029/2003JB002950 – volume: 94 start-page: 63 year: 1986 ident: BFnature08052_CR55 publication-title: Contrib. Mineral. Petrol. doi: 10.1007/BF00371227 – reference: 11333978 - Nature. 2001 May 3;411(6833):69-73 |
SSID | ssj0005174 |
Score | 2.3448539 |
Snippet | On the up in Colorado
There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the... The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the... On the up in Colorado The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate (1-5). While... On the up in Colorado There has been a long-standing debate over the forces that drove surface uplift of the Colorado plateau, located in the interior of the... Here we show that even if the contributions from minor Laramide deformation4 and flexural isostatic responses to extension at the plateau margins and to net... |
SourceID | osti proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 978 |
SubjectTerms | Analysis Cenozoic Crystalline rocks Discovery and exploration Earth sciences Earth, ocean, space Environmental aspects Exact sciences and technology Geology Humanities and Social Sciences Igneous and metamorphic rocks petrology, volcanic processes, magmas Influence Internal geophysics letter Lithosphere Magma Magmatism Mesozoic multidisciplinary Neogene Rocks Science Science & Technology - Other Topics Solid-earth geophysics, tectonophysics, gravimetry Thermal properties Uplift (Geology) |
Title | Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere |
URI | https://link.springer.com/article/10.1038/nature08052 https://www.ncbi.nlm.nih.gov/pubmed/19536263 https://www.proquest.com/docview/204463969 https://www.proquest.com/docview/67383024 https://www.osti.gov/biblio/1564649 |
Volume | 459 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLagExIviI1b2SgW4jopIolzfUKlWjeQVk1jE32zfEuHtDXd0gjt33NO4rYJdOUlquqTE9c55_hL_eUzIW-Va1jqSeEoz2NO4OnIkS5TDkwtuEgltBC4ons8io7Og-_jcGy5OYWlVS5qYlWoda7wP3J4SIcHF5ZG6ZfZtYObRuHiqt1B4z7ZQuUyZHTF43jF8PhLhNm-nuey5HOtmuminn9rQrJluZNDfiFNUhQwUlm9xcU6DPrP-mk1LQ0fk0cWT9J-HQDb5J6Z7pAHh9V-vbfwqWJ4qmKHbNssLuhHKzX96Qk5HoDdjdA5PbkE0ClKeiUmiGGLKyqmmpYAUbM5lbf0t0DSzITmGb1ABk0OgWfysqAA4y_yAsUJzFNyPjw4Gxw5doMFRyRuPHdUrLX0UBGQ-VqqgMnYuCYMNROuklgNlA50VRUilonUh2-DxNcqUSYyQcaekc40n5oXhDJATizITBrGPmASk3hZ7Ao_kUam0hesS_YXo8yVVR_HTTAuebUKzhLeuCVdiKGF8awW3bjDDG8XRxmLKfJkJqIsCt4_-zkY8b6PaA4AXrrZLGIAmKMg9LrkzTqzbz9OW77uNmp4-mCNshx-oxL2TQcYKRTbarn7j2XD527LUs1-XfOGnzWtjXPft1ondZSt685mw4bHvZYhlCTV7iwmEAcQh0rECilbas5RlygK4Cq9Vl4tb7GPcoFxmsDpi0TjtqIWfJn_XfJ62YrXRZJgFfBIUUQ1u6BLntfZuQoeJCn4EUThu0W6rjyviayXG3uwSx7Wa4qR4yV7pDO_Kc0rgKZz2asKEByTgYfH4WGPbH09GJ2c_gFpSoxX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYIXxMZX2NgsxIAhRSRxmo8HhKrCaNlaIehE34xjOx3S1nRLq6l_FP8jd_loE-jK096q-nJxfR8-986_I-SltDQL7UiY0raZ6drKMyOLSRO2FkxSCSUEZnR7fa9z4n4ZNocb5Hd5FwbLKkufmDlqlUj8jxwO6XBwYaEXfphcmNg0CpOrZQeNXCuO9PwKTmzp--5HEO--4xx-GrQ7ZtFUwBSB5U9N6SsV2YiCxxwVSZdFvrZ0s6mYsGSEFiCVqzJL8FgsQge-dQNHyUBqT7sxA763yG3Ydy00KH_oLytK_gJ9Lq4DWix4l6N0Wtg_oLYBFttAIwF7xrJMkYJk4rylxqqY9598bbYNHj4g94v4lbZyhdskG3q8Re58zvoDz-FTVlEq0y2yWXiNlL4poK0PHpJeG-guhUro1zMIcsWMnosRxszpORVjRWcQEsdTGs3plcAinRFNYnqKFTsJKLpOZimFY8NpkiIYgn5ETm5k7R-TxjgZ66eEMojUmBvrsOk7IAsd2LFvCSeIdBRGjmAGeVuuMpcF2jk23TjjWdadBbwiEgN0tiSe5CAf15ChuDjCZoyxLmckZmnKW4Mf7T5vORg9QkAZrifzGATontu0DfJiFVn3-7car-uJKpxeF0RxAr9RiuJmBawUgnvV2P2HssJzu0YpJ78ueIXPitHKs69qo6Ncy1ZNZz1hheNOjRBcoKxPFg2IQ9CIyMcSS8TklCMOkufCW3ZrdrUQsYPwhH4YwOOlofHCg6d84W8MsrcYxfdiUWKm8FgSieh5rkGe5Na5VB4sinA80ML90lyXnFdo1rO1M9gjdzuD3jE_7vaPtsm9PJ_pmXawQxrTy5l-DmHxNNrNnBElP2_a-_0B0YPGow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEWgviI2PlY3NQgwYUrQkzucDQlVHWRmrJthE34xjOx3S1nRLq6l_Gv8dd_loE-jK096q-nJx7bvzz_X5d4S8lqZmoRUJQ1oWMxxLeUZkMmnA0oKHVEIJgSe6xz3v8Mz50nf7K-R3eRcG0yrLmJgFapVI_I8cNumwcWGhF-7HRVbEyUHn4-jKwAJSeNBaVtPILeRIT29g95Z-6B7AVO_adufTafvQKAoMGCIw_bEhfaUiCxnxmK0i6bDI16Z2XcWEKSP0BqkclXmFx2IR2vCtE9hKBlJ72okZ6L1H7vvMtdDF_L4_zy75iwC6uBposmA_Z-w0sZZAbTEsloRGAr6NKZoihVmK8_Iai_DvP2e32ZLYeUweFViWtnLjWyMrerhOHnzOagVP4VOWXSrTdbJWRJCUvitorveekOM2yF0LldCTCwC8YkIvxQDxc3pJxVDRCcDjeEyjKb0RmLAzoElMzzF7JwGj18kkpbCFOE9SJEbQT8nZnYz9M9IYJkO9QSgD1MacWIeubwMe0oEV-6awg0hHYWQL1iTvy1HmsmA-xwIcFzw7gWcBr0xJE-y3FB7lhB-3iOF0caTQGKI1DsQkTXnr9Ee7x1s2IkkAl-FyMY8BWPcc12qSV4vEut-_1XTdLlTR9LYQihP4jVIUtyxgpJDoq6buP5IVnZs1STn6dcUreha0Vp59U2sd5Fa2qDvLBSsat2qCEA5lvbPoQBwAJLIgS0wXk2OOnEieA2_ZrvnVbIptpCr0wwAeLx2NF9E85bPY0yQ7s1Z8LyYoZgaP6ZHIpOc0yfPcO-fGgwkStgdWuFu661zzAst6sbQHO-QhxD3-tds72iSr-dGmZ1jBFmmMryf6JSDkcbSdxSJKft518PsDiF7K2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorado+Plateau+magmatism+and+uplift+by+warming+of+heterogeneous+lithosphere&rft.jtitle=Nature+%28London%29&rft.au=Roy%2C+Mousumi&rft.au=Jordan%2C+Thomas+H&rft.au=Pederson%2C+Joel&rft.date=2009-06-18&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=459&rft.issue=7249&rft.spage=978&rft_id=info:doi/10.1038%2Fnature08052&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |