C_{E}PT$ Symmetry of the Simple Ecological Dynamical Equations
It is shown that all simple ecological, i.e. population dynamical equations (unlimited exponential population growth (or decrease) dynamics, logistic or Verhulst equation, usual and generalized Lotka-Volterra equations) hold a symmetry, called $C_{E}PT$ symmetry. Namely, all simple ecological dynami...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
10.10.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is shown that all simple ecological, i.e. population dynamical equations
(unlimited exponential population growth (or decrease) dynamics, logistic or
Verhulst equation, usual and generalized Lotka-Volterra equations) hold a
symmetry, called $C_{E}PT$ symmetry. Namely, all simple ecological dynamical
equations are invariant (symmetric) in respect to successive application of the
time reversal transformation - $T$, space coordinates reversal or parity
transformation - $P$, and predator-prey reversal transformation - $C_{E}$ that
changes preys in the predators or pure (healthy) in the impure (fatal)
environment, and vice versa. It is deeply conceptually analogous to remarkable
$CPT$ symmetry of the fundamental physical dynamical equations. Further, it is
shown that by more accurate, "microscopic" analysis, given $C_{E}PT$ symmetry
becomes explicitly broken. |
---|---|
AbstractList | It is shown that all simple ecological, i.e. population dynamical equations
(unlimited exponential population growth (or decrease) dynamics, logistic or
Verhulst equation, usual and generalized Lotka-Volterra equations) hold a
symmetry, called $C_{E}PT$ symmetry. Namely, all simple ecological dynamical
equations are invariant (symmetric) in respect to successive application of the
time reversal transformation - $T$, space coordinates reversal or parity
transformation - $P$, and predator-prey reversal transformation - $C_{E}$ that
changes preys in the predators or pure (healthy) in the impure (fatal)
environment, and vice versa. It is deeply conceptually analogous to remarkable
$CPT$ symmetry of the fundamental physical dynamical equations. Further, it is
shown that by more accurate, "microscopic" analysis, given $C_{E}PT$ symmetry
becomes explicitly broken. |
Author | Predojevic, Milan Glavatovic, Rade Pankovic, Vladan |
Author_xml | – sequence: 1 givenname: Vladan surname: Pankovic fullname: Pankovic, Vladan – sequence: 2 givenname: Rade surname: Glavatovic fullname: Glavatovic, Rade – sequence: 3 givenname: Milan surname: Predojevic fullname: Predojevic, Milan |
BackLink | https://doi.org/10.48550/arXiv.q-bio/0510020$$DView paper in arXiv |
BookMark | eNotz0FLwzAYxvEc9KBz38BDEK_d3jRNMi-C1LoNBhPWe3iTphpomrWrYhG_u2Pb6fmfHvjdkqs2to6QewazbCEEzLH_8d-zLjE-zkEwgBRuyHOuf4u_9_KR7sYQ3NCPNNZ0-HR058O-cbSwsYkf3mJDX8cWw6mK7gsHH9vDHbmusTm46WUnpHwrynyVbLbLdf6ySVBxSCQDZEJlTiGXNecORM2qLEPzVKkKlXTIOLOGo6hS5Yywkks0xixsKtAgn5CH8-3JoPe9D9iPutNHi75Y-D_POUfz |
ContentType | Journal Article |
DBID | ALC GOX |
DOI | 10.48550/arxiv.q-bio/0510020 |
DatabaseName | arXiv Quantitative Biology arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | q_bio_0510020 |
GroupedDBID | ALC GOX |
ID | FETCH-LOGICAL-a730-610a1574e7a36f33e05f1d44ab9d7da76ea131cb3a5d27eb5c636abbb8c25aba3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:41:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a730-610a1574e7a36f33e05f1d44ab9d7da76ea131cb3a5d27eb5c636abbb8c25aba3 |
Notes | NS-05/B-12 |
OpenAccessLink | https://arxiv.org/abs/q-bio/0510020 |
ParticipantIDs | arxiv_primary_q_bio_0510020 |
PublicationCentury | 2000 |
PublicationDate | 2005-10-10 |
PublicationDateYYYYMMDD | 2005-10-10 |
PublicationDate_xml | – month: 10 year: 2005 text: 2005-10-10 day: 10 |
PublicationDecade | 2000 |
PublicationYear | 2005 |
Score | 1.3766341 |
SecondaryResourceType | preprint |
Snippet | It is shown that all simple ecological, i.e. population dynamical equations
(unlimited exponential population growth (or decrease) dynamics, logistic or... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Quantitative Biology - Populations and Evolution |
Title | C_{E}PT$ Symmetry of the Simple Ecological Dynamical Equations |
URI | https://arxiv.org/abs/q-bio/0510020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7anryIoqJWJWCvS3fz2G0vgtStRfABXaG3ZZLNQg-1tt2KRfzvTvYBevEWkplDJo_5Jsl8AehJ4-6ShpFntDu6IUTkYTaQnhlqoXJ0JFkuUfjxKZy8yoeZmrXgusmFwfXn_KPiB9ab_orCw2XfzRtCNW1oc-5ebd0_z6okuJKNq1b5I0pIs6z95SrGB7BfYzx2Ww3KIbTs2xHcjNKv-Psl6bHpbrGwxXrHljkj-MWmc8fQy2LT7EPsrvomnkrxqqLi3hxDMo6T0cSrPy_wkBYNRWQ-BiqSNkIR5kJYX-VBJiXqYRZlGIUWAxEYLVBlPLJamVCEqLUeGK5QoziBDsX_9hQYzwhy5DLkVigZOB0S4Ipcr_GFUeoMumVn0_eKnyJdpWSKtDbF-b-tXdhruEgD_wI6xXprL8nLFvqqtPMPh8N9-w |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C_%7BE%7DPT%24+Symmetry+of+the+Simple+Ecological+Dynamical+Equations&rft.au=Pankovic%2C+Vladan&rft.au=Glavatovic%2C+Rade&rft.au=Predojevic%2C+Milan&rft.date=2005-10-10&rft_id=info:doi/10.48550%2Farxiv.q-bio%2F0510020&rft.externalDocID=q_bio_0510020 |