C_{E}PT$ Symmetry of the Simple Ecological Dynamical Equations

It is shown that all simple ecological, i.e. population dynamical equations (unlimited exponential population growth (or decrease) dynamics, logistic or Verhulst equation, usual and generalized Lotka-Volterra equations) hold a symmetry, called $C_{E}PT$ symmetry. Namely, all simple ecological dynami...

Full description

Saved in:
Bibliographic Details
Main Authors Pankovic, Vladan, Glavatovic, Rade, Predojevic, Milan
Format Journal Article
LanguageEnglish
Published 10.10.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is shown that all simple ecological, i.e. population dynamical equations (unlimited exponential population growth (or decrease) dynamics, logistic or Verhulst equation, usual and generalized Lotka-Volterra equations) hold a symmetry, called $C_{E}PT$ symmetry. Namely, all simple ecological dynamical equations are invariant (symmetric) in respect to successive application of the time reversal transformation - $T$, space coordinates reversal or parity transformation - $P$, and predator-prey reversal transformation - $C_{E}$ that changes preys in the predators or pure (healthy) in the impure (fatal) environment, and vice versa. It is deeply conceptually analogous to remarkable $CPT$ symmetry of the fundamental physical dynamical equations. Further, it is shown that by more accurate, "microscopic" analysis, given $C_{E}PT$ symmetry becomes explicitly broken.
AbstractList It is shown that all simple ecological, i.e. population dynamical equations (unlimited exponential population growth (or decrease) dynamics, logistic or Verhulst equation, usual and generalized Lotka-Volterra equations) hold a symmetry, called $C_{E}PT$ symmetry. Namely, all simple ecological dynamical equations are invariant (symmetric) in respect to successive application of the time reversal transformation - $T$, space coordinates reversal or parity transformation - $P$, and predator-prey reversal transformation - $C_{E}$ that changes preys in the predators or pure (healthy) in the impure (fatal) environment, and vice versa. It is deeply conceptually analogous to remarkable $CPT$ symmetry of the fundamental physical dynamical equations. Further, it is shown that by more accurate, "microscopic" analysis, given $C_{E}PT$ symmetry becomes explicitly broken.
Author Predojevic, Milan
Glavatovic, Rade
Pankovic, Vladan
Author_xml – sequence: 1
  givenname: Vladan
  surname: Pankovic
  fullname: Pankovic, Vladan
– sequence: 2
  givenname: Rade
  surname: Glavatovic
  fullname: Glavatovic, Rade
– sequence: 3
  givenname: Milan
  surname: Predojevic
  fullname: Predojevic, Milan
BackLink https://doi.org/10.48550/arXiv.q-bio/0510020$$DView paper in arXiv
BookMark eNotz0FLwzAYxvEc9KBz38BDEK_d3jRNMi-C1LoNBhPWe3iTphpomrWrYhG_u2Pb6fmfHvjdkqs2to6QewazbCEEzLH_8d-zLjE-zkEwgBRuyHOuf4u_9_KR7sYQ3NCPNNZ0-HR058O-cbSwsYkf3mJDX8cWw6mK7gsHH9vDHbmusTm46WUnpHwrynyVbLbLdf6ySVBxSCQDZEJlTiGXNecORM2qLEPzVKkKlXTIOLOGo6hS5Yywkks0xixsKtAgn5CH8-3JoPe9D9iPutNHi75Y-D_POUfz
ContentType Journal Article
DBID ALC
GOX
DOI 10.48550/arxiv.q-bio/0510020
DatabaseName arXiv Quantitative Biology
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID q_bio_0510020
GroupedDBID ALC
GOX
ID FETCH-LOGICAL-a730-610a1574e7a36f33e05f1d44ab9d7da76ea131cb3a5d27eb5c636abbb8c25aba3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:41:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a730-610a1574e7a36f33e05f1d44ab9d7da76ea131cb3a5d27eb5c636abbb8c25aba3
Notes NS-05/B-12
OpenAccessLink https://arxiv.org/abs/q-bio/0510020
ParticipantIDs arxiv_primary_q_bio_0510020
PublicationCentury 2000
PublicationDate 2005-10-10
PublicationDateYYYYMMDD 2005-10-10
PublicationDate_xml – month: 10
  year: 2005
  text: 2005-10-10
  day: 10
PublicationDecade 2000
PublicationYear 2005
Score 1.3766341
SecondaryResourceType preprint
Snippet It is shown that all simple ecological, i.e. population dynamical equations (unlimited exponential population growth (or decrease) dynamics, logistic or...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Quantitative Biology - Populations and Evolution
Title C_{E}PT$ Symmetry of the Simple Ecological Dynamical Equations
URI https://arxiv.org/abs/q-bio/0510020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7anryIoqJWJWCvS3fz2G0vgtStRfABXaG3ZZLNQg-1tt2KRfzvTvYBevEWkplDJo_5Jsl8AehJ4-6ShpFntDu6IUTkYTaQnhlqoXJ0JFkuUfjxKZy8yoeZmrXgusmFwfXn_KPiB9ab_orCw2XfzRtCNW1oc-5ebd0_z6okuJKNq1b5I0pIs6z95SrGB7BfYzx2Ww3KIbTs2xHcjNKv-Psl6bHpbrGwxXrHljkj-MWmc8fQy2LT7EPsrvomnkrxqqLi3hxDMo6T0cSrPy_wkBYNRWQ-BiqSNkIR5kJYX-VBJiXqYRZlGIUWAxEYLVBlPLJamVCEqLUeGK5QoziBDsX_9hQYzwhy5DLkVigZOB0S4Ipcr_GFUeoMumVn0_eKnyJdpWSKtDbF-b-tXdhruEgD_wI6xXprL8nLFvqqtPMPh8N9-w
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C_%7BE%7DPT%24+Symmetry+of+the+Simple+Ecological+Dynamical+Equations&rft.au=Pankovic%2C+Vladan&rft.au=Glavatovic%2C+Rade&rft.au=Predojevic%2C+Milan&rft.date=2005-10-10&rft_id=info:doi/10.48550%2Farxiv.q-bio%2F0510020&rft.externalDocID=q_bio_0510020