Atmosphere–soil carbon transfer as a function of soil depth
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate 1 , 2 and—because of the importance of organic matter to soil fertility—agricultural productivity 3 . The dynamics of topsoil carbon has been relatively well quantified 4 , but half of the soil carbon is...
Saved in:
Published in | Nature (London) Vol. 559; no. 7715; pp. 599 - 602 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate
1
,
2
and—because of the importance of organic matter to soil fertility—agricultural productivity
3
. The dynamics of topsoil carbon has been relatively well quantified
4
, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)
5
–
7
, and many questions remain regarding the exchange of this deep carbon with the atmosphere
8
. This knowledge gap restricts soil carbon management policies and limits global carbon models
1
,
9
,
10
. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work
5
,
6
, that soil at a depth of 30–100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre’s SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil–atmosphere carbon exchange.
This study of whole-soil carbon dynamics finds that, of the atmospheric carbon that is incorporated into the topmost metre of soil over 50 years, just 19 per cent reaches the subsoil, in a manner that depends on land use and aridity. |
---|---|
AbstractList | The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil fertility-agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil fertility-agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange. The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil fertility-agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange. The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate 1 , 2 and—because of the importance of organic matter to soil fertility—agricultural productivity 3 . The dynamics of topsoil carbon has been relatively well quantified 4 , but half of the soil carbon is located in deeper soil layers (below 30 centimetres) 5 – 7 , and many questions remain regarding the exchange of this deep carbon with the atmosphere 8 . This knowledge gap restricts soil carbon management policies and limits global carbon models 1 , 9 , 10 . Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work 5 , 6 , that soil at a depth of 30–100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre’s SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil–atmosphere carbon exchange. This study of whole-soil carbon dynamics finds that, of the atmospheric carbon that is incorporated into the topmost metre of soil over 50 years, just 19 per cent reaches the subsoil, in a manner that depends on land use and aridity. The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate.sup.1,2 and--because of the importance of organic matter to soil fertility--agricultural productivity.sup.3. The dynamics of topsoil carbon has been relatively well quantified.sup.4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres).sup.5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere.sup.8. This knowledge gap restricts soil carbon management policies and limits global carbon models.sup.1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work.sup.5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange. The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate.sup.1,2 and--because of the importance of organic matter to soil fertility--agricultural productivity.sup.3. The dynamics of topsoil carbon has been relatively well quantified.sup.4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres).sup.5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere.sup.8. This knowledge gap restricts soil carbon management policies and limits global carbon models.sup.1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work.sup.5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.This study of whole-soil carbon dynamics finds that, of the atmospheric carbon that is incorporated into the topmost metre of soil over 50 years, just 19 per cent reaches the subsoil, in a manner that depends on land use and aridity. The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate and-because of the importance of organic matter to soil fertility-agricultural productivity . The dynamics of topsoil carbon has been relatively well quantified , but half of the soil carbon is located in deeper soil layers (below 30 centimetres) , and many questions remain regarding the exchange of this deep carbon with the atmosphere . This knowledge gap restricts soil carbon management policies and limits global carbon models . Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work , that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange. The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and—because of the importance of organic matter to soil fertility—agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5,6,7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30–100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre’s SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil–atmosphere carbon exchange. |
Audience | Academic |
Author | Basile-Doelsch, Isabelle Derrien, Delphine Balesdent, Jérôme Hatté, Christine Fekiacova, Zuzana Chadoeuf, Joël Cornu, Sophie |
Author_xml | – sequence: 1 givenname: Jérôme surname: Balesdent fullname: Balesdent, Jérôme email: jerome.balesdent@inra.fr organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE – sequence: 2 givenname: Isabelle surname: Basile-Doelsch fullname: Basile-Doelsch, Isabelle organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE – sequence: 3 givenname: Joël surname: Chadoeuf fullname: Chadoeuf, Joël organization: INRA UR 1052 – sequence: 4 givenname: Sophie surname: Cornu fullname: Cornu, Sophie organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE – sequence: 5 givenname: Delphine surname: Derrien fullname: Derrien, Delphine organization: INRA UR Biogéochimie des Ecosystèmes Forestiers – sequence: 6 givenname: Zuzana surname: Fekiacova fullname: Fekiacova, Zuzana organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE – sequence: 7 givenname: Christine surname: Hatté fullname: Hatté, Christine organization: Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29995858$$D View this record in MEDLINE/PubMed https://hal.science/hal-02073138$$DView record in HAL |
BookMark | eNp90stu1DAUBmALFdFp4QHYoAg2VCjFlzh2Fl1EI6CVRiBBEUvL8WXGVSZO7QTRXd-BN-RJcJjSMtUUZWHp6Dsnss9_APY63xkAniN4jCDhb2OBKC9ziHgOCeY5eQRmqGBlXpSc7YEZhKkIOSn3wUGMFxBCiljxBOzjqqoop3wGTuph7WO_MsH8uv4ZvWszJUPju2wIsovWhEzGTGZ27NTgUtnb7I_Sph9WT8FjK9tont2ch-Dr-3fn89N88enD2bxe5JJxPuS4oQUrDMRloSUllTSaatUgoqtGU6YVYhYhYgtTMIoVY7aSyEKpZcWRZoQcgqPN3JVsRR_cWoYr4aUTp_VCTDWIISOI8O8o2dcb2wd_OZo4iLWLyrSt7Iwfo8Cw5BXCnE_01T164cfQpZskxWnJKliVd2opWyNcZ316GjUNFTVlmGEOS5pUvkMtTWeCbNParEvlLf9yh1e9uxT_ouMdKH3arJ3aOfVoqyGZwfwYlnKMUZx9-bxt3zxs6_Nv84_b-sXNW43N2ujbLfyNUgJoA1TwMQZjbwmCYoqr2MRVpLiKKa5i2iu716PcIKecpXu69r-deNMZ01-6pQl3q3u46Tfh9Pcy |
CitedBy_id | crossref_primary_10_1128_msystems_00298_20 crossref_primary_10_1360_N072022_0099 crossref_primary_10_1038_s41467_022_31540_9 crossref_primary_10_1016_j_scitotenv_2019_134482 crossref_primary_10_1016_j_geoderma_2025_117167 crossref_primary_10_1093_pnasnexus_pgac314 crossref_primary_10_1080_03650340_2019_1626984 crossref_primary_10_1111_gcb_17591 crossref_primary_10_1016_j_compag_2024_109010 crossref_primary_10_1111_1365_2435_14290 crossref_primary_10_1016_j_catena_2023_107493 crossref_primary_10_1016_j_scitotenv_2024_174708 crossref_primary_10_1038_s43247_023_00862_x crossref_primary_10_1093_femsec_fiaf002 crossref_primary_10_1134_S1064229322100064 crossref_primary_10_1128_mSphere_00024_20 crossref_primary_10_1002_ldr_5350 crossref_primary_10_1016_j_apsoil_2024_105372 crossref_primary_10_1098_rstb_2020_0170 crossref_primary_10_1080_04353676_2024_2335000 crossref_primary_10_1002_eap_2627 crossref_primary_10_1007_s11104_023_05891_1 crossref_primary_10_1007_s10533_022_00956_2 crossref_primary_10_1016_j_agee_2024_109183 crossref_primary_10_3390_agriculture11030189 crossref_primary_10_5194_soil_10_349_2024 crossref_primary_10_1016_j_ecolind_2022_108847 crossref_primary_10_1016_j_scitotenv_2023_164978 crossref_primary_10_1002_agg2_20226 crossref_primary_10_1016_j_scib_2024_03_063 crossref_primary_10_1042_ETLS20200277 crossref_primary_10_1080_00103624_2019_1667372 crossref_primary_10_1134_S1064229324601550 crossref_primary_10_1038_s41893_020_0557_y crossref_primary_10_1016_j_geoderma_2019_02_008 crossref_primary_10_1016_j_soilbio_2024_109455 crossref_primary_10_1111_ejss_12908 crossref_primary_10_2139_ssrn_4169666 crossref_primary_10_5194_soil_10_795_2024 crossref_primary_10_4236_ojss_2022_129017 crossref_primary_10_1016_j_chemgeo_2022_121044 crossref_primary_10_1007_s11104_022_05714_9 crossref_primary_10_1007_s11104_024_07105_8 crossref_primary_10_1111_gcb_15512 crossref_primary_10_1016_j_agee_2023_108843 crossref_primary_10_3390_agronomy14050963 crossref_primary_10_1016_j_geoderma_2021_115321 crossref_primary_10_1016_j_tplants_2019_12_007 crossref_primary_10_5194_gmd_14_3879_2021 crossref_primary_10_1002_ldr_4806 crossref_primary_10_1007_s42729_022_00797_w crossref_primary_10_1016_j_foreco_2020_118127 crossref_primary_10_1029_2023MS003625 crossref_primary_10_1016_j_gecco_2023_e02555 crossref_primary_10_1016_j_geoderma_2021_115567 crossref_primary_10_1007_s10533_020_00721_3 crossref_primary_10_1073_pnas_2203486119 crossref_primary_10_1016_j_jclepro_2022_135423 crossref_primary_10_1111_gcb_16164 crossref_primary_10_1139_er_2022_0129 crossref_primary_10_1016_j_ecoleng_2019_07_006 crossref_primary_10_1029_2018MS001392 crossref_primary_10_1016_j_agee_2019_106810 crossref_primary_10_3390_su12176715 crossref_primary_10_1038_s41559_022_01944_3 crossref_primary_10_1016_j_geoderma_2019_113956 crossref_primary_10_5194_bg_19_375_2022 crossref_primary_10_1016_j_scitotenv_2019_134597 crossref_primary_10_1021_acs_est_3c06557 crossref_primary_10_1038_s41598_023_41555_x crossref_primary_10_1016_j_fecs_2024_100203 crossref_primary_10_1016_j_geoderma_2022_115971 crossref_primary_10_1016_j_apsoil_2021_103926 crossref_primary_10_1016_j_ecolind_2022_108869 crossref_primary_10_1016_j_apsoil_2022_104629 crossref_primary_10_1016_j_jaridenv_2021_104696 crossref_primary_10_1002_ldr_3388 crossref_primary_10_1007_s12665_024_11976_6 crossref_primary_10_1590_2179_8087_floram_2021_0068 crossref_primary_10_1186_s13021_021_00187_2 crossref_primary_10_1111_gcb_17247 crossref_primary_10_5194_bg_17_5223_2020 crossref_primary_10_1007_s00572_024_01146_8 crossref_primary_10_1017_RDC_2024_137 crossref_primary_10_1016_j_geoderma_2023_116550 crossref_primary_10_1016_j_envres_2023_117224 crossref_primary_10_1016_j_agee_2019_106705 crossref_primary_10_1111_gcb_14962 crossref_primary_10_1111_ejss_13133 crossref_primary_10_1016_j_catena_2019_104285 crossref_primary_10_1016_j_soilbio_2019_02_013 crossref_primary_10_1016_j_still_2024_106323 crossref_primary_10_1088_1748_9326_ac00e4 crossref_primary_10_1016_j_scitotenv_2018_10_236 crossref_primary_10_1111_gcbb_12907 crossref_primary_10_1029_2024JG008102 crossref_primary_10_1016_j_quageo_2020_101133 crossref_primary_10_1080_00103624_2024_2368272 crossref_primary_10_1111_gcb_15370 crossref_primary_10_1002_ldr_3497 crossref_primary_10_1029_2021GL093407 crossref_primary_10_1016_j_agee_2022_108339 crossref_primary_10_1016_j_soilbio_2020_107762 crossref_primary_10_1029_2020JG006205 crossref_primary_10_1007_s41207_025_00774_6 crossref_primary_10_1029_2020JG006201 crossref_primary_10_1109_JSTARS_2024_3486737 crossref_primary_10_1016_j_scitotenv_2024_176825 crossref_primary_10_1111_gcb_15489 crossref_primary_10_1016_j_jenvman_2022_117127 crossref_primary_10_1016_j_tplants_2023_08_010 crossref_primary_10_1155_2022_3691638 crossref_primary_10_3934_geosci_2019_4_886 crossref_primary_10_1007_s11104_019_04384_4 crossref_primary_10_1126_sciadv_aaw4418 crossref_primary_10_1016_j_foreco_2020_118135 crossref_primary_10_1002_ldr_4574 crossref_primary_10_1080_10256016_2021_1946532 crossref_primary_10_1016_j_soilbio_2023_109158 crossref_primary_10_1017_RDC_2021_41 crossref_primary_10_15446_acag_v71n2_97692 crossref_primary_10_1016_j_catena_2023_107746 crossref_primary_10_3934_environsci_2021020 crossref_primary_10_1007_s10021_022_00757_6 crossref_primary_10_1080_09064710_2020_1758763 crossref_primary_10_1016_j_scitotenv_2019_06_472 crossref_primary_10_1016_j_scitotenv_2024_175261 crossref_primary_10_1016_j_still_2024_106100 crossref_primary_10_1038_s41598_024_72042_6 crossref_primary_10_3390_quat6020033 crossref_primary_10_1016_j_still_2022_105336 crossref_primary_10_1016_j_catena_2023_107278 crossref_primary_10_3390_land14030535 crossref_primary_10_5194_bg_22_1427_2025 crossref_primary_10_3390_soilsystems7010011 crossref_primary_10_1016_j_scitotenv_2020_138961 crossref_primary_10_1016_j_catena_2024_108680 crossref_primary_10_1016_j_jenvman_2023_118617 crossref_primary_10_1007_s13593_023_00928_2 crossref_primary_10_1111_geb_13211 crossref_primary_10_1016_j_geoderma_2024_116937 crossref_primary_10_1016_j_ecolind_2022_109471 crossref_primary_10_1088_2515_7620_ad23f1 crossref_primary_10_3390_rs16071308 crossref_primary_10_1016_j_catena_2022_106208 crossref_primary_10_5194_soil_8_517_2022 crossref_primary_10_1111_ejss_13586 crossref_primary_10_1002_jqs_3521 crossref_primary_10_1016_j_foreco_2020_117988 crossref_primary_10_1002_ldr_4679 crossref_primary_10_1007_s11056_019_09765_2 crossref_primary_10_1073_pnas_2313842121 crossref_primary_10_1126_sciadv_aau1218 crossref_primary_10_1016_j_geoderma_2021_115515 crossref_primary_10_1016_j_geoderma_2022_115937 crossref_primary_10_3390_soilsystems7010003 crossref_primary_10_1016_j_scitotenv_2025_179003 crossref_primary_10_1016_j_soilbio_2022_108780 crossref_primary_10_6002_ect_MESOT2021_O10 crossref_primary_10_3389_fmicb_2021_735282 crossref_primary_10_1016_j_geoderma_2022_115810 crossref_primary_10_1029_2021MS002804 crossref_primary_10_1111_gcb_17444 crossref_primary_10_1016_j_catena_2021_105623 crossref_primary_10_1021_acs_est_9b06304 crossref_primary_10_1007_s13593_019_0599_6 crossref_primary_10_1111_brv_12554 crossref_primary_10_1139_cjss_2024_0033 crossref_primary_10_1016_j_geoderma_2024_116871 crossref_primary_10_1016_j_geoderma_2024_116991 crossref_primary_10_2136_sssaj2018_11_0447 crossref_primary_10_5194_bg_20_827_2023 crossref_primary_10_1111_geb_13159 crossref_primary_10_5194_soil_11_149_2025 crossref_primary_10_1002_jpln_202300107 crossref_primary_10_1016_j_ecoinf_2022_101957 crossref_primary_10_1038_s41467_022_28748_0 crossref_primary_10_1016_j_scitotenv_2023_166408 crossref_primary_10_5194_bg_16_1955_2019 crossref_primary_10_1016_j_catena_2023_107099 crossref_primary_10_31857_S0032180X24080042 crossref_primary_10_1016_j_still_2023_105716 crossref_primary_10_1007_s11104_023_06089_1 crossref_primary_10_1016_j_still_2023_105959 crossref_primary_10_1186_s13021_022_00203_z crossref_primary_10_5194_bg_16_3233_2019 crossref_primary_10_1016_j_scitotenv_2024_174308 crossref_primary_10_1038_s41467_022_34951_w crossref_primary_10_1002_ecs2_2973 