Atmosphere–soil carbon transfer as a function of soil depth

The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate 1 , 2 and—because of the importance of organic matter to soil fertility—agricultural productivity 3 . The dynamics of topsoil carbon has been relatively well quantified 4 , but half of the soil carbon is...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 559; no. 7715; pp. 599 - 602
Main Authors Balesdent, Jérôme, Basile-Doelsch, Isabelle, Chadoeuf, Joël, Cornu, Sophie, Derrien, Delphine, Fekiacova, Zuzana, Hatté, Christine
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate 1 , 2 and—because of the importance of organic matter to soil fertility—agricultural productivity 3 . The dynamics of topsoil carbon has been relatively well quantified 4 , but half of the soil carbon is located in deeper soil layers (below 30 centimetres) 5 – 7 , and many questions remain regarding the exchange of this deep carbon with the atmosphere 8 . This knowledge gap restricts soil carbon management policies and limits global carbon models 1 , 9 , 10 . Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work 5 , 6 , that soil at a depth of 30–100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre’s SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil–atmosphere carbon exchange. This study of whole-soil carbon dynamics finds that, of the atmospheric carbon that is incorporated into the topmost metre of soil over 50 years, just 19 per cent reaches the subsoil, in a manner that depends on land use and aridity.
AbstractList The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil fertility-agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil fertility-agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil fertility-agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate 1 , 2 and—because of the importance of organic matter to soil fertility—agricultural productivity 3 . The dynamics of topsoil carbon has been relatively well quantified 4 , but half of the soil carbon is located in deeper soil layers (below 30 centimetres) 5 – 7 , and many questions remain regarding the exchange of this deep carbon with the atmosphere 8 . This knowledge gap restricts soil carbon management policies and limits global carbon models 1 , 9 , 10 . Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work 5 , 6 , that soil at a depth of 30–100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre’s SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil–atmosphere carbon exchange. This study of whole-soil carbon dynamics finds that, of the atmospheric carbon that is incorporated into the topmost metre of soil over 50 years, just 19 per cent reaches the subsoil, in a manner that depends on land use and aridity.
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate.sup.1,2 and--because of the importance of organic matter to soil fertility--agricultural productivity.sup.3. The dynamics of topsoil carbon has been relatively well quantified.sup.4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres).sup.5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere.sup.8. This knowledge gap restricts soil carbon management policies and limits global carbon models.sup.1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work.sup.5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate.sup.1,2 and--because of the importance of organic matter to soil fertility--agricultural productivity.sup.3. The dynamics of topsoil carbon has been relatively well quantified.sup.4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres).sup.5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere.sup.8. This knowledge gap restricts soil carbon management policies and limits global carbon models.sup.1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work.sup.5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.This study of whole-soil carbon dynamics finds that, of the atmospheric carbon that is incorporated into the topmost metre of soil over 50 years, just 19 per cent reaches the subsoil, in a manner that depends on land use and aridity.
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate and-because of the importance of organic matter to soil fertility-agricultural productivity . The dynamics of topsoil carbon has been relatively well quantified , but half of the soil carbon is located in deeper soil layers (below 30 centimetres) , and many questions remain regarding the exchange of this deep carbon with the atmosphere . This knowledge gap restricts soil carbon management policies and limits global carbon models . Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work , that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and—because of the importance of organic matter to soil fertility—agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5,6,7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30–100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre’s SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil–atmosphere carbon exchange.
Audience Academic
Author Basile-Doelsch, Isabelle
Derrien, Delphine
Balesdent, Jérôme
Hatté, Christine
Fekiacova, Zuzana
Chadoeuf, Joël
Cornu, Sophie
Author_xml – sequence: 1
  givenname: Jérôme
  surname: Balesdent
  fullname: Balesdent, Jérôme
  email: jerome.balesdent@inra.fr
  organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE
– sequence: 2
  givenname: Isabelle
  surname: Basile-Doelsch
  fullname: Basile-Doelsch, Isabelle
  organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE
– sequence: 3
  givenname: Joël
  surname: Chadoeuf
  fullname: Chadoeuf, Joël
  organization: INRA UR 1052
– sequence: 4
  givenname: Sophie
  surname: Cornu
  fullname: Cornu, Sophie
  organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE
– sequence: 5
  givenname: Delphine
  surname: Derrien
  fullname: Derrien, Delphine
  organization: INRA UR Biogéochimie des Ecosystèmes Forestiers
– sequence: 6
  givenname: Zuzana
  surname: Fekiacova
  fullname: Fekiacova, Zuzana
  organization: Aix-Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE
– sequence: 7
  givenname: Christine
  surname: Hatté
  fullname: Hatté, Christine
  organization: Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29995858$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02073138$$DView record in HAL
BookMark eNp90stu1DAUBmALFdFp4QHYoAg2VCjFlzh2Fl1EI6CVRiBBEUvL8WXGVSZO7QTRXd-BN-RJcJjSMtUUZWHp6Dsnss9_APY63xkAniN4jCDhb2OBKC9ziHgOCeY5eQRmqGBlXpSc7YEZhKkIOSn3wUGMFxBCiljxBOzjqqoop3wGTuph7WO_MsH8uv4ZvWszJUPju2wIsovWhEzGTGZ27NTgUtnb7I_Sph9WT8FjK9tont2ch-Dr-3fn89N88enD2bxe5JJxPuS4oQUrDMRloSUllTSaatUgoqtGU6YVYhYhYgtTMIoVY7aSyEKpZcWRZoQcgqPN3JVsRR_cWoYr4aUTp_VCTDWIISOI8O8o2dcb2wd_OZo4iLWLyrSt7Iwfo8Cw5BXCnE_01T164cfQpZskxWnJKliVd2opWyNcZ316GjUNFTVlmGEOS5pUvkMtTWeCbNParEvlLf9yh1e9uxT_ouMdKH3arJ3aOfVoqyGZwfwYlnKMUZx9-bxt3zxs6_Nv84_b-sXNW43N2ujbLfyNUgJoA1TwMQZjbwmCYoqr2MRVpLiKKa5i2iu716PcIKecpXu69r-deNMZ01-6pQl3q3u46Tfh9Pcy
CitedBy_id crossref_primary_10_1128_msystems_00298_20
crossref_primary_10_1360_N072022_0099
crossref_primary_10_1038_s41467_022_31540_9
crossref_primary_10_1016_j_scitotenv_2019_134482
crossref_primary_10_1016_j_geoderma_2025_117167
crossref_primary_10_1093_pnasnexus_pgac314
crossref_primary_10_1080_03650340_2019_1626984
crossref_primary_10_1111_gcb_17591
crossref_primary_10_1016_j_compag_2024_109010
crossref_primary_10_1111_1365_2435_14290
crossref_primary_10_1016_j_catena_2023_107493
crossref_primary_10_1016_j_scitotenv_2024_174708
crossref_primary_10_1038_s43247_023_00862_x
crossref_primary_10_1093_femsec_fiaf002
crossref_primary_10_1134_S1064229322100064
crossref_primary_10_1128_mSphere_00024_20
crossref_primary_10_1002_ldr_5350
crossref_primary_10_1016_j_apsoil_2024_105372
crossref_primary_10_1098_rstb_2020_0170
crossref_primary_10_1080_04353676_2024_2335000
crossref_primary_10_1002_eap_2627
crossref_primary_10_1007_s11104_023_05891_1
crossref_primary_10_1007_s10533_022_00956_2
crossref_primary_10_1016_j_agee_2024_109183
crossref_primary_10_3390_agriculture11030189
crossref_primary_10_5194_soil_10_349_2024
crossref_primary_10_1016_j_ecolind_2022_108847
crossref_primary_10_1016_j_scitotenv_2023_164978
crossref_primary_10_1002_agg2_20226
crossref_primary_10_1016_j_scib_2024_03_063
crossref_primary_10_1042_ETLS20200277
crossref_primary_10_1080_00103624_2019_1667372
crossref_primary_10_1134_S1064229324601550
crossref_primary_10_1038_s41893_020_0557_y
crossref_primary_10_1016_j_geoderma_2019_02_008
crossref_primary_10_1016_j_soilbio_2024_109455
crossref_primary_10_1111_ejss_12908
crossref_primary_10_2139_ssrn_4169666
crossref_primary_10_5194_soil_10_795_2024
crossref_primary_10_4236_ojss_2022_129017
crossref_primary_10_1016_j_chemgeo_2022_121044
crossref_primary_10_1007_s11104_022_05714_9
crossref_primary_10_1007_s11104_024_07105_8
crossref_primary_10_1111_gcb_15512
crossref_primary_10_1016_j_agee_2023_108843
crossref_primary_10_3390_agronomy14050963
crossref_primary_10_1016_j_geoderma_2021_115321
crossref_primary_10_1016_j_tplants_2019_12_007
crossref_primary_10_5194_gmd_14_3879_2021
crossref_primary_10_1002_ldr_4806
crossref_primary_10_1007_s42729_022_00797_w
crossref_primary_10_1016_j_foreco_2020_118127
crossref_primary_10_1029_2023MS003625
crossref_primary_10_1016_j_gecco_2023_e02555
crossref_primary_10_1016_j_geoderma_2021_115567
crossref_primary_10_1007_s10533_020_00721_3
crossref_primary_10_1073_pnas_2203486119
crossref_primary_10_1016_j_jclepro_2022_135423
crossref_primary_10_1111_gcb_16164
crossref_primary_10_1139_er_2022_0129
crossref_primary_10_1016_j_ecoleng_2019_07_006
crossref_primary_10_1029_2018MS001392
crossref_primary_10_1016_j_agee_2019_106810
crossref_primary_10_3390_su12176715
crossref_primary_10_1038_s41559_022_01944_3
crossref_primary_10_1016_j_geoderma_2019_113956
crossref_primary_10_5194_bg_19_375_2022
crossref_primary_10_1016_j_scitotenv_2019_134597
crossref_primary_10_1021_acs_est_3c06557
crossref_primary_10_1038_s41598_023_41555_x
crossref_primary_10_1016_j_fecs_2024_100203
crossref_primary_10_1016_j_geoderma_2022_115971
crossref_primary_10_1016_j_apsoil_2021_103926
crossref_primary_10_1016_j_ecolind_2022_108869
crossref_primary_10_1016_j_apsoil_2022_104629
crossref_primary_10_1016_j_jaridenv_2021_104696
crossref_primary_10_1002_ldr_3388
crossref_primary_10_1007_s12665_024_11976_6
crossref_primary_10_1590_2179_8087_floram_2021_0068
crossref_primary_10_1186_s13021_021_00187_2
crossref_primary_10_1111_gcb_17247
crossref_primary_10_5194_bg_17_5223_2020
crossref_primary_10_1007_s00572_024_01146_8
crossref_primary_10_1017_RDC_2024_137
crossref_primary_10_1016_j_geoderma_2023_116550
crossref_primary_10_1016_j_envres_2023_117224
crossref_primary_10_1016_j_agee_2019_106705
crossref_primary_10_1111_gcb_14962
crossref_primary_10_1111_ejss_13133
crossref_primary_10_1016_j_catena_2019_104285
crossref_primary_10_1016_j_soilbio_2019_02_013
crossref_primary_10_1016_j_still_2024_106323
crossref_primary_10_1088_1748_9326_ac00e4
crossref_primary_10_1016_j_scitotenv_2018_10_236
crossref_primary_10_1111_gcbb_12907
crossref_primary_10_1029_2024JG008102
crossref_primary_10_1016_j_quageo_2020_101133
crossref_primary_10_1080_00103624_2024_2368272
crossref_primary_10_1111_gcb_15370
crossref_primary_10_1002_ldr_3497
crossref_primary_10_1029_2021GL093407
crossref_primary_10_1016_j_agee_2022_108339
crossref_primary_10_1016_j_soilbio_2020_107762
crossref_primary_10_1029_2020JG006205
crossref_primary_10_1007_s41207_025_00774_6
crossref_primary_10_1029_2020JG006201
crossref_primary_10_1109_JSTARS_2024_3486737
crossref_primary_10_1016_j_scitotenv_2024_176825
crossref_primary_10_1111_gcb_15489
crossref_primary_10_1016_j_jenvman_2022_117127
crossref_primary_10_1016_j_tplants_2023_08_010
crossref_primary_10_1155_2022_3691638
crossref_primary_10_3934_geosci_2019_4_886
crossref_primary_10_1007_s11104_019_04384_4
crossref_primary_10_1126_sciadv_aaw4418
crossref_primary_10_1016_j_foreco_2020_118135
crossref_primary_10_1002_ldr_4574
crossref_primary_10_1080_10256016_2021_1946532
crossref_primary_10_1016_j_soilbio_2023_109158
crossref_primary_10_1017_RDC_2021_41
crossref_primary_10_15446_acag_v71n2_97692
crossref_primary_10_1016_j_catena_2023_107746
crossref_primary_10_3934_environsci_2021020
crossref_primary_10_1007_s10021_022_00757_6
crossref_primary_10_1080_09064710_2020_1758763
crossref_primary_10_1016_j_scitotenv_2019_06_472
crossref_primary_10_1016_j_scitotenv_2024_175261
crossref_primary_10_1016_j_still_2024_106100
crossref_primary_10_1038_s41598_024_72042_6
crossref_primary_10_3390_quat6020033
crossref_primary_10_1016_j_still_2022_105336
crossref_primary_10_1016_j_catena_2023_107278
crossref_primary_10_3390_land14030535
crossref_primary_10_5194_bg_22_1427_2025
crossref_primary_10_3390_soilsystems7010011
crossref_primary_10_1016_j_scitotenv_2020_138961
crossref_primary_10_1016_j_catena_2024_108680
crossref_primary_10_1016_j_jenvman_2023_118617
crossref_primary_10_1007_s13593_023_00928_2
crossref_primary_10_1111_geb_13211
crossref_primary_10_1016_j_geoderma_2024_116937
crossref_primary_10_1016_j_ecolind_2022_109471
crossref_primary_10_1088_2515_7620_ad23f1
crossref_primary_10_3390_rs16071308
crossref_primary_10_1016_j_catena_2022_106208
crossref_primary_10_5194_soil_8_517_2022
crossref_primary_10_1111_ejss_13586
crossref_primary_10_1002_jqs_3521
crossref_primary_10_1016_j_foreco_2020_117988
crossref_primary_10_1002_ldr_4679
crossref_primary_10_1007_s11056_019_09765_2
crossref_primary_10_1073_pnas_2313842121
crossref_primary_10_1126_sciadv_aau1218
crossref_primary_10_1016_j_geoderma_2021_115515
crossref_primary_10_1016_j_geoderma_2022_115937
crossref_primary_10_3390_soilsystems7010003
crossref_primary_10_1016_j_scitotenv_2025_179003
crossref_primary_10_1016_j_soilbio_2022_108780
crossref_primary_10_6002_ect_MESOT2021_O10
crossref_primary_10_3389_fmicb_2021_735282
crossref_primary_10_1016_j_geoderma_2022_115810
crossref_primary_10_1029_2021MS002804
crossref_primary_10_1111_gcb_17444
crossref_primary_10_1016_j_catena_2021_105623
crossref_primary_10_1021_acs_est_9b06304
crossref_primary_10_1007_s13593_019_0599_6
crossref_primary_10_1111_brv_12554
crossref_primary_10_1139_cjss_2024_0033
crossref_primary_10_1016_j_geoderma_2024_116871
crossref_primary_10_1016_j_geoderma_2024_116991
crossref_primary_10_2136_sssaj2018_11_0447
crossref_primary_10_5194_bg_20_827_2023
crossref_primary_10_1111_geb_13159
crossref_primary_10_5194_soil_11_149_2025
crossref_primary_10_1002_jpln_202300107
crossref_primary_10_1016_j_ecoinf_2022_101957
crossref_primary_10_1038_s41467_022_28748_0
crossref_primary_10_1016_j_scitotenv_2023_166408
crossref_primary_10_5194_bg_16_1955_2019
crossref_primary_10_1016_j_catena_2023_107099
crossref_primary_10_31857_S0032180X24080042
crossref_primary_10_1016_j_still_2023_105716
crossref_primary_10_1007_s11104_023_06089_1
crossref_primary_10_1016_j_still_2023_105959
crossref_primary_10_1186_s13021_022_00203_z
crossref_primary_10_5194_bg_16_3233_2019
crossref_primary_10_1016_j_scitotenv_2024_174308
crossref_primary_10_1038_s41467_022_34951_w
crossref_primary_10_1002_ecs2_2973
crossref_primary_10_1016_j_scitotenv_2021_151942
crossref_primary_10_1038_s41561_020_0596_z
crossref_primary_10_1016_j_ecoleng_2022_106570
crossref_primary_10_1111_geb_13705
crossref_primary_10_1071_SR20257
crossref_primary_10_1111_1365_2435_13934
crossref_primary_10_1007_s42832_021_0101_7
crossref_primary_10_1016_j_geoderma_2018_11_052
crossref_primary_10_1016_j_geoderma_2018_10_018
crossref_primary_10_1177_0959683620932963
crossref_primary_10_1007_s11104_019_04371_9
crossref_primary_10_1007_s40725_024_00242_4
crossref_primary_10_1016_j_tfp_2024_100560
crossref_primary_10_1002_advs_202001242
crossref_primary_10_1111_nph_16409
crossref_primary_10_1016_j_scitotenv_2023_167282
crossref_primary_10_3390_f15091483
crossref_primary_10_1111_ejss_13398
crossref_primary_10_1007_s11430_022_1031_5
crossref_primary_10_1007_s11104_020_04769_w
crossref_primary_10_1016_j_apsoil_2023_104932
crossref_primary_10_1016_j_geodrs_2024_e00824
crossref_primary_10_3389_fmicb_2019_00744
crossref_primary_10_2139_ssrn_4117176
crossref_primary_10_1002_jpln_201800595
crossref_primary_10_1111_ejss_13390
crossref_primary_10_1016_j_geoderma_2024_117143
crossref_primary_10_5194_soil_10_151_2024
crossref_primary_10_1111_ejss_12739
crossref_primary_10_1021_acs_est_8b06807
crossref_primary_10_1088_1748_9326_abb853
crossref_primary_10_1111_gcb_15110
crossref_primary_10_1016_j_geoderma_2025_117212
crossref_primary_10_1360_N072022_0106
crossref_primary_10_1016_j_gca_2021_07_005
crossref_primary_10_1016_j_envint_2024_108429
crossref_primary_10_1007_s13204_021_02081_2
crossref_primary_10_1007_s10533_020_00749_5
crossref_primary_10_1128_mBio_01318_19
crossref_primary_10_1016_j_jenvman_2024_121429
crossref_primary_10_1016_j_geoderma_2019_01_035
crossref_primary_10_1002_ldr_3785
crossref_primary_10_1111_gcb_16311
crossref_primary_10_1111_ejss_12960
crossref_primary_10_1016_j_apsoil_2021_104054
crossref_primary_10_1038_s41467_020_20406_7
crossref_primary_10_5194_gmd_11_4711_2018
crossref_primary_10_1007_s11104_024_06850_0
crossref_primary_10_1016_j_apsoil_2024_105322
crossref_primary_10_1007_s11104_023_06328_5
crossref_primary_10_3390_soilsystems8040105
crossref_primary_10_1016_j_earscirev_2024_104804
crossref_primary_10_1002_sae2_12048
crossref_primary_10_1016_j_scitotenv_2019_134566
crossref_primary_10_1016_j_still_2023_105913
crossref_primary_10_1016_j_still_2022_105519
crossref_primary_10_1016_j_gecco_2021_e01841
crossref_primary_10_3390_f16010108
crossref_primary_10_1111_gcb_17153
crossref_primary_10_1007_s11368_024_03794_x
crossref_primary_10_1073_pnas_1914140117
crossref_primary_10_1007_s11367_024_02307_9
crossref_primary_10_3390_f14081518
crossref_primary_10_1017_S0021859620000398
crossref_primary_10_1016_j_jhazmat_2020_123853
crossref_primary_10_12944_CWE_17_1_14
crossref_primary_10_1134_S1064229324600775
crossref_primary_10_3390_soilsystems3020028
crossref_primary_10_3389_fmicb_2022_980169
crossref_primary_10_1002_ldr_4177
crossref_primary_10_1016_j_geoderma_2020_114785
crossref_primary_10_5194_soil_9_55_2023
crossref_primary_10_1016_j_catena_2022_106078
crossref_primary_10_1007_s11104_022_05488_0
crossref_primary_10_1016_j_catena_2021_105564
crossref_primary_10_1016_j_apsoil_2025_106010
crossref_primary_10_1016_j_catena_2024_108254
crossref_primary_10_1360_TB_2022_0728
crossref_primary_10_1002_ldr_4293
crossref_primary_10_1016_j_ecolind_2022_109062
crossref_primary_10_1016_j_agee_2021_107590
crossref_primary_10_5194_bg_20_1063_2023
crossref_primary_10_1016_j_geoderma_2023_116376
crossref_primary_10_1016_j_soilbio_2018_08_015
crossref_primary_10_1111_gcb_15677
crossref_primary_10_1016_j_agee_2020_107190
crossref_primary_10_1016_j_envres_2024_118453
crossref_primary_10_1016_j_geoderma_2021_115125
crossref_primary_10_1111_gcbb_12729
crossref_primary_10_1007_s11027_021_09980_3
crossref_primary_10_1016_j_catena_2024_107873
crossref_primary_10_1007_s13593_023_00876_x
crossref_primary_10_1016_j_apsoil_2021_104249
crossref_primary_10_1016_j_scitotenv_2023_167889
crossref_primary_10_1002_ldr_3873
crossref_primary_10_5194_soil_7_585_2021
crossref_primary_10_3390_ecologies3010003
crossref_primary_10_1016_j_ecolind_2024_112717
crossref_primary_10_1071_SR19065
crossref_primary_10_1016_j_scitotenv_2024_171752
crossref_primary_10_3390_agronomy15030756
crossref_primary_10_1016_j_scitotenv_2021_149626
crossref_primary_10_1038_s44264_024_00045_x
crossref_primary_10_1071_SR20150
crossref_primary_10_7717_peerj_12131
crossref_primary_10_1016_j_scitotenv_2021_147209
crossref_primary_10_1016_j_catena_2023_107682
crossref_primary_10_1016_j_scitotenv_2023_167757
crossref_primary_10_1016_j_jclepro_2023_136902
crossref_primary_10_1038_s41893_024_01495_4
crossref_primary_10_1016_j_ecoleng_2024_107212
crossref_primary_10_54172_mjsc_v36i2_34
crossref_primary_10_1007_s11430_022_1032_2
crossref_primary_10_1126_sciadv_add0041
crossref_primary_10_3390_agronomy12020517
crossref_primary_10_3390_soilsystems3030046
Cites_doi 10.5194/essd-8-605-2016
10.1126/science.282.5390.893
10.1111/gcb.13012
10.1016/j.soilbio.2017.12.021
10.1038/nature16045
10.5194/bg-10-2379-2013
10.3354/cr021001
10.1088/1748-9326/7/4/044008
10.1002/2014GB005021
10.5194/bg-11-2147-2014
10.1111/gcb.13379
10.1126/science.1151382
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1038/nature13731
10.1038/371783a0
10.2136/sssaj1980.03615995004400040005x
10.1038/nature06591
10.1002/2015GB005239
10.1007/978-1-4899-4541-9
10.1038/nature06275
10.1126/science.aad4273
10.1029/2009JG001070
10.5194/bg-10-1717-2013
10.1046/j.1354-1013.2002.00486.x
10.1111/gcb.12494
10.5194/bg-13-527-2016
10.2136/sssaj1995.03615995005900050019x
10.1111/gcb.13556
10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
10.1007/s11104-010-0391-5
10.1073/pnas.1103910108
ContentType Journal Article
Copyright Macmillan Publishers Ltd., part of Springer Nature 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Jul 26, 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Macmillan Publishers Ltd., part of Springer Nature 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 26, 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
1XC
VOOES
DOI 10.1038/s41586-018-0328-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
ProQuest Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database





MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Agriculture
EISSN 1476-4687
EndPage 602
ExternalDocumentID oai_HAL_hal_02073138v1
A572728065
29995858
10_1038_s41586_018_0328_3
Genre Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFBBN
AFFDN
AFHKK
AGCDD
AGGDT
AGOIJ
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
1XC
ADGHP
AEZWR
AFHIU
AGQPQ
AHWEU
AIXLP
VOOES
ID FETCH-LOGICAL-a788t-2b5474e0264da539aed5dcb13d9bd57dc17f113f4e4752c77f9a1f0ada981d733
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Tue Jun 24 03:08:32 EDT 2025
Fri Jul 11 07:48:31 EDT 2025
Fri Jul 25 08:59:02 EDT 2025
Tue Jun 17 21:24:11 EDT 2025
Thu Jun 12 23:39:39 EDT 2025
Tue Jun 10 15:34:48 EDT 2025
Tue Jun 10 20:41:43 EDT 2025
Fri Jun 27 05:08:33 EDT 2025
Fri Jun 27 04:36:25 EDT 2025
Tue Apr 01 03:09:29 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Tue Jul 01 00:57:19 EDT 2025
Fri Feb 21 02:37:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7715
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a788t-2b5474e0264da539aed5dcb13d9bd57dc17f113f4e4752c77f9a1f0ada981d733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2433-5898
0000-0002-7262-2867
0000-0002-0587-8141
0000-0002-7086-2672
0000-0002-4947-5221
0000-0002-6482-2316
OpenAccessLink https://hal.science/hal-02073138
PMID 29995858
PQID 2085679096
PQPubID 40569
PageCount 4
ParticipantIDs hal_primary_oai_HAL_hal_02073138v1
proquest_miscellaneous_2068912881
proquest_journals_2085679096
gale_infotracmisc_A572728065
gale_infotracgeneralonefile_A572728065
gale_infotraccpiq_572728065
gale_infotracacademiconefile_A572728065
gale_incontextgauss_ISR_A572728065
gale_incontextgauss_ATWCN_A572728065
pubmed_primary_29995858
crossref_primary_10_1038_s41586_018_0328_3
crossref_citationtrail_10_1038_s41586_018_0328_3
springer_journals_10_1038_s41586_018_0328_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-00
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mathieu, Hatté, Balesdent, Parent (CR18) 2015; 21
Jobbágy, Jackson (CR5) 2000; 10
Koven (CR29) 2011; 108
Hobley, Baldock, Hua, Wilson (CR14) 2017; 23
Šantrůčková (CR33) 2018; 119
Sierra, Müller, Metzler, Manzoni, Trumbore (CR17) 2017; 23
Lehmann, Kleber (CR22) 2015; 528
Ahlström, Schurgers, Arneth, Smith (CR1) 2012; 7
Carvalhais (CR9) 2014; 514
Elzein, Balesdent (CR16) 1995; 59
Le Quéré (CR11) 2016; 8
Manzoni, Katul, Porporato (CR30) 2009; 114
Tian (CR10) 2015; 29
Schenk, Jackson (CR26) 2002; 72
Ahrens (CR20) 2014; 11
Alexander (CR32) 1980; 44
Strand, Pritchard, McCormack, Davis, Oren (CR27) 2008; 319
New, Lister, Hulme, Makin (CR31) 2002; 21
Chen, Yang, Robinson (CR15) 2014; 20
Luo (CR12) 2016; 30
Guo, Gifford (CR25) 2002; 8
Rasmussen (CR4) 1998; 282
CR6
Heimann, Reichstein (CR2) 2008; 451
Fontaine (CR28) 2007; 450
Rumpel, Kögel-Knabner (CR8) 2011; 338
CR23
CR21
He (CR19) 2016; 353
Guan (CR13) 2016; 13
Efron, Tibshirani (CR34) 1993
Guenet (CR24) 2013; 10
Tiessen, Cuevas, Chacon (CR3) 1994; 371
Todd-Brown (CR7) 2013; 10
KEO Todd-Brown (328_CR7) 2013; 10
328_CR21
S Manzoni (328_CR30) 2009; 114
328_CR23
A Elzein (328_CR16) 1995; 59
328_CR6
H Tiessen (328_CR3) 1994; 371
C Rumpel (328_CR8) 2011; 338
C Quéré Le (328_CR11) 2016; 8
CD Koven (328_CR29) 2011; 108
J Lehmann (328_CR22) 2015; 528
H Šantrůčková (328_CR33) 2018; 119
CA Sierra (328_CR17) 2017; 23
HQ Tian (328_CR10) 2015; 29
PE Rasmussen (328_CR4) 1998; 282
M Heimann (328_CR2) 2008; 451
HJ Schenk (328_CR26) 2002; 72
B Ahrens (328_CR20) 2014; 11
AE Strand (328_CR27) 2008; 319
B Efron (328_CR34) 1993
A Ahlström (328_CR1) 2012; 7
N Carvalhais (328_CR9) 2014; 514
M New (328_CR31) 2002; 21
B Guenet (328_CR24) 2013; 10
EG Jobbágy (328_CR5) 2000; 10
S Fontaine (328_CR28) 2007; 450
J Mathieu (328_CR18) 2015; 21
Y He (328_CR19) 2016; 353
Y Luo (328_CR12) 2016; 30
XK Guan (328_CR13) 2016; 13
G Chen (328_CR15) 2014; 20
E Hobley (328_CR14) 2017; 23
L Guo (328_CR25) 2002; 8
EB Alexander (328_CR32) 1980; 44
References_xml – volume: 8
  start-page: 605
  year: 2016
  end-page: 649
  ident: CR11
  article-title: Global carbon budget 2016
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-8-605-2016
– volume: 282
  start-page: 893
  year: 1998
  end-page: 896
  ident: CR4
  article-title: Long-term agroecosystem experiments: assessing agricultural sustainability and global change
  publication-title: Science
  doi: 10.1126/science.282.5390.893
– volume: 21
  start-page: 4278
  year: 2015
  end-page: 4292
  ident: CR18
  article-title: Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13012
– volume: 119
  start-page: 11
  year: 2018
  end-page: 21
  ident: CR33
  article-title: Significance of dark CO fixation in arctic soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.12.021
– volume: 528
  start-page: 60
  year: 2015
  end-page: 68
  ident: CR22
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
  doi: 10.1038/nature16045
– volume: 10
  start-page: 2379
  year: 2013
  end-page: 2392
  ident: CR24
  article-title: The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-2379-2013
– volume: 21
  start-page: 1
  year: 2002
  end-page: 25
  ident: CR31
  article-title: A high-resolution data set of surface climate over global land areas
  publication-title: Clim. Res.
  doi: 10.3354/cr021001
– volume: 7
  start-page: 044008
  year: 2012
  ident: CR1
  article-title: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/4/044008
– volume: 29
  start-page: 775
  year: 2015
  end-page: 792
  ident: CR10
  article-title: Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2014GB005021
– volume: 11
  start-page: 2147
  year: 2014
  end-page: 2168
  ident: CR20
  article-title: Bayesian calibration of a soil organic carbon model using ∆ C measurements of soil organic carbon and heterotrophic respiration as joint constraints
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-2147-2014
– volume: 23
  start-page: 955
  year: 2017
  end-page: 965
  ident: CR14
  article-title: Land-use contrasts reveal instability of subsoil organic carbon
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13379
– volume: 319
  start-page: 456
  year: 2008
  end-page: 458
  ident: CR27
  article-title: Irreconcilable differences: fine-root life spans and soil carbon persistence
  publication-title: Science
  doi: 10.1126/science.1151382
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  ident: CR5
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– ident: CR6
– volume: 514
  start-page: 213
  year: 2014
  end-page: 217
  ident: CR9
  article-title: Global covariation of carbon turnover times with climate in terrestrial ecosystems
  publication-title: Nature
  doi: 10.1038/nature13731
– volume: 371
  start-page: 783
  year: 1994
  end-page: 785
  ident: CR3
  article-title: The role of soil organic matter in sustaining soil fertility
  publication-title: Nature
  doi: 10.1038/371783a0
– volume: 44
  start-page: 689
  year: 1980
  end-page: 692
  ident: CR32
  article-title: Bulk densities of California soils in relation to other soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400040005x
– volume: 451
  start-page: 289
  year: 2008
  end-page: 292
  ident: CR2
  article-title: Terrestrial ecosystem carbon dynamics and climate feedbacks
  publication-title: Nature
  doi: 10.1038/nature06591
– volume: 30
  start-page: 40
  year: 2016
  end-page: 56
  ident: CR12
  article-title: Toward more realistic projections of soil carbon dynamics by Earth system models
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2015GB005239
– year: 1993
  ident: CR34
  publication-title: An Introduction to the Bootstrap
  doi: 10.1007/978-1-4899-4541-9
– ident: CR23
– volume: 450
  start-page: 277
  year: 2007
  end-page: 280
  ident: CR28
  article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply
  publication-title: Nature
  doi: 10.1038/nature06275
– ident: CR21
– volume: 353
  start-page: 1419
  year: 2016
  end-page: 1424
  ident: CR19
  article-title: Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century
  publication-title: Science
  doi: 10.1126/science.aad4273
– volume: 114
  start-page: G04025
  year: 2009
  ident: CR30
  article-title: Analysis of soil carbon transit times and age distributions using network theories
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JG001070
– volume: 10
  start-page: 1717
  year: 2013
  end-page: 1736
  ident: CR7
  article-title: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-1717-2013
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  ident: CR25
  article-title: Soil carbon stocks and land use change: a meta-analysis
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1354-1013.2002.00486.x
– volume: 20
  start-page: 1674
  year: 2014
  end-page: 1684
  ident: CR15
  article-title: Allometric constraints on, and trade-offs in, belowground carbon allocation and their control of soil respiration across global forest ecosystems
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12494
– volume: 13
  start-page: 527
  year: 2016
  end-page: 534
  ident: CR13
  article-title: Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-527-2016
– volume: 59
  start-page: 1328
  year: 1995
  end-page: 1335
  ident: CR16
  article-title: Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1995.03615995005900050019x
– volume: 23
  start-page: 1763
  year: 2017
  end-page: 1773
  ident: CR17
  article-title: The muddle of ages, turnover, transit, and residence times in the carbon cycle
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13556
– volume: 72
  start-page: 311
  year: 2002
  end-page: 328
  ident: CR26
  article-title: The global biogeography of roots
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
– volume: 338
  start-page: 143
  year: 2011
  end-page: 158
  ident: CR8
  article-title: Deep soil organic matter—a key but poorly understood component of terrestrial C cycle
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0391-5
– volume: 108
  start-page: 14769
  year: 2011
  end-page: 14774
  ident: CR29
  article-title: Permafrost carbon-climate feedbacks accelerate global warming
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103910108
– volume: 23
  start-page: 955
  year: 2017
  ident: 328_CR14
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13379
– volume: 528
  start-page: 60
  year: 2015
  ident: 328_CR22
  publication-title: Nature
  doi: 10.1038/nature16045
– volume: 514
  start-page: 213
  year: 2014
  ident: 328_CR9
  publication-title: Nature
  doi: 10.1038/nature13731
– volume: 10
  start-page: 1717
  year: 2013
  ident: 328_CR7
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-1717-2013
– volume: 13
  start-page: 527
  year: 2016
  ident: 328_CR13
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-527-2016
– volume: 20
  start-page: 1674
  year: 2014
  ident: 328_CR15
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12494
– volume: 21
  start-page: 4278
  year: 2015
  ident: 328_CR18
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13012
– volume: 8
  start-page: 345
  year: 2002
  ident: 328_CR25
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1354-1013.2002.00486.x
– volume: 338
  start-page: 143
  year: 2011
  ident: 328_CR8
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0391-5
– volume: 7
  start-page: 044008
  year: 2012
  ident: 328_CR1
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/4/044008
– volume: 114
  start-page: G04025
  year: 2009
  ident: 328_CR30
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JG001070
– volume: 319
  start-page: 456
  year: 2008
  ident: 328_CR27
  publication-title: Science
  doi: 10.1126/science.1151382
– volume: 371
  start-page: 783
  year: 1994
  ident: 328_CR3
  publication-title: Nature
  doi: 10.1038/371783a0
– volume: 10
  start-page: 423
  year: 2000
  ident: 328_CR5
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume: 30
  start-page: 40
  year: 2016
  ident: 328_CR12
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2015GB005239
– volume: 23
  start-page: 1763
  year: 2017
  ident: 328_CR17
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13556
– volume: 108
  start-page: 14769
  year: 2011
  ident: 328_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103910108
– volume: 119
  start-page: 11
  year: 2018
  ident: 328_CR33
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.12.021
– volume: 282
  start-page: 893
  year: 1998
  ident: 328_CR4
  publication-title: Science
  doi: 10.1126/science.282.5390.893
– volume: 10
  start-page: 2379
  year: 2013
  ident: 328_CR24
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-2379-2013
– volume: 72
  start-page: 311
  year: 2002
  ident: 328_CR26
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
– volume: 21
  start-page: 1
  year: 2002
  ident: 328_CR31
  publication-title: Clim. Res.
  doi: 10.3354/cr021001
– volume: 29
  start-page: 775
  year: 2015
  ident: 328_CR10
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2014GB005021
– volume: 450
  start-page: 277
  year: 2007
  ident: 328_CR28
  publication-title: Nature
  doi: 10.1038/nature06275
– volume: 8
  start-page: 605
  year: 2016
  ident: 328_CR11
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-8-605-2016
– volume: 59
  start-page: 1328
  year: 1995
  ident: 328_CR16
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1995.03615995005900050019x
– volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: 328_CR34
  doi: 10.1007/978-1-4899-4541-9
– ident: 328_CR6
– volume: 11
  start-page: 2147
  year: 2014
  ident: 328_CR20
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-2147-2014
– volume: 44
  start-page: 689
  year: 1980
  ident: 328_CR32
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400040005x
– volume: 451
  start-page: 289
  year: 2008
  ident: 328_CR2
  publication-title: Nature
  doi: 10.1038/nature06591
– ident: 328_CR23
– volume: 353
  start-page: 1419
  year: 2016
  ident: 328_CR19
  publication-title: Science
  doi: 10.1126/science.aad4273
– ident: 328_CR21
SSID ssj0005174
Score 2.6637423
SecondaryResourceType review_article
Snippet The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate 1 , 2 and—because of the importance of organic matter to soil...
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate and-because of the importance of organic matter to soil...
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate.sup.1,2 and--because of the importance of organic matter to...
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil...
The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and—because of the importance of organic matter to soil...
SourceID hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 599
SubjectTerms 704/106/47/4113
704/158/2445
704/158/2466
704/47/4113
Age
Agricultural land
Agricultural management
Agriculture
Annual temperatures
Aridity
Aridity index
Atmosphere
Atmosphere - chemistry
Atmospheric models
Biomass
Carbon
Carbon - analysis
Carbon - metabolism
Carbon cycle
Carbon exchange
Carbon isotopes
Carbon Isotopes - analysis
Carbon Isotopes - metabolism
Chemical Sciences
Climate
Climate control
Climatic zones
Crops, Agricultural - metabolism
Datasets as Topic
Earth Sciences
Environmental aspects
Exchanging
Forests
Geochemistry
Grassland
Grasslands
Humanities and Social Sciences
Labeling
Land use
Letter
Meta-analysis
multidisciplinary
Multilayers
Organic carbon
Organic matter
Organic soils
Other
Permafrost
Respiration
Science
Science (multidisciplinary)
Sciences of the Universe
Soil - chemistry
Soil analysis
Soil carbon
Soil depth
Soil dynamics
Soil fertility
Soil improvement
Soil layers
Soil organic matter
Soil profiles
Soil properties
Soil surfaces
Subsoils
Surface boundary layer
Surface layers
Systematic review
Temperature
Topsoil
Tropical Climate
Title Atmosphere–soil carbon transfer as a function of soil depth
URI https://link.springer.com/article/10.1038/s41586-018-0328-3
https://www.ncbi.nlm.nih.gov/pubmed/29995858
https://www.proquest.com/docview/2085679096
https://www.proquest.com/docview/2068912881
https://hal.science/hal-02073138
Volume 559
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELfYJiRe0Db-lY0poIm_ijbXce08IBSqlYKgQmMTfbMc29kmjaRr0j3zHfiGfBLuUqclbOwlD_X16t757N_lzneE7NI4MzIyNhTo6YD_xWEflC40scnS1PasTPGi8JdRb3gcfRrzsX_hVvq0ymZPrDdqWxh8R76HvSR7IgbE_W5yEWLXKIyu-hYaK2QNS5dhSpcYi2WKxz9VmJuoJpN7JRxcEn1pvGAGw6x1LvndeeUUkyOvIs8rUdP6MBqsk7seRQbJXO0b5JbLN8ntOpvTlJtkw1tsGbz0ZaVf3SNvk-pHUWIVAff756-yODsPjJ6mRR5UNXh100CXgQ7wpENtBUUW1FTWTarT--R4cHDUH4a-eUKowautwm7KIxE5cLEiqzmLtbPcmpQyG6eWC2uoyChlWeQiwbtGiCzWNNvXVscAYQVjD8hqXuTuEQmocFQDM20dgCeayZRjCSBrAUta0GyH7DeiU8ZXFscGF-eqjnAzqebSViBthdJWrENeL74ymZfVuIl4F_WhsFxFjvkwJ3pWlio5-t4fqYRjKBnDwx3y7Dqyj98OW0QvPFFWwByN9rcQ4J9iIawW5VaL0kzOLtRfo89boydzbV7HZrtFCNZr2pOGRbaQARb7HiafFX4GQF4wyuQlBR7NGlR-iynV0iA65OliGNlj2lzuihnS9GQMCEQCi4fztbv4KcAhYDEctPemWcxL5v_VxeObp7JF7nRrm8J85m2yWk1n7gmgtirdqU0TnrJP8Tn4sEPW3h-Mvh7-AdEtOy4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWKEFwQLa_QAgsqUEBWs35k14cKRYUqoWkOkIrclvXuuq1U7DR2QNz4B_6Dj-JLmPEjwbT01qt3Mt7MzM7DMztDyAYLYy18bRyOkQ7EXwHoQWEdHeo4ikzHiAgvCu8PO70D__04GC-RX_VdGCyrrHVioahNqvEb-RbOkuzwEDzuN5NTB6dGYXa1HqFRisWe_f4NQrZsu_8W-PvMdXffjXZ6TjVVwFEQ7uWOGwU-9y3EHr5RgRcqawKjI-aZMDIBN5rxmDEv9q3PA1dzHoeKxW1lVAi-HccPoKDyr4LhbeOJ4mO-KCn5p-tznUX1xFYGhlJg7I4X2mDZa9jByhpcOcJizLOe7pksbWH8dm-Rm5XXSrulmK2QJZuskmtF9ajOVslKpSEyulm1sX55m2x38y9phl0L7O8fP7P0-IRqNY3ShOaFs2ynVGVUUbSsKB00jWkBZewkP7pDDi6FrHfJcpIm9j6hjFumAJkyFpw1FosowJZDxoDvakCSWqRdk07qqpM5DtQ4kUVG3ROypLYEakuktvRa5NX8J5OyjcdFwBvID4ntMRKsvzlUsyyT3dGnnaHsBpi6xnR0izw9D6z_8UMD6EUFFKewR62qWw_wT7HxVgNyrQGpJ8en8q_V543Vw5Kb56FZbwCCttDNTYOQzWmAzcV73YHEZxA4cI954isDHLUMykqlZXJxAFvkyXwZ0WOZXmLTGcJ0RAgejwAU90rZnb8K_J4QYlPg3utamBfI_8uLBxdv5TG53hvtD-SgP9xbIzfc4nxhLfU6Wc6nM_sQPMY8elQcU0o-X7Ze-AM-GHVO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDIF4QG19lAwwan1PUuUnq5GFC0UbVslEh2ETfPMd2tkkj6ZoUxBv_gX_Dz-GXcJc4LWFjb3uNrxf37nwfufMdIWssTFTgKe1wjHQg_vJBDwbGUaFK4lh3dRDjReH3w25_33s38kcL5Fd9FwbLKmudWCpqnSn8Rt7GWZJdHoLH3U5sWcSH7d6b8amDE6Qw01qP06hEZMd8_wbhW7452AZeP-t0em_3tvqOnTDgSAj9CqcT-x73DMQhnpa-G0qjfa1i5uow1j7XivGEMTfxjMf9juI8CSVLNqSWIfh5HD-Ggvq_yl2f4RnjIz4vL_mnA3SdUXWDdg5GM8A4Hi-3wbLbsInWMlw5wsLMs17vmYxtaQh7t8hN68HSqBK5JbJg0mVyrawkVfkyWbLaIqcvbUvrV7fJZlR8yXLsYGB-__iZZ8cnVMlJnKW0KB1nM6Eyp5KilUVJoVlCSyhtxsXRHbJ_KWS9SxbTLDX3CWXcMAnIpDbguLEkiH1sP6Q1-LEapKpFNmrSCWW7muNwjRNRZtfdQFTUFkBtgdQWbou8nv1kXLX0uAh4DfkhsFVGikJ3KKd5LqK9z1tDEfmYxsbUdIs8PQ9s8OljA-iFBUoy2KOS9gYE_FNswtWAXGlAqvHxqfhr9Xlj9bDi5nloVhuAoDlUc9MgZDMaYKPxfrQr8BkEEdxlbvCVAY5aBoVVb7mYH8YWeTJbRvRYspeabIow3SAE7ycAFPcq2Z29CnygEOJU4N56Lcxz5P_lxYOLt_KYXAeNIHYHw50VcqNTHi8sq14li8Vkah6C81jEj8pTSsnBZauFPzRfeYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmosphere-soil+carbon+transfer+as+a+function+of+soil+depth&rft.jtitle=Nature+%28London%29&rft.au=Balesdent%2C+J%C3%A9r%C3%B4me&rft.au=Basile-Doelsch%2C+Isabelle&rft.au=Chadoeuf%2C+Jo%C3%ABl&rft.au=Cornu%2C+Sophie&rft.date=2018-07-01&rft.eissn=1476-4687&rft.volume=559&rft.issue=7715&rft.spage=599&rft_id=info:doi/10.1038%2Fs41586-018-0328-3&rft_id=info%3Apmid%2F29995858&rft.externalDocID=29995858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon