Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations
The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was develo...
Saved in:
Published in | Bioinformatics and Biology Insights Vol. 2017; no. 11; pp. 1 - 11-010 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
Libertas Academica
2017
SAGE Publishing SAGE Publications Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (RkNN) search. The RkNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the RkNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. |
---|---|
AbstractList | The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse
-nearest neighbor (R
NN) search. The R
NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R
NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (RkNN) search. The RkNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the RkNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (RkNN) search. The RkNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the RkNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (RkNN) search. The RkNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the RkNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k-nearest neighbor (R kNN) search. The R kNN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R kNN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases. |
Author | Kitiporn Plaimas Apichat Suratanee |
AuthorAffiliation | 1 Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand 2 Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand |
AuthorAffiliation_xml | – name: 2 Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand – name: 1 Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand |
Author_xml | – sequence: 1 givenname: Apichat surname: Suratanee fullname: Suratanee, Apichat – sequence: 2 givenname: Kitiporn surname: Plaimas fullname: Plaimas, Kitiporn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28757797$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uslu2zAQFYoUzdLeeyoE9NKLWm4iqUuBIN0MpGnQ5UyMqJHNVBZTkk7Rvy8VO4t98EVPevPmafiGx8XB6EcsipeUvKVUqXfTo-GMZWBEkPpJcTRR1cQdPHo_LI5jvCJEUq3ks-KQaVXnTnVUjN_xBkPE8gIhYEwZ3XzR-lD-yIRdlH4sobwMPqEbqw2WszFhAJtcrl5g-uvD7zL5TPcY7sUfXETIzqcxeutgEsfnxdMehogvNnhS_Pr08efZl-r82-fZ2el5BVLTVHWoGBVSdUpbUvdWCYBaWao6jlJLiZ0WWqiWKdL2TS9bpKqVKDqUrOdA-UkxW_t2Hq7MdXBLCP-MB2duCR_mBkJydkDTQFPThkJjm170ugPeAO2AEskZz2z2er_2ul61S-wsjinAsGW6XRndwsz9jalrymumssGbjUHwf1Y5ZLN00eIwwIh-FQ1tmNBaCSWy9PWO9MqvwpijMkywvE9aa75XRXQOrhF0yuDV47nvB75bfhbItcAGH2PA3liXbveUj-EGQ4mZbpDZvWW5kew03nnvaanWLRHm-DDuHv0m9MG1GBJEsNDh0sFW7jtFC8b6pZFCTqf_ujYAF1xyD7-8ZIRKUjNJCM9x5UjZBJpopknG7Q-aRzOEEv4fe54LoQ |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_2_033130 crossref_primary_10_7717_peerj_cs_1124 crossref_primary_10_3390_biom12050690 crossref_primary_10_3390_app13158980 crossref_primary_10_3390_jpm12071030 crossref_primary_10_1177_00368504221109215 crossref_primary_10_35713_aic_v2_i5_69 crossref_primary_10_3390_ijms21041310 crossref_primary_10_3390_ijms221810019 |
Cites_doi | 10.3892/ijo.2016.3771 10.1371/journal.pcbi.1000641 10.1093/bioinformatics/btl145 10.1089/ars.2011.4085 10.1093/bib/bbw071 10.1126/science.1145720 10.1038/ejhg.2013.96 10.1093/bioinformatics/btn182 10.1093/bioinformatics/btn613 10.1109/CSB.2002.1039334 10.4049/jimmunol.1600103 10.1371/journal.pone.0136561 10.1167/iovs.10-5194 10.1093/bioinformatics/btm212 10.1016/j.leukres.2013.06.023 10.1371/journal.pbio.1000294 10.1016/j.ymeth.2014.11.020 10.1101/gr.071852.107 10.1126/science.1257601 10.1074/jbc.M114.611921 10.1093/bioinformatics/btl467 10.1142/S0219720014500176 10.1016/j.mce.2016.10.002 10.1212/WNL.0000000000001162 10.1073/pnas.1408472111 10.1016/j.cell.2006.03.032 10.1101/gr.1239303 10.1093/nar/gku1003 10.1186/1471-2105-4-2 10.1186/1471-2105-9-S5-S3 10.1093/glycob/cwv021 10.1038/nbt1295 10.1371/journal.pgen.1004605 10.1093/nar/gkw943 10.1038/msb.2008.27 10.1186/1471-2105-11-505 10.3389/fphys.2013.00363 10.1073/pnas.1004640107 10.1038/leu.2016.285 10.1016/j.cell.2010.03.032 10.1145/335191.335415 10.1016/j.exer.2016.03.015 10.1109/TKDE.2006.148 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2017. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2017 2017 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2017. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2017 2017 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
DBID | 188 AFRWT AAYXX CITATION NPM 3V. 7QO 7XB 8AL 8FD 8FE 8FG 8FH 8FK ABUWG AEUYN AFKRA ARAPS AYAGU AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- LK8 M0N M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1177/1177932217720405 |
DatabaseName | Chinese Electronic Periodical Services (CEPS) Sage Journals GOLD Open Access 2024 CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Australia & New Zealand Database ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Biological Sciences Computing Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Australia & New Zealand Database ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1177-9322 |
EndPage | 11-010 |
ExternalDocumentID | oai_doaj_org_article_9a95191a9c9f4f8da39a1da106323a9c PMC5513527 28757797 10_1177_1177932217720405 10.1177_1177932217720405 oai_libertasacademica_com_6461 P20160526003_201712_201808280018_201808280018_1_11_010 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 188 2UF 2WC 31X 3V. 53G 54M 5VS 8FE 8FG 8FH AATBZ ABDBF ABQXT ABUWG ABVFX ACARO ACGFS ACGZU ACROE ACSIQ ADBBV ADOGD ADRAZ AEWDL AEWHI AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AUTPY AYAGU AYAKG AZQEC BAWUL BBNVY BCNDV BDDNI BENPR BGLVJ BHPHI BPHCQ BSEHC CCPQU CEFSP CNMHZ DC. DIK DV7 DWQXO E3Z EBD EBS EJD ESX GNUQQ GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HYE IAO IGS IHR J8X K.F K6V K7- KQ8 LK8 M0N M48 M7P MK~ ML0 M~E O5R O5S O9- OK1 P62 PGMZT PIMPY PQQKQ PROAC ROL RPM SFC SFK SFT SGV SPP TR2 TUS UZ5 - 0R 2J 2M 2N 31U 31Z AACTG AAMXZ ABJOC ABPTK ACUAV ACXKE ACXMB ADACO AECGH AEDTQ AEPTA AGWFA AMCVQ B8R B8Z B94 BBRGL BKIIM DB DF0 DO- PQEST PQUKI PRINS Q7L Q83 SGR SGZ SHG SNB SPV STM AASGM ACUHS AEUYN PHGZM PHGZT SAUOL SCDPB SCNPE AAYXX ACHEB CITATION C1A IPNFZ ITC NPM RIG 7QO 7XB 8AL 8FD 8FK FR3 JQ2 P64 PKEHL PQGLB Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-a681t-de721467d78c05fc74aa57c17d3e6866ed84847b270bf9f6be17b6e4de62f3a13 |
IEDL.DBID | AFRWT |
ISSN | 1177-9322 |
IngestDate | Wed Aug 27 01:29:52 EDT 2025 Thu Aug 21 18:19:53 EDT 2025 Fri Jul 11 07:12:20 EDT 2025 Fri Jul 25 12:29:20 EDT 2025 Fri Jul 25 10:23:42 EDT 2025 Thu Jan 02 22:42:12 EST 2025 Tue Jul 01 05:22:33 EDT 2025 Thu Apr 24 22:59:29 EDT 2025 Tue Jun 17 22:39:15 EDT 2025 Thu Dec 16 16:54:49 EST 2021 Tue Oct 01 22:51:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | network-based method protein-disease associations reverse nearest neighbor search |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a681t-de721467d78c05fc74aa57c17d3e6866ed84847b270bf9f6be17b6e4de62f3a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/1177932217720405?utm_source=summon&utm_medium=discovery-provider |
PMID | 28757797 |
PQID | 2081469411 |
PQPubID | 1036453 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9a95191a9c9f4f8da39a1da106323a9c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5513527 proquest_miscellaneous_1924887474 proquest_journals_2421171583 proquest_journals_2081469411 pubmed_primary_28757797 crossref_citationtrail_10_1177_1177932217720405 crossref_primary_10_1177_1177932217720405 sage_journals_10_1177_1177932217720405 libertasacademia_primary_oai_libertasacademica_com_6461 airiti_journals_P20160526003_201712_201808280018_201808280018_1_11_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: London – name: Sage UK: London, England |
PublicationTitle | Bioinformatics and Biology Insights |
PublicationTitleAlternate | Bioinform Biol Insights |
PublicationYear | 2017 |
Publisher | Libertas Academica SAGE Publishing SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: Libertas Academica – name: SAGE Publishing – name: SAGE Publications – name: Sage Publications Ltd |
References | Pletscher-Frankild, Palleja, Tsafou, Binder, Jensen 2015; 74 Yufei, Man Lung, Nikos 2006; 18 Menche, Sharma, Kitsak 2015; 347 Asur, Ucar, Parthasarathy 2007; 23 Xu, Li 2006; 22 Shannon, Markiel, Ozier 2003; 13 Brennenstuhl, Tanimoto, Burkard 2015; 290 Lee, Luciano, Ackah 2014; 111 Wood, Parsons, Jones 2007; 318 Meinke, Mattioli, Haque 2014; 10 Chen, Zhang, Zhao 2009; 25 Soza-Ried, Hess, Netuschil, Schorpp, Boehm 2010; 107 Du, Xu, Yang 2016 Shlapatska, Kovalevska, Gordiienko, Sidorenko 2014; 36 Dickson, Wang, Krantz, Hakonarson, Goldstein 2010; 8 Ning, Ng, Srihari, Leong, Nesvizhskii 2010; 11 Pinero, Bravo, Queralt-Rosinach 2017; 45 Häggblad Sahlberg, Mortensen, Haglof 2017; 50 Chua, Sung, Wong 2006; 22 Bader, Hogue 2003; 4 Lim, Hao, Shaw 2006; 125 Kuga, Kanagawa, Toda 2011; 63 Adamic, Wilkinson, Huberman, Adar 2002; 1 Maranhao, Biswas, Gottsch 2015; 10 Ideker, Sharan 2008; 18 Habib, Sadoun, Nader 2017; 439 McClellan, King 2010; 141 Szklarczyk, Franceschini, Wyder 2015; 43 Suratanee, Plaimas 2014; 12 Dong, Noguchi, Endo 2015; 84 Scheenstra, De Cuyper, Branco-Madeira 2016; 197 Flip, Muthukrishnan 2000; 29 Graziotto, Farkas, Bujakowska 2011; 52 Ozgur, Vu, Erkan, Radev 2008; 24 Folker, Baylies 2013; 4 Lage, Karlberg, Storling 2007; 25 Ramos, Hoffman, Junkins 2014; 22 Mottaz, Yip, Ruch, Veuthey 2008; 9 Zhang, Tao, Zeng 2016 Yoshida-Moriguchi, Campbell 2015; 25 Wang, You, Ni 2013; 37 Wu, Jiang, Zhang, Li 2008; 4 Vanunu, Magger, Ruppin, Shlomi, Sharan 2010; 6 Antico Arciuch, Elguero, Poderoso, Carreras 2012; 16 Huang, Xiao, Li 2016; 146 bibr31-1177932217720405 bibr1-1177932217720405 bibr6-1177932217720405 bibr36-1177932217720405 Shlapatska LM (bibr37-1177932217720405) 2014; 36 bibr19-1177932217720405 bibr44-1177932217720405 bibr27-1177932217720405 bibr14-1177932217720405 bibr40-1177932217720405 bibr23-1177932217720405 bibr5-1177932217720405 bibr10-1177932217720405 bibr7-1177932217720405 bibr29-1177932217720405 bibr16-1177932217720405 bibr32-1177932217720405 Kuga A (bibr45-1177932217720405) 2011; 63 Stanoi I (bibr17-1177932217720405) bibr15-1177932217720405 bibr46-1177932217720405 bibr28-1177932217720405 bibr41-1177932217720405 bibr11-1177932217720405 bibr2-1177932217720405 bibr24-1177932217720405 bibr12-1177932217720405 bibr8-1177932217720405 bibr20-1177932217720405 bibr42-1177932217720405 bibr33-1177932217720405 bibr34-1177932217720405 bibr9-1177932217720405 bibr21-1177932217720405 bibr38-1177932217720405 bibr25-1177932217720405 bibr3-1177932217720405 bibr43-1177932217720405 bibr13-1177932217720405 bibr18-1177932217720405 bibr30-1177932217720405 bibr4-1177932217720405 bibr22-1177932217720405 bibr35-1177932217720405 bibr26-1177932217720405 bibr39-1177932217720405 25503980 - Neurology. 2015 Jan 20;84(3):273-9 23867056 - Leuk Res. 2013 Oct;37(10):1329-40 16954137 - Bioinformatics. 2006 Nov 15;22(22):2800-5 26992781 - Exp Eye Res. 2016 May;146:252-8 25484339 - Methods. 2015 Mar;74:83-9 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2 20126254 - PLoS Biol. 2010 Jan 26;8(1):e1000294 25136137 - Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12865-70 19029127 - Bioinformatics. 2009 Jan 15;25(2):237-42 20090828 - PLoS Comput Biol. 2010 Jan 15;6(1):e1000641 27748371 - Leukemia. 2017 Apr;31(4):945-956 25882296 - Glycobiology. 2015 Jul;25(7):702-13 27878243 - Int J Oncol. 2017 Jan;50(1):5-14 20939873 - BMC Bioinformatics. 2010 Oct 12;11:505 25700523 - Science. 2015 Feb 20;347(6224):1257601 20823231 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17304-8 22068471 - Brain Nerve. 2011 Nov;63(11):1189-95 26352687 - PLoS One. 2015 Sep 09;10(9):e0136561 17932254 - Science. 2007 Nov 16;318(5853):1108-13 15838128 - Proc IEEE Comput Soc Bioinform Conf. 2002;1:109-17 21967640 - Antioxid Redox Signal. 2012 May 15;16(10):1150-80 25152042 - J Bioinform Comput Biol. 2014 Aug;12(4):1450017 27924018 - Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839 27717743 - Mol Cell Endocrinol. 2017 Jan 5;439:431-443 25352553 - Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 25265348 - Exp Oncol. 2014 Sep;36(3):162-9 20403315 - Cell. 2010 Apr 16;141(2):210-7 18586725 - Bioinformatics. 2008 Jul 1;24(13):i277-85 17646309 - Bioinformatics. 2007 Jul 1;23(13):i29-40 23695286 - Eur J Hum Genet. 2014 Jan;22(1):144-7 27815426 - J Immunol. 2016 Dec 1;197(11):4312-4324 27542402 - Brief Bioinform. 2016 Aug 19;:null 16713569 - Cell. 2006 May 19;125(4):801-14 25210889 - PLoS Genet. 2014 Sep 11;10(9):e1004605 16632496 - Bioinformatics. 2006 Jul 1;22(13):1623-30 24376424 - Front Physiol. 2013 Dec 12;4:363 18381899 - Genome Res. 2008 Apr;18(4):644-52 17344885 - Nat Biotechnol. 2007 Mar;25(3):309-16 18463613 - Mol Syst Biol. 2008;4:189 20811066 - Invest Ophthalmol Vis Sci. 2011 Jan 05;52(1):190-8 18460185 - BMC Bioinformatics. 2008 Apr 29;9 Suppl 5:S3 14597658 - Genome Res. 2003 Nov;13(11):2498-504 25739440 - J Biol Chem. 2015 Apr 17;290(16):10242-55 |
References_xml | – volume: 8 start-page: e1000294 year: 2010 article-title: Rare variants create synthetic genome-wide associations publication-title: PLoS Biol – volume: 6 start-page: e1000641 year: 2010 article-title: Associating genes and protein complexes with disease via network propagation publication-title: PLoS Comput Biol – volume: 16 start-page: 1150 year: 2012 end-page: 1180 article-title: Mitochondrial regulation of cell cycle and proliferation publication-title: Antioxid Redox Signal – volume: 11 start-page: 505 year: 2010 article-title: Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology publication-title: BMC Bioinformatics – volume: 13 start-page: 2498 year: 2003 end-page: 2504 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res – volume: 52 start-page: 190 year: 2011 end-page: 198 article-title: Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration publication-title: Invest Ophthalmol Vis Sci – volume: 4 start-page: 363 year: 2013 article-title: Nuclear positioning in muscle development and disease publication-title: Front Physiol – volume: 290 start-page: 10242 year: 2015 end-page: 10255 article-title: Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory publication-title: J Biol Chem – volume: 74 start-page: 83 year: 2015 end-page: 89 article-title: DISEASES: text mining and data integration of disease-gene associations publication-title: Methods – volume: 12 start-page: 1450017 year: 2014 article-title: Identification of inflammatory bowel disease-related proteins using a reverse k-nearest neighbor search publication-title: J Bioinform Comput Biol – volume: 197 start-page: 4312 year: 2016 end-page: 4324 article-title: GATA1-deficient dendritic cells display impaired CCL21-dependent migration toward lymph nodes due to reduced levels of polysialic acid publication-title: J Immunol – volume: 37 start-page: 1329 year: 2013 end-page: 1340 article-title: β-Catenin and AKT are promising targets for combination therapy in acute myeloid leukemia publication-title: Leuk Res – volume: 318 start-page: 1108 year: 2007 end-page: 1113 article-title: The genomic landscapes of human breast and colorectal cancers publication-title: Science – volume: 22 start-page: 1623 year: 2006 end-page: 1630 article-title: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions publication-title: Bioinformatics – volume: 439 start-page: 431 year: 2017 end-page: 443 article-title: AKT1 has dual actions on the glucocorticoid receptor by cooperating with 14-3-3 publication-title: Mol Cell Endocrinol – volume: 10 start-page: e0136561 year: 2015 article-title: Investigating the molecular basis of retinal degeneration in a familial cohort of Pakistani decent by exome sequencing publication-title: PLoS ONE – volume: 111 start-page: 12865 year: 2014 end-page: 12870 article-title: Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates publication-title: Proc Natl Acad Sci U S A – year: 2016 article-title: Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1 publication-title: Leukemia – volume: 4 start-page: 2 year: 2003 article-title: An automated method for finding molecular complexes in large protein interaction networks publication-title: BMC Bioinformatics – volume: 10 start-page: e1004605 year: 2014 article-title: Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization publication-title: PLoS Genet – volume: 141 start-page: 210 year: 2010 end-page: 217 article-title: Genetic heterogeneity in human disease publication-title: Cell – volume: 50 start-page: 5 year: 2017 end-page: 14 article-title: Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells publication-title: Int J Oncol – volume: 22 start-page: 144 year: 2014 end-page: 147 article-title: Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources publication-title: Eur J Hum Genet – volume: 107 start-page: 17304 year: 2010 end-page: 17308 article-title: Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved publication-title: Proc Natl Acad Sci U S A – volume: 347 start-page: 1257601 year: 2015 article-title: Uncovering disease-disease relationships through the incomplete interactome publication-title: Science – volume: 84 start-page: 273 year: 2015 end-page: 279 article-title: DAG1 mutations associated with asymptomatic hyperCKemia and hypoglycosylation of α-dystroglycan publication-title: Neurology – volume: 29 start-page: 201 year: 2000 end-page: 212 article-title: Influence sets based on reverse nearest neighbor queries publication-title: SIGMOD Rec – volume: 4 start-page: 189 year: 2008 article-title: Network-based global inference of human disease genes publication-title: Mol Syst Biol – volume: 63 start-page: 1189 year: 2011 end-page: 1195 article-title: Recent advances in alpha-dystroglycanopathy publication-title: Brain Nerve – volume: 25 start-page: 237 year: 2009 end-page: 242 article-title: Prioritizing risk pathways: a novel association approach to searching for disease pathways fusing SNPs and pathways publication-title: Bioinformatics – volume: 25 start-page: 702 year: 2015 end-page: 713 article-title: Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane publication-title: Glycobiology – volume: 18 start-page: 1239 year: 2006 end-page: 1252 article-title: Reverse nearest neighbor search in metric spaces publication-title: IEEE T Knowl Data En – volume: 43 start-page: D447 year: 2015 end-page: D452 article-title: STRING v10: protein-protein interaction networks, integrated over the tree of life publication-title: Nucleic Acids Res – year: 2016 article-title: A protein network descriptor server and its use in studying protein, disease, metabolic and drug targeted networks publication-title: Brief Bioinform – volume: 22 start-page: 2800 year: 2006 end-page: 2805 article-title: Discovering disease-genes by topological features in human protein-protein interaction network publication-title: Bioinformatics – volume: 18 start-page: 644 year: 2008 end-page: 652 article-title: Protein networks in disease publication-title: Genome Res – volume: 25 start-page: 309 year: 2007 end-page: 316 article-title: A human phenome-interactome network of protein complexes implicated in genetic disorders publication-title: Nat Biotechnol – volume: 125 start-page: 801 year: 2006 end-page: 814 article-title: A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration publication-title: Cell – volume: 23 start-page: i29 year: 2007 end-page: i40 article-title: An ensemble framework for clustering protein-protein interaction networks publication-title: Bioinformatics – volume: 36 start-page: 162 year: 2014 end-page: 169 article-title: Intrinsic defect in B-lymphoblastoid cell lines from patients with X-linked lymphoproliferative disease type 1. II. receptor-mediated Akt/PKB and ERK1/2 activation and transcription factors expression profile publication-title: Exp Oncol – volume: 146 start-page: 252 year: 2016 end-page: 258 article-title: Molecular genetics of cone-rod dystrophy in Chinese patients: new data from 61 probands and mutation overview of 163 probands publication-title: Exp Eye Res – volume: 9 start-page: S3 year: 2008 article-title: Mapping proteins to disease terminologies: from UniProt to MeSH publication-title: BMC Bioinformatics – volume: 45 start-page: D833 year: 2017 end-page: D839 article-title: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants publication-title: Nucleic Acids Res – volume: 24 start-page: i277 year: 2008 end-page: i285 article-title: Identifying gene-disease associations using centrality on a literature mined gene-interaction network publication-title: Bioinformatics – volume: 1 start-page: 109 year: 2002 end-page: 117 article-title: A literature based method for identifying gene-disease connections publication-title: Proc IEEE Comput Soc Bioinform Conf – ident: bibr33-1177932217720405 doi: 10.3892/ijo.2016.3771 – ident: bibr11-1177932217720405 doi: 10.1371/journal.pcbi.1000641 – ident: bibr6-1177932217720405 doi: 10.1093/bioinformatics/btl145 – ident: bibr34-1177932217720405 doi: 10.1089/ars.2011.4085 – ident: bibr4-1177932217720405 doi: 10.1093/bib/bbw071 – ident: bibr8-1177932217720405 doi: 10.1126/science.1145720 – ident: bibr22-1177932217720405 doi: 10.1038/ejhg.2013.96 – ident: bibr12-1177932217720405 doi: 10.1093/bioinformatics/btn182 – ident: bibr9-1177932217720405 doi: 10.1093/bioinformatics/btn613 – ident: bibr13-1177932217720405 doi: 10.1109/CSB.2002.1039334 – ident: bibr39-1177932217720405 doi: 10.4049/jimmunol.1600103 – ident: bibr28-1177932217720405 doi: 10.1371/journal.pone.0136561 – ident: bibr30-1177932217720405 doi: 10.1167/iovs.10-5194 – ident: bibr27-1177932217720405 doi: 10.1093/bioinformatics/btm212 – ident: bibr36-1177932217720405 doi: 10.1016/j.leukres.2013.06.023 – ident: bibr2-1177932217720405 doi: 10.1371/journal.pbio.1000294 – ident: bibr14-1177932217720405 doi: 10.1016/j.ymeth.2014.11.020 – ident: bibr3-1177932217720405 doi: 10.1101/gr.071852.107 – volume: 63 start-page: 1189 year: 2011 ident: bibr45-1177932217720405 publication-title: Brain Nerve – ident: bibr23-1177932217720405 doi: 10.1126/science.1257601 – ident: bibr31-1177932217720405 doi: 10.1074/jbc.M114.611921 – ident: bibr15-1177932217720405 doi: 10.1093/bioinformatics/btl467 – ident: bibr20-1177932217720405 doi: 10.1142/S0219720014500176 – ident: bibr35-1177932217720405 doi: 10.1016/j.mce.2016.10.002 – volume: 36 start-page: 162 year: 2014 ident: bibr37-1177932217720405 publication-title: Exp Oncol – ident: bibr44-1177932217720405 doi: 10.1212/WNL.0000000000001162 – ident: bibr32-1177932217720405 doi: 10.1073/pnas.1408472111 – ident: bibr10-1177932217720405 doi: 10.1016/j.cell.2006.03.032 – start-page: 44 volume-title: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery ident: bibr17-1177932217720405 – ident: bibr26-1177932217720405 doi: 10.1101/gr.1239303 – ident: bibr21-1177932217720405 doi: 10.1093/nar/gku1003 – ident: bibr25-1177932217720405 doi: 10.1186/1471-2105-4-2 – ident: bibr24-1177932217720405 doi: 10.1186/1471-2105-9-S5-S3 – ident: bibr43-1177932217720405 doi: 10.1093/glycob/cwv021 – ident: bibr7-1177932217720405 doi: 10.1038/nbt1295 – ident: bibr42-1177932217720405 doi: 10.1371/journal.pgen.1004605 – ident: bibr46-1177932217720405 doi: 10.1093/nar/gkw943 – ident: bibr5-1177932217720405 doi: 10.1038/msb.2008.27 – ident: bibr19-1177932217720405 doi: 10.1186/1471-2105-11-505 – ident: bibr41-1177932217720405 doi: 10.3389/fphys.2013.00363 – ident: bibr40-1177932217720405 doi: 10.1073/pnas.1004640107 – ident: bibr38-1177932217720405 doi: 10.1038/leu.2016.285 – ident: bibr1-1177932217720405 doi: 10.1016/j.cell.2010.03.032 – ident: bibr18-1177932217720405 doi: 10.1145/335191.335415 – ident: bibr29-1177932217720405 doi: 10.1016/j.exer.2016.03.015 – ident: bibr16-1177932217720405 doi: 10.1109/TKDE.2006.148 – reference: 20823231 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17304-8 – reference: 25152042 - J Bioinform Comput Biol. 2014 Aug;12(4):1450017 – reference: 27878243 - Int J Oncol. 2017 Jan;50(1):5-14 – reference: 26352687 - PLoS One. 2015 Sep 09;10(9):e0136561 – reference: 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2 – reference: 25700523 - Science. 2015 Feb 20;347(6224):1257601 – reference: 16632496 - Bioinformatics. 2006 Jul 1;22(13):1623-30 – reference: 26992781 - Exp Eye Res. 2016 May;146:252-8 – reference: 15838128 - Proc IEEE Comput Soc Bioinform Conf. 2002;1:109-17 – reference: 20811066 - Invest Ophthalmol Vis Sci. 2011 Jan 05;52(1):190-8 – reference: 18586725 - Bioinformatics. 2008 Jul 1;24(13):i277-85 – reference: 20939873 - BMC Bioinformatics. 2010 Oct 12;11:505 – reference: 27542402 - Brief Bioinform. 2016 Aug 19;:null – reference: 27717743 - Mol Cell Endocrinol. 2017 Jan 5;439:431-443 – reference: 20090828 - PLoS Comput Biol. 2010 Jan 15;6(1):e1000641 – reference: 20403315 - Cell. 2010 Apr 16;141(2):210-7 – reference: 16954137 - Bioinformatics. 2006 Nov 15;22(22):2800-5 – reference: 25352553 - Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 – reference: 17344885 - Nat Biotechnol. 2007 Mar;25(3):309-16 – reference: 27924018 - Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839 – reference: 25882296 - Glycobiology. 2015 Jul;25(7):702-13 – reference: 23867056 - Leuk Res. 2013 Oct;37(10):1329-40 – reference: 16713569 - Cell. 2006 May 19;125(4):801-14 – reference: 18381899 - Genome Res. 2008 Apr;18(4):644-52 – reference: 25265348 - Exp Oncol. 2014 Sep;36(3):162-9 – reference: 25136137 - Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12865-70 – reference: 18460185 - BMC Bioinformatics. 2008 Apr 29;9 Suppl 5:S3 – reference: 22068471 - Brain Nerve. 2011 Nov;63(11):1189-95 – reference: 27748371 - Leukemia. 2017 Apr;31(4):945-956 – reference: 18463613 - Mol Syst Biol. 2008;4:189 – reference: 17646309 - Bioinformatics. 2007 Jul 1;23(13):i29-40 – reference: 23695286 - Eur J Hum Genet. 2014 Jan;22(1):144-7 – reference: 25484339 - Methods. 2015 Mar;74:83-9 – reference: 27815426 - J Immunol. 2016 Dec 1;197(11):4312-4324 – reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504 – reference: 24376424 - Front Physiol. 2013 Dec 12;4:363 – reference: 25210889 - PLoS Genet. 2014 Sep 11;10(9):e1004605 – reference: 25503980 - Neurology. 2015 Jan 20;84(3):273-9 – reference: 25739440 - J Biol Chem. 2015 Apr 17;290(16):10242-55 – reference: 20126254 - PLoS Biol. 2010 Jan 26;8(1):e1000294 – reference: 17932254 - Science. 2007 Nov 16;318(5853):1108-13 – reference: 21967640 - Antioxid Redox Signal. 2012 May 15;16(10):1150-80 – reference: 19029127 - Bioinformatics. 2009 Jan 15;25(2):237-42 |
SSID | ssj0061876 |
Score | 2.076381 |
Snippet | The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable... |
SourceID | doaj pubmedcentral proquest pubmed crossref sage libertasacademia airiti |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Authorship Cluster analysis Datasets Disease Diseases Genes Literature searches Medical Subject Headings-MeSH Methods Original Research Peer review Protein interaction Proteins Searching Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYltNAe-n64TYsKpdCDWUvWwz72tYQeQigN5CYkWaILwVti55B_nxnL611vm_bSywrrYeSZkWZGmv2GkHeK2YI1IuaW8SYXTZC581zAo5dO2SiEG6ItjtXRqfh2Js92Un1hTFiCB06EW9QWbICa2drXUcSqsWVtWWPBkyl5CbW4-4LO2zhTaQ9WDBb59lJygT9gqID5jTlZMFXdbbtC0KCZNhpA---RBwnX1nY2RajbPxmfv8dQ7gSCDbpp-ZDcH41K-jF9zCNyK7SPyZ2UZvLqCWm_Bwy-CPQYAWu7HkpwyYH5NAUb03VLLT1BxIZVm48lHc4K098eYMAQLE77NVTHcDF1_pLud-gOl7un5HT59cfno3zMs5BbVbE-b4LG9N660ZUvZPRaWCu1Z7opg6qUCk0lQIk5rgsX66hcYNqpAIxVPJaWlc_IQbtuwwtCnZNWes8cC-ho6ipI8OdihJc2RQwqI8tEeDMulc6ccAS5kwiUXxqO8D0ciwqx9TBl4PyBgctiwIfMyGLDOONHNHNMqnFu2Ahgvs_zjHyYRvxKSB5_6fsJZWHqhxjcQwVIphkl0_xLMjOi9yVp9sK9Rm8N7DFGCcUycrgRuC2deIGntbVgNzQLcOU1k1WZkbdTM-wVeAFk27C-7Aw626BUhBYZeZ7Ed5oRx8wGutYw65lgz6Y8b2lXPwc8cswRJDmMfI9LYDulm6j78n9Q9xW5i8KSTsMOyUF_cRleg33YuzfDVnAN-6Zcdw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagBQkOvB-BgoKEkDhEXSd-JCdEoauKw2pVUak3y09YCSVlsz3w75mJvbvNUnpZK35Ejj1jz9iz30fIe0H1hDoWCk1LVzDneWFsyeDRciN0YMwM0RYzcXLGvp3z83Tg1qewyvWaOCzUrrN4Rg5OOh5WNYzSTxe_C2SNwtvVRKFxm-zDElyD87V_dDybn67XYkFB2beXk4f4AwYLmOHIzYKUdXf0AsGDRrvSAN5_nzyM-La61zFSXV9nhP4bS3klIGzYo6aPyINkXOafozQ8Jrd8-4TcjXSTf56S9tRjEIbPZwhc268gBdcchCCPQcd51-Y6nyNyw6ItUpoPZ4bx7w_QYAgaz1cdZAe_3FT-Gu958iuz3T8jZ9Pj719OisS3UGhR01XhvESab-lkbSc8WMm05tJS6SovaiG8qxlsZqaUExOaIIyn0ggPEyzKUGlaPSd7bdf6lyQ3hmtuLTXUo8Mpa8_BrwsBXuomwYuMTOPAq6QyvZqXCHbHETC_UiXC-JSY1Iixh9SB4wcKrosCXzIjh-uJUzahmiO5xi9FE5D57pxn5OOmxUVE9Lih7hHKwqYeYnEPGd3yh0qqrRoNVmpDdWObwELtdNVo6jT42lVZQW5G5K4kjV64U2i1ArlXggmakYO1wG3HaasI1xczcOkl5XWVkXebYlgz8CJIt7677BU63bC5MMky8iKK76ZHJTIcyEZCr0eCPeryuKRd_BxwyZEriJfQ8gOqwLZL_xvdVzd_3mtyD8UgnncdkL3V8tK_AQtwZd4mNf8Lmr5VMg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA9yIuiD3x_VUyKI4EO9Js1H-yDi13IIHoe4cG8haZNz4Wh1twfef-9M0-1e9-7El4YmkxCSSWcmM_0NIa8UsxmrRUgt43Uqai9TV3EBr5V0ygYhXB9tcaD25-LrkTza_B49LODqUtMO80nNlydv__w-ew8H_t3gctzDB6ghoFxjxhUENL0OcknjMf0mRp-CYkWfag6pUyTfOC0vjADiyC4QVGgirXpQ_1vkTsS9tSsbI9jtZcrpxRjLc4Fiveya3SW3B6WTfohcco9c8819ciOmoTx7QJrvHoMzPD1AQNtVByWY7MAcNAYj07ahlh4iosOiSYeS9neJ8bcI6NAHk9OuherglyPx5-j_oee4YPWQzGdffnzaT4c8DKlVBevS2mtM_61rXVSZDJUW1kpdMV3nXhVK-boQIOQc15kLZVDOM-2Uh41XPOSW5Y_ITtM2_gmhzkkrq4o55tEQ1YWXYO-FAIPWWfAqIbO48GbNCeaQIwieRCD93HCE9-FYFIi9hykFpy8MTBoDNmZC9tYbZ6oB7RyTbpwYNgCcb-95Qt6MPX5FpI9_0H5EXhjpEKO7r2iXx2Y48qa0oL2WzJZVGUQoapuXltUWbPCc51CbEL3NSZMBtxora-AbZJRQLCG7a4bbrBPP8Da3FOyKZgGmvmayyBPycmyGbwk6iGzj29OVQWMchI7QIiGPI_uOM-KY-UCXGmY9YezJlKctzeJnj1eOOYQkh56v8QhspnTV6j79X8Jn5CYyRLwR2yU73fLUPwcdsXMv-qP_Fz1pWZY priority: 102 providerName: Scholars Portal |
Title | Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations |
URI | https://www.airitilibrary.com/Article/Detail/P20160526003-201712-201808280018-201808280018-1-11-010 http://insights.sagepub.com/reverse-nearest-neighbor-search-on-a-protein-protein-interaction-netwo-article-a6461 https://journals.sagepub.com/doi/full/10.1177/1177932217720405 https://www.ncbi.nlm.nih.gov/pubmed/28757797 https://www.proquest.com/docview/2081469411 https://www.proquest.com/docview/2421171583 https://www.proquest.com/docview/1924887474 https://pubmed.ncbi.nlm.nih.gov/PMC5513527 https://doaj.org/article/9a95191a9c9f4f8da39a1da106323a9c |
Volume | 2017 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISR44PsjMKogISQeQmPHH8njBusmJKqq2kTfLCexoRJLUZs-7L_nLk7apWOIF1vxVxznbN_5zr8j5L2kJqYld5GhrIx4aUWUF4zDYyFyaRzneWNtMZbnl_zrTMz2SNXdhWlHcPUJzaqgR81ijbMbT6OHrZJxiAEwHsBOo4-VGCT6-kr70-7OqQamoHp6fYWa7QLtIa-j7nbbPjlkSgqYyIfHo-n3i27tljRt3NFh-xG-YKvYvPVO2LLMHIGHejtaA_z_gDzy2LhmZbyVu_kbA3vbDvOGMVmzv40ek4ctYxoee0p6QvZs9ZTc864qr5-RamrRgMOGYwS9XdUQg1gPBBR6g-VwUYUmnCDqw7yK2jhszhv91Qmo0Bich_UCkp1dbgp_8Tqi8AalrJ6Ty9HpxefzqPXVEBmZ0joqrUIX4apUaRELVyhujFAFVWViZSqlLVMOG2HOVJy7zMncUpVLC8QhmUsMTV6Qg2pR2VckzHNhRFHQnFoUVlVqBciEzkGjZeysDMjID7zuiEVPGALlCQTbTzRDCCCGUYr4fOh2sP9AQezRIIcGZNj9OF20iOjomOOXpi0I-u4_D8jHTY3fHg3kH2VPkBY25RDHu0lYLH_odlnQmQEON6MmKzLHXVqaJDO0NCCnJyyB1ICoXUrqNbiTWRgN80VLLmlAjjqC244Ti_HEN-P0jmzO4CuoSJOAvNtkw3qDSiRT2cV6pVFgh42JKx6Ql558Nz1i6B1BZQp63SPsXpf7OdX8Z4Npjn6GBIOaH3AKbLt01-i-_t-Cb8h9JAh_anZEDurl2r4FPrLOB2Q_HZ0N2iUA4pPT8WQ6aE5lIDybUQi_8fQP_pVuHg |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKCwIOlDeBAkECJA5p145jJwcOC2XZ0rKqUFcqJ-MkdrsCJWiTFSp_hb_Cj2Mmj91mKb1V4hIrfsl2ZsYz9uQbQp4Lqns05dbTlKUeT03gxQnj8JoEsdCW87jythiJ4Zh_OAwOV8iv9l8YdKtsZWIlqNM8wTNyMNLxsCrilDYelLvm5AfYZ8XrnW34mC8YG7w7eDv0mhACnhYhLb3USIxcLVMZJr3AJpJrHciEytQ3IhTCpCEH-Rwz2YttZEVsqIyFgTELZn1Nfej3ElkDoo6Aidb6n_vvx62gFxQkyeLmcwsfoA2Bjo-BXzAe3mU9QWSizpZXRQa4TtZr8Fxd6NoNXp-l4f7tqHnK26zaAAfr5He7dLXfy9fNWRlvJj-XUCX_07W9SW40irfbrznlFlkx2W1ypQ7FeXKHZJ8MOqgYd4SgvkUJ6eToGBjErR2y3TxztbuPqBaTzGtStzpPrX8NgQaVQ71b5pBtzXReebu-A3NPcUJxl4wvZLL3yGqWZ-YBceM40EGS0JgaNMZlaAKwea2FTtOeNcIhg5puVCNOCrXPEAgwwGACvmIIccQwCRF_EMMqdl8omHUK7GyHbLV0p5IG8R0Dj3xTtAF5XyZZh7yat_heo52cU_cNkvK8HuKUVxn59Eg1Yk9FGjT4iOooiSy3Yar9SNNUU1CMmQ-5DpHLjNDpcKkw0QroVgkuqEM2WlperNOCkM8u5gxmQYPQd8izeTHIU7wk05nJZ4XCAwnYeLnkDrlfc998RAyjP8hIwqg7fNkZcrckmxxXmO0YRylg0PIlcvBiSP9a3YfnT-8puTo8-Lin9nZGu4_INSSJ-lxwg6yW05l5DJpyGT9pJJZLvlw0I_8BC8zGfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJxB74PsjMCBICImHrLHjj-RxMKrxoaqaNrE3y45tqDSlU9s98N9zF6ft0jHES6z4Syf77Luzz78j5J2kJqeOh8xQ5jLuvMhszTj81sJKEzi3rbfFWB6d8q9n4qzzzcG3MN0ILvbRrQooajdrXN0XLgy7O8YhfkDvAG0aQ6wggukO5yAaB2TnYHT842S1FUtattHlsH6GDTb3lNf6AAlkpogj1BNQLY7_LrkfoW7NwkSndfM3ffS6W-UV37BWXI0ekHudnpkeRMZ4SG755hG5HSNP_n5MmmOP_hg-HSOG7WIJKVjpwA9p9D9OZ01q0gmCOEybrEvT9vgwvoSABq3_eLqcQXbw83Xlw3jlk16Z-MUTcjr6fPLpKOtCL2RGlnSZOa8w4rdyqqxzEWrFjRGqpsoVXpZSeldykGuWqdyGKkjrqbLSw1xLFgpDi6dk0Mwa_5yk1goj6ppa6tH2VKUXYOKFAJ26PHiZkFEceL2aez1hiHsnEDu_0AwRfRgmJcLtYRTB_g8FK0aDWZmQ4WridN0BnGOcjXNNO0zz7TlPyId1i4sI7vGPuh-RF9b1EJa7zZjNf-pulevKgMJaUVPVVeChdKaoDHUGzO6CFZCbELXNSb0Otwpro4H9teSSJmRvxXCbcWI5HuBWnN5QzMG6V1SURULeroth-8A7IdP42eVCo_0NcgZWT0KeRfZdU8Qw2IGqFFDdY-weyf2SZvqrhSjHsEGCQcv3uAQ2JN00ui_-t-IbcmdyONLfv4y_vSR3kTfiedgeGSznl_4VaIhL-7rbB_4A0cZXVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reverse+Nearest+Neighbor+Search+on+a+Protein-Protein+Interaction+Network+to+Infer+Protein-Disease+Associations&rft.jtitle=Bioinformatics+and+biology+insights&rft.au=Suratanee%2C+Apichat&rft.au=Plaimas%2C+Kitiporn&rft.date=2017&rft.pub=SAGE+Publications&rft.issn=1177-9322&rft.eissn=1177-9322&rft.volume=11&rft_id=info:doi/10.1177%2F1177932217720405&rft.externalDocID=10.1177_1177932217720405 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2FP20160526003-c.jpg |