crossref_primary_10_1016_j_scitotenv_2021_151942 crossref_primary_10_1038_s41561_020_0596_z crossref_primary_10_1016_j_ecoleng_2022_106570 crossref_primary_10_1111_geb_13705 crossref_primary_10_1071_SR20257 crossref_primary_10_1111_1365_2435_13934 crossref_primary_10_1007_s42832_021_0101_7 crossref_primary_10_1016_j_geoderma_2018_11_052 crossref_primary_10_1016_j_geoderma_2018_10_018 crossref_primary_10_1177_0959683620932963 crossref_primary_10_1007_s11104_019_04371_9 crossref_primary_10_1007_s40725_024_00242_4 crossref_primary_10_1016_j_tfp_2024_100560 crossref_primary_10_1002_advs_202001242 crossref_primary_10_1111_nph_16409 crossref_primary_10_1016_j_scitotenv_2023_167282 crossref_primary_10_3390_f15091483 crossref_primary_10_1111_ejss_13398 crossref_primary_10_1007_s11430_022_1031_5 crossref_primary_10_1007_s11104_020_04769_w crossref_primary_10_1016_j_apsoil_2023_104932 crossref_primary_10_1016_j_geodrs_2024_e00824 crossref_primary_10_3389_fmicb_2019_00744 crossref_primary_10_2139_ssrn_4117176 crossref_primary_10_1002_jpln_201800595 crossref_primary_10_1111_ejss_13390 crossref_primary_10_1016_j_geoderma_2024_117143 crossref_primary_10_5194_soil_10_151_2024 crossref_primary_10_1111_ejss_12739 crossref_primary_10_1021_acs_est_8b06807 crossref_primary_10_1088_1748_9326_abb853 crossref_primary_10_1111_gcb_15110 crossref_primary_10_1016_j_geoderma_2025_117212 crossref_primary_10_1360_N072022_0106 crossref_primary_10_1016_j_gca_2021_07_005 crossref_primary_10_1016_j_envint_2024_108429 crossref_primary_10_1007_s13204_021_02081_2 crossref_primary_10_1007_s10533_020_00749_5 crossref_primary_10_1128_mBio_01318_19 crossref_primary_10_1016_j_jenvman_2024_121429 crossref_primary_10_1016_j_geoderma_2019_01_035 crossref_primary_10_1002_ldr_3785 crossref_primary_10_1111_gcb_16311 crossref_primary_10_1111_ejss_12960 crossref_primary_10_1016_j_apsoil_2021_104054 crossref_primary_10_1038_s41467_020_20406_7 crossref_primary_10_5194_gmd_11_4711_2018 crossref_primary_10_1007_s11104_024_06850_0 crossref_primary_10_1016_j_apsoil_2024_105322 crossref_primary_10_1007_s11104_023_06328_5 crossref_primary_10_3390_soilsystems8040105 crossref_primary_10_1016_j_earscirev_2024_104804 crossref_primary_10_1002_sae2_12048 crossref_primary_10_1016_j_scitotenv_2019_134566 crossref_primary_10_1016_j_still_2023_105913 crossref_primary_10_1016_j_still_2022_105519 crossref_primary_10_1016_j_gecco_2021_e01841 crossref_primary_10_3390_f16010108 crossref_primary_10_1111_gcb_17153 crossref_primary_10_1007_s11368_024_03794_x crossref_primary_10_1073_pnas_1914140117 crossref_primary_10_1007_s11367_024_02307_9 crossref_primary_10_3390_f14081518 crossref_primary_10_1017_S0021859620000398 crossref_primary_10_1016_j_jhazmat_2020_123853 crossref_primary_10_12944_CWE_17_1_14 crossref_primary_10_1134_S1064229324600775 crossref_primary_10_3390_soilsystems3020028 crossref_primary_10_3389_fmicb_2022_980169 crossref_primary_10_1002_ldr_4177 crossref_primary_10_1016_j_geoderma_2020_114785 crossref_primary_10_5194_soil_9_55_2023 crossref_primary_10_1016_j_catena_2022_106078 crossref_primary_10_1007_s11104_022_05488_0 crossref_primary_10_1016_j_catena_2021_105564 crossref_primary_10_1016_j_apsoil_2025_106010 crossref_primary_10_1016_j_catena_2024_108254 crossref_primary_10_1360_TB_2022_0728 crossref_primary_10_1002_ldr_4293 crossref_primary_10_1016_j_ecolind_2022_109062 crossref_primary_10_1016_j_agee_2021_107590 crossref_primary_10_5194_bg_20_1063_2023 crossref_primary_10_1016_j_geoderma_2023_116376 crossref_primary_10_1016_j_soilbio_2018_08_015 crossref_primary_10_1111_gcb_15677 crossref_primary_10_1016_j_agee_2020_107190 crossref_primary_10_1016_j_envres_2024_118453 crossref_primary_10_1016_j_geoderma_2021_115125 crossref_primary_10_1111_gcbb_12729 crossref_primary_10_1007_s11027_021_09980_3 crossref_primary_10_1016_j_catena_2024_107873 crossref_primary_10_1007_s13593_023_00876_x crossref_primary_10_1016_j_apsoil_2021_104249 crossref_primary_10_1016_j_scitotenv_2023_167889 crossref_primary_10_1002_ldr_3873 crossref_primary_10_5194_soil_7_585_2021 crossref_primary_10_3390_ecologies3010003 crossref_primary_10_1016_j_ecolind_2024_112717 crossref_primary_10_1071_SR19065 crossref_primary_10_1016_j_scitotenv_2024_171752 crossref_primary_10_3390_agronomy15030756 crossref_primary_10_1016_j_scitotenv_2021_149626 crossref_primary_10_1038_s44264_024_00045_x crossref_primary_10_1071_SR20150 crossref_primary_10_7717_peerj_12131 crossref_primary_10_1016_j_scitotenv_2021_147209 crossref_primary_10_1016_j_catena_2023_107682 crossref_primary_10_1016_j_scitotenv_2023_167757 crossref_primary_10_1016_j_jclepro_2023_136902 crossref_primary_10_1038_s41893_024_01495_4 crossref_primary_10_1016_j_ecoleng_2024_107212 crossref_primary_10_54172_mjsc_v36i2_34 crossref_primary_10_1007_s11430_022_1032_2 crossref_primary_10_1126_sciadv_add0041 crossref_primary_10_3390_agronomy12020517 crossref_primary_10_3390_soilsystems3030046 |
Cites_doi | 10.5194/essd-8-605-2016 10.1126/science.282.5390.893 10.1111/gcb.13012 10.1016/j.soilbio.2017.12.021 10.1038/nature16045 10.5194/bg-10-2379-2013 10.3354/cr021001 10.1088/1748-9326/7/4/044008 10.1002/2014GB005021 10.5194/bg-11-2147-2014 10.1111/gcb.13379 10.1126/science.1151382 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1038/nature13731 10.1038/371783a0 10.2136/sssaj1980.03615995004400040005x 10.1038/nature06591 10.1002/2015GB005239 10.1007/978-1-4899-4541-9 10.1038/nature06275 10.1126/science.aad4273 10.1029/2009JG001070 10.5194/bg-10-1717-2013 10.1046/j.1354-1013.2002.00486.x 10.1111/gcb.12494 10.5194/bg-13-527-2016 10.2136/sssaj1995.03615995005900050019x 10.1111/gcb.13556 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 10.1007/s11104-010-0391-5 10.1073/pnas.1103910108 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Ltd., part of Springer Nature 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Jul 26, 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Macmillan Publishers Ltd., part of Springer Nature 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Jul 26, 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC VOOES |
DOI | 10.1038/s41586-018-0328-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) ProQuest Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Agriculture |
EISSN | 1476-4687 |
EndPage | 602 |
ExternalDocumentID | oai_HAL_hal_02073138v1 A572728065 29995858 10_1038_s41586_018_0328_3 |
Genre | Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AFANA ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFBBN AFFDN AFHKK AGCDD AGGDT AGOIJ AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 1XC ADGHP AEZWR AFHIU AGQPQ AHWEU AIXLP VOOES |
ID | FETCH-LOGICAL-a788t-2b5474e0264da539aed5dcb13d9bd57dc17f113f4e4752c77f9a1f0ada981d733 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Tue Jun 24 03:08:32 EDT 2025 Fri Jul 11 07:48:31 EDT 2025 Fri Jul 25 08:59:02 EDT 2025 Tue Jun 17 21:24:11 EDT 2025 Thu Jun 12 23:39:39 EDT 2025 Tue Jun 10 15:34:48 EDT 2025 Tue Jun 10 20:41:43 EDT 2025 Fri Jun 27 05:08:33 EDT 2025 Fri Jun 27 04:36:25 EDT 2025 Tue Apr 01 03:09:29 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Tue Jul 01 00:57:19 EDT 2025 Fri Feb 21 02:37:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7715 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a788t-2b5474e0264da539aed5dcb13d9bd57dc17f113f4e4752c77f9a1f0ada981d733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2433-5898 0000-0002-7262-2867 0000-0002-0587-8141 0000-0002-7086-2672 0000-0002-4947-5221 0000-0002-6482-2316 |
OpenAccessLink | https://hal.science/hal-02073138 |
PMID | 29995858 |
PQID | 2085679096 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | hal_primary_oai_HAL_hal_02073138v1 proquest_miscellaneous_2068912881 proquest_journals_2085679096 gale_infotracmisc_A572728065 gale_infotracgeneralonefile_A572728065 gale_infotraccpiq_572728065 gale_infotracacademiconefile_A572728065 gale_incontextgauss_ISR_A572728065 gale_incontextgauss_ATWCN_A572728065 pubmed_primary_29995858 crossref_primary_10_1038_s41586_018_0328_3 crossref_citationtrail_10_1038_s41586_018_0328_3 springer_journals_10_1038_s41586_018_0328_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-00 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-00 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mathieu, Hatté, Balesdent, Parent (CR18) 2015; 21 Jobbágy, Jackson (CR5) 2000; 10 Koven (CR29) 2011; 108 Hobley, Baldock, Hua, Wilson (CR14) 2017; 23 Šantrůčková (CR33) 2018; 119 Sierra, Müller, Metzler, Manzoni, Trumbore (CR17) 2017; 23 Lehmann, Kleber (CR22) 2015; 528 Ahlström, Schurgers, Arneth, Smith (CR1) 2012; 7 Carvalhais (CR9) 2014; 514 Elzein, Balesdent (CR16) 1995; 59 Le Quéré (CR11) 2016; 8 Manzoni, Katul, Porporato (CR30) 2009; 114 Tian (CR10) 2015; 29 Schenk, Jackson (CR26) 2002; 72 Ahrens (CR20) 2014; 11 Alexander (CR32) 1980; 44 Strand, Pritchard, McCormack, Davis, Oren (CR27) 2008; 319 New, Lister, Hulme, Makin (CR31) 2002; 21 Chen, Yang, Robinson (CR15) 2014; 20 Luo (CR12) 2016; 30 Guo, Gifford (CR25) 2002; 8 Rasmussen (CR4) 1998; 282 CR6 Heimann, Reichstein (CR2) 2008; 451 Fontaine (CR28) 2007; 450 Rumpel, Kögel-Knabner (CR8) 2011; 338 CR23 CR21 He (CR19) 2016; 353 Guan (CR13) 2016; 13 Efron, Tibshirani (CR34) 1993 Guenet (CR24) 2013; 10 Tiessen, Cuevas, Chacon (CR3) 1994; 371 Todd-Brown (CR7) 2013; 10 KEO Todd-Brown (328_CR7) 2013; 10 328_CR21 S Manzoni (328_CR30) 2009; 114 328_CR23 A Elzein (328_CR16) 1995; 59 328_CR6 H Tiessen (328_CR3) 1994; 371 C Rumpel (328_CR8) 2011; 338 C Quéré Le (328_CR11) 2016; 8 CD Koven (328_CR29) 2011; 108 J Lehmann (328_CR22) 2015; 528 H Šantrůčková (328_CR33) 2018; 119 CA Sierra (328_CR17) 2017; 23 HQ Tian (328_CR10) 2015; 29 PE Rasmussen (328_CR4) 1998; 282 M Heimann (328_CR2) 2008; 451 HJ Schenk (328_CR26) 2002; 72 B Ahrens (328_CR20) 2014; 11 AE Strand (328_CR27) 2008; 319 B Efron (328_CR34) 1993 A Ahlström (328_CR1) 2012; 7 N Carvalhais (328_CR9) 2014; 514 M New (328_CR31) 2002; 21 B Guenet (328_CR24) 2013; 10 EG Jobbágy (328_CR5) 2000; 10 S Fontaine (328_CR28) 2007; 450 J Mathieu (328_CR18) 2015; 21 Y He (328_CR19) 2016; 353 Y Luo (328_CR12) 2016; 30 XK Guan (328_CR13) 2016; 13 G Chen (328_CR15) 2014; 20 E Hobley (328_CR14) 2017; 23 L Guo (328_CR25) 2002; 8 EB Alexander (328_CR32) 1980; 44 |
References_xml | – volume: 8 start-page: 605 year: 2016 end-page: 649 ident: CR11 article-title: Global carbon budget 2016 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-8-605-2016 – volume: 282 start-page: 893 year: 1998 end-page: 896 ident: CR4 article-title: Long-term agroecosystem experiments: assessing agricultural sustainability and global change publication-title: Science doi: 10.1126/science.282.5390.893 – volume: 21 start-page: 4278 year: 2015 end-page: 4292 ident: CR18 article-title: Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles publication-title: Glob. Change Biol. doi: 10.1111/gcb.13012 – volume: 119 start-page: 11 year: 2018 end-page: 21 ident: CR33 article-title: Significance of dark CO fixation in arctic soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.12.021 – volume: 528 start-page: 60 year: 2015 end-page: 68 ident: CR22 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16045 – volume: 10 start-page: 2379 year: 2013 end-page: 2392 ident: CR24 article-title: The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles publication-title: Biogeosciences doi: 10.5194/bg-10-2379-2013 – volume: 21 start-page: 1 year: 2002 end-page: 25 ident: CR31 article-title: A high-resolution data set of surface climate over global land areas publication-title: Clim. Res. doi: 10.3354/cr021001 – volume: 7 start-page: 044008 year: 2012 ident: CR1 article-title: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/4/044008 – volume: 29 start-page: 775 year: 2015 end-page: 792 ident: CR10 article-title: Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2014GB005021 – volume: 11 start-page: 2147 year: 2014 end-page: 2168 ident: CR20 article-title: Bayesian calibration of a soil organic carbon model using ∆ C measurements of soil organic carbon and heterotrophic respiration as joint constraints publication-title: Biogeosciences doi: 10.5194/bg-11-2147-2014 – volume: 23 start-page: 955 year: 2017 end-page: 965 ident: CR14 article-title: Land-use contrasts reveal instability of subsoil organic carbon publication-title: Glob. Change Biol. doi: 10.1111/gcb.13379 – volume: 319 start-page: 456 year: 2008 end-page: 458 ident: CR27 article-title: Irreconcilable differences: fine-root life spans and soil carbon persistence publication-title: Science doi: 10.1126/science.1151382 – volume: 10 start-page: 423 year: 2000 end-page: 436 ident: CR5 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – ident: CR6 – volume: 514 start-page: 213 year: 2014 end-page: 217 ident: CR9 article-title: Global covariation of carbon turnover times with climate in terrestrial ecosystems publication-title: Nature doi: 10.1038/nature13731 – volume: 371 start-page: 783 year: 1994 end-page: 785 ident: CR3 article-title: The role of soil organic matter in sustaining soil fertility publication-title: Nature doi: 10.1038/371783a0 – volume: 44 start-page: 689 year: 1980 end-page: 692 ident: CR32 article-title: Bulk densities of California soils in relation to other soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400040005x – volume: 451 start-page: 289 year: 2008 end-page: 292 ident: CR2 article-title: Terrestrial ecosystem carbon dynamics and climate feedbacks publication-title: Nature doi: 10.1038/nature06591 – volume: 30 start-page: 40 year: 2016 end-page: 56 ident: CR12 article-title: Toward more realistic projections of soil carbon dynamics by Earth system models publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2015GB005239 – year: 1993 ident: CR34 publication-title: An Introduction to the Bootstrap doi: 10.1007/978-1-4899-4541-9 – ident: CR23 – volume: 450 start-page: 277 year: 2007 end-page: 280 ident: CR28 article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply publication-title: Nature doi: 10.1038/nature06275 – ident: CR21 – volume: 353 start-page: 1419 year: 2016 end-page: 1424 ident: CR19 article-title: Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century publication-title: Science doi: 10.1126/science.aad4273 – volume: 114 start-page: G04025 year: 2009 ident: CR30 article-title: Analysis of soil carbon transit times and age distributions using network theories publication-title: J. Geophys. Res. doi: 10.1029/2009JG001070 – volume: 10 start-page: 1717 year: 2013 end-page: 1736 ident: CR7 article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations publication-title: Biogeosciences doi: 10.5194/bg-10-1717-2013 – volume: 8 start-page: 345 year: 2002 end-page: 360 ident: CR25 article-title: Soil carbon stocks and land use change: a meta-analysis publication-title: Glob. Change Biol. doi: 10.1046/j.1354-1013.2002.00486.x – volume: 20 start-page: 1674 year: 2014 end-page: 1684 ident: CR15 article-title: Allometric constraints on, and trade-offs in, belowground carbon allocation and their control of soil respiration across global forest ecosystems publication-title: Glob. Change Biol. doi: 10.1111/gcb.12494 – volume: 13 start-page: 527 year: 2016 end-page: 534 ident: CR13 article-title: Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil publication-title: Biogeosciences doi: 10.5194/bg-13-527-2016 – volume: 59 start-page: 1328 year: 1995 end-page: 1335 ident: CR16 article-title: Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900050019x – volume: 23 start-page: 1763 year: 2017 end-page: 1773 ident: CR17 article-title: The muddle of ages, turnover, transit, and residence times in the carbon cycle publication-title: Glob. Change Biol. doi: 10.1111/gcb.13556 – volume: 72 start-page: 311 year: 2002 end-page: 328 ident: CR26 article-title: The global biogeography of roots publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 – volume: 338 start-page: 143 year: 2011 end-page: 158 ident: CR8 article-title: Deep soil organic matter—a key but poorly understood component of terrestrial C cycle publication-title: Plant Soil doi: 10.1007/s11104-010-0391-5 – volume: 108 start-page: 14769 year: 2011 end-page: 14774 ident: CR29 article-title: Permafrost carbon-climate feedbacks accelerate global warming publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103910108 – volume: 23 start-page: 955 year: 2017 ident: 328_CR14 publication-title: Glob. Change Biol. doi: 10.1111/gcb.13379 – volume: 528 start-page: 60 year: 2015 ident: 328_CR22 publication-title: Nature doi: 10.1038/nature16045 – volume: 514 start-page: 213 year: 2014 ident: 328_CR9 publication-title: Nature doi: 10.1038/nature13731 – volume: 10 start-page: 1717 year: 2013 ident: 328_CR7 publication-title: Biogeosciences doi: 10.5194/bg-10-1717-2013 – volume: 13 start-page: 527 year: 2016 ident: 328_CR13 publication-title: Biogeosciences doi: 10.5194/bg-13-527-2016 – volume: 20 start-page: 1674 year: 2014 ident: 328_CR15 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12494 – volume: 21 start-page: 4278 year: 2015 ident: 328_CR18 publication-title: Glob. Change Biol. doi: 10.1111/gcb.13012 – volume: 8 start-page: 345 year: 2002 ident: 328_CR25 publication-title: Glob. Change Biol. doi: 10.1046/j.1354-1013.2002.00486.x – volume: 338 start-page: 143 year: 2011 ident: 328_CR8 publication-title: Plant Soil doi: 10.1007/s11104-010-0391-5 – volume: 7 start-page: 044008 year: 2012 ident: 328_CR1 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/4/044008 – volume: 114 start-page: G04025 year: 2009 ident: 328_CR30 publication-title: J. Geophys. Res. doi: 10.1029/2009JG001070 – volume: 319 start-page: 456 year: 2008 ident: 328_CR27 publication-title: Science doi: 10.1126/science.1151382 – volume: 371 start-page: 783 year: 1994 ident: 328_CR3 publication-title: Nature doi: 10.1038/371783a0 – volume: 10 start-page: 423 year: 2000 ident: 328_CR5 publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 30 start-page: 40 year: 2016 ident: 328_CR12 publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2015GB005239 – volume: 23 start-page: 1763 year: 2017 ident: 328_CR17 publication-title: Glob. Change Biol. doi: 10.1111/gcb.13556 – volume: 108 start-page: 14769 year: 2011 ident: 328_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103910108 – volume: 119 start-page: 11 year: 2018 ident: 328_CR33 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.12.021 – volume: 282 start-page: 893 year: 1998 ident: 328_CR4 publication-title: Science doi: 10.1126/science.282.5390.893 – volume: 10 start-page: 2379 year: 2013 ident: 328_CR24 publication-title: Biogeosciences doi: 10.5194/bg-10-2379-2013 – volume: 72 start-page: 311 year: 2002 ident: 328_CR26 publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 – volume: 21 start-page: 1 year: 2002 ident: 328_CR31 publication-title: Clim. Res. doi: 10.3354/cr021001 – volume: 29 start-page: 775 year: 2015 ident: 328_CR10 publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2014GB005021 – volume: 450 start-page: 277 year: 2007 ident: 328_CR28 publication-title: Nature doi: 10.1038/nature06275 – volume: 8 start-page: 605 year: 2016 ident: 328_CR11 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-8-605-2016 – volume: 59 start-page: 1328 year: 1995 ident: 328_CR16 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900050019x – volume-title: An Introduction to the Bootstrap year: 1993 ident: 328_CR34 doi: 10.1007/978-1-4899-4541-9 – ident: 328_CR6 – volume: 11 start-page: 2147 year: 2014 ident: 328_CR20 publication-title: Biogeosciences doi: 10.5194/bg-11-2147-2014 – volume: 44 start-page: 689 year: 1980 ident: 328_CR32 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400040005x – volume: 451 start-page: 289 year: 2008 ident: 328_CR2 publication-title: Nature doi: 10.1038/nature06591 – ident: 328_CR23 – volume: 353 start-page: 1419 year: 2016 ident: 328_CR19 publication-title: Science doi: 10.1126/science.aad4273 – ident: 328_CR21 |
SSID | ssj0005174 |
Score | 2.6637423 |
SecondaryResourceType | review_article |
Snippet | The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate
1
,
2
and—because of the importance of organic matter to soil... The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate and-because of the importance of organic matter to soil... The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate.sup.1,2 and--because of the importance of organic matter to... The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil... The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and—because of the importance of organic matter to soil... |
SourceID | hal proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 599 |
SubjectTerms | 704/106/47/4113 704/158/2445 704/158/2466 704/47/4113 Age Agricultural land Agricultural management Agriculture Annual temperatures Aridity Aridity index Atmosphere Atmosphere - chemistry Atmospheric models Biomass Carbon Carbon - analysis Carbon - metabolism Carbon cycle Carbon exchange Carbon isotopes Carbon Isotopes - analysis Carbon Isotopes - metabolism Chemical Sciences Climate Climate control Climatic zones Crops, Agricultural - metabolism Datasets as Topic Earth Sciences Environmental aspects Exchanging Forests Geochemistry Grassland Grasslands Humanities and Social Sciences Labeling Land use Letter Meta-analysis multidisciplinary Multilayers Organic carbon Organic matter Organic soils Other Permafrost Respiration Science Science (multidisciplinary) Sciences of the Universe Soil - chemistry Soil analysis Soil carbon Soil depth Soil dynamics Soil fertility Soil improvement Soil layers Soil organic matter Soil profiles Soil properties Soil surfaces Subsoils Surface boundary layer Surface layers Systematic review Temperature Topsoil Tropical Climate |
Title | Atmosphere–soil carbon transfer as a function of soil depth |
URI | https://link.springer.com/article/10.1038/s41586-018-0328-3 https://www.ncbi.nlm.nih.gov/pubmed/29995858 https://www.proquest.com/docview/2085679096 https://www.proquest.com/docview/2068912881 https://hal.science/hal-02073138 |
Volume | 559 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELfYJiRe0Db-lY0poIm_ijbXce08IBSqlYKgQmMTfbMc29kmjaRr0j3zHfiGfBLuUqclbOwlD_X16t757N_lzneE7NI4MzIyNhTo6YD_xWEflC40scnS1PasTPGi8JdRb3gcfRrzsX_hVvq0ymZPrDdqWxh8R76HvSR7IgbE_W5yEWLXKIyu-hYaK2QNS5dhSpcYi2WKxz9VmJuoJpN7JRxcEn1pvGAGw6x1LvndeeUUkyOvIs8rUdP6MBqsk7seRQbJXO0b5JbLN8ntOpvTlJtkw1tsGbz0ZaVf3SNvk-pHUWIVAff756-yODsPjJ6mRR5UNXh100CXgQ7wpENtBUUW1FTWTarT--R4cHDUH4a-eUKowautwm7KIxE5cLEiqzmLtbPcmpQyG6eWC2uoyChlWeQiwbtGiCzWNNvXVscAYQVjD8hqXuTuEQmocFQDM20dgCeayZRjCSBrAUta0GyH7DeiU8ZXFscGF-eqjnAzqebSViBthdJWrENeL74ymZfVuIl4F_WhsFxFjvkwJ3pWlio5-t4fqYRjKBnDwx3y7Dqyj98OW0QvPFFWwByN9rcQ4J9iIawW5VaL0kzOLtRfo89boydzbV7HZrtFCNZr2pOGRbaQARb7HiafFX4GQF4wyuQlBR7NGlR-iynV0iA65OliGNlj2lzuihnS9GQMCEQCi4fztbv4KcAhYDEctPemWcxL5v_VxeObp7JF7nRrm8J85m2yWk1n7gmgtirdqU0TnrJP8Tn4sEPW3h-Mvh7-AdEtOy4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWKEFwQLa_QAgsqUEBWs35k14cKRYUqoWkOkIrclvXuuq1U7DR2QNz4B_6Dj-JLmPEjwbT01qt3Mt7MzM7DMztDyAYLYy18bRyOkQ7EXwHoQWEdHeo4ikzHiAgvCu8PO70D__04GC-RX_VdGCyrrHVioahNqvEb-RbOkuzwEDzuN5NTB6dGYXa1HqFRisWe_f4NQrZsu_8W-PvMdXffjXZ6TjVVwFEQ7uWOGwU-9y3EHr5RgRcqawKjI-aZMDIBN5rxmDEv9q3PA1dzHoeKxW1lVAi-HccPoKDyr4LhbeOJ4mO-KCn5p-tznUX1xFYGhlJg7I4X2mDZa9jByhpcOcJizLOe7pksbWH8dm-Rm5XXSrulmK2QJZuskmtF9ajOVslKpSEyulm1sX55m2x38y9phl0L7O8fP7P0-IRqNY3ShOaFs2ynVGVUUbSsKB00jWkBZewkP7pDDi6FrHfJcpIm9j6hjFumAJkyFpw1FosowJZDxoDvakCSWqRdk07qqpM5DtQ4kUVG3ROypLYEakuktvRa5NX8J5OyjcdFwBvID4ntMRKsvzlUsyyT3dGnnaHsBpi6xnR0izw9D6z_8UMD6EUFFKewR62qWw_wT7HxVgNyrQGpJ8en8q_V543Vw5Kb56FZbwCCttDNTYOQzWmAzcV73YHEZxA4cI954isDHLUMykqlZXJxAFvkyXwZ0WOZXmLTGcJ0RAgejwAU90rZnb8K_J4QYlPg3utamBfI_8uLBxdv5TG53hvtD-SgP9xbIzfc4nxhLfU6Wc6nM_sQPMY8elQcU0o-X7Ze-AM-GHVO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDIF4QG19lAwwan1PUuUnq5GFC0UbVslEh2ETfPMd2tkkj6ZoUxBv_gX_Dz-GXcJc4LWFjb3uNrxf37nwfufMdIWssTFTgKe1wjHQg_vJBDwbGUaFK4lh3dRDjReH3w25_33s38kcL5Fd9FwbLKmudWCpqnSn8Rt7GWZJdHoLH3U5sWcSH7d6b8amDE6Qw01qP06hEZMd8_wbhW7452AZeP-t0em_3tvqOnTDgSAj9CqcT-x73DMQhnpa-G0qjfa1i5uow1j7XivGEMTfxjMf9juI8CSVLNqSWIfh5HD-Ggvq_yl2f4RnjIz4vL_mnA3SdUXWDdg5GM8A4Hi-3wbLbsInWMlw5wsLMs17vmYxtaQh7t8hN68HSqBK5JbJg0mVyrawkVfkyWbLaIqcvbUvrV7fJZlR8yXLsYGB-__iZZ8cnVMlJnKW0KB1nM6Eyp5KilUVJoVlCSyhtxsXRHbJ_KWS9SxbTLDX3CWXcMAnIpDbguLEkiH1sP6Q1-LEapKpFNmrSCWW7muNwjRNRZtfdQFTUFkBtgdQWbou8nv1kXLX0uAh4DfkhsFVGikJ3KKd5LqK9z1tDEfmYxsbUdIs8PQ9s8OljA-iFBUoy2KOS9gYE_FNswtWAXGlAqvHxqfhr9Xlj9bDi5nloVhuAoDlUc9MgZDMaYKPxfrQr8BkEEdxlbvCVAY5aBoVVb7mYH8YWeTJbRvRYspeabIow3SAE7ycAFPcq2Z29CnygEOJU4N56Lcxz5P_lxYOLt_KYXAeNIHYHw50VcqNTHi8sq14li8Vkah6C81jEj8pTSsnBZauFPzRfeYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmosphere-soil+carbon+transfer+as+a+function+of+soil+depth&rft.jtitle=Nature+%28London%29&rft.au=Balesdent%2C+J%C3%A9r%C3%B4me&rft.au=Basile-Doelsch%2C+Isabelle&rft.au=Chadoeuf%2C+Jo%C3%ABl&rft.au=Cornu%2C+Sophie&rft.date=2018-07-01&rft.eissn=1476-4687&rft.volume=559&rft.issue=7715&rft.spage=599&rft_id=info:doi/10.1038%2Fs41586-018-0328-3&rft_id=info%3Apmid%2F29995858&rft.externalDocID=29995858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |